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Abstract: Homogeneous isotropic turbulence (HIT) has been a useful theoretical concept for more than
fifty years of theory, modelling, and calculations. Some exact results are revisited in incompressible
HIT, with special emphasis on the 4/5 Kolmogorov law. The finite Reynolds number effect (FRN),
which yields corrections to that law, is investigated, using both Kármán–Howarth-type equations
and a statistical spectral closure of the Eddy-Damped Quasi-Normal Markovian (EDQNM)-type.
This discussion offers an opportunity to give an extended review of such spectral closures, from
weak turbulence, as in wave turbulence theory, to a strong one. Extensions of the 4/5 or 4/3
Kolmogorov/Monin laws to anisotropic cases, such as stably stratified and MHD turbulence, are
briefly touched on. Before addressing more recent work on compressible isotropic turbulence,
the simplest case of quasi-incompressible turbulence subjected to externally imposed isotropic
compression or dilatation is presented. Rapid distortion theory is found to be a poor model in
this isotropic case, in contrast with its relevance in strongly anisotropic flow cases. Accordingly,
a fully nonlinear approach based on a rescaling of all fluctuating variables is used, in order to
show its interplay with the linear operator. This opens the discussion on the cases of homogeneous
incompressible turbulence, where RDT and nonlinear models are relevant, provided that anisotropy
is accounted for. Finally, isotropic compressible flows of increasing complexity are considered. Recent
studies using weak turbulence theory, modelling, and DNS are discussed. A final unpublished study
involves interactions between the solenoidal mode, inherited from incompressible turbulence, and
the acoustic and entropic modes, which are specific to the compressible problem. An approach to
acoustic wave turbulence, with resonant triads, is revisited on this occasion.

Keywords: isotropic turbulence; finite Reynolds number; spectral approach; weak compressibility

1. Introduction

Homogeneous, isotropic turbulence (HIT) is frequently considered an over-simplified
approach, since real turbulent flows are often far from statistical homogeneity and isotropy.
However, this idealised case is the subject of a considerable literature, notably the book
byMcComb (2014) [1] (whose internet blogs concerning turbulence provide a clear and
passionate contribution to the subject) and the review article by Moffatt (2002) [2] (which
gives a fascinating insider view of the development of the theory of homogeneous turbu-
lence). It is my belief that HIT still has some important things to say, hence this review
article, which focuses on areas in which I think additional work is needed. One such
area is compressible turbulence, of which there have been rather few studies. Here, we
begin with incompressible flow, then move on through results which approach the fully
compressible case.

In the canonical case of incompressible HIT, however, it is worthwhile to compare the
very different approaches, when the formalism is developed either in physical space or in 3D
Fourier space. From the Navier–Stokes equations, exact laws from the legacy of Kolmogorov
are derived using equations for two-point second-order statistical moments, in line with
Kármán–Howarth (K-H hereinafter). The asymptotic character of the 4/5 Kolmogorov law
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has been recognised for three decades, with a finite Reynolds number effect (FRN) altering it. A
recent comprehensive review is given by Tang, Antonia, and Danaila (2024) [3]. Quantification
of the FRN effect is naturally supported by an analysis of the K-H equations, when unsteady
and viscous terms are displayed in the dynamics of the second-order structure function. For
the same purpose, it is also possible to use a classical spectral closure, one of the simplest
being the Eddy-Damped Quasi-Normal Markovian (EDQNM) from Orszag (1970) [4]. At this
stage, it is crucial to understand that the approach based on the K-H equation is very different
from the one using the spectral closure. There is a formal analogy between the equation for the
second-order structure function S2(r, t) in HIT and the Lin equation for the energy spectrum
E(k, t), but this is not the main point: the sole Lin equation gives no direct information on the
energy spectrum or on the transfer term T(k, t), except in a particular steady limit at a very
high Reynolds number. Consequently, the time evolution of the energy spectrum is obtained
by a closure of the transfer term, i.e., a non-local relationship of T and E. From the analysis
of the FRN effect, perhaps a marginal application of spectral closures, we propose a survey
of these closures. The case of weak turbulence, with wave turbulence theory and beyond,
is included. When the turbulent motion is dominated by dispersive waves, with quadratic
nonlinearity, the weak nonlinearity can reduce to resonant triads, which dominate the transfer
term. All these closure theories or models can be gathered into a class of triadic closures and
can be considered as exact in some asymptotic cases of weak turbulence.

In the presence of linear wave regimes, the incompressible turbulence is generally
anisotropic, at least in the simple examples where resonant triads are allowed. Isotropic
WT exists, but resonant quartets are called into play, instead of resonant triads (see Galtier,
2024 [5], and the references therein). Are there other cases in HIT in which a linear operator
can interact with the intrinsic nonlinearity? Quasi-incompressible turbulence subjected
to externally imposed isotropic compression or dilatation is presented and revisited for
this purpose. This case is addressed in Section 3. Rapid distortion theory appears as a
poor model and is complemented by a fully nonlinear approach based on a rescaling of all
fluctuating variables.

The specificity of an explicit description of anisotropy is discussed in Section 4, for
incompressible turbulence subjected to body forces.

In Section 5, compressible flows are considered with an increasing complexity. Recent
(unpublished) studies address weak turbulence theory, modelling, and DNSs for turbulent
flows, in which the solenoidal mode, inherited from incompressible turbulence, coexists
and interacts with the entropic mode and the acoustic mode.

Lastly, Section 6 is devoted to the conclusions and perspectives.

2. Exact Laws, Using Equations for Correlation Tensors Both in Physical Space and the
Spectral One

In HIT, the starting point for modelling is given by the scaling laws for n-order velocity
structure functions, from the legacy of Kolmogorov.

Sn(r) = Cn(rε)n/3, (1)

where Sn(r) = ⟨(δu·r/r)n⟩ (bold is used for vectors throughout the whole text),
δu = u(x + r) − u(x), r =| r |, and ε is the dissipation rate. The case of n = 3 was
considered as very specific, since the prefactor C3 can be evaluated theoretically, leading to
a so-called exact law. Accordingly, the well-known 4/5 Kolmogorov law corresponds to
C3 = −4/5 in Equation (1).

2.1. Incompressible Homogeneous Turbulence

From Antonia and Burratini (2006) [6], the asymptotic character of the 4/5 Kolmogorov
law and the related finite Reynolds number (FRN) effect, was quantified, as illustrated in
Figure 1, later completed by Antoine Briard and published in [7].
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Figure 1. Finite Reynolds Number effects: convergence to the 4/5 law of | C3 | versus the Taylor-
based Reynolds number. Courtesy of A. Briard, adapted from figures in Antonia & Burattini [6],
Tchoufag et al. [8], and published in [7]. Symbols (black for forced and white for decay) from various
physical and numerical experiments were plotted by [6] (see references there), as the fits in full line
(blue colour) and in dashed lines. Black curve: first EDQNM calculations, forced [8]. Red curve:
EDQNM calculation finalized by Antoine Briard for the decay, with CBC symbols calculated from the
data of Comte-Bellot & Corrsin [9]).

The notation C3 in the figure holds for

C3 = −max
r

S3(r)
εr

(2)

In addition to semi-empirical scalings derived from the Kármán–Howarth (K-H here-
inafter) equation, a spectral calculation by the Eddy Damped Quasi-Normal Markovian
(EDQNM) was carried out by Tchoufag et al. (2012) [8], with a final improvement by
Antoine Briard.

We propose to discuss the analyses using the K-H equation in two-point physical space
and the closure of the Lin equation in 3D Fourier space, in order to show the limitations,
drawbacks, and advantages of both approaches. A review of the FRN effect can be found
in the same issue, by Tang, Antonia, and Danaila [3], with more emphasis on scaling laws
in physical space. See also the relevant study by McComb et al. (2014) [10].

The analysis in physical space, avoiding any unuseful assumption, was carried out
by Frédéric Moisy (private), and is reported below (in agreement with Monin and Yaglom
(1975) [11] and Mathieu & Scott (2000) [12]).

In the simplest case of incompressible homogeneous turbulence, one has to consider
the two-point velocity correlation tensor:

Rij(r, t) = ⟨ui(x, t)uj(x + r, t)⟩ (3)
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From incompressible Navier–Stokes equations without forcing, it is found that(
∂

∂t
− ν∂2

kk

)
Rij(r, t) =

∂

∂rk

(
Rik,j − Ri,jk

)
+

1
ρ

(
∂

∂ri
⟨pu′

j⟩ −
∂

∂rj
⟨p′ui⟩

)
, (4)

where p(x, t) (p′ at point x + r) is the pressure fluctuation, ν is the kinematic viscosity,
and Rik,j, Ri,kj hold for two-point third-order velocity correlations. The pressure–velocity
correlations are no longer accounted for in physical space, provided that only the trace of
the previous equation is used.

In isotropic turbulence, only longitudinal and transverse velocity correlation functions
are considered, or

RLL(r, t) = ⟨uLu′
L⟩, RNN(r, t) = ⟨uNu′

N⟩, (5)

with uL = u· r
r .

Finally, the K-H correlation equation in HIT reduces to

1
r4

∫ r

0
r4 ∂

∂t
RLLdr = RLL,L + 2ν

∂

∂r
RLL. (6)

Going back to structure functions, S2 and S3, the exact equation for THI from K-H is

S3(r, t) = −4
5

ε(t)r − 3
r4

∫ r

0
r4 ∂

∂t
S2(r, t)dr + 6ν

∂

∂r
S2(r, t). (7)

Of course, this equation differs from the so-called exact 4/5 Kolmogorov equation by
the last two terms in the right-hand side, unsteady and viscous.

2.2. Related Discussion of Triadic Models and Theories

In incompressible HIT, the 3D Fourier transform of Rij(r, t) displays the single energy
spectrum E(k, t), according to

R̂ij(k, t) =
E(k, t)
4πk2

(
δij −

kik j

k2

)
, (8)

and the energy spectrum is governed by the Lin equation(
∂

∂t
+ 2νk2

)
E(k, t) = T(k, t). (9)

In this equation, from Lin (1947) [13], the contribution from two-point third-order
correlations is encapsulated in the transfer term T(k, t) and not explicitly given as in the left-
hand side of Equation (4). In this sense, the Lin equation gives an accurate definition of the
transfer term, but it gives no actual result on E before introducing closure assumptions for
T (see, for instance, [14]). Leaving aside local (in Fourier space) models, the classical closure
theories and/or models use the infinite hierarchy of equations for statistical moments.
Accordingly, because of the quadratic nonlinearity, the equations for third-order moments
involve fourth-order ones, and so on.

The use of the 3D Fourier space renders most of the linear operators algebraic, so
that the effect of fluctuating pressure, which ensures a divergence-free velocity field, can
be accounted for, and eventually removed from consideration, provided that n-order
correlations are written at n points. Second-order correlations are thereby analysed at
two points, separated by r in physical space, resulting in a spectral tensor by Fourier
synthesis R̂ij(k, t). Similarly triple correlations ought to be analysed at three points in
physical space, resulting in a spectral tensor depending on all triads (k, p, q), or R̂inj(k, p, t),
with p + q = k.

The infinite hierarchy of moment equations is usually truncated at third-order, where
the fourth-order moments appear. The assumption for triadic closures relies on weak
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fourth-order cumulants, as for a normal law, but with no a priori assumption about triple
cumulants. The zero value of fourth-order cumulants can give an exact closure, for instance
in weak wave turbulence theory (e.g., AQNM in [15] for rotating turbulence), but this is
generally wrong in strong turbulence, as in HIT. One of the simplest triadic closure is the
EDQNM, in which fourth-order cumulants act as a nonlinear relaxation of the third-order
ones, via an Eddy-Damping (ED) semi-empirical term. In HIT, the transfer term can be
expressed as a non-local integral on all triads of the energy spectrum, and the integral is
restricted to the domain of p and q (moduli) at a fixed k, so that the vectors k, p, and q form
a triangle, as shown in Figure 2.

Figure 2. Domain in k, p, q moduli for triadic integration.

In line with the comparison of the EDQNM to the experiment of Comte-Bellot and
Corrsin [9,16], it was interesting to add the Comte-Bellot and Corrsin (CBC) points to
Figure 1. The experimental data in [9] are very comprehensive, with access to E(k, t) at
different sections downstream the grid (the downstream distance x − x0 divided by the
mean advection velocity U is equivalent to an elapsed time), and the energy spectrum
is calculated from its one-dimensional counterpart assuming isotropy. In addition, the
dissipation spectrum is derived, and even the transfer term T(k, t) is captured, comparing
measures at two close sections for estimating ∂E

∂t . Finally, the structure function S3(r, t)
itself is calculated from T(k, t), using the integral relationship in HIT.

It appears that the strategies (theory, modelling, closure) are very different when
statistical equations are investigated either in physical space or in spectral space. On the
one hand, Fourier space is the best tool for homogeneous, not only isotropic, turbulence.
In contrast with the simple local algebraic form of all linear operators in Fourier space,
which are almost intractable with their integro-differential form in physical space, nonlin-
earity amounts to a convolution product, and thereby concentrates only on the nonlocal
relationship. When the nonlinearity is quadratic, we have to focus on a spectral transfer
term that involves all triads. In this sense, classical spectral closures may be called triadic
closures, whereas the old nomenclature ‘two-point closures’ is misleading. Isotropic wave
turbulence (WT) theory can offer an extended approach, in which resonant quartets are
called into play, even with quadratic nonlinearity, if triple resonances are not permitted
(e.g., the case of surface gravity waves). If a quartic nonlinearity is considered, resonant
quartets give the first step in wave turbulence theory, and so on. The last case is well known
for WT in vibrating plates or quantum turbulence from the Gross–Pitaevskii equations. Of
course, the description in spectral space, from basic deterministic equations to those for
statistical moments, is needed even more in WT in order to treat the specific dispersion
laws of linear wave regimes. On the other hand, the ultimate degree for closure is only the
second-order two-point level in physical space, for instance using K-H-type equations, and
often only its trace. The related strategy, however, recovers its interest when inhomogeneity



Atmosphere 2024, 15, 1000 6 of 16

cannot be neglected. In search of exact laws, or corrections of them for the FRN effect, the
form of two-point third-order correlations, say S3(r), results from assumptions made on
the linear terms, say on the right-hand side of Equation (7).

A final remark on the FRN effect in HIT using EDQNM can be found from Meldi
and Vassilicos (2021, and references therein) [17] as follows. In decaying homogeneous
turbulence, non-stationarity has an increasing effect on increasingly large scales and viscous
diffusion has an effect on small scales, increasingly so for increasingly small scales. The
length scale where both effects are together minimal is the Taylor length λ, and it is therefore
only around λ that the Kolmogorov scaling predictions on second and third order structure
functions are achieved as Reynolds number Re tends to infinity (Lundgren 2002, 2003,
Obligado & Vassilicos 2019) [17]. At all other length-scales, even if a significantly small
fraction of the integral scale or a significantly large multiple of the Kolmogorov length, the
Kolmogorov predictions are never exactly achieved asymptotically as Re → ∞.

2.3. Stably Stratified Turbulence

In stably stratified turbulence, the velocity field and the scalar field, density or temper-
ature, are coupled by the buoyancy force. In the presence of a uniform gradient of mean
density, which results in a constant Brunt–Väisälä frequency N, parallel with the gravity,
the turbulent flow can be considered as statistically homogeneous, but anisotropic. Second-
order correlations include a kinetic energy, a potential energy, and cross-correlations as the
vertical buoyancy flux.

Considering the two-point counterpart of total energy, or the sum of kinetic energy
and the potential one, the buoyancy flux terms cancel out, so that the equation for total
energy resembles the one for the trace of (4). This is due to the fact that the buoyancy
force is a restoring force, whose contributions to kinetic energy and to potential energy are
exactly balanced.

From the two-point counterpart of total, kinetic + potential, energy, or the K-H equa-
tion, is derived

∇·⟨
[
|δu|2 + (δb/N)2

]
δu⟩ = −4ε, (10)

ignoring viscous and unsteady terms, where b is the buoyancy scalar. This law is valid
without assuming isotropy.

A version with ‘isotropisation’ was found by Augier et al. (2012) [18], under a classical
4/3 law, or

⟨
[
|δu|2 + (δb/N)2

]
δuL⟩ =

4
3

εr. (11)

The actual axisymmetric case was investigated in this article [18].

2.4. MHD Turbulence

In MHD turbulence, we have to consider both the velocity field u and the magnetic
field b. Their equations are coupled by the Lorentz force. As in the previous case of stably
stratified turbulence, the contribution of the restoring force cancels out when considering
the two-point counterpart of total, kinetic + magnetic, energy.

From the equations of incompressible ideal MHD, it is possible to derive a K-H
equation for the two-point counterpart of total (kinetic + magnetic) energy as

1
2

∂

∂t
⟨ui(x, t)ui(x + r, t) + bi(x, t)bi(x + r, t)⟩︸ ︷︷ ︸

Rii(r,t)+RM
ii (r,t)

=

=
1
4
∇r·⟨(δu·δu + δb·δb)δu⟩ − 1

2
∇r·⟨(δu·δb)δb⟩

+
∂

∂rk∂rk
⟨νui(x, t)ui(x + r, t) + ηbi(x, t)bi(x + r, t)⟩, (12)
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Accordingly, a Kolmogorov 4/3 law was derived by Politano et al. (1998) [19] as:

−4
3

εTr = ⟨(δu·δu + δb·δb)δuL⟩ − 2⟨(δu·δb)δbL⟩, (13)

in which δuL and δbL denote the longitudinal increments, i.e., projected along the direction
of the r-vector. Due to the symmetry of Elsaesser variables z± = u ± b, a more compact
form is found as

−4
3

ε±r = ⟨
(
δz±·δz±

)
δz±L ⟩. (14)

We consider that the role of external forcing together with the introduction of εT may
be somewhat misleading. One recovers the same duality as for ε in ‘hydro’, that is both the
injection rate of kinetic energy and the ‘true’ dissipation rate. As for the ‘hydro’ case, we
recommend avoiding external forcing and the external injection rate, and to derive from
Equation (12) an isotropic equation with both an instationary term and the dissipation
rate. As shown in in the hydro case, it is possible to recover such a law without forcing,
and to evaluate the conditions for which the unsteady term in the K-H equation or in the
Lin equation becomes negligible: the Reynolds number is really huge, as Rλ ∼ 5.104. In
astrophysics, we are sure that these conditions are fulfilled. An interesting application
is to evaluate εT in the solar wind: there is no possible direct evaluation, but third-order
structure functions can be estimated.

3. Isotropic Compression/Dilatation

As considered in the next section, turbulence in the presence of body forces (Coriolis,
buoyancy, Lorentz) and/or mean gradients (rotation, shear, strain) becomes anisotropic.
Capital letters will be used for the mean variables, as Ui for the mean velocity. In homo-
geneous, arbitrary, anisotropic turbulence, the mean flow is generated by space-uniform
gradients Aij, with the Cauchy matrix Fij, or:

Aij(t) =
∂Ui
∂xj

, Fij(t, t0) =
∂xi
∂Xj

, (15)

where Xi hold for the Lagrangian coordinates for mean flow trajectories, or positions at the
initial time t0.

In this section, it is possible to study a canonical case, in which a quasi-incompressible
fluctuating turbulent flow is subjected to an external, mean, compression or dilatation. An
interesting class of solenoidal (i.e., with divergence-free velocity fluctuations) homogeneous
turbulent flows can be considered in the presence of a mean flow with space-uniform
gradients, which takes into account a variation in the mean volume. Provided that the Mach
number is small enough, this set of assumptions is self-consistent, and it is possible to extend
solenoidal rapid distortion theory (RDT) to compressed turbulence, i.e., to a divergence-free
fluctuating velocity field in the presence of a mean dilatational flow, neglecting acoustics
and thermal effects.

The mean flow is characterised by the volumetric ratio J = detF, which differs from 1
when the constraint Aii = 0 is relaxed in Equation (15). For the sake of brevity, we chose
t0 = 0, so that abridged notations F(t), J(t) will now be used in this section, ignoring
t0. Among different compressing mean flows, the case of isotropic compression deserves
particular attention. In this case, the matrices A and F and the trajectory equations are
written as

Aij(t) = S(t)δij, Fij(t) = J1/3(t)δij, xi = J1/3(t)Xj (16)

in which S = 1
3

1
J

dJ
dt . The fluctuating velocity field is governed by

∂ui
∂t

+ Sxj
∂ui
∂xj

+ Sui +
1
ρ

∂p
∂xi

= −uj
∂ui
∂xj

+ ν∇2ui (17)
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in which explicit nonlinear terms and viscous terms are gathered in the right-hand side.
Setting the right-hand side to zero, the RDT solution is directly found in physical space,
without the non-local integral term coming from the fluctuating pressure:

u(x, t) = J−1/3(t)u(X, 0)

More interesting is the possibility to derive a rescaling for the full nonlinear Equation (17),
in terms of spatial coordinates, velocity, and time. This is expressed as follows:

x∗ = J−1/3x, u∗(x∗, t∗) = J1/3u(x, t) dt∗ = J−2/3(t)dt. (18)

Such a dynamical rescaling can also be used in the Boltzmann equations, and applied
to the cosmological gas in order to account for the expansion of the universe. When
substituting it in Equation (17), which governs the primitive unscaled variables, the rescaled
quantities are shown to satisfy the Navier–Stokes equations without the additional mean
terms, which depend on S in the left-hand side. For consistency reason, the pressure is
rescaled as p∗ = J5/3 p, and the only difference from uncompressed freely decaying isotropic
turbulence for the velocity field u∗(x∗, t∗) is the possible influence of time variations of the
viscosity ν∗(t). The variation in the Reynolds number follows directly since uL = u∗L∗. If
the Reynolds number is high enough, however, it is reasonable to expect that all classical
results dealing with the spatio-temporal dynamics and statistics of isotropic freely decaying
turbulence are still valid for (u∗, x∗, t∗), so that the corresponding laws for primitive
variables (u, x, t) can be readily derived using Equation (18). The reader is referred to
Cambon et al. (1992) [20] for the seminal approach and preliminary applications.

This scaling deserves attention for two reasons. First, it illustrates a particular ‘dynam-
ical’ version of the general scale invariance (see, e.g., [21]):

x∗ = λx, u∗ = λhu, t∗ = tλ1−h, ν∗ = λ1+hν, (19)

so that λ corresponds to the time-dependent mean density ratio J−1/3, with h = −1. In
the latter invariance group, the viscosity would be left unchanged if h = −1, but it should
be borne in mind that the dynamical rescaling deals with a continuously time-varying
parameter J−1/3(t) in contrast to λ.

Second, it can be used to check the consistency of any model or theory, ranging from
K− ε to the elaborated EDQNM, DIA, or LRA versions.

As a simple example, let us start with a classical decay law such as

K(t) = K(0)
(

1 +
t

nτ

)−n
, L(t) = L(0)

(
1 +

t
nτ

)1−n/2
,

consistently obtained for the turbulent kinetic energy K, its dissipation rate ε = − dK
dt , and

the single relevant integral length scale L, with 1/τ = −(1/K)dK/dt at the initial time
t = 0. As is well known and documented in decaying HIT, the exponent n is a bit larger
than 1, e.g., n = 6/5 for an initial Saffman energy spectrum and n = 10/7 for a Batchelor
one. Applying the rescaling, which amounts to rewriting the same equations in terms of
‘starred’ variables, the following equations are derived for the ‘compressed’ decay:

K(t) = K(0)e2Ct
(

1 +
e2Ct − 1
2nCτ

)−n

, L(t) = L(0)e−Ct
(

1 +
e2Ct − 1
2nCτ

)1−n/2

,

for a mean compression or dilatation at constant rate S(t) = −C. These equations show
immediately that the domain of relevance of RDT in terms of elapsed time is more restricted
than usually conjectured, with a dominant nonlinearity having an effect opposite the linear
one. Choosing a spherical compression, i.e., C > 0, the RDT growth rate factor for K, e2Ct, is
always balanced and rapidly dominated by a nonlinear term given by e−2nCt. This reflects
the fact that, when the velocity u′ is affected by a linear ‘RDT’ factor eCt, the nonlinear
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term of dimension u2/l is affected by a factor e−3Ct, the full nonlinear effect being finally
accounted for by the time rescaling dt = dt∗e2Ct.

This flow is particular in the sense that turbulence is not really compressible, but it
offers a very simple way to exactly evaluate the impact of nonlinearity; this is a unique
instance of comparing linear RDT with the full nonlinear theory. In contrast, a depletion
of nonlinearity is rather expected in true compressible turbulence, with respect to the
incompressible flow case, but in the anisotropic case, as discussed in [7]. It is also possible
to study the spherical (isotropic) compression or dilatation applied to really compressible
homogeneous turbulence. Very consistent results were found by [22,23], using full DNS
and isentropic RDT. A recent study useful for inertial fusion [24] is inspired by the approach
of this section.

4. To What Extent Is Anisotropy Unavoidable in Theory/Modelling?

Turbulent flows subject to body forces (Coriolis, buoyancy, Lorentz) and/or strong
mean gradients, as in Equation (15), are dominated by linear effects, which render them
strongly anisotropic. This anisotropy, especially at larger scales, can be described using
rapid distortion theory (RDT). Only in some cases where the body force is a restoring
force is isotropisation possibly relevant, as shown in the case of stable stratification in
search of the 4/3 law. In other strongly anisotropic flow patterns, re-isotropisation may be
recovered at scales smaller than a typical scale such that

√
ε/S3 (Corrsin, with S the shear

rate),
√

ε/N3 (Ozmidov), or
√

ε/Ω3 (Zeman).
Homogeneous RDT for incompressible turbulent flows gathers enough features for

solving two problems:

(i) A deterministic problem, which consists of solving the initial-value linear system of
equations for the 3D Fourier transform of the fluctuating variables (velocity, pressure,
buoyancy, magnetic field), in the most general way. This is accomplished by determin-
ing the spectral Green’s function, which is also the key quantity requested in linear
stability analysis.

(ii) A statistical problem that is useful for the prognostics of the statistical moments of the
above-mentioned fluctuating variables. Interpreting the initial amplitude, e.g., û(k, t0),
as a random variable with a given dense k(t0)-spectrum and statistical moments can
be predicted though products of the basic Green’s function.

The linear spectral theory, that underlies RDT, is now almost forgotten in the Engi-
neering community, which used it for calibrating some constants in statistical models for
Reynolds-Averaged Navier–Stokes equations, e.g., in modelling ‘rapid’ pressure–strain rate
tensors. In turn, it is increasingly used in geophysics and astrophysics, taking advantage of
the possibility of recovering non-modal stability analysis and, thereby, predicting explosive
transient growth and bypass transition to turbulence.

In the largest sense, RDT includes a deterministic aspect, close to linear stability
analysis, but it says more in connection with statistical theory. Instead of assuming that
the disturbance velocity field, say u, is very small with respect to the base one, say U, as
in linear stability, the ‘rapid’ argument assumes that the time scale of the linear term, say
S−1 for a shear rate, is very small with respect to a nonlinear time scale, say τ−1 = ε/K.
Accordingly, the RDT (linear) statistical solution is valid for moderate values of the ‘linear’
nondimensional time St. Note that this works satisfactorily for parallel mean flows, as a
pure plane shear, with several applications, but is questionable for non-parallel (elliptic,
hyperbolic mean flows). We think that all cases are different, so that the relevance of
RDT cannot be a priori predicted from the initial ratios of the time scales. The case of
isotropic compression/dilatation provides a very good example of the poor relevance of
RDT. To finish with RDT, let us mention some recent applications, far from its seminal
use in Cambridge. In Goldstein (2019, and the references herein) [25], it is applied to
non-homogeneous compressible flows. In Candelier et al. [26], it is a part of a complex
study of lift and drag, where the ‘linear flow’ is the mean whose gradients are given by
Equation (15).
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RDT solutions can result from a forcing, with an impulsional linear response, and not
only the response to the initial data. The forcing can mimic an implicit nonlinear source
term, as in the resolvent analysis, in progress for complex flows.

Strong anisotropy can also result from nonlinearity. This is found in rotating turbu-
lence, in stably stratified turbulence, and in the combination of both, from weak [15,27]
to strong nonlinearity. For instance, the anisotropy results from the dispersion law of
inertia–gravity waves in rotating and stratified turbulence, or

σ(k) =

√(
f

k∥
k

)2

+

(
N

k⊥
k

)2
, (20)

as well as the definition of normal modes. The existence of a non-propagating mode,
connected to the quasi-geostrophic (QG) motion, with potential vorticity, precludes the use
of conventional WT, so that the weak turbulence is investigated in an original way in [27].

5. Progress in Weakly Compressible Isotropic Turbulence
5.1. Limitations of the Use of Potential Vorticity

Potential vorticity, mentioned at the end of the previous section, is a crucial quantity in
geophysics. It is involved in the quasi-geostrophic approach, with plenty of studies. Why
is it not used in other domains of turbulence, with compressibility?

The notations for the background equations are from [7]. It is safer to use tensor

notations, with Ricci formulae, for intermediate calculations, for instance ωi = ϵinj
∂uj
∂xn

instead of ω = ∇× u.
From the momentum conservation law, the equation for vorticity is found, without

any incompressibility condition, as follows:

ω̇i +
∂uj

∂xj
ωi −

∂ui
∂xj

ωj = ϵijn
∂

∂xj

[
1
ρ

∂σnm

∂xm
+ fn

]
.

The right-hand side is exactly the Curl of the acceleration u̇, where the overdot denotes
the substantial derivative, or convection by the velocity field. Ignoring the viscous and
body force terms, this equation can be rewritten as

˙(
ωi
ρ

)
=

∂ui
∂xj

ωj

ρ
+

1
ρ3 ϵijn

∂ρ

∂xj

∂p
∂xn

, (21)

in which the baroclinic torque appears as the second term in the right-hand side.
This term vanishes in the barotropic case p = p(ρ), and not only in the pure incom-

pressible case. More interestingly, it can be cancelled by projecting the equation on the
gradient of density. This suggests forming the scalar product 1

ρ
∂ρ
∂xi

ωi.
The convective derivative of this quantity involves the derivative of the gradient of

density, or
˙(

∂ρ
∂xi

)
, which can be expressed as

˙(
∂ρ

∂xi

)
=

∂

∂xi
(ρ̇)−

∂uj

∂xi

∂ρ

∂xj
. (22)

Combining Equations (21) and (22), several terms cancel each other, and one finds

˙(
1
ρ

∂ρ

∂xi
ωi

)
=

ωi
ρ

∂

∂xi
(ρ̇) (23)
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This equation suggests, from the very beginning, before splitting the variables into the
mean (or base) and fluctuating (or disturbance) parts, and before adding body forces, that

Πω =
1
ρ

∂ρ

∂xi
ωi =

1
ρ
∇ρ·ω, (24)

or the potential vorticity, is an invariant, but not in an arbitrarily compressible case. The
Boussinesq approximation, whose starting point is ρ̇ = 0 and ∇·u = 0, from the mass
conservation law ρ̇ = −ρ∇·u, is a necessary condition.

5.2. Towards Weak, Isotropic Turbulence with Increasing Compressibility

The Boussinesq approximation, touched upon in the previous subsection, allows mod-
erate fluctuations of density, but the velocity field remains solenoidal (divergence-free) as in
classical incompressible flows. Is there a way to allow both density fluctuations and diver-
gent velocity field, without a drastic change in the strategy used in the incompressible case?
A first step in extending the domain of incompressible isotropic turbulence is to consider
the decomposition of the (velocity, pressure, density) fluctuating field into three modes,
vortical, acoustic, and entropic. In this decomposition, initiated by Kovasznay [7,28,29],
only the first mode, vortical, or solenoidal, part of the velocity field, is inherited from the
incompressible case.

A very important jump in the complexity is to consider the non-quadratic nonlinearity
in the general Navier–Stokes equations, such as ρu ⊗ u terms. Accordingly, a quadratic
approximation merits interest.

As a second point, wave turbulence theory can be applied to the acoustic waves, but
this is not valid in the presence of the other, non-propagating, modes, say vortical and
entropic ones. Note that this problem is similar to the one of stably stratified turbulence,
and rotating stably stratified turbulence, which was recently revisited by Scott and Cambon
(2024) [27]. The coexistence of a non-propagating (NP) mode with inertia–gravity wave
modes is addressed in an original way, which can go beyond wave turbulence theory. On
the other hand, the flow in the latter case is strongly anisotropic, but the velocity field
remains solenoidal, according to the Boussinesq approximation.

5.3. A Brief Review of Some Existing Spectral Models with Acoustics

Figure 3 presents qualitative features that are both interesting . . . and very puzzling.
These were obtained by Gauthier Fauchet after three Ph.D. studies supervised by Jean-
Pierre Bertoglio (reports and articles can be obtained from the author upon request, and a
review is available in [7], Chapter 13).

On the one hand, it is shown that the spectral domain is much larger than in the
incompressible case, and this is illustrated by the gap between the acoustic bump at a
low wavenumber and the maximum of the solenoidal energy spectrum. Such a domain
cannot be covered by existing DNSs only, so that a combination of DNSs and statistical
models/theories, ranging from the EDQNM to DIA, was involved. The approach is
quasi-isentropic and at a low Mach number, so that the turbulent flow is assumed to be a
combination of the solenoidal (or vortical) non-propagating (NP) mode, a dilatational mode,
and a pressure mode, the latter two being possibly coupled by acoustic modes. Accordingly,
four kinds of energy spectra are plotted in the figure: the solenoidal energy spectrum Ess,
its dilatational counterpart Ecc, the pressure spectrum Epp, and its counterpart in purely
incompressible turbulence Epp

inc. Only at a low wavenumber, Edd and Epp coincide, in
agreement with the so-called ‘acoustic equilibrium’ around a maximum, or the above-
mentioned acoustic bump. In contrast, Ecc is much lower than Epp at larger wavenumbers,
with slopes around k−3 and k−7/3, respectively. It is expected that the apparent inertial
zones for Edd and Epp characterise a pseudo-sound, which ought to be distinguished from
the true acoustic regime (see also Ristorcelli (1997) [30]). Moreover, Epp coincides with
its incompressible counterpart Epp

inc in this region. The −7/3 slope is a well-known result
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in incompressible turbulence (Batchelor), where the spectrum of pressure is slaved to the
kinetic energy spectrum, here fixed with a −5/3 Kolmogorov slope.

Figure 3. Spectra in the nonlinear equilibrium state predicted using an extended EDQNM-type
closure for compressible flows. Courtesy of G. Fauchet and J.B. Bertoglio, published in [7].

5.4. A Recent Approach of Weak Isotropic Turbulence in a Compressible Fluid

The problem illustrated by Figure 3 is revisited by Julian Scott (private) starting from a
more complete set of equations, including the entropic mode. Regarding the nonlinearity of
the compressible Navier–Stokes equations, being non-quadratic, the turbulence is supposed
weak, allowing a quadratic approximation using Taylor’s expansion. Modes, which are
solutions of the governing equations without nonlinearity, viscosity, or thermal conduction,
form a complete set, which is used to express the flow, hence a modal decomposition into
three components: acoustic, vortical (or solenoidal), and entropic. See also [28,29] for a
seminal analysis.

The set of basic equations involves the Navier–Stokes equations:

u̇i = −1
ρ

∂p
∂xi

+
1
ρ

∂τij

∂xj
, (25)

the mass conservation equation:

ρ̇ = −ρ
∂ui
∂xi

, (26)

and the equation for entropy:
ṡ = S (27)

in which the overdot denotes the substantial derivative, as in Equation (21), whereas τij
and S hold for the viscous and heat conduction terms, as follows:

τij = λ
∂uk
∂xk

δij + 2µDij, Dij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
,

and

S =
1

ρT

(
τijDij +

∂

∂xi

(
κ

∂T
∂xi

))
. (28)
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To complete the above system, the equations of state are needed, chosen here as
p = p(ρ, s). This implies:

ṗ = −ρc2 ∂ui
∂xi

+ αS, (29)

where
c2 =

∂p
∂ρ

|s, α =
∂p
∂s

|ρ . (30)

c is the sonic speed.
Perturbation to the obvious uniform state p = p0 (and so on constant variables with

zero index) without motion is then considered.

5.4.1. NP Modes

It is shown that the vortical (or solenoidal) and entropic components, respectively, give
a classical incompressible flow and a scalar field, which is advected by the vortical velocity.
Thus, these two components are expected to decay via turbulent cascades. It is also shown
that, for weak turbulence, the time scale for the evolution of the acoustic component is
much longer. Thus, following an initial phase, the acoustic component is dominant. For
this reason, the main elements of this paper concern the spectral evolution of the acoustic
component alone and can be considered as descriptive of a nonlinear acoustics problem
with an infinite, random wave field.

5.4.2. Wave Turbulence Theory for Acoustic Waves

Wave turbulence theory, of a rather untraditional type, owing to the specific properties
of acoustic waves, is used to derive evolution equations for the distribution of acoustic
energy in spectral space. These equations are integrated numerically, and the results show
power laws with respect to both time and the wavenumber. The dispersion law of acoustic
waves is isotropic in an infinite medium, with

σ(k) = c0k. (31)

This is in contrast with the anisotropic dispersion frequency of, e.g., inertia–gravity
waves in Equation (20).

Resonant triads are found for

σk ± σp ± σq = 0 , or k ± p ± q = 0, (32)

which correspond to the limits q = k − p, q = p − k, and q = p + k of the domain for
the triadic integration of triple correlations (as for T in Equation (9), shown in Figure 2.
In incompressible turbulence, nonlinear interactions exactly vanish on these curves. The
acoustic amplitude equation is established. It is shown that an acoustic spectrum can
persist after the eventual dissipation of both non-propagating vortical and entropic modes.
Numerical solutions of the acoustic equation show transient ranges with different slopes.
After a slow evolution, a power law of exponent close to −7/2 is apparent in the inertial
range. Note that the detailed and comprehensive study by Julian Scott was not published
before, because we found that this slope in k−7/2 was derived by Zakharov and Sagdeev [31]
in 1970 (translation in English by E. Falcon).

6. Conclusions and Perspectives

Astrophysics can give applications to isotropic turbulence at very high Reynolds
numbers, as illustrated by [19], and by [32], with very high compressibility.

Considering finite Reynolds numbers, the discussion and comparisons of models and
theories carried out in the physical space, from K-H-type equations, and in the spectral space,
with triadic closures, are given in Section 2. It was also an opportunity to include wave
turbulence theory, as an exact asymptotic approach to weak turbulence, with its obvious con-
nection with conventional spectral closures for strong turbulence. Especially when quadratic
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nonlinearity is addressed, and triple resonances are permitted, it is not necessary to distin-
guish a Wave Kinetic Energy (WKE) approach from an Asymptotic Quasi-Normal Markovian
(AQNM) one [15]. The term kinetic in WKE is even misleading, with reference to Boltzmann,
if only the Lin equation is concerned, its transfer term being affected (weak case, e.g., inertial
wave turbulence) or not (strong case, HIT) by interacting dispersive waves.

According to Annick Pouquet (private), the relevance of triple resonances was a
conflicting topic in the past. Several studies appeared with resonant quartets before the
publication by Galtier et al. [33] (2001) of WT for basic MHD, with evidence of triple
resonances. In a large community, it was expected that Alfvén waves were not eligible for
WT, being non-dispersive. Older articles with rotating turbulence, as [34], were simply
ignored. A very large Russian community made scholarly contributions to WT with
resonant quartets, but ignored the MHD turbulence and the rotating turbulence, where
triple resonances are relevant. Surprisingly, the topic of triple resonances was addressed by
them, but for acoustic wave turbulence, as shown by [31].

From incompressible to increasingly compressible isotropic turbulence, Section 3
revisits a simple model of compressed turbulence, in which linear and nonlinear effects can
be compared in an exact way. This introduces the discussion of RDT and nonlinear closures
for anisotropic turbulence in Section 4. Incidentally, in Section 5.1, it is shown, or recalled,
why potential vorticity is not useful in arbitrary compressible turbulence. The role of the
Boussinesq hypothesis is emphasised.

Finally, we can say a few words about internal intermittency. The occurrence of the
FRN effect and the need for achieving the complete inertial range renders some results on
anomalous exponents for incompressible HIT very questionable, since they are Reynolds-
dependent at moderate Reynolds numbers. Results from extended self-similarity, in which
Equation (1) is considered as unconditionally valid at n = 3, and altered for any n ̸= 3, are
simply wrong. On the other hand, anomalous exponents significantly smaller than n/3 are
evidenced in strongly compressible HIT [32,35].

Some key strands are picked out below:

• The study of the FRN effect, which alters the ‘exact’ equations, can be carried out either
in physical space, using K-H-type equations, or in Fourier space, using the Lin equa-
tion. But, the Lin equation opens the problem of the infinite hierarchy of equations for
statistical moments. Spectral closures that truncate the infinite hierarchy of statistical
equations give access to a transfer term mediated by all triads (spectral counterpart of
two-point third-order moments), whereas K-H gives only access to two-point second-
order correlations. The EDQNM is particularly relevant for quantitative comparisons
with the spectral measures in the Comte-Bellot and Corrsin experiment [9] (e.g., CBC
points in Figure 1). At higher Reynolds numbers, FRN corrections can be given by
much simpler models.

• Rapid distortion theory, or the linear approach in the largest sense, has more appli-
cations than generally agreed upon. From homogeneous turbulence, however, it is
a useful tool, except for the isotropic case (Section 4). Only in that case, a general
rescaling allows us to a priori compare linear and nonlinear effects.

• Weak turbulence, as WT, shares an important background with spectral theories
and models for strong turbulence. This is particularly true when the nonlinearity is
quadratic, with transfer terms mediated by triads, with resonant triads only in WT.
But, anisotropy is essential, as in the rotating, stratified, and MHD cases.

• WT can be applied to incompressible isotropic turbulence, even with quadratic non-
linearity, but resonant quartets are called into play, in contrast with the triads in
strong turbulence.

• When weak compressibility is addressed in isotropic turbulence, acoustic WT is
relevant with resonant triads.

• More generally, increasing compressibility remains a timely topic for HIT, with theory,
modelling, DNSs, and their combination.
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