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Abstract

We consider an ecology model in which the population is structured by a spatial

variable and a phenotypic trait. The model combines a parabolic operator on the spatial

variable with a kinetic operator on the trait variable. We prove the existence of solutions

to that model, and show that these solutions are unique. The kinetic operator present

in the model, that represents the effect of sexual reproductions, satisfies a Tanaka-type

inequality: it implies a contraction of the Wasserstein distance in the space of phenotypic

traits. We combine this contraction argument with parabolic estimates controlling the

spatial regularity of solutions to prove the convergence of the population size and the

mean phenotypic trait to solutions of the Kirkpatrick-Barton model, which is a well-

established model in evolutionary ecology. Specifically, at high reproductive rates, we

provide explicit convergence estimates for the moments of solutions of the kinetic model.

Keywords: structured population, infinitesimal model, selection-mutation, asymptotic analy-
sis, macroscopic limit, Wasserstein estimates, parabolic estimates, mathematical ecology.

MSC 2000 subject classification: 35B40, 35K57, 92D15, 92D25,92D40.

1 Introduction

We are interested in a structured population model that describes the dynamics of a biological
population (typically a species of trees subject to climate change). At each time t ≥ 0 the
population is structured by a phenotypic trait y ∈ R and a spatial variable x ∈ T

d (the d ∈ N
∗

dimensional torus). The population is then represented by a density n = n(t, x, y), and the
dynamics of this population is given by the Spatially structured Infinitesimal Model (see [41]):

∂tn(t, x, y) = ∆xn(t, x, y) +

(

1 +
A

2
− 1

2
(y − yopt(t, x))

2 −
∫

R

n(t, x, z) dz

)

n(t, x, y)

+ γ

(
∫∫

R2

ΓA/2

(

y − y∗ + y′∗
2

)

n(t, x, y∗)n(t, x, y
′
∗)

∫

R
n(t, x, z) dz

dy∗ dy
′
∗ − n(t, x, y)

)

,
(SIM)

where A > 0 is the phenotypic variance at linkage equilibrium of the population (see [31, 15]),
yopt : T

d → R is a description of the environment (typically yopt(t, x) is the temperature at
time t and location x), and ΓA/2 : R → R+ denotes the Gaussian distribution with variance
A/2:

ΓA/2(y) :=
1√
2πA

e
−|y|2

A .
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Note that generalisations of the (SIM), for instance more general selection operators, could be
introduced, but we focus on that specific model in this manuscript, because of its connection to
the Kirkpatrick-Barton model that we describe below. (SIM) is composed of parabolic terms,
common in ecology models (see the Fisher-KPP equation [36], and [3]), and a kinetic term, with
a factor γ > 0, representing the effect of sexual reproduction. Beyond the importance of this
model for applications, (SIM) is an opportunity to develop the analysis methods introduced
for other kinetic models (in particular the Boltzmann equation), using an unusual diffusion
term in the space variable. This diffusive term enables us to propose a new method to derive
a macroscopic limit: using from Wasserstein estimates on the collision operator, we are able
to show that when γ > 0 is large, the dynamics of n can be described by a closed equation on
its two first moments.

Indeed, we show that if γ > 0 is large, the solutions of (SIM) satisfy

n(t, x, y) ∼ N(t, x)ΓA (y − Z(t, x)) ,

where the macroscopic quantities N and Z asymptotically satisfy the Kirkpatrick-Barton
Model :

(KBM)







∂tN(t, x)−∆xN(t, x) =
[

1− 1
2(Z(t, x)− yopt(t, x))

2 −N(t, x)
]

N(t, x),

∂tZ(t, x)−∆xZ(t, x) = 2∇xN ·∇xZ
N (t, x)−A(Z(t, x)− yopt(t, x)).

(KBM), introduced in [46], is used in the evolutionary ecology literature. So far, (SIM)
and (KBM) have received limited attention from the mathematical community. In [45] the
existence of solutions for models related to (SIM) is discussed. In [41] the propagation fronts
for a simplified model are constructed (this article also contains non-rigorous asymptotics
related to the present study), while in [40], the long time dynamics of a different simplified
model is discussed. In [48], travelling waves and steady distributions have been constructed
for (KBM) when a parameter is small. This remarkable result is obtained by a perturbative
argument around the case ε = 0 which corresponds to the Fisher-KPP equation [32, 36]:
the small parameter ε > 0 could correspond to a weak selection and a weakly heterogeneous
environment. Finally, we mention the study of acceleration fronts for sexual reproduction
models in [26, 23]. We refer to Section 2.3 for a discussion of the biological aspects of (SIM),
(KBM), and the biological implications of this manuscript’s results.

In the case of asexual populations, the last term of (SIM) simplifies considerably: it is
then replaced by a local term plus a diffusive part (that represents mutations). These asexual
population models have recently received considerable attention, and the propagation phe-
nomena that they present are now well understood. The main idea in the asexual case is to
consider the model as a semi-linear parabolic equation, to control the non-local competition
term through a Harnack inequality, and to use topological fixed-point arguments to construct
propagation fronts [3, 7, 11]. Additional difficulties arise when the phenotypic trait y has
an impact on the spatial diffusion of individuals in space (see [11, 55, 8]), and these models
can lead to acceleration fronts [8, 12]. Finally, when the mutation rate is low, these asexual
models can be related to constrained Hamilton-Jacobi equations [13, 55, 10]. Note that in
the asexual case, the propagation speed of the population (which plays an important role in
biology) is given by a linearisation of the model, and is then explicit in terms of a certain
principal eigenvalue problem. This simple characterisation of the propagation velocity is no
longer valid in the case of sexual populations, and the macroscopic limit described here can
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be used to describe the propagation phenomena for (SIM) (we refer to [18, 50] for a related
idea in mathematical physics).

The macroscopic limit we present here is based on the Wasserstein contraction induced by
the reproduction operator (see Theorem 5.1). This contraction property exists for a series of
operators appearing in physics or econometry [6, 9, 58], and was originally obtained by Tanaka
[54]. To our knowledge, few rigorous macroscopic/hydrodynamic results have been derived
from it (see [47] for a result without spatial structure). Note that the strategy adopted here
is to combine Wasserstein estimates (for the reproduction term) with estimates of a different
nature (parabolic estimates for the spatial dimension). This strategy is related to the work of
Carlen and Gangbo [24] (see also [1]), who are interested in a kinetic Fokker-Planck equation
that combines a hyperbolic transport term in space with a kinetic operator in velocity space.
This kinetic operator involves a contraction of the Wasserstein distance. The authors show
the long time convergence of solutions to the set of local Maxwellians, but this large-time
convergence is not quantitative, due to the lack of regularity estimates in the spatial variable.
In the present study, the presence of a diffusive term in the space variable allows us to push
the analysis further. Finally, we are also able to handle the selection/competition term to
justify the macroscopic limit of (SIM) described above.

Recently, structured population models with sexual reproduction but without a spatial
variable have attracted attention. The existence and uniqueness of solutions for such problems
has been considered in [51, 34]. A difficult problem, studied in [19, 22, 21, 52] is to show
that solutions converge to a unique steady-state when the selection term has a single local
maximum. A second approach (in fact closely related to the asymptotic γ ≫ 1 that we consider
in this manuscript) is to assume that the reproduction kernel ΓA/2 has a small variance, see
[51, 27, 53, 20, 26]. This small variance approach was also also considered in [34], where an
analysis based on moments of the distribution was introduced to describe the dynamics of
solutions.

2 Main results and organisation of the paper

In this manuscript, we assume that the optimal phenotypic trait (t, x) 7→ yopt(t, x) and the
initial population (x, y) 7→ n0(x, y) satisfy

Assumption 1. For some C1 > 0,

(i) yopt ∈ C1(R+ × T
d,R) such that ‖yopt‖W 1,∞(R+×Td,R) < C1.

(ii) n0 ∈ C0(Td × R,R+), such that n0 > 0 and

∀(x, y) ∈ T
d × R, 0 < n0(x, y) ≤ C0

1 + y10
,

as well as, for k ∈ {0, 1, 4},
∥

∥

∥

∥

x 7→
∫

R

ykn0(x, y) dy

∥

∥

∥

∥

W 4,∞(Td)

≤ C1.

The assumption n0(x, y) ≤ C0
1+y10 seems a strong assumption, but it is actually coherent

with biological applications where populations typically have Gaussian tails in the phenotypic
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variable. The last regularity assumptions is technical: it is a W 4,∞(Td) bound on moments
of the initial population. For k = 0, it corresponds to a regularity assumption on the initial
population size N0, and on the initial mean phenotypic trait Z0 for k = 1. the case k = 4
corresponds to a higher moment that will be useful for asymptotic analysis we will perform in
this manuscript. Thanks to these assumptions, we will be able to show that N and Z, that is

N(t, x) =

∫

R

n(t, x, y) dy, Z(t, x) =

∫

R

y
n(t, x, y)

∫

R
n(t, x, z) dz

dy, (1)

are regular in both variables (see Remark 2.7). We will then be able to apply the comparison
principle to several equations, which will be crutial in our analysis. Note that N(t, x) and
Z(t, x) represent respectively the population size and the mean phenotypic trait at time t ≥ 0
and position x ∈ T

d. One could probably consider weaker assumptions on n0, but we leave
this problem for future research.

2.1 Existence and uniqueness of solutions of (SIM)

In this section, we consider (SIM) with given coefficients, and in particular, γ > 0 is fixed.
We indicate the dependency of the constants in γ > 0 for readability (see e.g. (4)), but not in
the proofs. The next section will be devoted to the asymptotic limit γ → ∞ and the impact
of γ > 0 will then be carefully monitored. We define solutions of (SIM) as follows:

Definition 2.1. Let T ∈ [0,∞], A, γ > 0, yopt ∈ C1([0, T ] × T
d) and n0 ∈ C0(Td × R,R+).

n ≥ 0 is a solution of (SIM) with initial data n0 if n ∈ L∞([0, T ]×T
d, L1(R)), n ∈ L2([0, T ]×

R,H1(Td)), ∂tn ∈ L2([0, T ]×R,H−1(Td)), and satisfies, for v ∈ L2(R×H1(Td)) and almost
every t ∈ [0, T ],

∫

R

∫

Td

∂tn(t, x, y)v(x, y) dx dy +

∫

R

∫

Td

∇xn(t, x, y) · ∇xv(x, y) dx dy

=

∫

Td

∫

R

(

1 +
A

2
− 1

2
(y − yopt(t, x))

2 −
∫

R

n(t, x, z) dz

)

n(t, x, y)v(x, y) dy dx

+ γ

∫

Td

∫

R

v(x, y))

[
∫∫

R2

ΓA/2

(

y − y∗ + y′∗
2

)

n(t, x, y∗)n(t, x, y
′
∗)

∫

R
n(t, x, z) dz

dy∗ dy
′
∗ − n(t, x, y)

]

dy dx,

(2)

it should also satisfy n(0, ·, ·) = n0 and for any T̃ ∈ [0, T ], T̃ <∞, there should be a constant
C̄ > 0 such that

sup
y∈R

(

sup
t∈[0,T̃ ]

‖n(t, ·, y)‖H1(Td) + ‖n(·, ·, y)‖L2
loc([0,T̃ ),H

2(Td)) + ‖∂tn(·, ·, y)‖L2
loc([0,T̃ )×Td)

)

< C̄ <∞.

(3)

This notion of solution is closely connected to the notion of strong solutions in e.g. [37].
We prove the existence of such solutions of (SIM) in the following proposition:

Proposition 2.2. Let yopt ∈ W 1,∞(R+ × T
d), n0 satisfying Assumption 1, A > 0, and

γ > 2 + A + ‖yopt‖L∞(R+×Td). There is a unique global solution n of (SIM) with the initial
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data n0, in the sense of definition 2.1. More precisely, for a constant Cγ that may depend on
γ and (t, x, y) ∈ R+ × T

d × R,

n(t, x, y) ≤ Cγ
1 + y10

, (4)

while for any T > 0, there is Cγ,T > 0 such that

supt∈[0,T ]‖n(t, ·, y)‖H1(Td) + ‖n(·, ·, y)‖L2([0,T ],H2(Td)) + ‖∂tn(·, ·, y)‖L2([0,T ]×Td) ≤
Cγ(1 + γ)

1 + y8
.

(5)

Moreover, for (t, x, y) ∈ R+ × T
d × [−1, 1],

n(t, x, y) ≥
(

min
R+×Td×[−1,1]

n0
)

e−Cγt. (6)

Remark 2.3. In Section 5.4, we show that the macroscopic quantities N (resp. Z, V ) defined
by (1) (resp. (1), (18)) from the solution n of (SIM) given by Proposition 2.2 are C1 in t
and C2 in x, and they satisfy (1), (18) seen as equalities between continuous functions. In
particular the comparison principle (Corollary 7.4 p. 159 in [37]) applies to (17) and (19)

when the terms ∇xN(t,x)
N(t,x) and ñ(t, x, y) are considered as given coefficients (we refer to (1)

and (14) for the definition of N and ñ). The comparison principle will play a crucial role in
Section 4.

The existence of solutions to (KBM) that are C1 in t and C2 in x will be shown in Sec-
tion 5.7 (using Proposition 4.5), and the uniqueness of such solutions is proven in Proposi-
tion 5.7.

We prove Proposition 2.2 in Section 3. A preliminary step is to prove the existence of
global solutions nR to the following truncated problem for R > 0:

∂tnR(t, x, y)−∆xnR(t, x, y) =

(

1 +
A

2
− 1

2
(y − yopt(t, x))

2 −
∫

R

nR(t, x, z) dz

)

nR(t, x, y)

+ γ

(

1|y|≤R

∫∫

R2

ΓA/2

(

y − y∗ + y′∗
2

)

nR(t, x, y∗)nR(t, x, y
′
∗)

∫

R
nR(t, x, z) dz

dy∗ dy
′
∗ − nR(t, x, y)

)

, (7)

together with nR(0, x, y) = n0(x, y)1|y|≤R. We do so in Section 5.3: in Lemma 5.3, we use a
Cauchy-Lipschitz-type construction to construct solutions of (7) on a short time interval. We
extend these to prove the existence of global solutions of (7) in Proposition 5.4, and we obtain
uniform estimates on the tails of solutions in the phenotypic variable y in Proposition 5.5.
In Section 3, we show that nR converges weakly to a solution n of (SIM) when R → ∞,
which proves Proposition 2.2. Note that to show the convergence of the non-linear birth term,
we use the Dunford-Pettis Theorem: since the functions nR are uniformly bounded, their
weak convergence implies their strong convergence. This idea is reminiscent of weak com-
pactness arguments in kinetic theory [60], where the L∞ bound on solutions of the truncated
problem is replaced by estimates on the entropy of solutions and the De La Vallée-Poussin
equi-integrability Criterion.

In the next proposition, we show that solutions of (SIM) are unique:
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Proposition 2.4. Let yopt, n
0 satisfying Assumption 1, A > 0, and γ > 0. Let n, ñ solutions

of (SIM), in the sense of definition 2.1, defined on [0, T ] × T
d × R with the same initial data

n0 ∈ L1(Td × R,R+), such that

max
x∈Td

∫

(1 + y4)n0(x, y) dy <∞.

If there is a constant C > 0 such that

∀(t, x) ∈ [0, T ] × T
d,

∫

R

n(t, x, y)
(

1 + y4
)

dy ≤ C,

∫

R

ñ(t, x, y)
(

1 + y4
)

dy ≤ C, (8)

then n = ñ.

Remark 2.5. The assumption (8) on moments of n and ñ could be replaced by the assumption
n0(x, y) ≤ C

1+y6
. Indeed, we can use an argument introduced in the proof of Proposition 2.2

(see Step 1) to show that this bound is propagated for t ∈ [0, T ], and (8) is then always satisfied
by n and ñ.

The proof of Proposition 2.4 is detailed in Section 5.7. It follows an argument developed
by J. Guerand, M. Hillairet and S. Mirrahimi in [34] (see section A.3) for a model without
spatial structure. We adapt their proof to include the spatial variable x in (SIM) with minimal
adjustments.

2.2 Macroscopic limits of solutions of (SIM)

Our main asymptotic result, stated below, shows that when γ > 0 is large, n satisfies:

n(t, x, y) ∼
γ≫1

N(t, x)ΓA(y − Z(t, x)),

and the couple (N,Z), given by (1), is close to the solution of (KBM) with initial data
(

N(0, ·), Z(0, ·)
)

=
(

N0, Z0
)

.

Theorem 2.6. Let yopt, n
0 satisfying Assumption 1 and A > 0. For γ > 0, let nγ ∈ L∞(R+×

T
d, L1(R)) the solution of (SIM) with initial data n0.

There exist γ̄ > 0, C > 0 and θ ∈ (0, 1) such that for any γ > γ̄, there exist ϕN,γ , ϕZ,γ :
R+ × T

d → R satisfying

‖ϕN,γ(t, ·)‖L∞(Td) + ‖ϕZ,γ(t, ·)‖L∞(Td) ≤
C

γθ
+ C1[0,C ln γ/γ](t) (9)

such that the functions Nγ and Zγ defined from nγ by (1) satisfy the following equations as
equalities between continuous functions:










∂tNγ(t, x)−∆xNγ(t, x) =
[

1− 1
2(Zγ(t, x)− yopt(t, x))

2 −Nγ(t, x) + ϕN,γ(t, x)
]

Nγ(t, x),

∂tZγ(t, x)−∆xZγ(t, x) = 2
∇xNγ ·∇xZγ

Nγ
(t, x)−A(Zγ(t, x)− yopt(t, x)) + ϕZ,γ(t, x),

(10)
where (t, x) ∈ R+ × T

d. Moreover,

max
(t,x)∈[θ lnγ/γ,∞)×Td

W2

(

nγ(t, x, ·)
Nγ(t, x)

,ΓA(· − Zγ(t, x))

)

≤ C

γθ
, (11)

where W2 stands for the Wasserstein distance, as defined in Section 5.1.
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We show in Section 5.7 that this theorem implies the convergence of (Nγ , Zγ) to the
solution (N̄ , Z̄) of (KBM):

N −→
γ→∞

N̄ in L∞
loc((0,+∞), L∞(Td)),

Z −→
γ→∞

Z̄ in L∞
loc((0,+∞), L∞(Td)).

(12)

Remark 2.7. The estimates given by Theorem 2.6 are global in time, even though N(t, ·) may
converge to 0 when t → ∞. This is possible because the last term of (SIM) (ie the "kinetic"
operator) scales linearly with n. It therefore also holds for populations that are going extinct.

Estimate (10) is a stronger result (more quantitative) than what is typically obtained in
macroscopic limits, through e.g. a truncated Hilbert expansion [17] or compactness arguments
[14]. This is possible thanks to the diffusion operator in x present in (SIM) that brings some
regularity to solutions.

In Section 3, we prove the existence of global solutions for (SIM). In Section 4.1, we show
that an L∞([0, τ ]×T

d) bound on Z (with τ ≥ 0) implies an estimate on the fourth moment of
y 7→ n(t, x, ·) for t ∈ [0, τ+ τ̄ ], with τ̄ > 0. In Section 4.2 we show that Z is Hölder continuous,
provided we have a bound on ‖Z‖L∞ . This regularity is used in Section 4.3 together with

a Tanaka-type inequality (see Theorem 5.1 in the Appendix) to show that n(t,x,·)
N(t,x) is close

to ΓA(· − Z(t, x)) for the Wasserstein distance W2 when γ > 0 is large enough. Finally in
Section 4.4 we use the estimates mentioned above to obtain a uniform bound on ‖Z‖L∞(R+×Td),
through a contradiction argument showing that the maximal time τ where this estimate hold
is actually τ = ∞. This estimate implies the macroscopic limit described in Theorem 2.6.

2.3 Biological interpretation of the model and impact for ecology

The first term on the right-hand side of (SIM), ∆xn(t, x, y), represents the dispersion of indi-
viduals in space. The term

(

1 + A
2 − 1

2(y − yopt(t, x))
2
)

n(t, x, y) represents the effect of nat-
ural selection: the individuals whose phenotypic trait y is far from the optimal trait yopt(t, x)
have a high mortality rate. The function yopt should therefore be considered as a description of
the environment and is a given function. For instance the trait y is could be the temperature
to which an individual is best adapted to, and yopt is then the predicted map of temperatures.
The term −

(∫

n(t, x, z) dz
)

n(t, x, y) in (SIM) represents competition: all individuals present
at time t ≥ 0 and location x ∈ T

d are competing for resources. The last term describes the
effect of sexual reproductions: when parents give birth to an offspring, the phenotypic trait
of the offspring is drawn from a normal distribution with a fixed variance A/2 centred on the
mean of the parents’ traits. This model for the effect of sexual reproduction on a continuous
phenotypic trait is known as the Infinitesimal Model. It was introduced by Fisher in 1919 [30],
and is used in population genetics either for theoretical purpose [15, 56, 5] or for practical
purposes [39, 57]. The γ ≫ 1 limit corresponds to a short generation time and it can be
seen as the implicit assumption behind the classical Linkage Equilibrium assumption used in
population genetics (see for instance [15]): in the framework of the Infinitesimal Model the
Linkage Equilibrium assumption implies that the population distribution ñ(t, x, ·) is Gaussian
with fixed variance. Numerical simulations (see [41]) suggest that the macroscopic limit model
(KBM) provides a good description of the dynamics of solutions of (SIM) even when γ is not
very large: for γ = 2, the information provided by (KBM) is already relevant.
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We expect (SIM) to be related to a well-chosen Individual Based Model via a large number
of individuals argument, but as far as we know, no such asymptotics exists at present. This
type of derivation exists for asexual models [25], but here an additional difficulty arises: de-
scribing (SIM) as a large population limit of an Individual Based Model will require a precise
understanding of the link between explicit genetic models and the Infinitesimal Model (which
is at the root of the reproduction operator appearing in (SIM)). We refer to [5] for more
information on this limit.

(KBM) was introduced by Kirkpatrick and Barton in 1997 [46], and is used to model the
range dynamics of populations, particularly when these populations are subject to climate
change, see for example [16, 2]. The success of (KBM) comes from to the complex dynamics
it presents [46, 41]: even for a very simple environment described by yopt(t, x) = Bx (and
x ∈ R), the population can either become extinct, survive without spreading, or spread (see
[46, 48]). From a mathematical point of view, these dynamics raise a number of difficult
questions. Several simplified models exist (see [44, 41]), and we refer to [40, 41] for analysis
of some of these simplified models.

A good understanding of the connections between (SIM) and (KBM) (and other con-
nections with stochastic models) has practical implications: the different scales (such as the
mesoscopic scale of (SIM) and the macroscopic scale of the (KBM)) are not clearly distinct
in most biological systems, and easy navigation between the different scales of description is
an essential feature of the theory. This can be seen in [2], where the macroscopic limit from
(SIM) to (KBM) plays an important role. We believe that these models will play an important
role in understanding the effect of climate change on species, and are a valuable complement
to Species Distribution Models (see e.g. [35]) that currently prevail.

2.4 Preliminary: equations satisfied by solutions of the (SIM)

Let n : (t, x, y) 7→ n(t, x, y) a solution of (SIM). In this section we derive heuristically equa-
tions satisfied by n normalized by

∫

n(t, x, y) dy and other moments of n. The existence and
regularity results stated in Section 2.1 (see Proposition 2.2 and Remark 2.7) will provide a
rigorous framework for these partial differential equations.

If we integrate (SIM) along the variable y, we get that the population size N (see (1) for
its definition) satisfies, for t ≥ 0 and x ∈ T

d,

∂tN(t, x)−∆xN(t, x) =

[

1 +
A

2
−N(t, x)

]

N(t, x)− 1

2

∫

R

(y − yopt(t, x))
2n(t, x, y) dy. (13)

We define the normalized profile of the population,

ñ(t, x, y) =
n(t, x, y)

N(t, x)
, (14)

which satisfies

∂tñ(t, x, y) −∆xñ(t, x, y)

= 2
∇xN(t, x)

N(t, x)
· ∇xñ(t, x, y) + γ (T (ñ(t, x, ·)) − ñ(t, x, y))

+
1

2
ñ(t, x, y)

(
∫

R

(z − yopt(t, x))
2ñ(t, x, z) dz − (y − yopt(t, x))

2

)

, (15)
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where T , the Infinitesimal operator, is defined by

T (ñ)(y) :=

∫

R

ΓA/2

(

y − y∗ + y′∗
2

)

ñ(t, y∗)ñ(t, y
′
∗) dy∗ dy

′
∗. (16)

In the Appendix (Section 5.2), we detail the important properties of this operator. From
this expression, we can deduce the following equation on the mean phenotypic trait of the
population Z (see (1) for its definition):

∂tZ(t, x)−∆xZ(t, x)

= 2
∇xN(t, x)

N(t, x)
· ∇xZ(t, x)−

1

2

∫

R

(y − Z(t, x)) (y − yopt(t, x))
2ñ(t, x, y) dy. (17)

We define

V (t, x) :=

∫

R

|y|4ñ(t, x, y) dy, (18)

and thanks to (15), we show that V satisfies

∂tV (t, x)−∆xV (t, x)

= 2
∇xN(t, x)

N(t, x)
· ∇xV (t, x) +

1

2

∫

R

(

V (t, x)− |y|4
)

(y − yopt(t, x))
2ñ(t, x, y) dy

+ γ

(
∫

R

|y|4T (ñ(t, x, ·))(y) dy − V (t, x)

)

. (19)

3 Existence of solutions for (SIM)

In this section, we prove Proposition 2.2. For R > 0, we denote by nR the solution of (7)
provided by Proposition 5.4.
Step 1: We show that the sequence (nR)R>0 converges to a limit n

An integration of (7) shows that NR(t, x) :=
∫

nR(t, x, y) dy satisfies

∂tNR(t, x)−∆xNR(t, x) =

[

1 +
A

2
−NR(t, x)

]

NR(t, x)−
1

2

∫

R

(y − yopt(t, x))
2nR(t, x, y) dy

+ γ

(
∫∫

R2

(
∫ R

−R
ΓA/2

(

y − y∗ + y′∗
2

)

dy

)

nR(t, x, y∗)nR(t, x, y
′
∗)

∫

R
nR(t, x, z) dz

dy∗ dy
′
∗ −NR(t, x)

)

.

(20)

Thanks to (86) (that also implies a bound on NR), the right hand side of this equation is
uniformly bounded (independently from R > 0):

|∂tNR(t, x)−∆xNR(t, x)| ≤
[

1 +
A

2
+NR(t, x)

]

NR(t, x) +
1

2

∫

R

(1 + y2)nR(t, x, y) dy

+ γ

(

2RΓA/2(0)

(
∫

R

nR(t, x, y∗)
∫

R
nR(t, x, z) dz

dy∗

)(
∫

R

nR(t, x, y
′
∗) dy

′
∗

)

+NR(t, x)

)

< C.

Theorem 5 in Section 7.1.3 of [29] implies that NR is a strong solution (in the sense of [29]) of
this heat equation with the right hand side as a 0−th order term: for any T > 0, there exists
a constant Cγ > 0, independent from R > 0 (but that depends on γ > 0) such that

supt∈[0,T ]‖NR(t, ·)‖H1(Td) + ‖NR‖L2([0,T ],H2(Td)) + ‖∂tNR‖L2([0,T ]×Td) ≤ Cγ . (21)

9



We recall that nR also satisfies a regularity estimate independent from R > 0, see (80).

Thanks to (81), the family of measures nR is tight on [0, T ] × T
d × R, for any bounded

time interval [0, T ]. Thanks to Prokhorov’s theorem, (nR)R>1 converges when R → +∞, up
to an extraction (Rk), for the weak topology of measures, to a limit n. Thanks to (81), the
sequence (nRk

)k is uniformly bounded in L∞([0, T ] × T
d × R), and thus equi-integrable. We

can therefore apply the Dunford-Pettis Theorem to show that (nRk
)k converges strongly to n

in L1([0, T ]× T
d × R), when k → +∞, up to an extraction. Note that we can use a diagonal

argument to show that this convergence holds for any T > 0. This implies in particular the
convergence of NRk

to N(t, x) :=
∫

R
n(t, x, y) dy in L1([0, T ] × T

d):

∫ T

0

∫

Td

|NRk
(t, x)−N(t, x)| dx dt ≤

∫ T

0

∫

Td

∫

R

|nRk
(t, x, y)− n(t, x, y)| dy dx dt.

The uniformity of (80) implies that the limit n of nRk
satisfies (3), and similarly the

estimate (21) on NRk
implies that N satisfies the same estimate. Next, we prove a lower

bound estimate on nRk
. Thanks to (7), for (t, x) ∈ R+ × T

d and |y| ≤ 1,

∂tnRk
(t, x, y) −∆xnRk

(t, x, y)

≥ −
(

1

2

(

R+ ‖yopt‖L∞(R+×Td)

)2
+ ‖NRk

‖L∞(R+×Td) + γ

)

nRk
(t, x, y), (22)

and we notice that for any fixed y ∈ [−1, 1],

(t, x) 7→
(

min
R+×Td×[−1,1]

n0
)

e
−

(

1
2

(

R+‖yopt‖L∞(R+×Td)

)2
+‖NRk

‖
L∞(R+×Td)

+γ

)

t

is a sub-solution of (22), and we can use the comparison principle to show that for any
(t, x, y) ∈ R+ × T

d × [−1, 1],

nRk
(t, x, y) ≥

(

min
R+×Td×[−1,1]

n0
)

e
−

(

1
2

(

R+‖yopt‖L∞(R+×Td)

)2
+‖NRk

‖
L∞(R+×Td)

+γ

)

t
. (23)

Since this estimate is uniform in k ∈ N, the limit n of nRk
satisfies the same estimate, which

proves (6).

Step 2: We show that n is a solution of (SIM)
For φ ∈ C0

c ([0,∞) × T
d × R) such that ∂tφ,∇xφ,∆xφ ∈ C0

c (R+ × T
d × R). Since φ is

compactly supported, there is B > 0 such that supp φ ⊂ [0, B]×T
d× [−B,B] for some B > 0.

Since ∂tφ,∆xφ ∈ L1([0,∞) × T
d × R),

∫

R+

∫

Td

∫

R

(∂tφ(t, x, y) + ∆xφ(t, x, y)) nRk
(t, x, y) dy dx dt

−
∫

R+

∫

Td

∫

R

(∂tφ(t, x, y) + ∆xφ(t, x, y)) n(t, x, y) dy dx dt −→
k→∞

0. (24)
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We can also estimate the following quantity:

I0 :=

∣

∣

∣

∣

∫

R+

∫

Td

∫

R

φ(t, x, y)

((

1 +
A

2
− 1

2
(y − yopt(t, x))

2 −
∫

R

nRk
(t, x, z) dz

)

nRk
(t, x, y)

−
(

1 +
A

2
− 1

2
(y − yopt(t, x))

2 −
∫

R

n(t, x, z) dz

)

n(t, x, y)

)

n(t, x, y) dy dx dt

∣

∣

∣

∣

≤ C

∣

∣

∣

∣

∫

R+

∫

Td

∫

R

φ(t, x, y)

(

1 +
A

2
− 1

2
(y − yopt(t, x))

2 −N(t, x)

)

(nRk
(t, x, y)− n(t, x, y)) dy dx dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

R+

∫

Td

(
∫

R

φ(t, x, y)nRk
(t, x, y) dy

)

(N(t, x)−NRk
(t, x)) dx dt

∣

∣

∣

∣

= |I1|+ |I2|. (25)

To estimate |I1|, we notice that (t, x, y) 7→ φ(t, x, y)
(

1 + A
2 − 1

2(y − yopt(t, x))
2 −N(t, x)

)

is a
compactly supported bounded function that does not depend on k ∈ N. The convergence of
nRk

to n in L1([0, T ] × T
d × R) then implies |I1| → 0 as k → ∞. To estimate |I2|, we take

advantage of supp φ ⊂ [0, B]× T
d × [−B,B]:

|I2| ≤ ‖φnRk
‖L∞(R+×Td,L1(R))‖N −NRk

‖L1([0,B]×Td) −→
k→∞

0,

thanks to the fact that φ ∈ C0
c ([0,∞) × T

d × R), the uniform bound (86) on nRk
, and the

convergence of NRk
to N in L1

loc(R+ × T
d). We can therefore conclude the estimate (25):

I0 −→
k→∞

0. (26)

To estimate the difference between the birth terms for nRk
and n, we notice that

I3 :=

∣

∣

∣

∣

∫

R+

∫

Td

∫

R

φ(t, x, y)

[

1|y|≤Rk

∫∫

R2

ΓA/2

(

y − y∗ + y′∗
2

)

nRk
(t, x, y∗)nRk

(t, x, y′∗)
∫

R
nRk

(t, x, z) dz
dy∗ dy

′
∗

−
∫∫

R2

ΓA/2

(

y − y∗ + y′∗
2

)

n(t, x, y∗)n(t, x, y
′
∗)

∫

R
n(t, x, z) dz

dy∗ dy
′
∗

]

dy dx dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R+

∫

Td

∫

R

φ(t, x, y)

∫∫

R2

ΓA/2

(

y − y∗ + y′∗
2

)[

(

1|y|≤Rk
− 1
) nRk

(t, x, y∗)nRk
(t, x, y′∗)

∫

R
nRk

(t, x, z) dz

+
(nRk

(t, x, y∗)− n(t, x, y∗))nRk
(t, x, y′∗)

∫

R
nRk

(t, x, z) dz

+
n(t, x, y∗)nRk

(t, x, y′∗)
(∫

R
n(t, x, z) dz

) (∫

R
nRk

(t, x, z) dz
) (N(t, x)−NRk

(t, x)) dy∗ dy
′
∗

+
n(t, x, y∗) (nRk

(t, x, y′∗)− n(t, x, y′∗))
∫

R
n(t, x, z) dz

]

dy∗ dy
′
∗ dy dx dt

∣

∣

∣

∣

≤ |I4 + I5 + I6 + I7|. (27)

The test function φ is compactly supported and then φ(t, x, y)
(

1|y|≤Rk
− 1
)

≡ 0 if k ∈ N is
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large enough, which implies I4 = 0. To estimate I6, we notice that

|I6| =
∣

∣

∣

∣

∫

R+

∫

Td

(
∫

R

φ(t, x, y)

∫∫

R2 ΓA/2

(

y − y∗+y′∗
2

)

n(t, x, y∗)nRk
(t, x, y′∗) dy∗ dy

′
∗

N(t, x)NRk
(t, x)

dy

)

(N(t, x)−NRk
(t, x)) dx dt

∣

∣

∣

∣

≤ ‖N −NRk
‖L1([0,B]×Td)

∥

∥

∥

∥

∥

∥

(t, x, y) 7→ φ(t, x, y)

∫∫

R2 ΓA/2

(

y − y∗+y′∗
2

)

n(t, x, y∗)nRk
(t, x, y′∗) dy∗ dy

′
∗

N(t, x)NRk
(t, x)

dy

∥

∥

∥

∥

∥

∥

L1([0,B]×Td,L1([−B,B]))

≤
√
2B‖φ‖L∞(R+×Td×R)ΓA/2(0)‖N −NRk

‖L2([0,B]×Td) −→
k→∞

0, (28)

where we have used the fact that
∫

R
n(t,x,y∗) dy∗
N(t,x) =

∫

R
nRk

(t,x,y′∗) dy
′
∗

NRk
(t,x) = 1 and the convergence of

NRk
to N in L1

loc(R+ × T
d). To estimate I5, we notice that

|I5| =
∣

∣

∣

∣

∫

R+

∫

Td

∫ B

−B

∫

R

φ(t, x, y)
nRk

(t, x, y′∗)

NRk
(t, x)

(
∫

R

ΓA/2

(

y − y∗ + y′∗
2

)

(nRk
(t, x, y∗)− n(t, x, y∗)) dy∗

)

dy′∗ dy dx dt

∣

∣

∣

∣

≤
∥

∥

∥

∥

(t, x, y′∗) 7→
(
∫ B

−B
φ(t, x, y) dy

)

nRk
(t, x, y′∗)

NRk
(t, x)

∥

∥

∥

∥

L∞([0,B]×Td×R)

ΓA/2(0)‖nRk
− n‖L1([0,B]×Td×R) −→

k→∞
0, (29)

where the first factor on the right hand side of that inequality is bounded thanks to (81) and
(23), while the last one converges to 0. Finally, the argument above (to estimate I5) can be
reproduced to show that I7 → 0 when k → ∞.

These estimates on I3 (see (27), as well as (25), (26) and (24) show that for any φ ∈
C0
c (R+ × T

d × R),

0 = lim
k→∞

∫

R+

∫

Td

∫

R

(∂tφ(t, x, y) + ∆xφ(t, x, y)) nRk
(t, x, y) dy dx dt

+

∫

R+

∫

Td

∫

R

φ(t, x, y)

[(

1 +
A

2
− 1

2
(y − yopt(t, x))

2 −
∫

R

nRk
(t, x, z) dz

)

nRk
(t, x, y)

+ γ

(

1|y|≤R

∫∫

R2

ΓA/2

(

y − y∗ + y′∗
2

)

nRk
(t, x, y∗)nRk

(t, x, y′∗)
∫

R
nRk

(t, x, z) dz
dy∗ dy

′
∗ − nRk

(t, x, y)

)]

dy dx dt

=

∫

R+

∫

Td

∫

R

(∂tφ(t, x, y) + ∆xφ(t, x, y)) n(t, x, y) dy dx dt

+

∫

R+

∫

Td

∫

R

φ(t, x, y)

[(

1 +
A

2
− 1

2
(y − yopt(t, x))

2 −
∫

R

n(t, x, z) dz

)

n(t, x, y)

+ γ

(

1|y|≤R

∫∫

R2

ΓA/2

(

y − y∗ + y′∗
2

)

n(t, x, y∗)n(t, x, y
′
∗)

∫

R
n(t, x, z) dz

dy∗ dy
′
∗ − n(t, x, y)

)]

dy dx dt.

This equality and the regularity estimate (3) imply that n is a solution of (SIM) in the sense
of Definition 2.1. Estimate (4) is a consequence of (86) and the convergence of nRk

to n in
L1([0, T ] × T

d × R), for any T > 0.
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4 Macroscopic limits of solutions of (SIM)

4.1 Tail estimates uniform in γ > 0 for solutions of (SIM)

In this section, we show that a bound on ‖Z‖L∞([0,τ)×Td) implies a bound on ‖V ‖L∞([0,τ)×Td).
This is the beginning of a bootstrap argument that will unfold in Proposition 4.5: we assume
‖Z‖L∞([0,τ)×Td) ≤ κ and will show that it implies a stronger estimate on ‖Z‖L∞([0,τ)×Td).
This bootstrap will imply a uniform estimate on ‖Z‖L∞([0,τ)×Td), validating all the estimates
obtained in Proposition 4.1, 4.3, and 4.4.

Proposition 4.1. Let α > 0, A > 0 and κ > 0. There exist γ̄ > 0, Cκ > 0 and τ̄κ > 0 such
that if yopt, n

0 satisfies Assumption 1 and γ > γ̄, then the following statement holds.
If the solution n ∈ L∞(R+×T

d, L1(R)) of (SIM) with initial condition n0 and if it satisfies
‖Z‖L∞([0,τ)×Td) ≤ κ for some τ ∈ [0,+∞], then

∀(t, x) ∈ [0, τ + τ̄κ)× T
d,

∫

R

|y|4 n(t, x, y)
∫

R
n(t, x, z) dz

dy ≤ Cκ.

Remark 4.2. Note that the estimate proven in Proposition 4.1 is uniform in γ > 0 and is
therefore not implied by (4). To obtain it, it is necessary to assume that this quantity is finite
at t = 0, but this is implied by the assumption n0(x, y) ≤ C0

1+y10
made in Assumption 1.

Under the assumptions of the proposition above, (30) and Proposition 4.1 imply the fol-
lowing estimate, that will be useful on several occasions in the manuscript:

∫

R

|y|4T (ñ(t, x, ·))(y) dy ≤ Cκ

Proof of Proposition 4.1. The dynamics of V is given by (19), and to estimate the last term
of that equation, we take advantage of the fact that T (ΓA(· −Z)) = ΓA(· −Z) (see (67)), and
Corollary 5.2: for (t, x) ∈ R+ × T

d,
∫

R

|y|4T (ñ(t, x, ·))(y) dy =W4(T (ñ(t, x, ·)), δ0)4

≤ [W4 (T (ñ(t, x, ·)), T (ΓA(Z(t, x)− ·))) +W4 (ΓA(Z(t, x)− ·), δ0)]4

≤
[

1

21/4
W4(ñ(t, x, ·),ΓA(Z(t, x)− ·)) +W4 (ΓA(Z(t, x)− ·), δ0)

]4

≤
(

1

21/4
W4(ñ(t, x, ·), δ0) + 2W4(δ0,ΓA(Z(t, x)− ·))

)4

≤
(

1

21/4
W4(ñ(t, x, ·), δ0) + 2Z(t, x) + C

)4

≤ 2

3
W 4

4 (ñ(t, x, ·), δ0) + C
(

Z(t, x)4 + 1
)

, (30)

for some constant C > 0, thanks to a Young inequality. The last term of (19) then satisfies

γ

(
∫

R

|y|4T (ñ(t, x, ·))(y) dy − V (t, x)

)

≤ γ

(

C
(

|Z(t, x)|4 + 1
)

− 1

3
V (t, x)

)

.

To estimate the second term on the right hand side of (19), we use a Cauchy-Schwarz inequality
as follows

∫

R

(

V (t, x)− |y|4
)

(y − yopt(t, x))
2ñ(t, x, y) dy ≤ V (t, x)

∫

R

(y − yopt(t, x))
2ñ(t, x, y) dy

≤ CV (t, x)

∫

(

|y|2 + 1
)

ñ(t, x, y) dy ≤ C
(

1 +
√

V (t, x)
)

V (t, x).
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Thanks to these estimates, (19) becomes, for (t, x) ∈ [0, τ ] × T
d,

∂tV (t, x)−∆xV (t, x) ≤ 2
∇xN(t, x)

N(t, x)
· ∇xV (t, x) + C

(

1 +
√

V (t, x)
)

V (t, x)

+γ

(

C
(

|Z(t, x)|4 + 1
)

− 1

3
V (t, x)

)

. (31)

Let
V̄ := max

(

‖V (0, ·)‖L∞(Td), 7C
(

(κ+ 1)4 + 1
)

)

.

As soon as γ ≥ C
(

1 +
√
V̄
)

, we have

C
(

1 +
√

V̄
)

V̄ + γ

(

C
(

(κ+ 1)4 + 1
)

− 1

3
V̄

)

≤ 0,

and φ(t, x) ≡ V̄ satisfies V (0, x) ≤ φ(0, x) for x ∈ T
d, as well as

∂tφ(t, x) −∆xφ(t, x) ≥ 2
∇xN(t, x)

N(t, x)
· ∇xφ(t, x) + C

(

1 +
√

φ(t, x)
)

φ(t, x)

+ γ

(

C
(

(κ+ 1)4 + 1
)

− 1

3
φ(t, x)

)

,

and φ is a super-solution of (30) for x ∈ T
d and t ∈ [0, τ ′), where τ ′ is such that ‖Z‖L∞([0,τ ′)×Td) ≤

κ + 1. Note that the assumption ‖Z‖L∞([0,τ)×Td) ≤ κ implies κ′ ≥ κ. We may apply the

parabolic comparison principle (see Remark 2.3), and then, for (t, x) ∈ [0, τ ′)×T
d, V (t, x) ≤ V̄ .

Thanks to (17), we have

∂tZ(t, x)−∆xZ(t, x)− 2
∇xN(t, x) · ∇xZ(t, x)

N(t, x)
≤ C (1 + V (t, x)) ,

and we define ψ(t, x) = κ + C
(

1 + V̄
)

(t− τ) which satisfies Z(τ, x) ≤ ψ(τ, x) for x ∈ T
d, as

well as

∂tψ(t, x)−∆xψ(t, x)− 2
∇xN(t, x)

N(t, x)
· ∇xψ(t, x) = C

(

1 + V̄
)

≥ C (1 + V (t, x)) ,

for t ∈ [τ, τ ′). We may thus apply the parabolic comparison principle (see Remark 2.3) to
show Z(t, x) ≤ κ+ C

(

1 + V̄
)

(t− τ) for (t, x) ∈ [τ, τ ′)× T
d. We may then choose

τ ′ = τ +
1

C(1 + V̄ )
= τ +

1

C
(

1 + max
(

‖V (0, ·)‖L∞(Td), 7C ((κ+ 1)4 + 1)
)) .

4.2 Regularity estimates uniform in γ > 0 for N and Z

In the proposition below, we prove some regularity estimates on N and Z that are uniform
in γ > 0. It is this uniformity that sets them apart from the regularity results obtained in
Section 5.4.
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Proposition 4.3. Let α > 0, A > 0 and κ > 0. There exist γ̄ > 0, θ ∈ (0, 1) and Cκ > 0
such that if yopt, n

0 satisfies Assumption 1 and γ > γ̄, then the following statement holds.
Let n ∈ L∞(R+ × T

d, L1(R)) the solution of (SIM) with initial condition n0, and N and
Z are defined by (1). If it satisfies ‖Z‖L∞([0,τ)×Td) ≤ κ for some τ ∈ (0,+∞], then for any

s, t ∈ [0, τ) and x, y ∈ T
d,

|Z(t, x)− Z(s, y)|
(|t− s|+ |x− y|)θ +

|N(t, x)−N(s, y)|
(|t− s|+ |x− y|)θ ≤ Cκ.

Moreover,
∥

∥

∥

∥

∇xN

N

∥

∥

∥

∥

Ld+3([0,τ)×Td)

≤ Cκ. (32)

Note that Cκ in this statement is independent from τ . This is a consequence of Step 3 of
the proof. It relies on the application of a Harnack inequality (that was used to obtain (35)),
and of (39), that is a corrollary of the Harnack inequality. This uniformity in τ is essential for
to conclude the bootstrap argument described at the beginning of Section 4.1

Proof of Proposition 4.3. Let γ̄ > 0 as in Proposition 4.1.
Step 1: Lower bound on N(t, x)

Since ‖Z‖L∞([0,τ)×Td) ≤ κ, Proposition 4.1 implies that
∫

|y|4ñ(t, x, y) dy is uniformly bounded

on [0, τ)× T
d, and there exists a constant Cκ > 0 such that for (t, x) ∈ [0, τ) × T

d,

∣

∣

∣

∣

[

1 +
A

2
−N(t, x)

]

N(t, x)− 1

2

∫

R

(y − yopt(t, x))
2n(t, x, y) dy

∣

∣

∣

∣

≤ CκN(t, x), (33)

where we have also used the uniform bound on N provided by Proposition 2.2. Thanks to
(33) and the comparison principle used in (13), for t ∈ [0, 1] ∩ [0, τ),

N(t, x) ≥ e−Cκt inf
Td
N(0, ·) ≥ Cκ, (34)

thanks to Assumption 1. Estimate (33) also provides a uniform bound on the coefficients
of (13), we can apply the Harnack inequality for t ∈ [0, τ) \ [0, 1] (see [38], or Theorem 3 in
[4]): there exists Cκ > 0 such that for any t ∈ [0, τ) \ [0, 1],

max
(s,x)∈[t−3/4,t−1/2]×Td

N(s, x) ≤ Cκ min
(s,x)∈[t−1/3,t]×Td

N(s, x).

Since ∂tN −∆xN ≤ (1 +A/2)N , we may consider the super-solution

(s, x) 7→
(

max
x∈Td

N(t− 1/2, x)

)

e(1+A/2)(s−(t−1/2)),

and the comparison principle implies, for t ∈ [0, τ) \ [0, 1],

max
(s,x)∈[t−3/4,t]×Td

N(s, x) ≤ Cκ min
(s,x)∈[t−1/3,t]×Td

N(s, x). (35)

Step 2: Ld+3 estimate on ∇xN(t,x)
N(t,x) for t ∈ [0, 1]

15



We notice that for (t, x) ∈ (−∞, τ) × R, N(t, x) = (N(0, x) +N (t, x)) 1t≥0, where N is a
solution of

∂tN (t, x)−∆xN (t, x) = µN (t, π(x))1t≥0, (t, x) ∈ (−∞, τ)× R
d, (36)

where π(x) is the standard projection of x ∈ R
d on T

d, and

µN (t, x) = ∆xN
0(x) +

(

1 +
A

2
− 1

2

∫

R

(y − yopt(t, x))
2ñ(t, x, y) dy −N(t, x)

)

N(t, x).

Note that N (t, ·) ≡ 0 for t ≤ 0. Thanks to (33) and Assumption 1, we have ‖µN‖L∞([0,τ)×Td) <
Cκ, and we can apply Theorem 7.22 of [37] to obtain

‖∂xN‖Ld+3([t−1/4,t]×Td) ≤ Cκ

(

‖N‖Ld+3([t−1/3,t]×Td) + 1
)

, (37)

for any t ∈ R. For t ∈ [0, 1], since N is uniformly bounded and thanks to the lower estimate
(34), we obtain

∥

∥

∥

∥

∇xN

N

∥

∥

∥

∥

Ld+3([0,1]×Td)

≤ Cκ. (38)

Step 3: Ld+3 estimate on ∇xN(t,x)
N(t,x) for t ∈ [0, τ) \ [0, 1]

The argument here is similar to the one developed for step 2, but on equation (13) instead
of (36). Theorem 7.22 of [37] applied to (13) implies that for t ≥ 1,

‖∇xN‖Ld+3([t−1/4,t]×Td) ≤ Cκ‖N‖Ld+3([t−1/3,t]×Td), (39)

which we combine to (35) to obtain, for t ≥ 1,

∥

∥

∥

∥

∇xN

N

∥

∥

∥

∥

Ld+3(([t−1/4,t+1/4]∩[0,τ))×Td)

≤
‖∇xN‖Ld+3(([t−1/4,t+1/4]∩[0,τ))×Td)

min(s,x)∈[t−1/3,t]×Td N(s, x)

≤ Cκ
‖N‖Ld+3(([t−1/3,t])×Td)

‖N‖L∞(([t−3/4,t])×Td)

≤ Cκ, (40)

Since ‖N‖Ld+3(([t−1/3,t])×Td) ≤ ‖N‖L∞(([t−3/4,t])×Td).

Step 4: Regularity of N and Z

Just as we have done for N (t, x) = N(t, x) − N0(x) (see (36)), we can define Z =
(Z(t, x)− Z(0, x)) 1t≥0, solution of

∂tZ(t, x)−∆xZ(t, x) = 2
∇xN(t, x)

N(t, x)
· ∇xZ(t, x) + µZ(t, π(x))1t≥0, (t, x) ∈ (−∞, τ)× R

d,

where ‖µZ‖L∞([0,τ)×Td) < Cκ thanks to Proposition 4.1 and Assumption 1, and ∇xN
N satisfies

(38), (40). This equation then has the structure of equation (5) in [4] and we can apply satisfy
Theorem 4 from that reference to obtain a Hölder estimate on Z to prove the Hölder continuity
of Z. This theorem cxan also be applied to N (since all its coefficients are bounded), which
concludes the proof of the proposition.
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4.3 Distance of solutions of (SIM) to local Maxwellians

Proposition 4.4. Let α > 0, A > 0 and κ > 0. There exist γ̄ > 0, θ ∈ (0, 1) and Cκ > 0
such that if yopt, n

0 satisfies Assumption 1 and γ > γ̄, then the following statement holds.
Let n ∈ L∞(R+×T

d, L1(R)) the solution of (SIM) with initial condition n0, and Z defined
by (1). If it satisfies ‖Z‖L∞([0,τ)×Td) ≤ κ for some τ ∈ (0,+∞], then

∀t ∈
[

Cκ
ln γ

γ
, τ

)

, max
x∈Td

W 2
2

(

ñ(t, x, ·),ΓA(· − Z(t, x))
)

≤ Cκ
γθ
, (41)

where ñ is given by (14) and ΓA is defined by (68).

Note that in this statement, the constant Cκ > 0 is independent from γ ≥ γ̄, so that
after a boundary layer (0, Cκ ln γ/γ), the functions y 7→ ñ(t, x, y) becomes close to Gaussian
distributions in the trait space, for any x ∈ T

d.

Proof of Proposition 4.4. In this proof, we use the linear problems and estimates presented in
Section 5.6 of the Appendix. In particular, we define (t, x) 7→ φs,z,y(t, x) as the solution of











∂tφs,z,y(t, x)−∆xφs,z,y(t, x)

= 2∇xN(t,x)
N(t,x) · ∇xφs,z,y(t, x)− 1

2(y − yopt(t, x))
2φs,z,y(t, x), (t, x) ∈ [s, τ)× T

d,

φs,z,y(s, x) = δz(x), x ∈ T
d.

(42)

This solution exists since ∇xN(t,x)
N(t,x) is a continuous function (see Section 5.4) and y is a parame-

ter here, therefore all coefficients of this linear parabolic equation are bounded and continuous.
Alternatively, it is possible to build explicit solutions from a heat equation, we refer to (99)
for this argument. For t ≥ 0, we can use a Duhamel formula to write ñ (we recall that ñ
satisfies (15)) as follows

ñ(t, x, y) = e−γt
∫

R

φ0,z,y(t, x)ñ(0, z, y) dz

+
1

2

∫ t

0
e−γ(t−s)

∫

R

φs,z,y(t, x)ñ(s, z, y)

(
∫

R

(w − yopt(s, z))
2ñ(s, z, w) dw

)

dz ds

+ γ

∫ t

0
e−γ(t−s)

∫

R

φs,z,y(t, x)T (ñ(s, z, ·))(y) dz ds.

Since ñ(t, x, ·) is a probability measure, the y−integral of the right hand size of the equation
above sums up to one and the right hand side can be seen as a convex combinations of three
probability distributions. The convexity properties of the squared Wasserstein distance W 2

2 ,
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that we detail in Section 5.1 in the Appendix (see (66)), then implies:

W 2
2 (ñ(t, x, ·),ΓA(· − Z(t, x))) ≤ e−γt

∫

R

(
∫

R

φ0,z,y(t, x)ñ(0, z, y) dy

)

W 2
2

(

φ0,z,·(t, x)ñ(0, z, ·)
∫

R
φ0,z,y(t, x)ñ(0, z, y) dy

,ΓA(· − Z(t, x))

)

dz

+
1

2

∫ t

0
e−γ(t−s)

∫

R

(
∫

R

φs,z,y(t, x)ñ(s, z, y) dy

)(
∫

R

(w − yopt(s, z))
2ñ(s, z, w) dw

)

W 2
2

(

φs,z,·(t, x)ñ(s, z, ·)
∫

R
φs,z,y(t, x)ñ(s, z, y) dy

,ΓA(· − Z(t, x))

)

dz ds

+ γ

∫ t

0
e−γ(t−s)

∫

R

(
∫

R

φs,z,y(t, x)T (ñ(s, z, ·))(y) dy
)

W 2
2

(

φs,z,·(t, x)T (ñ(s, z, ·))
∫

R
φs,z,y(t, x)T (ñ(s, z, ·))(y) dy

, T (ΓA(· − Z(t, x)))

)

dz ds. (43)

Note that we have used that ΓA(· − Z(t, x)) is a fixed point for T (see (67)). To estimate
the first two terms on the right hand side of (43), a rough estimate is sufficient: for any
(s, z) ∈ [0,∞) × T

d and (t, x) ∈ [s,∞)× T
d,

W 2
2

(

φs,z,·(t, x)ñ(s, z, ·)
∫

R
φs,z,y(t, x)ñ(s, z, y) dy

,ΓA(· − Z(t, x))

)

≤
(

W2

(

φs,z,·(t, x)ñ(s, z, ·)
∫

R
φs,z,y(t, x)ñ(s, z, y) dy

, δ0

)

+W2 (δ0,ΓA(· − Z(t, x)))

)2

≤ 2

∫

R

|y|2 φs,z,y(t, x)ñ(s, z, y)
∫

φs,z,y′(t, x)ñ(s, z, y′) dy′
dy + 2

∫

R

|y|2ΓA(y − Z(t, x)) dy ≤ Cκ, (44)

where the final estimate follows from Section 5.6 in the Appendix: if we define R by (100)
and R′ as in (102) (note that |R′| ≤ Cκ), then (101), (103) and Proposition 4.1 imply

∫

R

|y|2 φs,z,y(t, x)ñ(s, z, y)
∫

R
φs,z,y′(t, x)ñ(s, z, y′) dy′

dy

≤
∫

[−R′,R′]c
|y|2

(

min|ỹ|≤R φs,z,ỹ(t, x)
)

ñ(s, z, y)
∫ R
−R φs,z,y′(t, x)ñ(s, z, y

′) dy′
dy + (R′)2

∫ R′

−R′

φs,z,y(t, x)ñ(s, z, y)
∫

R
φs,z,y′(t, x)ñ(s, z, y′) dy′

dy

≤
∫

R

|y|2 ñ(s, z, y)
1/2

dy + (R′)2 ≤ Cκ. (45)

We repeat the estimate (44) (using additionally the estimate of Remark 4.2) to control the
last term of (43) for s ≤ t − ε, for some ε > 0 that we will define later on. We obtain then,
for s ≤ t− ε,

W 2
2

(

φs,z,·(t, x)T (ñ(s, z, ·))
∫

R
φs,z,y(t, x)T (ñ(s, z, ·))(y) dy

, T (ΓA(· − Z(t, x)))

)

≤ Cκ. (46)

For s ∈ [t − ε, t], we need a more precise estimate, which we will obtain with the following
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coupling π. We define φ̄s,z(t, x)by (99), and

π(y1, y2) =
φs,z,y1(t, x)

φ̄s,z(t, x)
T (ñ(s, z, ·))(y1)δy1=y2

+

(

1− φs,z,y1(t, x)

φ̄s,z(t, x)

)

T (ñ(s, z, ·))(y1)
φs,z,y2(t, x)T (ñ(s, z, ·))(y2)

∫

R
φs,z,y′(t, x)T (ñ(s, z, ·))(y′) dy′

.

π is then a probability measure on R×R (note that φs,z,y1(t, x) ≤ φ̄s,z(t, x), thanks to (104)),
with marginals

π|1(y1) = T (ñ(s, z, ·))(y1) and π|2(y2) =
φs,z,y2(t, x)T (ñ(s, z, ·))(y2)

∫

R
φs,z,y′(t, x)T (ñ(s, z, ·))(y′) dy′

.

Then,

W 2
2

(

φs,z,y(t, x)T (ñ(s, z, ·))(y)
∫

R
φs,z,y′(t, x)T (ñ(s, z, ·))(y′) dy′

, T (ñ(s, z, ·))
)

≤
∫∫

R2

|y1 − y2|2 dπ(y1, y2)

≤
∫∫

R2

|y1 − y2|2
(

1− φs,z,y1(t, x)

φ̄s,z(t, x)

)

T (ñ(s, z, ·))(y1)
φs,z,y2(t, x)T (ñ(s, z, ·))(y2)

∫

R
φs,z,y′(t, x)T (ñ(s, z, ·))(y′) dy′

dy1 dy2

≤ 2

∫∫

R2

(

y21 + y22
)

(

1− φs,z,y1(t, x)

φ̄s,z(t, x)

)

T (ñ(s, z, ·))(y1)
φs,z,y2(t, x)T (ñ(s, z, ·))(y2)

∫

R
φs,z,y′(t, x)T (ñ(s, z, ·))(y′) dy′

dy1 dy2

≤ 2

∫

R

y21

(

1− φs,z,y1(t, x)

φ̄s,z(t, x)

)

T (ñ(s, z, ·))(y1) dy1

+ 2

(

1−
∫

R
φs,z,y′(t, x)T (ñ(s, z, ·))(y′) dy′

φ̄s,z(t, x)

)
∫

R

y22
φs,z,y2(t, x)T (ñ(s, z, ·))(y2)

∫

R
φs,z,y′(t, x)T (ñ(s, z, ·))(y′) dy′

dy2.

(47)

We estimate below the first integral term of (47), where s < t. We estimate the integral by
separating it into two integral terms. The first integral one can then be controlled thanks to
a Chebyshev’s inequality (we recall Remark 4.2), while we use the estimate (104), derived in
the Appendix, to estimate the second integral term:

∫

R

y21

(

1− φs,z,y1(t, x)

φ̄s,z(t, x)

)

T (ñ(s, z, ·))(y1) dy1 ≤
∫

|y1|≥(t−s)−1/3

y21T (ñ(s, z, ·))(y1) dy1

+

∫

|y1|≤(t−s)−1/3

y21

(

1− e−(t−s) 1
2
(y1+O(1))2

)

T (ñ(s, z, ·))(y1) dy1

≤ (t− s)2/3
∫

|y1|≥(t−s)−1/3

y41T (ñ(s, z, ·))(y1) dy1

+
(

1− e−(t−s)2/3
)

∫

|y1|≤(t−s)−1/3

y21T (ñ(s, z, ·))(y1) dy1

≤ Cκ(t− s)2/3 + Cκ

(

1− e−(t−s)2/3
)

≤ Cκ(t− s)2/3, (48)

provided t − s > 0 is small enough. We estimate the last term of (47) as follows, provided
|t− s| is small enough:

2

(

1−
∫

R
φs,z,y′(t, x)T (ñ(s, z, ·))(y′) dy′

φ̄s,z(t, x)

)
∫

R

y22
φs,z,y2(t, x)T (ñ(s, z, ·))(y2)

∫

R
φs,z,y′(t, x)T (ñ(s, z, ·))(y′) dy′

dy2

≤
(
∫

R

(

1− φs,z,y′(t, x)

φ̄s,z(t, x)

)

T (ñ(s, z, ·))(y′) dy′
)

Cκ ≤ Cκ(t− s)2/3, (49)
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where the first inequality is justified by (45), and the second inequality can be obtained
through the argument performed in (48) (with 1 instead of y21). Thanks to (48) and (49), the
estimate (47) becomes

W 2
2

(

φs,z,y(t, x)T (ñ(s, z, ·))(y)
∫

R
φs,z,y′(t, x)T (ñ(s, z, ·))(y′) dy′

, T (ñ(s, z, ·))
)

≤ Cκ(t− s)2/3.

This estimate combined to the regularity estimates on N and Z obtained in Proposition 4.3
lead to

W2

(

φs,z,·(t, x)T (ñ(s, z, ·))
∫

R
φs,z,y(t, x)ñ(s, z, y) dy

, T (ΓA(· − Z(t, x)))

)

≤W2

(

φs,z,·(t, x)T (ñ(s, z, ·))
∫

R
φs,z,y(t, x)ñ(s, z, y) dy

, T (ñ(s, z, ·))
)

+W2 (T (ñ(s, z, ·)), T (ΓA(· − Z(s, z)))) + |Z(t, x)− Z(s, z)|
≤W 2

2

(

T (ñ(s, z, ·)), T (ΓA(· − Z(s, z)))
)

+ Cκ|t− s|θ + Cκ|x− z|θ, (50)

for some θ ∈ (0, 1), provided γ > 0 is large enough. We are now ready to consider the original
estimate (43): thanks to (44), (46) and (50), the estimate (43) implies

W 2
2 (ñ(t, x, ·),ΓA(· − Z(t, x))) ≤ e−γt

∫

R

(
∫

R

φ0,z,y(t, x)ñ(0, z, y) dy

)

Cκ dz

+
Cκ
2

∫ t

0
e−γ(t−s)

∫

R

(
∫

R

φs,z,y(t, x)ñ(s, z, y)

(
∫

R

(w − yopt(s, z))
2ñ(s, z, w) dw

)

dy

)

dz ds

+ γ

∫ t−ε

0
e−γ(t−s)

∫

R

(
∫

R

φs,z,y(t, x)T (ñ(s, z, ·))(y) dy
)

Cκ dz ds

+ γ

∫ t

t−ε
e−γ(t−s)

∫

R

(
∫

R

φs,z,y(t, x)T (ñ(s, z, ·))(y) dy
)

(

W 2
2

(

T (ñ(s, z, ·)), T (ΓA(· − Z(s, z)))
)

+ Cκ|t− s|θ + Cκ|x− z|θ
)

dz ds.

We can now use the estimate (104) (and Proposition 4.1) to obtain

W 2
2 (ñ(t, x, ·),ΓA(· − Z(t, x))) ≤ e−γt

(
∫

R

φ̄0,z(t, x) dz

)

Cκ

+
1

2

∫ t

0
e−γ(t−s)

(
∫

R

φ̄s,z(t, x) dz

)

Cκ ds + γ

∫ t−ε

0
e−γ(t−s)

(
∫

R

φ̄s,z(t, x) dz

)

Cκ dz ds

+ γ

∫ t

t−ε
e−γ(t−s)

(
∫

R

φ̄s,z(t, x) dz

)

max
z∈Td

W 2
2

(

T (ñ(s, z, ·)), T (ΓA(· − Z(s, z)))
)

ds

+ γ

∫ t

t−ε
e−γ(t−s)

∫

R

φ̄s,z(t, x)
(

Cκ|t− s|θ + Cκ|x− z|θ
)

dz ds.

Thanks to (107), we have
∫

φ̄0,z(t, x) dz = 1, while (105) shows that
∫

φ̄s,z(t, x)|x − z|θ ≤
Cκ|t− s| θ2 . Then,

W 2
2

(

ñ(t, x, ·),ΓA(· − Z(t, x))
)

≤ Cκe
−γt +

Cκ
γ

+ Cκe
−γε +

Cκ

γθ/2

+ γ

∫ t

t−ε
e−γ(t−s) max

z∈Td
W 2

2

(

T (ñ(s, z, ·)), T (ΓA(· − Z(s, z)))
)

ds, (51)
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where we have used the change of variable s̃ = γ(t− s) to show

γ

∫ t

t−ε
e−γ(t−s)(t− s)θ/2 ds =

∫ γε

0
e−s

(

s

γ

)θ/2

ds ≤ Cγθ/2.

Since the right hand side of (51) is independent of x ∈ T
d, we can consider the maximum over

that variable. If moreover we apply the Tanaka inequality (see Theorem 5.1), we obtain

I(t) ≤ Cκe
−γt +

Cκ
γ

+ Cκe
−γε +

Cκ

γθ/2
+
γ

2

∫ t

t−ε
e−γ(t−s)I(s) ds,

where I(s) := maxx∈Td W 2
2

(

ñ(s, x, ·),ΓA(· − Z(s, x))
)

. Thanks to a Grönwall inequality (see

e.g. [28]),

I(t) ≤ Cκe
−γt +

Cκ
γ

+ Cκe
−γε +

Cκ

γθ/2

+
γ

2
e−γt

∫ t

t−ε

(

Cκe
−γs +

Cκ
γ

+ Cκe
−γε +

Cκ

γθ/2

)

eγse
γ
2
(t−s) ds

≤ Cκe
−γt +

Cκ
γ

+ Cκe
−γε +

Cκ

γθ/2
+

(

Cκe
−γ(t−ε/2) +

Cκ
γ

+ Cκe
−γε +

Cκ

γθ/2

)

.

We can chose ε := θ lnγ
2γ to obtain

I(t) ≤ Cκe
−γtγθ/4 +

Cκ

γθ/2
,

so that finally, for any γ > 0 large enough,

max
t∈[θ lnγ/γ,τ)

I(t) ≤ Cκ

γθ/2
.

The result follows (note that we need to define a slightly different parameter θ: θ̃ := θ/2 >
0).

4.4 Macroscopic limit from (SIM) to (KBM)

Let α > 0, A > 0 and κ > 0. There exist γ̄ > 0, Cκ > 0, and θ ∈ (0, 1) such that if yopt, n
0

satisfies Assumption 1 and γ > γ̄, then the following statement holds.
If n ∈ L∞(R+ × T

d, L1(R) is the solution of (SIM) with initial condition n0 and if it
satisfies ‖Z‖L∞([0,τ)×Td) ≤ κ, then

Proposition 4.5. Let α > 0, A > 0 and κ > 0. There exist γ̄ > 0 such that if yopt, n
0

satisfies Assumption 1 and γ > γ̄, then the solution n ∈ L∞(R+ × T
d, L1(R)) of (SIM) with

initial condition n0 satisfies

‖Z‖L∞(R+×Td) ≤ ‖Z(0, ·)‖L∞(Td) + ‖yopt‖L∞(R+×Td) + 1, (52)

where Z is defined by (1).
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Proof of Proposition 4.5. Let

κ := ‖Z(0, ·)‖L∞(Td) + ‖yopt‖L∞(R+×Td) + 1, (53)

and
τ = max{t ≥ 0; ‖Z‖L∞([0,t]×Td) ≤ κ}. (54)

Note that if τ = +∞, the estimate (52) holds and the proof is completed. We can therefore
consider the other case, where τ < ∞. More precisely, we will use a contradiction argument:
we assume that τ <∞ and prove that it is not possible.

We have ‖Z(0, ·)‖L∞(Td) ≤ κ. Thanks to Proposition 4.1, for some τ̄κ > 0 independent
from γ > γ̄,

∫

R

|y|4 n(t, x, y)
∫

R
n(t, x, z) dz

dy ≤ Cκ, (55)

for (t, x) ∈ [0, τ + τ̄κ]× T
d, as soon as γ > γ̄. Our goal is to show that ‖Z(t)‖L∞(Td) < κ for

t ∈ [0, τ + τ̄ ], for some τ̄ .

If τ < τ̄κ, then we can then apply Proposition 4.3, which ensures the Hölder regularity of
Z (uniformly for γ > 0 large enough), and then, in particular,

‖Z(t, ·)‖L∞(Td) ≤ ‖Z(0, ·)‖L∞(Td) + Ctθ,

and then, up to a reduction of τ̄κ > 0 into τ̄ > 0,

‖Z‖L∞([0,τ+τ̄ ]×Td) < ‖Z(0, ·)‖L∞(Td) + ‖yopt‖L∞(R+×Td) + 1 = κ. (56)

In particular, ‖Z(t)‖L∞(Td) < κ for t ∈ [0, τ̄ ], which completes this initialisation step of this
proof.

From (17) we get, for (t, x) ∈ [0, τ + τ̄ ]× T
d,

∂tZ(t, x)−∆xZ(t, x)− 2
∇xN(t, x) · ∇xZ(t, x)

N(t, x)

= −1

2

∫

R

(y − Z(t, x)) (y − yopt(t, x))
2ΓA(y − Z(t, x)) dy

+

∫

R

(y − Z(t, x)) (y − yopt(t, x))
2 (ΓA(y − Z(t, x))− ñ(t, x, y)) dy. (57)

The first term on the right hand side of this equation can be simplified as follows

− 1

2

∫

R

(y − Z(t, x)) (y − yopt(t, x))
2ΓA(y − Z(t, x)) dy

= − (Z(t, x)− yopt(t, x))

∫

R

|y|2ΓA(y) dy = −A (Z(t, x)− yopt(t, x)) , (58)

and to estimate the last term of (57), we introduce for some R > 0 and a Lipschitz function
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φR : R 7→ [0, 1] such that φR|[−R,R] = 1, φR|[−R−1,R+1] = 0 and ‖φ′R‖L∞(R) < 2. Then,

∣

∣

∣

∣

∫

R

(y − Z(t, x)) (y − yopt(t, x))
2 (ΓA(y − Z(t, x))− ñ(t, x, y)) dy

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

R

φR(y) (y − Z(t, x)) (y − yopt(t, x))
2 (ΓA(y − Z(t, x))− ñ(t, x, y)) dy

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

R

(1− φR(y)) (y − Z(t, x)) (y − yopt(t, x))
2 (ΓA(y − Z(t, x))− ñ(t, x, y)) dy

∣

∣

∣

∣

≤ max
y∈R

∣

∣

∣

∣

d

dy

[

φR(y) (y − Z(t, x)) (y − yopt(t, x))
2
]

∣

∣

∣

∣

W1 (ñ(t, x, ·),ΓA(· − Z(t, x)))

+ Cκ

∫

|y|≥R
|y + κ|3ñ(t, x, y) dy + Cκ

∫

|y|≥R
|y + κ|3ΓA(y − Z(t, x)) dy,

where κ > 0 is defined by (53) and where we have used the Kantorovich-Rubinstein estimate
(see Section 5.1 in the Appendix) to obtain the first term on the right hand side of the estimate
above. We use next the fact that φR as well as its derivative φ′R, is supported in [−R−1, R+1]
and the Chebyshev’s inequality to obtain

∣

∣

∣

∣

∫

R

(y − Z(t, x)) (y − yopt(t, x))
2 (ΓA(y − Z(t, x))− ñ(t, x, y)) dy

∣

∣

∣

∣

≤ C(R+ κ)3W2 (ñ(t, x, ·),ΓA(· − Z(t, x))) +
C

R

∫

|y|4ñ(t, x, y) dy

+
C

R

∫

R

|y|4ΓA(y − Z(t, x)) dy,

To estimate the three terms that appear in the estimate above, we use Proposition 4.4 and
(55) to obtain

∣

∣

∣

∣

∫

R

(y − Z(t, x)) (y − yopt(t, x))
2 (ΓA(y − Z(t, x))− ñ(t, x, y)) dy

∣

∣

∣

∣

≤ CκR
3

γθ
+
Cκ
R

≤ Cκ
γθ/4

,

(59)
for (t, x) ∈ [θ ln γ/γ, τ + τ̄ ] × T

d, provided we chose R = γθ/4. Note that for γ > 0 large
enough, Cκ

lnγ
γ < kσ, so that [τ̄ , τ + τ̄ ] ⊂ [θ ln γ/γ, τ + τ̄ ]. Thanks to (58) and (59), we obtain

that for t ∈ [θ ln γ/γ, τ + τ̄ ] and γ ≥ γ̄ (this may require to increase the value of γ̄ > 0, but
this new value of γ̄ remains independent of τ ≥ τ̄),

∂tZ(t, x)−∆xZ(t, x) = 2
∇xN(t, x) · ∇xZ(t, x)

N(t, x)
−A(Z(t, x) − yopt(t, x)) +O(1),

where |O(1)| ≤ A. This estimate combined to (56) and a comparison of Z(t, x) with ϕ(t, x) ≡
±κ thanks to the comparison principle (see Remark 2.3) proves that ‖Z‖L∞([0,(k+1)σ]×Td) < κ.
This is in contradiction with (54) if τ 6= +∞, which concludes the proof.

We are now ready to prove Theorem 2.6:

Proof of Theorem 2.6. Thanks to Proposition 4.5, there exists a solution n ∈ L∞(R+ ×
T
d, L1((1 + |y|4) dy)) of the SIM with initial condition n0 such that

‖Z‖L∞(R+×Td) ≤ κ := ‖Z(0, ·)‖L∞(Td) + ‖yopt‖L∞(R+×Td) + 1. (60)
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Thanks to (13) and (17), we get the following expressions for the functions ϕN and ϕZ ap-
pearing in (10):

ϕN (t, x) =

(

−1

2

∫

R

(y − yopt(t, x))
2ñ(t, x, y) dy +

A

2
+

1

2
(Z(t, x)− yopt(t, x))

2

)

N(t, x). (61)

ϕZ(t, x) = −1

2

∫

R

(y − Z(t, x))(y − yopt(t, x))
2ñ(t, x, y) dy +A(Z(t, x) − yopt(t, x)). (62)

Thanks to (60), we can apply Proposition 4.1 with [0, τ) = [0,∞), and there exists a
constant C > 0 such that

∫

|y|4ñ(t, x, y) dy ≤ C, for any (t, x) ∈ R+ × T
d and γ > γ̄ large

enough. This combined to the boundedness of Z provided by (60) implies the existence of a
constant C > 0 such that

∀t ≥ 0, ‖ϕN (t, ·)‖L∞(Td) + ‖ϕZ(t, ·)‖L∞(Td) ≤ C.

To show (9), we need to show that after an initial layer, this estimate can be improved. For
ϕZ , we can use an estimate derived in the proof of Proposition 4.5: (59) and (58) imply

∀t ≥ C
ln γ

γ
, ‖ϕZ(t, ·)‖L∞(Td) ≤

C

γθ/4
.

To estimate ‖ϕN (t, ·)‖L∞(Td), we note that

1

2

∫

R

(y − yopt(t, x))
2ΓA (y − Z(t, x)) dy =

A

2
+

1

2
(Z(t, x)− yopt(t, x))

2 ,

and then

ϕN (t, x) =
1

2

(
∫

R

(y − yopt(t, x))
2 (ΓA (y − Z(t, x))− ñ(t, x, y)) dy

)

N(t, x).

We can repeat the argument developed in (58)-(59) to estimate the integral term, and then,

∀t ≥ C
ln γ

γ
, ‖ϕN (t, ·)‖L∞(Td) ≤

C

γθ/4
.

To conclude the proof, we notice that (11) is a consequence of Proposition 4.4. To obtain
estimate (9), we define a slightly different parameter θ: θ̃ := θ

4 > 0. Finally, (N,Z) =
(N(t, x), Z(t, x)), for some γ > 0 large, are C1 in t and C2 in x thanks to Section 4.2, and
satisfy (10), according to (13) and (17) and the definitions (61), (62) of ϕN , ϕZ .

5 Appendix

5.1 Wasserstein distances

In this section, we review the definition of the Wasserstein distance and several useful formula.
We refer to [59] for more on this topic. Let p ≥ 1, and Pp(R) the set of probability measures
with finite p−moment, that is the set of probability measures µ over R such that

∫

R

|y|d dµ(y) <∞. (63)
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If π is a probability measure over R
2, we call marginals the probability measures π|1 and π|2

such that for any Borelian A ⊂ R,

π(A× R) = π|1(A), π(R ×A) = π|2(A).

For ñ, m̃ ∈ P2(R), we call transference plans the probability measures π over R
2 such that

π|1 = ñ and π|2 = m̃, and Π(ñ, m̃) the set of such plans:

Π(ñ, m̃) :=
{

π ∈ P(R2); π|1 = ñ, π|2 = m̃
}

. (64)

We can now define the p− Wasserstein distance between two measures ñ, m̃ ∈ Pp(R) as follows

Wp(ñ, m̃) =

(

inf
π∈Π(ñ,m̃)

∫∫

R2

|y1 − y2|p dπ(y1, y2)
)

1
p

.

Note that Wp(ñ, δȳ) =
∫

|y − ȳ|p dñ(y), for any ȳ ∈ R and ñ ∈ Pp(R).
For ñ, m̃ ∈ P2(R) and f ∈ W 1,∞(R), the Kantorovich-Rubinstein is the following useful

estimate:
∣

∣

∣

∣

∫

R

f(y)dñ(y)−
∫

R

f(y)dm̃(y)

∣

∣

∣

∣

≤ ‖f ′‖L∞(R)W1(ñ, m̃).

For ñ, m̃ ∈ Pp(R) (with p ≥ 1), the Kantorovich duality provides the following equality

Wp(ñ, m̃) =

(

sup
(ϕ,ψ)∈F

∫

R

ϕ(y) dñ(y) +

∫

R

ψ(Y ) dm̃(Y )

)
1
p

, (65)

where F =
{

(ϕ,ψ) ∈ (C0
b (R,R))

2; ∀y, Y ∈ R, ϕ(y) + ψ(Y ) ≤ |y − Y |p
}

.

Finally, we will also use the convexity of the squared Wasserstein distance W2. Let ñ1, m̃ ∈
P2(R) ∩ L1(R) and, ñ2 ∈ L∞([0, t] × T

d,P2

(

R) ∩ L1(R)
)

, for some t > 0. For any α ∈ [0, 1]
and β ∈ L1([0, t] × T

d) such that
∫

[0,t]×Td β = 1− α, we have

W 2
2

(

αñ1 +

∫ t

0

∫

Td

β(σ, x)ñ2(t, x, ·) dx dσ, m̃
)

≤ αW 2
2 (ñ1, m̃) +

∫ t

0

∫

Td

β(σ, x)W 2
2 (ñ2(σ, x, ·), m̃) dx dσ. (66)

To obtain this estimate, let (ϕ,ψ) ∈ F with p = 2. Then,

∫

R

ϕ(y)

(

αñ1(y) +

∫ t

0

∫

Td

β(σ, x)ñ2(σ, x, y) dx dσ

)

dy +

∫

R

ψ(Y )m̃(Y ) dY

≤ α

(
∫

R

ϕ(y)ñ1(y) dy + ψ(Y )m̃(Y ) dY

)

+

∫ t

0

∫

Td

β(σ, x)

(
∫

R

ϕ(y)ñ2(σ, x, y) dy +

∫

R

ψ(Y )m̃(Y ) dY

)

dx dσ

≤ αW 2
2 (ñ1, m̃) +

∫ t

0

∫

Td

β(σ, x)W 2
2 (ñ2(σ, x, ·), m̃) dx dσ,

and (66) follows thanks to (65), if we consider the suppremum over (ϕ,ψ) ∈ F .
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5.2 Properties of the Infinitesimal operator

In (16), we have defined the Infinitesimal operator T . More precisely, we define this operator
on the space P2(R) (see Section 5.1) by (16). Then, for any ñ ∈ P2(R),

∫

R

T (ñ)(y) dy =

∫

R

ñ(y) dy = 1,

∫

R

y T (ñ)(y) dy =

∫

R

y ñ(y) dy,

and for any Z ∈ R,
∀y ∈ R, T (ΓA(· − Z)) (y) = ΓA(y − Z). (67)

where

ΓA(y) =
1√
2πA

e−
|y|2

2A . (68)

T induces a contraction for the Wasserstein distance W2, which can be seen as a version of
the Tanaka inequality [54] (see also [6, 9]):

Theorem 5.1 (A Tanaka inequality). Let A > 0, ñ, m̃ ∈ P2(R) such that
∫

yñ(y) dy =
∫

ym̃(y) dy, and T defined by (16). Then

W2(T (ñ), T (m̃)) ≤ 1√
2
W2(ñ, m̃).

Proof of the Theorem 5.1. We consider ϕ,ψ such that for any y, Y ∈ R, ϕ(y)+ψ(Y ) ≤ |y−Y |2,
and π ∈ Π(ñ, m̃). Then,

∫

R

ϕ(y)T (ñ)(y) dy +

∫

R

ψ(Y )T (m̃)(Y ) dY

=

∫∫∫

R3

ϕ(y)ΓA/2

(

y − y∗ + y′∗
2

)

ñ(y∗)ñ(y
′
∗) dy∗ dy

′
∗ dy

+

∫∫∫

R3

ψ(Y )ΓA/2

(

Y − Y∗ + Y ′
∗

2

)

ñ(Y∗)ñ(Y
′
∗) dY∗ dY

′
∗ dY

=

∫∫∫

R3

ϕ

(

y +
y∗ + y′∗

2

)

ΓA/2 (y) ñ(y∗)ñ(y
′
∗) dy∗ dy

′
∗ dy

+

∫∫∫

R3

ψ

(

y +
Y∗ + Y ′

∗

2

)

ΓA/2 (Y ) ñ(Y∗)ñ(Y
′
∗) dY∗ dY

′
∗ dY

=

∫

R

ΓA/2(y)

∫∫∫∫

R4

ϕ

(

y +
y∗ + y′∗

2

)

+ ψ

(

y +
Y∗ + Y ′

∗

2

)

dπ(y∗, Y∗) dπ(y
′
∗, Y

′
∗) dy

≤
∫

R

ΓA/2(y)

∫∫∫∫

R4

∣

∣

∣

∣

(

y +
y∗ + y′∗

2

)

−
(

y +
Y∗ + Y ′

∗

2

)
∣

∣

∣

∣

2

dπ(y∗, Y∗) dπ(y
′
∗, Y

′
∗) dy

≤ 1

4

∫∫∫∫

R4

∣

∣(y∗ − Y∗) + (y′∗ − Y ′
∗)
∣

∣

2
dπ(y∗, Y∗) dπ(y

′
∗, Y

′
∗). (69)

We notice that

∫∫∫∫

R4

(y∗ − Y∗)(y
′
∗ − Y ′

∗) dπ(y∗, Y∗) dπ(y
′
∗, Y

′
∗) =

(
∫

R

yñ(y) dy −
∫

R

ym̃(Y ) dY

)2

= 0,
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and then
∫

R

ϕ(y)T (ñ)(y) dy +

∫

R

ψ(Y )T (m̃)(Y ) dY

≤ 1

4

∫∫∫∫

R4

[

(y∗ − Y∗)
2 + 2(y∗ − Y∗)(y

′
∗ − Y ′

∗) + (y′∗ − Y ′
∗)

2
]

dπ(y∗, Y∗) dπ(y
′
∗, Y

′
∗)

=
1

2

∫∫

R2

(y − Y )2 dπ(y, Y ).

Since this inequality holds for any π ∈ Π(ñ, m̃), we can consider the infinum of over these, to
obtain, thanks to the definition of the Wasserstein distance:

∫

R

ϕ(y)T (ñ)(y) dy +

∫

R

ψ(Y )T (m̃)(Y ) dY ≤ 1

2
W 2

2 (ñ, m̃).

We can now take the supremum of this inequality over the functions ϕ,ψ satisfying ϕ(y) +
ψ(Y ) ≤ |y − Y |2 and conclude, thanks to the Kantorovich duality formula (65).

Corollary 5.2 (A Tanaka inequality forW4). Let A > 0, ñ, m̃ ∈ P4(R) such that
∫

yñ(y) dy =
∫

ym̃(y) dy, and T defined by (16). Then

W4(T (ñ), T (m̃)) ≤ 1

21/4
W4(ñ, m̃).

Proof of the Corollary 5.2. We can reproduce the proof of Theorem 5.1 until (69), and obtain
that for any ϕ,ψ satisfying ϕ(y) + ψ(Y ) ≤ |y − Y |4 and π ∈ Π(ñ, m̃),

∫

R

ϕ(y)T (ñ)(y) dy +

∫

R

ψ(Y )T (m̃)(Y ) dY

≤ 1

16

∫∫∫∫

R4

∫

∣

∣(y∗ − Y∗) + (y′∗ − Y ′
∗)
∣

∣

4
dπ(y∗, Y∗) dπ(y

′
∗, Y

′
∗)

=
1

16

∫∫∫∫

R4

[

(y∗ − Y∗)
4 + 4(y∗ − Y∗)

3(y′∗ − Y ′
∗) + 6(y∗ − Y∗)

2(y′∗ − Y ′
∗)

2

+ 4(y∗ − Y∗)(y
′
∗ − Y ′

∗)
3 + (y′∗ − Y ′

∗)
4
]

dπ(y∗, Y∗) dπ(y
′
∗, Y

′
∗)

=
1

8

(
∫∫

R2

(y − Y )4 dπ(y, Y )

)

+
3

8

(
∫∫

R2

(y − Y )2 dπ(y, Y )

)2

≤ 1

2

(
∫∫

R2

(y − Y )4 dπ(y, Y )

)

.

The rest of the proof is similar to the proof of Theorem 5.1.

5.3 Existence theory for a truncated version of (SIM)

In this section, we prove the existence of global solutions to (7), the truncated version of
(SIM). To do so, we first construct local in time (i.e. for t ∈ [0, t̄], t̄ > 0) solutions of the
truncated equation (7):

Lemma 5.3. Let yopt ∈ W 1,∞(R+ × T
d,R), A > 0, γ ≥ 1 and n0 satisfying Assumption 1.

There is C > 0 such that if R > 1 and if n0 ∈ C0(Td × R,R+) satisfies n0(x, y) > 0 for
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(x, y) ∈ T
d × [−R,R], then there is a unique solution nR = nR(t, x, y) of (7) for t ∈ [0, t̄]

together with the initial data nR(0, x, y) = n0(x, y)1|y|≤R, where

t̄ =
1

C((‖n0‖L∞(Td×[−R,R]) + γ)R+ 1)
.

More precisely, nR satisfies the following estimate for some constant CR > 0 may depend on
R > 0 and γ > 0:

sup
y∈R

(

sup
t∈[0,t̄]

‖nR(t, ·, y)‖H1(Td) + ‖nR(·, ·, y)‖L2
loc([0,t̄),H

2(Td)) + ‖∂tnR(·, ·, y)‖L2
loc([0,t̄)×Td)

)

≤ CR,γ .

Proof of Lemma 5.3. Step 1: Definition of the set FR and the application FR,t̄
For 0 < t̄ < 1

3γ(1+A/2) , let

FR,t̄ :=
{

m ∈ L∞([0, t̄]× T
d × R); m ≥ 0, m(t, x, y) = 0 if |y| ≥ R,

‖m‖L∞([0,t̄]×Td×R) ≤ 3‖n0‖L∞(Td×[−R,R])

}

. (70)

We introduce the operator FR,t̄, that is defined by FR,t̄(m) = n for m ∈ FR,t̄ and where n
is the solution of

∂tn(t, x, y) = ∆xn(t, x, y) +

(

1 +
A

2
− 1

2
(y − yopt(t, x))

2 −
∫

R

m(t, x, z) dz

)

n(t, x, y)

+ γ

(

1|y|≤R

∫∫

R2

ΓA/2

(

y − y∗ + y′∗
2

)

m(t, x, y∗)m(t, x, y′∗)
∫

R
m(t, x, z) dz

dy∗ dy
′
∗ − n(t, x, y)

)

, (71)

together with n(0, x, y) = n0(x, y) 1|y|≤R for (x, y) ∈ T
d × R, so that n(t, x, y) = 0 if |y| >

R.Note that a different application could probably be used. Notice that in (71), y can be seen
as a simple coefficient, and the equation can be solved independently for each y ∈ R. We
also notice that for any fixed y ∈ [−R,R], the coefficients of the parabolic equation (71) are
bounded when m ∈ FR,t̄ (we recall that γ > 0 is here a fixed constant), so that a non-negative
weak solution ((t, x) 7→ n(t, x, y)) ∈ L2([0, T ]+,H

1(Td)) (such that ((t, x) 7→ ∂tn(t, x, y)) ∈
L2([0, T ],H−1(Td))) exists thanks to standard arguments (see Theorem 3 in Section 7.1.2 of
[29]). The bounded coefficients actually imply that this is a strong solution (in the sense of
[29]), thanks to Theorem 5 in Section 7.1.3 of [29] applied for each y ∈ R. More precisely,

supt∈[0,t̄]‖n(t, ·, y)‖H1(Td) + ‖n(·, ·, y)‖L2([0,t̄],H2(Td)) + ‖∂tn(·, ·, y)‖L2([0,t̄]×Td) ≤ CR, (72)

where the constant CR is related to a bound on the coefficient 1|y|≤R
1
2(y − yopt(t, x))

2, and it
therefore depends on R > 0 in this estimate.

Step 2: The set FR,t̄ is stable under FR,t̄ provided t̄ ≤ 1/C
We notice that n satisfies

∂tn(t, x, y)−∆xn(t, x, y) ≤
(

1 +
A

2

)

n(t, x, y) + γΓA/2(0)‖m‖L∞([0,t̄]×Td,L1([−R,R])). (73)
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Let

φ(t, x, y) := 1|y|≤R

[

(

supTd×[−R,R]n
0
)

e(1+
A
2 )t

+
(

‖m‖L∞([0,t̄]×Td,L1([−R,R]))

)

γΓA/2(0)
e(1+

A
2 )t − 1

1 +A/2

]

,

that is a super-solution of (73). Since additionally φ(0, x, y) ≥ n0(x, y)1|y|≤R for (x, y) ∈
T
d × R, we can use the maximum principle (see Corollary 7.4 p. 159 in [37]) to compare

(t, x) 7→ n(t, x, y) and (t, x) 7→ φ(t, x, y), for any y ∈ [−R,R]. We then show that for (t, x, y) ∈
[0, t̄]× T

d ×R,

n(t, x, y) ≤ φ(t, x, y) ≤
(

1|y|≤Re
(1+A

2 )t + 3γΓA/2(0)
(

e(1+
A
2 )t − 1

))

‖n0‖L∞(Td×[−R,R]), (74)

where we have used the estimate on ‖m‖L∞([0,t̄]×Td,L1(R)) provided by the definition of FR,t̄.
If

t̄ ≤ ln
(

1 + min(1/(3γΓA/2(0)), 1)
)

1 +A/2
, (75)

then
(

1|y|≤Re
(1+A

2 )t + 3γΓA/2(0)
(

e(1+
A
2 )t − 1

))

≤ 3, which implies

‖n‖L∞([0,t̄]×Td×[−R,R]) ≤ 3‖n0‖L∞(Td×[−R,R]). (76)

We have proven that for any m ∈ FR,t̄, we have FR,t̄(m) = n ∈ FR,t̄ provided (75) is satisfied.

Step 3: FR,t̄ is a contraction for the norm ‖ · ‖L∞([0,T ]×Td×R) on FR,t̄
Let m, m̃ ∈ FR,t̄ (see (70)), and n := FR,t̄(m), ñ := FR,t̄(m̃). Then (n − ñ)(0, x, y) = 0

for (x, y) ∈ T
d × R, (n − ñ)(t, x, y) = 0 for (t, x) ∈ [0, t̄] × T

d and y /∈ [−R,R]. We therefore
consider (t, x) ∈ [0, t̄] × T

d and y ∈ [−R,R] from now on. We can estimate the difference
between birth terms as follows:

∣

∣

∣

∣

∫∫

R2

ΓA/2

(

y − y∗ + y′∗
2

)[

m(t, x, y∗)m(t, x, y′∗)
∫

R
m(t, x, z) dz

− m̃(t, x, y∗)m̃(t, x, y′∗)
∫

R
m̃(t, x, z) dz

]

dy∗ dy
′
∗

∣

∣

∣

∣

=

∣

∣

∣

∣

∫∫

R2

ΓA/2

(

y − y∗ + y′∗
2

)[

(m(t, x, y∗)− m̃(t, x, y∗))m(t, x, y′∗)
∫

R
m(t, x, z) dz

+
m̃(t, x, y∗)m(t, x, y′∗)

(∫

R
m(t, x, z) dz

) (∫

R
m̃(t, x, z) dz

)

(
∫

R

m̃(t, x, z) −m(t, x, z) dz

)

+
m̃(t, x, y∗) (m(t, x, y′∗)− m̃(t, x, y′∗))

∫

R
m̃(t, x, z) dz

]

dy∗ dy
′
∗

∣

∣

∣

∣

≤ 3ΓA/2(0)

∫

R

|m̃(t, x, z)−m(t, x, z)| dz = 3ΓA/2(0)

∫ R

−R
|m̃(t, x, z)−m(t, x, z)| dz.

(n− ñ) satisfies:

∂t(n− ñ)(t, x, y) −∆x(n− ñ)(t, x, y) ≤
(

1 +
A

2

)

(n− ñ)(t, x, y)

+

(
∫

R

(m(t, x, z) − m̃(t, x, z)) dz

)

ñ(t, x, y) + 3γΓA/2(0)

∫ R

−R
|m(t, x, z)− m̃(t, x, z)| dz

≤
(

1 +
A

2

)

(n− ñ)(t, x, y) + 6R
(

‖n0‖L∞(Td×[−R,R]) + γΓA/2(0)
)

‖m− m̃‖L∞([0,τ ]×Td×[−R,R]),

(77)
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where we have used (76) to estimate 0 ≤ ñ(t, x, y) from above. We notice that

(t, x) 7→ 6R
(

‖n0‖L∞(Td×[−R,R]) + γΓA/2(0)
)

‖m− m̃‖L∞([0,τ ]×Td×[−R,R])e
(1+A/2)t

is a super-solution of the parabolic equation (77) for any fixed y ∈ [−R,R], and then the
comparison principle implies

max
[0,t̄]×Td×[−R,R]

(n − ñ)

≤ 6R
(

‖n0‖L∞(Td×[−R,R]) + γΓA/2(0)
)

‖m− m̃‖L∞([0,τ ]×Td×[−R,R])

e(1+A/2)t̄ − 1

1 +A/2

≤ 1

2
‖m− m̃‖L∞([0,τ ]×Td×[−R,R]), (78)

provided we set t̄ as follows

t̄ =
1

C((‖n0‖L∞(Td×[−R,R]) + γ)R+ 1)
, (79)

where C > 0 is chosen large enough for (75) and (78) to hold. If (n− ñ)(t, x, y) ≤ 0, a similar
argument can made on (ñ−n), since n and ñ have symmetric properties. We then obtain, for
t̄ defined by (79),

‖n− ñ‖L∞([0,t̄]×Td×[−R,R]) ≤
1

2
‖m− m̃‖L∞([0,t̄]×Td×[−R,R]).

The Banach fixed-point theorem then shows that there is a unique fixed point nR of FR,t̄ in
FR,t̄. That fixed point nR ∈ FR,t̄ is a solution of (7) that satisfies (72).

We can now construct global (i.e. for t ∈ R+) solutions of the truncated model (7):

Proposition 5.4. Let yopt ∈ W 1,∞(R+ × T
d,R), A > 0, γ > 2 +A+ ‖yopt‖2L∞(R+×Td)

, and

n0 satisfying Assumption 1. For R > 1, there is a unique global solution nR of (7) together
with the initial data nR(0, x, y) = n0(x, y)1|y|≤R. More precisely, for T > 0, there is a constant
Cγ > 0 independent from R > 0 (but that depends on γ) such that nR satisfies

sup
y∈R

(

sup
t∈[0,T )

‖nR(t, ·, y)‖H1(Td) + ‖nR(·, ·, y)‖L2([0,T ),H2(Td)) + ‖∂tnR(·, ·, y)‖L2([0,T )×Td)

)

≤ Cγ ,

(80)

and for (t, x, y) ∈ [0,∞)× T
d × R, there is C̄ > 0 independent from both R and γ, such that

nR(t, x, y) ≤
C̄γ

1 + y2
. (81)

Proof of Proposition 5.4. Let τ ≥ 0. We assume that nR is a solution of (7) for t ∈ [0, τ ]
with initial data (x, y) 7→ n0(x, y)1|y|≤R. Thanks to an integration of (7) along y ∈ R,

30



NR(t, x) =
∫

nR(t, x, y) dy is a strong solution of the following parabolic equation (in the
sense of Theorem 5(i) in Section 7.1.3 of [29]) with nR as a given coefficient:

∂tNR(t, x)−∆xNR(t, x) ≤
[

1 +
A

2
−NR(t, x)

]

NR(t, x) −
1

2

∫ R

−R
(y − yopt(t, x))

2nR(t, x, y) dy,

≤
[

1 +
A

2
−NR(t, x)

]

NR(t, x). (82)

We notice that φ : (t, x) 7→ max
(

∫

R

C0
1+y2 dy, 1 +

A
2

)

satisfies NR(0, x) ≤ φ(0, x) thanks to

Assumption 1, and is a super-solution of (82). We can then apply the comparison princi-
ple to show that NR(t, x) ≤ φ(t, x) for (t, x) ∈ [0, τ ] × T

d, that provides a uniform bound
∫

R
nR(t, x, y) dy ≤ C for some constant C > 0 that only depends on A and the constant C0

from Assumption 1. Then,

∂tnR(t, x, y) −∆xnR(t, x, y) ≤
(

1 +
A

2
− 1

2

(

yopt(t, x)
2 − 2y yopt(t, x) + y2/2

)

− γ

2

)

nR(t, x, y)

−
(

γ

2
+
y2

4

)

nR(t, x, y) + γΓA/2(0)

∫

R

nR(t, x, y) dy (83)

=

(

(

1 +
A

2
+
yopt(t, x)

2

2
− γ

2

)

− 1

2

(√
2yopt(t, x)−

y√
2

)2
)

nR(t, x, y)

−
(

γ

2
+
y2

4

)

nR(t, x, y) + γΓA/2(0)NR(t, x)

≤ −
(

γ

2
+
y2

4

)

nR(t, x, y) + Cγ, (84)

since we have assumed γ ≥ 2
(

1 + A
2 + 1

2‖yopt‖2L∞(R+×Td)

)

. We notice that for any y ∈
[−R,R], (t, x) 7→ ψ(x,y):= 4C

1+y2 γ is a super-solution of (84) that satisfies ψ(x, y) ≥ n0(x, y)

for (x, y) ∈ T
d × [−R,R], provided C > C0/γ, thanks to Assumption 1. For y ∈ [−R,R], the

comparison principle applied to (84) shows nR(t, x, y) ≤ ψ(y) for (t, x) ∈ [0, τ ] × T
d. Since

this holds for any y ∈ [−R,R] and nR(t, x, y) = 0 if |y| > R, we have

∀(t, x, y) ∈ [0, τ ] × T
d × R, nR(t, x, y) ≤

4C

1 + y2
γ. (85)

Thanks to Lemma 5.3, we can extend the solution nR = nR(t, x, y) into a solution of (7) on
[0, τ + t̄]×T

d× [−R,R], with nR(τ + t, x, y) := ñR(t, x, y), and t̄ as in Lemma 5.3. We notice
that t̄ is independent of τ ≥ 0, so that this extension argument can be iterated to construct
a global solution of (7) satisfying (85). Thanks to (81), for any fixed ȳ ∈ [−R,R], we can
see (t, x) 7→ nR(t, x, ȳ) (where nR is the solution of (7)) as a solution of the heat equation
∂tnR(t, x, ȳ) −∆xnR(t, x, ȳ) = fȳ(t, x) with a bounded 0−order term: |fȳ(t, x)| ≤ Cγ , where
Cγ > 0 is independent from R. (t, x) 7→ nR(t, x, ȳ) is then a strong solution (in the sense
of [29]) of that heat equation and Theorem 5 in Section 7.1.3 of [29] implies the regularity
estimate (80).

In Proposition 5.4, we have proven the bound (81), that is independent from R > 0, which
will be very useful to consider the limit R → ∞ of nR to construct solutions of (SIM) and
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prove Proposition 2.2, see Section 3. We can actually improve this estimates on tails of nR,
as we show in the following proposition:

Proposition 5.5. Let yopt ∈W 1,∞(R+×T
d,R), A > 0, γ > 2+A+‖yopt‖2L∞(R+×Td)

, and n0

satisfying Assumption 1. There is C̄ > 0 (independent from γ > 0) such that for any R > 1,
the global solution nR of (7) with the initial data nR(0, x, y) = n0(x, y)1|y|≤R satisfies

nR(t, x, y) ≤
C̄γ

1 + y10
. (86)

Moreover, for T > 0, there is a constant CT,γ that may depend on T and γ, but that is uniform
in R, such that

supt∈[0,T ]‖nR(t, ·, y)‖H1(Td) + ‖nR(·, ·, y)‖L2([0,T ],H2(Td)) + ‖∂tnR(·, ·, y)‖L2([0,T ]×Td) ≤
CT,γ
1 + y8

.

(87)

Proof of Proposition 5.5. Note that estimate (81) provides an upper bound on y2nR(t, x, y)
that is uniform in (t, x) ∈ R+ × T

d and that does not depend on R > 0. To improve this tail
estimate further, we decompose the birth term as follows:

∫∫

R2

ΓA/2

(

y − y∗ + y′∗
2

)

nR(t, x, y∗)nR(t, x, y
′
∗)

∫

R
nR(t, x, z) dz

dy∗ dy
′
∗

=

∫∫

[−|y|/4,|y|/4]2
ΓA/2

(

y − y∗ + y′∗
2

)

nR(t, x, y∗)nR(t, x, y
′
∗)

∫

R
nR(t, x, z) dz

dy∗ dy
′
∗

+

∫∫

R2\[−|y|/4,|y|/4]2
ΓA/2

(

y − y∗ + y′∗
2

)

nR(t, x, y∗)nR(t, x, y
′
∗)

∫

R
nR(t, x, z) dz

dy∗ dy
′
∗. (88)

We can estimate the first term on the right hand side of (88) as follows:
∫∫

[−|y|/4,|y|/4]2
ΓA/2

(

y − y∗ + y′∗
2

)

nR(t, x, y∗)nR(t, x, y
′
∗)

∫

R
nR(t, x, z) dz

dy∗ dy
′
∗

≤
(

max
y∗,y′∗∈[−|y|/4,|y|/4]

ΓA/2

(

y − y∗ + y′∗
2

))
∫∫

[−|y|/4,|y|/4]2

nR(t, x, y∗)nR(t, x, y
′
∗)

∫

nR(t, x, z) dz
dy∗ dy

′
∗

≤ ΓA/2

(

3|y|
4

)
∫

nR(t, x, z) dz ≤ Ce−
9y2

16A , (89)

since y∗, y
′
∗ ∈ [−|y|/4, |y|/4] implies ΓA/2

(

y − y∗+y′∗
2

)

≤ ΓA/2 (3|y|/4). To estimate the last

term of (88), we take advantage of (81) to show:
∫∫

R2\[−|y|/4,|y|/4]2
ΓA/2

(

y − y∗ + y′∗
2

)

nR(t, x, y∗)nR(t, x, y
′
∗)

∫

R
nR(t, x, z) dz

dy∗ dy
′
∗

≤
∫

R

∫

|y∗|≥|y|/4
ΓA/2

(

y − y∗ + y′∗
2

)

nR(t, x, y∗)nR(t, x, y
′
∗)

∫

R
nR(t, x, z) dz

dy∗ dy
′
∗

+

∫

|y′∗|≥|y|/4

∫

R

ΓA/2

(

y − y∗ + y′∗
2

)

nR(t, x, y∗)nR(t, x, y
′
∗)

∫

R
nR(t, x, z) dz

dy∗ dy
′
∗

≤ 2

∫

R

(
∫

ΓA/2

(

y − y∗ + y′∗
2

)

dy∗

)(

max
z∈[−|y|/4,|y|/4]c

|nR(t, x, z)|
)

nR(t, x, y
′
∗)

∫

R
nR(t, x, z) dz

dy′∗

≤ C max
z∈[−|y|/4,|y|/4]c

|nR(t, x, z)| ≤
Cγ

1 + (|y|/4)2 ≤ Cγ

1 + y2
, (90)
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for some constant C > 0. We can reproduce here the argument developed in (83)-(84), and
use the estimates (88), (89) and (90) on the birth term to show

∂tnR(t, x, y)−∆xnR(t, x, y)

≤ −
(

γ

2
+
y2

4

)

nR(t, x, y) +

∫∫

R2

ΓA/2

(

y − y∗ + y′∗
2

)

nR(t, x, y∗)nR(t, x, y
′
∗)

∫

R
nR(t, x, z) dz

dy∗ dy
′
∗

≤ −
(

γ

2
+
y2

4

)

nR(t, x, y) +
Cγ

1 + y2
. (91)

We notice that for any y ∈ [−R,R], (t, x) 7→ nR(t, x, y) satisfies (91), while

(t, x) 7→ ψ(y) :=
max(4Cγ, C̄)

1 + y4

is a super-solution of (91) that satisfies ψ(y) ≥ n0(x, y) for x ∈ T
d thanks to Assumption 1.

The comparison principle then implies nR(t, x, y) ≤ C
1+y4

γ for (t, x, y) ∈ R+ × T
d × [−R,R]

and a constant C > 0 independent from R > 0. Since this holds for any y ∈ R, we have

∀(t, x, y) ∈ R+ × T
d × R, nR(t, x, y) ≤

Cγ

1 + y4
. (92)

This estimate can be used to obtain a better estimate (90). It then becomes

I2(t, x, y) ≤ C max
z∈[−|y|/4,|y|/4]c

|nR(t, x, z)| ≤
Cγ

1 + (|y|/4)4 ≤ Cγ

1 + y4
,

the argument above can be repeated to show that nR(t, x, y) ≤ Cγ
1+y6

for some constant C > 0

independent of R. This estimate can be used again twice to improve the estimate (90), and
iterate the argument once more to show (86).

In the last iteration above, we have derived the following bound on the birth term:

∣

∣

∣

∣

γ

∫∫

R2

ΓA/2

(

y − y∗ + y′∗
2

)

nR(t, x, y∗)nR(t, x, y
′
∗)

∫

R
nR(t, x, z) dz

dy∗ dy
′
∗

∣

∣

∣

∣

≤ Cγ2

1 + y8
,

while the estimate (86) implies

∣

∣

∣

∣

(

1 +
A

2
− γ − 1

2
(y − yopt(t, x))

2 −
∫

R

nR(t, x, z) dz

)

nR(t, x, y)

∣

∣

∣

∣

≤ Cγ(1 + γ)

1 + y8
,

so that for y ∈ [−R,R] and T > 0, we have on [0, T ]× T
d:

|∂tnR(t, x, y) −∆xnR(t, x, y)| ≤
Cγ(1 + γ)

1 + y8
. (93)

We can then apply Theorem 5 in Section 7.1.3 of [29] to (93) for each y ∈ R, which implies
(87).
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Remark 5.6. In (93), we have an L∞ bound on ∂tnR(t, x, y)−∆xnR(t, x, y), which is stronger
than the L2 estimate necessary to apply Theorem 5 in Section 7.1.3 of [29]. We can take
advantage of this to obtain a stronger regularity result: Thanks to Theorem 7.22 in [37], we
have, for y ∈ [−R,R], that the function (t, x) 7→ nR(t, x, y) belongs to W 2,1

d+2([0, T ] × T
d) (we

use here the notation W 2,1
d+2 from [37]: the time derivative belongs to Ld+2, and its second

spatial derivative belongs to Ld+2.). Moreover, (93) implies that the W 2,1
d+2([0, T ] × T

d) norm

of (t, x) 7→ nR(t, x, y) is dominated by C
1+y8

, with a constant C > 0 that may depend on T and
γ > 0, but that is independent from R > 0. This weighted regularity estimate will be useful in
Section 5.4

5.4 Regularity of the macroscopic quantities N , Z and V

Let n a solution of (SIM). Thanks to the uniform regularity of nR described in Remark 5.6
and an integration against 1, y and y4 respectively, N(t, x), Y (t, x) :=

∫

R
yn(t, x, y) dy and

W (t, x) :=
∫

R
y4n(t, x, y) dy satisfy

N,Y,W ∈W 2,1
d+2([0, T ]× T

d),

where we use here the notation W 2,1
d+2 from [37]: the time derivative of the function belongs

to Ld+2, and its second spatial derivative belongs to Ld+2.
Let ϕ ∈ L∞([0, T ] × T

d), and R > 0. If n is a solution of (SIM) and ϕ ∈ C2([0, T ] × T
d),

we can use ϕ(t, x)1[−R,R] (resp. ϕ(t, x)y1[−R,R], ϕ(t, x)y
41[−R,R]) as a test function, and let

R→ ∞ to show that N solves (13), while Y and W solve

∂tY (t, x)−∆xY (t, x) =

(

1 +
A

2
−N(t, x)

)

Y (t, x)− 1

2

∫

R

y(y − yopt)
2n(t, x, y) dy, (94)

∂tW (t, x)−∆xW (t, x) =

(

1 +
A

2
−N(t, x)

)

W (t, x)− 1

2

∫

R

y4(y − yopt)
2n(t, x, y) dy (95)

+ γ

(

N(t, x)

∫

R

|y|4T (ñ(t, x, ·))(y) dy −W (t, x)

)

. (96)

We can notice that the right hand side of the equations (13), (94) and (95) after a derivation
in t or in x, belong to Ld+2([0, T ] × T

d) uniformly in R, thanks to Remark 5.6. We can then
apply Theorem 7.22 in [37] to show that ∂tN, ∂tY, ∂tW, ∇xN, ∇xY and ∇xW belong to
W 2,1
d+2([0, T ] × T

d). Morrey’s inequality then implies that N,Y,W are C1 functions in the t
variable, and C2 functions in the x variable. They are then classical solutions of (13), (94)
and (95): they satisfy these equalities pointwise, as an equality between continuous functions.
In particular, ∂t and ∆x are the actual differential operators, and we can compute (∂t−∆x)

Z
N

to show (17).

In the above argument, we use interior parabolic estimates, specifically Theorem 7.22 in
[37]. These estimates do not hold up to the boundary {t = 0} directly, but it is possible to
use traditional ideas to get around this difficulty: it is possible to transform these problems
into equations that hold for t ∈ R thanks to the regularity of the initial condition (provided
by Assumption 1), we refer to Step 4 of the proof of Proposition 4.3 where we develop the
details of a similar argument.
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5.5 Proof of Proposition 2.4: uniqueness of solutions of (SIM)

Since n and ñ are solutions of (SIM), we can reproduce the lower bound argument made in
the proof of Proposition 2.2 (see (22)-(23)), that is based on the comparison principle, to show
that the exists CT > 0 such that

∫

R
n(t, x, y) dy ≥ CT and

∫

R
ñ(t, x, y) dy ≥ CT .

Thanks to [29] (Theorem 3, p. 287) and using the fact that n(0, x, y) = ñ(0, x, y) = n0(x, y)
for (x, y) ∈ T

d × R, we obtain that for t ∈ [0, T ],

∫

R

∫

Td

(n(t, x, y)− ñ(t, x, y))2(1 + y4) dx dy +

∫ t

0

∫

R

∫

Td

|∇xn(s, x, y)−∇xñ(s, x, y)|2(1 + y4) dx dy ds

=

∫ t

0

∫

Td

∫

R

(

1 +
A

2
− γ − 1

2
(y − yopt(s, x))

2 −
∫

R

n(s, x, z) dz

)

(n(s, x, y)− ñ(s, x, y))2(1 + y4) dy dx ds

+

∫ t

0

∫

Td

∫

R

(
∫

R

n(s, x, z)− ñ(s, x, z) dz

)

ñ(s, x, y)(n(s, x, y) − ñ(s, x, y))(1 + y4) dy dx ds

+ γ

∫ t

0

∫

R

∫

Td

(n(s, x, y)− ñ(s, x, y))

[

− (n(s, x, y)− ñ(s, x, y))

∫∫

R2

ΓA/2

(

y − y∗ + y′∗
2

)(

n(s, x, y∗)n(s, x, y
′
∗)

∫

R
n(s, x, z) dz

− ñ(s, x, y∗)ñ(s, x, y
′
∗)

∫

R
ñ(s, x, z) dz

)

dy∗ dy
′
∗

]

(1 + y4) dx dy ds

≤
(

1 +
A

2
− γ

)
∫ t

0

∫

R

∫

Td

(n(s, x, y)− ñ(s, x, y))2(1 + y4) dx dy ds

+

(

max
s∈[0,t],x∈Td

∫

R

n(s, x, y)
√

1 + y4 dy

)
1
2

∫ t

0

(
∫

R

∫

Td

(n(s, x, y)− ñ(s, x, y))2(1 + y4) dx dy

)
1
2
(
∫

R

∫

Td

|n(s, x, y)− ñ(s, x, y)| dx dy
)

ds

(97)

+
γ

2

∫ t

0

{
∫

R

∫

Td

(n(s, x, y)− ñ(s, x, y))2(1 + y4) dx dy

}
1
2
{
∫

R

∫

Td

[
∫∫

R2

ΓA/2

(

y − y∗ + y′∗
2

)

(

n(s, x, y∗)n(s, x, y
′
∗)

∫

R
n(s, x, z) dz

− ñ(s, x, y∗)ñ(s, x, y
′
∗)

∫

R
ñ(s, x, z) dz

)

dy∗ dy
′
∗

]2

(1 + y4) dx dy

}
1
2

ds, (98)

and we can estimate the last term appearing in brackets in (98) as follows:

{·} ≤ C

∫

Td

[

max
y∈R

∫∫

R2

ΓA/2

(

y − y∗ + y′∗
2

)

(1 + y2)

∣

∣

∣

∣

n(t, x, y∗)n(t, x, y
′
∗)

∫

R
n(t, x, z) dz

− ñ(t, x, y∗)ñ(t, x, y
′
∗)

∫

R
ñ(t, x, z) dz

∣

∣

∣

∣

dy∗ dy
′
∗

]

[
∫

R

∫∫

R2

ΓA/2

(

y − y∗ + y′∗
2

)

(1 + y2)

∣

∣

∣

∣

n(t, x, y∗)n(t, x, y
′
∗)

∫

R
n(t, x, z) dz

− ñ(t, x, y∗)ñ(t, x, y
′
∗)

∫

R
ñ(t, x, z) dz

∣

∣

∣

∣

dy∗ dy
′
∗ dy

]

dx.

We notice the following estimates satisfied by the reproduction kernel ΓA/2:

ΓA/2

(

y − y∗ + y′∗
2

)

(1 + y2) ≤ ΓA/2

(

y − y∗ + y′∗
2

)

C

(

1 +

(

y − y∗ + y′∗
2

)2

+ y2∗ + (y′∗)
2

)

≤ C
(

1 + y2∗ + (y′∗)
2
)

,
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for any y ∈ R, as well as

∫

R

ΓA/2

(

y − y∗ + y′∗
2

)

(1 + y2) dy ≤
∫

R

ΓA/2

(

y − y∗ + y′∗
2

)

C

(

1 +

(

y − y∗ + y′∗
2

)2

+ y2∗ + (y′∗)
2

)

dy

≤ C
(

1 + y2∗ + (y′∗)
2
)

,

and then,
∫∫

R2

C
(

1 + y2∗ + (y′∗)
2
)

∣

∣

∣

∣

n(t, x, y∗)n(t, x, y
′
∗)

∫

R
n(t, x, z) dz

− ñ(t, x, y∗)ñ(t, x, y
′
∗)

∫

R
ñ(t, x, z) dz

∣

∣

∣

∣

dy∗ dy
′
∗

≤
∫∫

R2

C
(

1 + y2∗ + (y′∗)
2
)

∣

∣

∣

∣

(n(t, x, y∗)− ñ(t, x, y∗))n(t, x, y
′
∗)

∫

R
n(t, x, z) dz

+
ñ(t, x, y∗)n(t, x, y

′
∗)

(∫

R
n(t, x, z) dz

) (∫

R
ñ(t, x, z) dz

)

(
∫

R

ñ(t, x, z)− n(t, x, z) dz

)

+
ñ(t, x, y∗) (n(t, x, y

′
∗)− ñ(t, x, y′∗))

∫

R
ñ(t, x, z) dz

∣

∣

∣

∣

dy∗ dy
′
∗

≤ C

∫

R

(1 + y2) |n(t, x, y)− ñ(t, x, y)| dy.

We can then continue the estimation of the last term appearing in brackets in (98):

{·} ≤ C

∫

Td

[
∫

R

(1 + y2) |n(t, x, y)− ñ(t, x, y)| dy
]2

dx

≤ C

∫

Td

[
∫

R

1

1 + y2
dy

] [
∫

R

(1 + y2)2 |n(t, x, y)− ñ(t, x, y)|2 dy
]

dx

≤ C

∫

Td

∫

R

|n(t, x, y)− ñ(t, x, y)|2
(

1 + y4
)

dy dx

Similarly, we can estimate the last factor of (97):

∫

R

∫

Td

|n(s, x, y)− ñ(s, x, y)| dx dy ≤
(
∫

R

∫

Td

|n(s, x, y)− ñ(s, x, y)|2(1 + y4) dx dy

)
1
2

.

Brought together, these estimates imply

∫

R

∫

Td

(n(t, x, y)− ñ(t, x, y))2(1 + y4) dx dy +

∫ t

0

∫

R

∫

Td

|∇xn(s, x, y)−∇xñ(s, x, y)|2(1 + y4) dx dy ds

≤ C

∫ t

0

∫

R

∫

Td

(n(s, x, y)− ñ(s, x, y))2(1 + y4) dx dy ds.

In particular y(t) :=
∫

R

∫

Td(ñ(t, x, y)− n(t, x, y))2
(

1 + y4
)

dx dy satisfies y(t) ≤ C
∫ t
0 y(s) ds,

and a Gronwall estimate shows that y(t) = 0 for t ∈ [0, T ], that is n = ñ, which concludes the
proof of Proposition 2.4.

5.6 Technical estimates for some linear problems

In this section, we derive estimates on solutions of linear parabolic problems that are used in
Section 4.3 (proof of Proposition 4.4). We consider the assumption made in Proposition 4.4,
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and in particular: yopt, n
0 satisfying Assumption 1, n ∈ L∞(R+ × T

d, L1((R)) a solution of
(SIM) with initial condition n0, and ñ, N , Z defined by (14) and (1), and we assume that
‖Z‖L∞([0,τ)×Td) ≤ κ, for some τ > 0 and κ > 0.

Some linear parabolic equations
For (s, z, y) ∈ [0, τ)×T

d×R, let φs,z,y(t, x) the solution of (42). Let (t, x) 7→ ψs,z,y(t, x) :=
φs,z,y(t, x)N(t, x), which satisfies the following linear parabolic equation:














∂tψs,z,y(t, x)−∆xψs,z,y(t, x)

=
(

1 + A
2 −N(t, x)− 1

2 (y − yopt(t, x))
2 − 1

2

∫

(y − yopt(t, x))
2ñ(t, x, y) dy

)

ψs,z,y(t, x),
(t, x) ∈ [s, τ)× T

d,
ψs,z,y(s, x) = N(s, z)δz(x), x ∈ T

d.

Since the factor on the right hand side of the equation satisfied by ψs,z,y is bounded (see
Proposition 4.1), the existence and uniqueness of ψs,z,y derives from standards methods (see
e.g. Theorem 7.3 and Theorem 7.4 in [29]), and this implies the existence and uniqueness of
the solution φs,z,y of (42).

We also define φ̄s,z(t, x) as the solution of:
{

∂tφ̄s,z(t, x)−∆xφ̄s,z(t, x) = 2∇xN(t,x)
N(t,x) · ∇xφ̄s,z(t, x), (t, x) ∈ [s, τ)× T

d,

φ̄s,z(s, x) = δz(x), x ∈ T
d.

(99)

Thanks to Section 5.4, the quotient ∇xN(t,x)
N(t,x) is continuous, the existence and uniqueness of

solution then follows from standard arguments. Alternatively, we can notice that ψ̄s,z(t, x) :=
φ̄s,zN(t, x) satisfies






∂tψ̄s,z(t, x)−∆xψ̄s,z(t, x)

=
(

1 + A
2 −N(t, x)− 1

2

∫

(y − yopt(t, x))
2ñ(t, x, y) dy

)

ψ̄s,z(t, x), (t, x) ∈ [s, τ)× T
d,

ψ̄s,z(s, x) = N(s, z)δz(x), x ∈ T
d,

which is a linear heat equation, and the unique solution is then given by an explicit Duhamel
formula. It can then be used to construct φ̄s,z.

Estimate 1
Thanks to Proposition 4.1, there exists Cκ > 0 such that

∫

|y|4ñ(t, x, y) dy ≤ Cκ for any
(t, x) ∈ [0, τ) × T

d, and we can define

R = (2Cκ)
1/4 . (100)

Then, for any (t, x) ∈ [0, τ) × T
d,

∫ R

−R
ñ(t, x, y) dy = 1−

∫

[−R,R]c
ñ(t, x, y) dy ≥ 1− 1

R4

∫

[−R,R]c
|y|4ñ(t, x, y) dy ≥ 1

2
. (101)

Let also
R′ = R+ ‖yopt‖L∞(R+×Td). (102)

Then, for any y ∈ [−R′, R′]c, we have −1
2(y−yopt(t, x))2 ≤ minỹ∈[−R,R]

(

−1
2 (ỹ − yopt(t, x))

2
)

.

The maximum principle (see Remark 2.3) applies to (42) (comparing the case y ∈ [−R′, R′]c

to the case where ỹ ∈ [−R,R]), and then, for y ∈ [−R′, R′]c,

∀(s, z) ∈ [0, τ) × T
d, ∀(t, x) ∈ [s, τ)× T

d, φs,z,y(t, x) ≤ min
|ỹ|≤R

φs,z,ỹ(t, x). (103)
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Estimate 2
For any y ∈ R,

−1

2

(

y + sgn(y)‖yopt‖L∞(R+×Td)

)2
≤ −1

2
(y− yopt(t, x))

2 ≤ −1

2

(

y − sgn(y)‖yopt‖L∞(R+×Td)

)2

Then φs,z,y(t, x)e
(t−s) 1

2

(

y+sgn(y)‖yopt‖L∞(R+×Td)

)2

is a super-solution of (99), and thanks to the

comparison principle, φ̄s,z(t, x) ≤ φs,z,y(t, x)e
(t−s) 1

2

(

y+sgn(y)‖yopt‖L∞(R+×Td)

)2

. The reverse es-
timate can be obtained similarily, and together, those estimates imply for any (s, z, y) ∈
[0, τ) × T

d × R and (t, x) ∈ (s,min(s+ 1, τ)) × T
d,

φs,z,y(t, x) = φ̄s,z(t, x)e
−(t−s) 1

2
(y+O(1))2 , (104)

where |O(1)| ≤ ‖yopt‖L∞(R+×Td).

Estimate 3
ψ̄s,z satisfies ψ̄s,z(s, ·) = N(s, z)δz and

∂tψ̄s,z(t, x)−∆xψ̄s,z(t, x) ≤
(

1 +
A

2

)

ψ̄s,z(t, x).

Thanks to the comparison principle, ψ̄s,z(t, x) ≤ N(s, z)e(1+
A
2 )(t−s)Γt−s(x − z), where the

notation (t, x) 7→ Γt(x) designates the fundamental solution of the heat equation on T
d, and

x− y stands for the substraction of x by y on that torus. Since ψ̄s,z(t, x) = φ̄s,z(t, x)N(t, x),
we have, for θ ∈ (0, 1),

∫

R

φ̄s,z(t, x)|z − x|θ dz ≤ e(1+
A
2 )(t−s)

∫

R

Γt−s(x− z)
N(s, z)

N(t, x)
|z − x|θ dz.

We can use the estimate (35) to show that
∣

∣

∣

N(s,z)
N(t,x)

∣

∣

∣
≤ Cκ, as soon as 1 < s ≤ t ≤ min(s+1, τ).

If 0 ≤ s ≤ t ≤ 2, we can use the lower bound (34) and the upper bound ‖N‖L∞(R+×Td) ≤
max

(

1, ‖N(0, ·)‖L∞(Td)

)

to obtain a similar estimate. Then,

∫

R

φ̄s,z(t, x)|z − x|θ dz ≤ Cκe
(1+A

2 )(t−s)
∫

R

Γt−s(x− z)|z − x|θ dz ≤ Cκ(t− s)
θ
2 , (105)

provided 0 < s ≤ t ≤ min(s+ 1, τ).

Estimate 4
For (t̄, x̄) ∈ (0,+∞)×T

d, let ut̄,x̄ the solution of the following problem (note that the time
variable is here reversed compared to usual problems)

{

−∂ut̄,x̄
∂t (t, x)−∆xut̄,x̄(t, x) = −2∇x ·

(

∇xN(t,x)
N(t,x) ut̄,x̄(t, x)

)

, (t, x) ∈ (−∞, t̄]× T
d

ut̄,x̄(t̄, x) = δx̄(x).
(106)

This problem is indeed the dual problem of (99) in the sense that d
dt

∫

R
φ̄s,z(t, x)ut̄,x̄(t, x) dx = 0

for t ∈ [s, t̄]. It follows that for any s < t̄ and z ∈ T
d,

∫

R

φ̄s,z(s, x)ut̄,x̄(s, x) dx =

∫

R

φ̄s,z(t, x)ut̄,x̄(t̄, x) dx,
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which, given the initial conditions specified in (99) and (106) (note that the reversion of time
in this dual problem implies that the initial condition holds for the largest time considered, ie
t = t̄), is equivalent to

ut̄,x̄(s, z) = φ̄s,z(t̄, x̄).

The divergence form of (106) implies that
∫

R
ut̄,x̄(s, z) dz =

∫

R
ut̄,x̄(t̄, z) dz = 1, and then for

any t̄ > s and x̄ ∈ T
d,

∫

R

φ̄s,z(t̄, x̄) dz = 1. (107)

5.7 Existence, uniqueness and stability of solutions of (KBM)

In this section, we first show that Proposition 4.5 implies the existence of solutions to (KBM).
Note that there are probably more direct proofs of this result. The stability of solutions of
(KBM) is then proven Proposition 5.7, which also implies the uniqueness of solutions. Note
that thsi stability result is important to show (12)

We consider the assumptiuons made in Proposition 4.5, denote by nγ the solution of
(SIM) and Nγ , Zγ defined by (1). Thanks to Proposition 4.5, Zγ is uniformly bounded for
(t, x) ∈ R+ × T

d and γ > γ̄. We may then apply Proposition 4.3 to show that Nγ , Zγ are
uniformly θ−Lipschitz continuous. Thanks to Ascoli, they converge to a limit (N̄ , Z̄) up to
an extraction. We consider this subsequence from now on (the uniqueness of solutions proven
in Proposition 2.4 will show that the convergence holds without taking a subsequence). This
limit is then itself θ−Lipschitz continuous. We can define Yγ := NγZγ , Ȳ := N̄Z̄, and
note that ‖Nγ‖L∞([0,τ)×Td) + ‖Yγ‖L∞([0,τ)×Td) ≤ C. Moreover, (Nγ , Yγ) satisfies a system of

equations where only the 0th order terms are non-linear (note that we already considered Yγ
in Section 5.4, see (94)):















∂tNγ(t, x)−∆xNγ(t, x) =
(

1− 1
2 (Zγ(t, x)− yopt(t, x))

2 −Nγ(t, x) + ϕN,γ(t, x)
)

Nγ(t, x),

∂tYγ(t, x) −∆xYγ(t, x) =
(

1− 1
2 (Zγ(t, x) − yopt(t, x))

2 −Nγ(t, x) + ϕN,γ(t, x)
)

Yγ(t, x)

+ (−A (Zγ(t, x)− yopt(t, x)) + ϕZ,γ(t, x))Nγ(t, x),
(108)

Applying Theorem 7.22 in [37] to these equations show that Nγ , Yγ ∈W 2,1
d+2(R+ × T

d) (using
the notations of [37]) with a norm that is uniform in γ > γ̄. Since N̄ and Z̄ are bounded, the
factor of Nγ on the right hand side of the first equation in (108) is uniformly bounded, and
then

Nγ(t, x) ≥ Ce−t/C , N̄(t, x) ≥ Ce−t/C , (109)

for (t, x) ∈ R+ ×T
d. The second inequality being a consequence of the uniform bound on Nγ

and the convergence of Nγ to N̄ when γ → ∞. This lower bound on N̄ can be used in (108)
to show that N̄ and Ȳ satisfy, in a weak sense (integrated against smooth test functions),

∂tN̄(t, x)−∆xN̄(t, x) =

(

1− 1

2

(

Z̄(t, x)− yopt(t, x)
)2 − N̄(t, x)

)

N̄(t, x),

∂tȲ (t, x)−∆xȲ (t, x) =

(

1− 1

2N̄ (t, x)2
(

Ȳ (t, x)− yopt(t, x)N̄ (t, x)
)2 − N̄(t, x)

)

Ȳ (t, x)

−A
(

Ȳ (t, x)− yopt(t, x)N̄ (t, x)
)

. (110)
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Since N̄ , Ȳ ∈W 2,1
d+2(R+×T

d) the right hand side of these equations belong to Ld+2([0, T ]×T
d)

for any T > 0. Applying Theorem 7.22 in [37] and Morrey’s inequality, we have that N̄ , Ȳ
are C1 in t and C2 in x, and (110) is satisfied as an equality between continuous functions.
Coming back to (KBM) with Z̄ = Ȳ /N̄ shows that (N̄ , Z̄) is a solution of (KBM). This proves
the existence of a solution to (KBM) under Assumption 1.

We are now interested in the uniqueness of solutions of (KBM), and use the notation
W 1,2
d+2(R+ × T

d) of [37] to write the following result:

Proposition 5.7. Let yopt ∈ C1(R+ × T
d), N0, Z0 ∈W 2,∞(Td), such that N0 > 0.

Let ϕN , ϕZ ∈ L∞(R+ × T
d) and N,Z, N̄ , Z̄ ∈ W 1,2

d+2 that are C1 in t and C2 in x, with

N(t, x) > 0, N̄(t, x) > 0 for (t, x) ∈ R+ × T
d. We assume that (N,Z) satisfies







∂tN(t, x)−∆xN(t, x) =
(

1− 1
2 (Z(t, x)− yopt(t, x))

2 −N(t, x) + ϕN (t, x)
)

N(t, x),

∂tZ(t, x)−∆xZ(t, x) = 2∇xN(t,x)
N(t,x) · ∇xZ(t, x)−A (Z(t, x)− yopt(t, x)) + ϕZ(t, x),

(111)
while (N̄ , Z̄) satisfies (KBM), as an equality between continuous functions in both cases, and
with the same initial condition (N(0, ·), Z(0, ·)) = (N̄(0, ·), Ȳ (0, ·)) = (N0, Z0). If

|ϕN (t, x)|+ ϕZ(t, x)| ≤
C̄

γθ
+ C̄1[0,1/γθ ](t),

for some C̄ > 0 and γ > 1. For any T > 0, there is Ĉ > 0 independent from γ > 0 such that

‖(N − N̄)(t, ·)‖L∞([0,T ]×Td) + ‖(Z − Z̄)(t, ·)‖L∞([0,T ]×Td) ≤
Ĉ

γθ
. (112)

This proposition shows the uniqueness of solutions of (KBM) under the assumptions above.
It also shows the convergence of solutions (N,Z) of (10) to the solution (N̄ , Z̄) of (KBM) when
γ → ∞, see (12).

Proof of Proposition 5.7. Since N,Z, N̄ , Z̄ ∈ W 1,2
d+2, it is possible to use the comparison prin-

ciple to show explicit upper bounds on |Z|, |Z̄| and N that are uniform in γ > 1. We can use
these to prove a lower bound on N (see (109)) that is also uniform in γ > 1.

We can define Y = ZN and Ȳ = Z̄N̄ and write the equations satisfied by Y , Ȳ , see
(108), (110). Note that in these equation, the non-liear terms do not involve any derivative
of the functions. Since N,Y, N̄ , Ȳ are bounded functions and N, N̄ are bounded from below
independently from γ > 1 on [0, T ]× T

d, we can then estimate

∂t(N − N̄)(t, x)−∆x(N − N̄)(t, x) = O(1)(N − N̄)(t, x) +O(1)(Y − Ȳ )(t, x) +O(1)ϕN (t, x),

∂t(Y − Ȳ )(t, x)−∆x(Y − Ȳ )(t, x) = O(1)(N − N̄)(t, x) +O(1)(Y − Ȳ )(t, x) +O(1)ϕN (t, x)
+O(1)ϕZ(t, x),

(113)
where the notation O(1) denotes functions [0, T ] × R with an L∞ norm that is independent
from γ > 0. Let C > 0 such that the coefficients on the right hand side of the system above
are dominated by C > 0, ie |O(1)| ≤ C. We consider the following differential equation:

y′(t) = 2Cy + C

(

C̄

γθ
+ 2C̄1[0,1/γθ ](t)

)

,
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together with y(0) = ε > 0. The solution to this ODE is

y(t) = εe2Ct + Ce2Ct
∫ t

0
e−2Cs

(

C̄

γθ
+ 2C̄1[0,1/γθ ](t)

)

ds ≤ εe2Ct +
C̄e2Ct

2γθ
+ 2

CC̄

γθ
e2Ct

≤ εe2Ct +
Ĉ

γθ
e2Ct,

for γ > 1 and Ĉ := C̄/2 + 2CC̄. We can now define N̂(t, x) := y(t) and Ẑ(t, x) := y(t), that
satisfy

∂tN̂(t, x)−∆xN̂(t, x) = CN̂ + CŶ + C

(

C̄

γθ
+ 2C̄1[0,1/γθ ](t)

)

> CN̂(t, x) + CŶ (t, x) + CϕN (t, x),

(114)

as well as N̂(0, x) > (N − N̄)(0, x) = 0 for x ∈ T
d. Similarly, −N̂ satisfies −N̂(0, x) <

(N − N̄)(0, x) = 0 and

∂t(−N̂)(t, x)−∆x(−N̂)(t, x) < C(−N̂)(t, x) + C(−Ŷ )(t, x)− CϕN (t, x). (115)

The same estimates can be obtained on Ẑ, replacing ϕN by ϕZ . We now use a contradic-
tion argument. At t = 0,we have |(N − N̄)(0, x)| = 0 < N̂(0, x) and |(Z − Z̄)(0, x)| =
0 < Ẑ(0, x) for x ∈ T

d. Since N,Y, N̄ , Ȳ are C1 in t and C2 in x, the first time when
max

(

|(N − N̄)(t, x)|, |(Z − Z̄)(t, x)|
)

= y(t) leads to a contradiction since the inequalities in

(114) and (115) (and the similar equations on Ẑ, −Ẑ) are strict while (N−N̄), (Z− Z̄) satisfy
(113). Thanks to this contradiction argument, max

(

|(N − N̄)(t, x)|, |(Z − Z̄)(t, x)|
)

≤ y(t)

for t ≥ 0. since this holds for any ε > 0, we have (112) if we redefine Ĉ as Ĉe2CT .
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