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THE DERRIDA-RETAUX MODEL ON A GEOMETRIC

GALTON–WATSON TREE

GEROLD ALSMEYER, YUEYUN HU, AND BASTIEN MALLEIN

Abstract. We consider a generalized Derrida-Retaux model on a Galton-Watson tree
with a geometric offspring distribution. For a class of recursive systems, including the
Derrida-Retaux model with either a geometric or exponential initial distribution, we
characterize the critical curve using an involution-type equation and prove that the free
energy satisfies the Derrida-Retaux conjecture.

1. Introduction

The Derrida-Retaux model, henceforth referred to as the DR model, is a max-type
recursive equation in distribution introduced by the physicists Derrida and Retaux [16] as
a toy model for studying the depinning transition in the limit of strong disorder. After a
simple change of variables, the model can be described as a family of recursively defined
probability distributions (νn, n ≥ 1) on R+. Specifically, for all n ∈ Z+, we consider two

independent random variables Y
(1)
n and Y

(2)
n with law νn. Then the random variable Yn+1

is defined as

(1.1) Yn+1 =
(
Y (1)
n + Y (2)

n − 1
)
+
,

where x+ := max{x, 0} denotes the positive part of x ∈ R, and it follows the law νn+1.
This model was previously studied by Collet, Eckmann, Glaser, and Martin [12] for prob-
ability distributions on Z+, where it served as a toy model for spin glass studies.

One of the most notable features of the DR model is its connection to an infinite-order
Berezinskii-Kosterlitz-Thouless (BKT) phase transition. This phenomenon, observed in
disordered systems, is characterized by the absence of a stable distributional fixed point
under renormalization. This connection has attracted significant interest, as it provides
insight into the critical thresholds of hierarchical pinning models. The free energy of the
model (νn)n≥0, starting from an initial distribution ν0 = ν, is given by

(1.2) FY (ν) := lim
n→∞

2−n

∫
xνn(dx) = lim

n→∞
2−n

E(Yn) ∈ [0,∞),

where Yn is a random variable with distribution νn. Note that the existence of the above
limit follows directly from the fact that E(Yn+1) ≤ 2E(Yn), as implied by equation (1.1).
The critical point of the system is defined as

pc := inf{p > 0 : FY ((1− p)δ0 + pν) > 0}.
The results of Collet et al. [12] show that, for ν = δ2, the critical point is

pc =
1

5
.

For further details and references on the recursive equation (1.1), we refer to [16] and
[18]. While the definition of the model {Yn} is relatively simple, it exhibits intricate
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behavior at criticality, making its rigorous analysis challenging and leaving many fun-
damental questions unresolved. It is widely believed that for a broad class of recursive
models, including those described by (1.1), the hierarchical renormalization model, and
the pinning model (see [15], [19], and [5]), the transition at the critical point is of infinite
order. Specifically, for the model in equation (1.1), Derrida and Retaux [16] conjectured
the existence of a constant C > 0 such that

(1.3) FY ((1− p)δ0 + pν) = exp
(
−(C + o(1))(p− pc)

−1/2
)
, as p ↓ pc.

Naturally, instead of the sum Y
(1)
n + Y

(2)
n in (1.1), we may generalize the model by

considering the sum Y
(1)
n + ... + Y

(m)
n for any integer m ≥ 2, where Y

(1)
n , ..., Y

(m)
n are

independent copies of Yn. In this case, for all n ≥ 0, the recursion becomes

(1.4) Yn+1
(law)
= (Y (1)

n + ...+ Y (m)
n − 1)+,

where the law of Y0 is given by (1 − p)δ0 + pν, with ν a probability distribution on N.
The corresponding critical value pc will naturally depend on the initial distribution ν. A
weaker form of the conjecture in equation (1.3) was proved in [7] for the model in equation
(1.4). Specifically, assuming that

∫
x3mxν(dx) < ∞ (an integrability condition that is

also necessary), it was shown that

(1.5) FY ((1− p)δ0 + pν) = exp
(
− (p− pc)

−(1/2)+o(1)
)
, as p ↓ pc.

Moreover, Chen [6] recently established the infinite differentiability of the function p 7→
FY ((1− p)δ0 + pν), thereby proving that the phase transition is of infinite order.

The upper bound for the free energy obtained in [7] is more precise than the expression

in (1.5), as it shows that the free energy is bounded by Ae−δ(p−pc)1/2 for some constants
A, δ > 0. However, eliminating the o(1) term in the lower bound of [7], or determining the
exact constant in (1.3), remains a much more challenging task. Nevertheless, an exactly
solvable version of a continuous-time generalization of the DR model has been described
in [21]. The integrability of the continuous model allows for a more detailed study of the
phase transition near criticality, confirming the corresponding version of (1.3). We also
refer to [8] for the associated partial differential equations.

This work aims to investigate and analyze a class of exactly solvable discrete-time
Derrida-Retaux models and to prove the Derrida-Retaux conjecture (1.3) for them. Specif-
ically, we consider a class where the parameter m in (1.4) is replaced by a random variable

with a geometric distribution, independent of the sequence (Y
(j)
n )j≥1. From a recursive

tree-based perspective, this modification corresponds to replacing a regular m-ary tree
with a Galton-Watson tree that has a geometric offspring distribution.

More precisely, we consider the generalized DR model (νn)n≥0, which is recursively
defined as follows. Let R be a geometric random variable with parameter p, written short-

hand as R
(d)
= G(p), and let Z be an independent nonnegative random variable. For n ∈ N,

let (X
(k)
n , k ≥ 1) be i.i.d. random variables with common law νn, independent of (R, Z).

Then νn+1 is defined as the law of Xn+1, where

(1.6) Xn+1 =

(
R∑

j=1

X(k)
n − Z

)

+

.

Observe that, in particular, if the laws of ν0 and Z are supported on Z+, the process
can be interpreted as a parking process on a Galton-Watson tree as follows. Start with
a Galton-Watson tree of height n with a geometric offspring law of parameter p. Assign
to each leaf a random number of cars according to the law ν0, and to each internal node
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a random number of parking spots according to the law of Z. Cars then drive toward the
root, parking as early as possible at any available spot. The number of cars reaching the
root without finding a suitable parking spot follows the law νn. The process is supercritical
if this number grows exponentially as n becomes large, and is critical or subcritical if the
number converges in probability to 0. For detailed studies of parking models on trees, see
Goldschmidt and Przykucki [20], Aldous et al. [2] and Contat and Curien [13].

We are interested in the free energy of the generalized DR model (Xn), which is defined
as

(1.7) FX(ν0) = lim
n→∞

pn
∫
x νn(dx) = lim

n→∞
pn E(Xn) ∈ [0,∞].

Similarly to the case (1.1), this limit exists because, from (1.6), we have the inequality
E(Xn+1) ≤ E(R)E(Xn), with E(R) = p−1, thus (pn E(Xn)) is nonincreasing and nonnega-
tive.

We will consider the generalized DR model (1.6) for the following two families of initial
distributions ν0:

• Linear fractional distributions, which are mixtures of the Dirac measure at 0 and
a geometric distribution;

• Continuous linear fractional distributions, which are mixtures of the Dirac measure
at 0 and an exponential distribution on R+.

The special case where Z = 1 was recently studied by Li and Zhang in [23] and [24].
Our main results for these two families of generalized DR models are as follows: We first
provide a characterization of the critical curve that separates the regions where FX(ν0) > 0
and FX(ν0) = 0. We then establish the Derrida–Retaux conjecture by proving (1.3) for
FX as ν0 approaches the critical value.

The precise statements are provided in Theorems 2.6 and 2.12. To the best of our
knowledge, this is the first time the precise asymptotics of the free energy at criticality
for a discrete-time Derrida-Retaux model have been computed. Notably, this result is not
limited to integer-valued systems or to iterations where Z = 1 a.s.

The common feature of the two families of discrete-time DR models given above is that
their evolution can be explicitly represented in a two-dimensional parameter space via the
following iteration (up to a change of variables)

(1.8) (u0, v0) ∈ R+ × R and

(
un+1

vn+1

)
=

(
unΨ(vn+1)
un + vn

)
,

where Ψ is a nonnegative nondecreasing function satisfying Ψ(0) = Ψ′(0) = 1. More
specifically, we work under the following assumptions for Ψ:

(A) Ψ : R → (0,∞) is a bounded, nondecreasing C2 function with Ψ(0) = Ψ′(0) = 1.

We will show in the next section that when ν0 is a mixture of the Dirac measure at 0 and
a geometric or exponential distribution, the parameters describing the model at each
step evolve according to (1.8). As a consequence, the phase transition observed in the
DR model can be understood by examining the asymptotic properties of the sequence
(un, vn)n≥0. Note that (vn)n≥0 is increasing, whereas (un)n≥0 decreases for n < N0 and
increases for n ≥ N0, where N0 = sup{n ∈ N : vn ≤ 0}. Thus, the point (0, 0) plays a
particular role in this dynamic, as it is the farthest point on the horizontal axis that can
serve as a limiting point for the evolution. More precisely, we have

(1.9) lim
n→∞

(un, vn) ∈ {(0, v) : v ∈ (−∞, 0)} ∪ {(0, 0)} ∪ {(∞,∞)},
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as will be shown in Lemma 3.1. This decomposition of the possible asymptotic behaviors
of the equation enables us to divide the parameter space into three distinct domains:

P :=
{
(u0, v0) : lim

n→∞
vn = ∞

}
, C :=

{
(u0, v0) : lim

n→∞
vn = 0

}

and U :=
{
(u0, v0) : lim

n→∞
vn < 0

}
.

(1.10)

These domains are inspired by the depinning transition of polymers, with P corresponding
to the pinned state (associated with a positive free energy), and U corresponding to the
unpinned state (associated with a null free energy). By analogy with the associated DR
models, we refer to:

• P as the supercritical domain, where νn converges in distribution to ∞,

• U as the subcritical domain, where νn converges in distribution to δ0, the Dirac
measure at 0,

• C as the critical domain, which forms the boundary between P and U .

Our first main result concerning the recursion (1.8) is about the crucial properties of
the critical curve h, which describes the boundary of the set P. This function is defined
as follows:

(1.11) h(v) := inf{u ∈ R+ : (u, v) ∈ P} for all v ∈ R.

We derive a functional equation that h satisfies, along with several of its regularity prop-
erties and its asymptotic behavior near the critical point (0, 0). We finally show that the
set C is the graph of h.

Theorem 1.1. Under the assumptions (A), the function h is nonincreasing, Lipschitz con-
tinuous and satisfies 0 ≤ h(x) ≤ (−x)+ for all x ∈ R. Moreover, h is the unique nonzero
solution to the functional equation

h(x+ h(x)) = Ψ(x+ h(x))h(x) for all x ∈ R−,(1.12)

and satisfies

h(x) ∼ x2

2
, as x ↑ 0.(1.13)

Finally, the domains P, C and U can be characterized as follows:

P = {(u, v) : u > h(v)}, C = {(u, v) : u = h(v)},
and U = {(u, v) : u < h(v)}.(1.14)

We do not have an explicit solution for the involution-type equation (1.12), even for
some natural choices of the function Ψ associated with the stochastic equations described
in Section 2. However, it is relatively straightforward to first select h and then choose a
function Ψ such that h satisfies (1.12), as demonstrated in Figure 1.

We use the function h to quantify the distance from a given starting point to the critical
curve and introduce an analogue of the free energy for the recursion (1.8) that allows us
to state and prove the analog of the Derrida-Retaux conjecture. Specifically, we define

Ψ(∞) = lim
x→∞

Ψ(x),

which always exists as Ψ is assumed to be monotone. The free energy is then given by

(1.15) F (u0, v0) := lim inf
n→∞

Ψ(∞)−nun ∈ [0,∞).

Some observations regarding this quantity are presented in the next result.
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Figure 1. Decomposition of the phase space for a function Ψ defined by Ψ(x) =
x2
/
2(1 + x−

√
1 + 2x) for x ∈ [−0.5, 0.5], extended to R in such a way that (A)

holds. For this function, the critical curve h is given by x 7→ x2/2 on [−0.5, 0.5]
and drawn in red. Additionally, slightly supercritical and subcritical trajectories
for (u, v) are depicted.

Proposition 1.2. Under assumptions (A), we have

F (u0, v0) = lim
n→∞

Ψ(∞)−nun = inf
n∈N

Ψ(∞)−nun.

Furthermore, if

(B)

∞∑

j=1

(Ψ(∞)−Ψ(κj)) <∞ for all κ > 1,

then we have the equivalence

(u0, v0) ∈ P ⇐⇒ F (u0, v0) > 0.

Observe that the (primarily technical) assumption (B) expresses that Ψ(x) converges
sufficiently fast to Ψ(∞) as x→ ∞. This is implied, for example, by the condition

lim
x→∞

(log x)1+δ (Ψ(x)−Ψ(∞)) = 0 for some δ > 0.

Under assumption (B), we can identify the supercritical domain with the set of parameters
such that the free energy is positive.

We can now state the Derrida-Retaux conjecture for the recursive equation (1.8) as
follows.

Theorem 1.3. Under the assumptions (A) and (B), for all v ≤ 0, there exists Cv > 0
such that

lim
ε→0

ε1/2 logF (h(v) + ε, v) = −Cv.

Moreover, we have

(1.16) C0 =
1

2
lim
v→0

Cv =
π√
2
log Ψ(∞).

The last statement particularly highlights the universal constant limv→0
Cv

logΨ(∞)
= π

√
2.

It is also worth noting the partial symmetry breaking around the critical point: starting
just to the left of the critical point results in a much smaller free energy than starting above
it. Additionally, when v > 0, we observe that F (ε, v) → 0 at a polynomial rate as ε→ 0.
These results are in agreement with the findings in [21] for the solvable continuous-time
DR model.

Finally, we give a result that describes the behavior of the recursive equation along the
critical curve, obtaining results that are consistent with previous literature on DR models.
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Theorem 1.4. Assuming (A), let v < 0 and (u0, v0) = (h(v), v). Then

un ∼ 2

n2
and vn ∼ −2

n
as n→ ∞.

We conclude this introduction with some comments. The generalized DR model (1.6) in
the case Z = 1, with a general initial distribution ν, was studied in [22]. In that work, the
asymptotic behavior of the free energy was examined in a domain that, in our normalized
coordinates, corresponds to u0 → 0 and v0 > 0. With specific assumptions on the tail of
ν, different asymptotic behaviors from (1.3) can emerge at v0 = 0.

The model (1.6) with Z = 1, where the initial distribution is a mixture of a Dirac
measure at 0 and either a geometric or exponential distribution, has been studied in [23]
and [24]. These articles classify different regimes and provide precise estimates for the
distribution of Xn in the critical regime [23]. In addition, [23] explores the scaling limit,
which leads to a continuous-time model.

Previous studies of the stochastic recursions (1.1) or (1.4) have heavily relied on the
explicit computation of the critical point pc as derived in Collet et al. [12]. This computa-
tion requires two key assumptions: that v0 is supported on Z+, and that the subtraction
term Z equals 1 almost surely. For instance, if the constant 1 in (1.1) or (1.4) is replaced
by 2, even the computation of the critical value becomes an open problem.

Our method, however, proves to be robust. By reducing the study of the law of Xn

to that of the recursive equation (1.8), we can establish universality without needing to
know the explicit value of the critical point. The critical point is characterized by the
function h, which is the solution of the involution-type equation (1.12). Specifically, as
long as the critical curve h satisfies h(x) ∼ x2/2 as x→ 0, the free energy defined for the
recursive equation (1.8) will satisfy the corresponding Derrida-Retaux conjecture.

Finally, we mention studies of the Derrida-Retaux system in other contexts: as a spin
glass model in in Collet et al. [11], as an iteration function of random variables in Li and
Rogers [26] and Jordan [25], and as part of the max-type recursion families in the seminal
paper by Aldous and Bandyopadhyay [1].

The rest of the article is organized as follows. In the next section, we introduce two fam-
ilies of two-parameter DR models, whose evolution is governed by equation (1.8). Specif-
ically, we discuss the implications of Theorems 1.3 and 1.4 for these processes. Section 3
explores some basic properties of the recursion (1.8), including a proof of Proposition 1.2
and an analysis of the backward evolution of this equation. In Section 4, we investigate
the critical domain, proving Theorems 1.1 and 1.4. Finally, we establish Theorem 1.3 in
Section 5, thereby confirming the Derrida-Retaux conjecture for (1.8).

Notation. Throughout, we use the following standard notation: N for the set of pos-
itive integers, Z+ for the set of nonnegative integers, R+ for the set of nonnegative reals
and (0,∞) the set of positive reals. We also recall that x+ = max(x, 0) is the positive
part of x, and we write x− = (−x)+ for the negative part of x.

2. Solvable discrete-time DR models with two parameters

We introduce in this section two families of two-parameters DR models. As men-
tioned in the introduction, these models can be thought of as stochastic recursions on a
Galton-Watson tree with a geometric offspring distribution. Using several equalities in
distribution involving sums of a geometric number of i.i.d. random variables, we are able
to describe the families of laws by tracking two parameters that evolve according to (1.8).
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Recall (1.6): For n ∈ N, writing (X
(k)
n , k ≥ 1) for i.i.d. random variables of law νn,

independent of (R, Z), then

Xn+1 =

(
R∑

j=1

X(k)
n − Z

)

+

is a random variable of law νn+1.

We introduce in Section 2.1 a generalized DR model such that νn is a probability
distribution on Z+ for all n ∈ N, then in Section 2.2 a generalized DR model such that
νn|(0,∞) has density with respect to the Lebesgue measure on (0,∞). We relate these two
models to the recursion equation (1.8), which allows us to apply Theorems 1.3 and 1.4.

2.1. Generalized DR model on Z+ with linear fractional input. We assume in
this section that Z takes values in N. In this case, if ν0 is supported in Z+, then νn will
be supported in Z+ for all n ≥ 1. A solvable DR model will be obtained by choosing for
the input distribution ν0 a linear fractional distribution that we now introduce, see also
[3] for further details about this class of distributions that is of particular interest in the
theory of branching processes.

Definition 2.1 (Linear fractional distribution). Let α, β > 0 be such that α + β ≥ 1
and Y be a random variable. We say that Y has a linear fractional distribution with

parameters α, β and write Y
(d)
= LF(α, β) if Y takes values in Z+ and has probability

generating function fY (s) := E(sY ) which satisfies

1

1− fY (s)
=

α

1− s
+ β, i.e. fY (s) = 1− 1− s

α + β(1− s)

for 0 ≤ s ≤ 1. In particular, E(Y ) = α−1.

In this section, we consider the generalized DR model (1.6) with geometrically dis-
tributed R and initial distribution ν0 = LF(α, β), where α and β are as specified. We
demonstrate that, for each n ∈ N, the distribution νn remains linear fractional, i.e. νn =
LF(αn, βn) for appropriate values of (αn, βn) that will be further specified below. Addi-
tionally, we show that, up to a reparametrization, the evolution of this sequence can be
mapped to the recursion (1.8).

If Y
(d)
= LF(α, β), then we infer from Definition 2.1 that

P(Y = k) =
α

(α + β)2

(
β

α + β

)k−1

for k ≥ 1 and P(Y = 0) = 1− 1

α + β
.

The geometric distribution appears as a special case of linear fractional distribution,
namely G(p) = LF(p, 1− p) for all p ∈ (0, 1). Two well-known distributional identities for
linear fractional distributions are next.

Fact 2.2. Let α, β > 0 be such that α + β ≥ 1 and R
(d)
= G(p) for some p ∈ (0, 1). If

Y1, Y2, . . . are i.i.d. random variables with common law LF(α, β) and independent of R,
then

R∑

j=1

Yj
(d)
= LF(pα, 1− p+ pβ).
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Proof. Denote by fR, fY and fΣ the probability generating functions of R, Y1 and
∑

R

j=1 Yj
respectively. Then fΣ(s) = fR(fY (s)) for 0 ≤ s ≤ 1 and therefore

1

1− fΣ(s)
=

1

1− fR(fY (s))
= 1− p+

p

1− fY (s)

= 1− p+ p

(
β +

α

1− s

)
= (1− p+ pβ) +

pα

1− s
,

which completes the proof. �

Fact 2.3. If Y, Z are independent integer-valued random variables such that Y
(d)
= LF(α, β),

then

(Y − Z)+
(d)
= LF

(
α

ϕ(β/(α+ β))
,

β

ϕ(β/(α+ β))

)
,

where ϕ(s) = E(sZ) for 0 ≤ s ≤ 1.

Proof. Since P(Y ≥ k) = p0λ
k−1 for all k ≥ 1, where λ = β

α+β
and p0 = 1

α+β
, it follows

that
P((Y − Z)+ ≥ k) = E

(
p0λ

k−1+Z
)

= p0λ
k−1ϕ(λ).

and thus (Y − Z)+
(d)
= LF(γ, δ) with

δ

γ + δ
= λ =

β

α + β
and

1

γ + δ
= p0ϕ(λ) =

1

α + β
ϕ

(
β

α + β

)
.

The asserted values of γ and δ are now easily obtained by simple algebra. �

A combination of the two facts now enables us to show that the generalized DR model
(νn)n≥0 with linear fractional input can be explicitly described by the evolution of a two-
dimensional recursive sequence.

Lemma 2.4. Let ν0 = LF(α, β) for some α, β > 0 with α + β ≥ 1 and R
(d)
= G(p) for

some p ∈ (0, 1). Then νn = LF(αn, βn) for any n ≥ 0, where the (αn, βn) are given by the
recursion (α0, β0) = (α, β) and

(2.1) (αn+1, βn+1) =

(
pαn

dn
,
1− p+ pβn

dn

)
with dn = ϕ

(
1− p+ pβn

1− p+ p(αn + βn)

)
.

Proof. This is a direct consequence of the Facts 2.2 and 2.3. �

To transform the recursive equation (2.1) into (1.8), which is the next step, we introduce
the function

(2.2) ψ(x) :=
1

p
ϕ

(
x

x+ 1

)
, x ≥ 0.

which is nonnegative, strictly increasing, C∞ and bounded, with ψ(0) = 0 and limx→∞ ψ(x) =
1/p. In particular, there exists a unique ξ > 0 that satisfies the equation

ψ(ξ) = 1.

We use this parameter to renormalize the recursion satisfied by (αn, βn), transforming it
into the form given in (1.8).

Proposition 2.5. Let (αn, βn)n≥0 be a sequence satisfying (2.1). For all n ∈ N, we define
the following reparametrization:

(2.3) un := ψ′(ξ)
1− p

pαn
and vn := ψ′(ξ)

(
βn
αn

− ξ

)
.
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Then (un, vn)n≥0 satisfies the recursion in (1.8), with Ψ defined by

(2.4) Ψ(x) := ψ

(
x

ψ′(ξ)
+ ξ

)
for x ∈ I := (−ψ′(ξ)ξ,∞).

Straightforward calculations provide that Ψ(0) = Ψ′(0) = 1 (by construction) and also
Ψ(∞) = p−1. Moreover, for all δ > 0, the restriction of Ψ to the interval [−ψ′(ξ)ξ+ δ,∞)
can be extended to a function that satisfies (A). Since (vn)n≥0 is nondecreasing, we can
therefore apply general results on solutions of (1.8) to this generalized DR model.

Proof. Introducing the parameterization

(xn, yn) :=

(
βn
αn
,
1− p

pαn

)
for n ≥ 0,

it follows that xn+1 = xn + yn and

1− p+ p(αn + βn)

1− p+ pβn
= 1 +

pαn

1− p+ pβn
= 1 +

1

yn + xn
= 1 +

1

xn+1

for each n ≥ 0. From this, we obtain

yn+1

yn
=

αn

an+1
=

1

p
ϕ

(
xn+1

1 + xn+1

)

and then the recursive equation

(xn+1, yn+1) = (xn + yn, ynψ(xn+1)),

valid for all n ≥ 0. Finally, the proof is concluded by noting that vn = ψ′(ξ)(xn − ξ) and
un = ψ′(ξ)yn. �

Observe that the free energy of the generalized DR model with linear fractional input,
starting from ν0 = LF(α, β), is defined by

FLF(α, β) = lim
n→∞

pn

αn

=
p

(1− p)ψ′(ξ)
lim
n→∞

pnun.

As a consequence, the Theorems 1.1 and 1.3 can be translated as follows.

Theorem 2.6. Assuming E(log Z) <∞, the following assertions hold:

(a) There exists a unique nonincreasing, Lipschitz continuous function h which satisfies

h(x+ h(x)) = Ψ(x+ h(x))h(x) for all x ∈ (−ψ′(ξ)ξ, 0],

and h(x) ∼ x2/2 as x ↑ 0. Furthermore, for any α, β > 0 with α+ β ≥ 1,

h

(
ψ′(ξ)

(
β

α
− ξ

))
< ψ′(ξ)

1− p

pα
⇐⇒ FLF(α, β) > 0.

(b) For α, β > 0 such that α + β ≥ 1 and β/α ≤ ξ, let

γ∗ := inf{γ ∈ (0, α+ β] : FLF(α/γ, β/γ) > 0}.
Then

(2.5) h

(
ψ′(ξ)

(
β

α
− ξ

))
< ψ′(ξ)

1− p

pα
(α + β),

implies

γ∗ =
p αh

(
ψ′(ξ)

(
β
α
− ξ
))

ψ′(ξ)(1− p)
∈ [0, α+ β),
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and there exists Cα,β > 0 such that

lim
γ↓γ∗

(γ − γ∗)
1/2 logFLF(α/γ, β/γ) = −Cα,β .

Note that if (2.5) fails, then FLF(α/γ, β/γ) = 0 for any γ ∈ (0, α + β].

Proof. By a standard Tauberian argument, E(log Z) <∞ can be used to obtain asymptotic
estimates of the probability generating function ϕ of Z about 1. In particular, it implies
that condition (B) holds (see (2.2) and (2.4) for the connection between ϕ and the function
Ψ appearing in this condition). We can therefore apply Theorem 1.1 and Proposition 1.2
to infer (a). For part (b), we apply Theorem 1.3, observing that with our notation, we
have

u0 = ψ′(ξ)
1− p

pα
γ and v0 = ψ′(ξ)

(
β

α
− ξ

)
,

i.e., u0 varies with γ. The assertions now follow by immediate translation. �

The following result about the critical regime follows in a similar manner by a transla-
tion of Theorem 1.4.

Corollary 2.7. Let α, β > 0 be such that α + β ≥ 1 and β/α ≤ ξ, and assume (2.5).
Let (Xn)n≥0 be a sequence of random variables such that Xn has law νn for each n, where
ν0 = LF(α/γ∗, β/γ∗). Then

P(Xn ≥ 1) ∼ 2p

(1− p)ψ′(ξ)(1 + ξ)

1

n2
, as n→ ∞

and Xn, conditioned on {Xn ≥ 1}, converges in law to G( 1
1+ξ

) = LF( 1
1+ξ

, ξ
1+ξ

).

2.2. Generalized DR model on R+ with continuous linear fractional input. The
solvable generalized DR model on R+, which will be studied in this section, can be viewed
as the continuous counterpart to the model with linear fractional input. It is based on the
assumption that Z is a generic R+-valued random variable, with ν0 taken as a mixture of an
exponential distribution and a Dirac mass at 0. This mixture is referred to as a continuous
linear fractional distribution in [4], as it corresponds to a continuous measure with a linear
fractional Laplace transform (as opposed to the probability generating function used in
the discrete case). For the sake of symmetry with the previous section, let us define these
random variables formally.

Definition 2.8 (Continuous linear fractional distributions). Let λ > 0, ̺ ∈ [0, 1] and X
be a random variable. We say that X has a continuous linear fractional distribution with

parameters λ, ̺ and write X
(d)
= CLF(λ, ̺) if X takes values in R+ and

(2.6) P(X > x) = ̺e−λx for all x > 0.

This implies P(X = 0) = 1− ̺, E(X) = ̺/λ, and

(2.7) E
(
e−µX

)
= 1− ̺+

̺λ

λ+ µ
for all µ > −λ.

Note that continuous linear fractional distributions actually form the unique two-
parameter family of probability measures on R+ whose Laplace transforms are linear
fractional. Therefore, it is not surprising that, similar to the integer-valued linear frac-
tional distributions, these continuous distributions define a solvable family within the
context of the generalized DR model.

We also remark that this family corresponds to the family of probability distributions
introduced in [21] for the continuous-time DR model. There does not seem to be a direct
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link between the continuous- and the discrete-time models, however [23] proved that one
can obtain the continuous-time DR model as a scaling limit of the discrete-time model.

Similar to the previous section, we begin by assembling a couple of facts about the laws
CLF(λ, ̺).

Fact 2.9. Let ̺ ∈ [0, 1], λ > 0, R
(d)
= G(p) for some p ∈ (0, 1) and (Xn, n ≥ 1) be

a sequence of i.i.d. random variables with common law CLF(λ, ̺) and independent of R.
Then

R∑

j=1

Xj
(d)
= CLF

(
λp

p+ (1− p)̺
,

̺

p+ (1− p)̺

)
.

The proof of this fact follows by computing the Laplace transform of the randomized
sum and its identification using (2.7). The second fact to notice is the following counter-
part of Fact 2.3.

Fact 2.10. Let ̺ ∈ [0, 1] and λ > 0. If X
(d)
= CLF(λ, ̺) and Z is an independent random

variable taking values in R+ and with Laplace transform ϕ, then

(X − Z)+
(d)
= CLF (λ, ̺ ϕ(λ)) .

In view of (2.6), it suffices to note that P((X−Z)+ > x) = P(X > x+Z) = ̺ E(e−λ(x+Z))
= ̺ϕ(λ)e−λx for all x > 0.

As a consequence of these two facts, we directly infer that, if ν0 = CLF(λ0, ̺0), then
the νn in the generalized DR model defined by (1.6) are all continuous linear fractional
distributions, namely

(2.8) νn = CLF(λn, ̺n).

for suitable recursively defined (λn, ̺n) ∈ (0,∞) × [0, 1]. However, we need to intro-
duce a new parametrization of CLF(λ, ̺) such that the sequence (νn)n≥0 under this new
parametrization satisfies (1.8).

Let us define the function

(2.9) γ(θ) :=
1

p
E(e−Z/θ) for θ > 0,

and τ > 0 as the unique number satisfying

(2.10) γ(τ) = 1.

Moreover, we let Ψ be given by

(2.11) Ψ(x) := γ

(
x

γ′(τ)
+ τ

)
for x ∈ I := (−τγ′(τ),∞),

and note that this function satisfies Ψ(0) = Ψ′(0) = 1.

Proposition 2.11. Let (̺n, λn)n≥0 be the sequence determined by (2.8) and define

un := γ′(τ)
1− p

p

̺n
λn

and vn := γ′(τ)

(
1

λn
− τ

)
for n ≥ 0.

Then (un, vn)n≥0 satisfies (1.8) with the function Ψ in (2.11) provided that v0 > −τγ′(τ).
We note that for all δ > 0, the restriction of Ψ to [−ψ′(ξ)ξ+δ,∞) can be extended to a

bounded C2 function on R. Using that (vn)n≥0 is nondecreasing, we can once again apply
general results on solutions to (1.8) to this generalized DR model. The proof of Proposi-
tion 2.11 involves straightforward computations, similar to those for Proposition 2.5, and
we therefore omit the details.
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As in the previous subsection, we can compute the free energy of the generalized DR
model starting from ν0 = CLF(λ, ̺), defined by

FCLF(λ, ̺) = lim
n→∞

pn̺n
λn

=
p

(1− p)γ′(τ)
lim
n→∞

pnun.

Therefore, Theorems 1.1 and 1.3 can once again be applied to this model, yielding the
following result.

Theorem 2.12. Assuming E(log Z) <∞, the following assertions hold:

(a) There exists a unique nontrivial function h satisfying

h(x+ h(x)) = Ψ(x+ h(x))h(x) for all x ∈ (−ψ′(ξ)ξ, 0].

Furthermore, for any ̺ ∈ [0, 1] and λ > 0,

h

(
γ′(τ)

(
1

λ
− τ

))
< γ′(τ)

1− p

p

̺

λ
⇐⇒ FCLF(λ, ̺) > 0.

(b) For λ ≥ 1/τ , let

̺∗λ := inf{̺ ∈ (0, 1] : FCLF(λ, ̺) > 0}.
Then

(2.12) λ p h

(
γ′(τ)

(
1

λ
− τ

))
< γ′(τ)(1− p),

implies

̺∗λ =
λp

γ′(τ)(1 − p)
h

(
γ′(τ)

(
1

λ
− τ

))
,

and there exists Cλ > 0 such that

lim
ε→0

ε1/2 logF (̺∗λ + ε, λ) = −Cλ.

Note that if (2.12) fails, then FCLF(λ, ̺) = 0.

Once again, we can apply Theorem 1.4 to obtain the following counterpart of Corol-
lary 2.7 in the present situation when ν0 lies on the critical curve.

Corollary 2.13. Let λ ≥ 1/τ and assume (2.12). Let (Xn)n≥0 be a sequence of random
variables such that Xn has law νn for each n, where ν0 = CLF(̺∗λ, λ). ThenXn, conditioned
on {Xn > 0}, converges in law to the exponential distribution with parameter 1/τ , i.e.,
CLF(1/τ, 1).

3. Simple properties of the Derrida-Retaux recursion

In this section, we present some straightforward properties of the solutions to the re-
cursive equation (1.8). Let Ψ be a bounded, nonnegative, nondecreasing C2 function such
that Ψ(0) = Ψ′(0) = 1, i.e. that Ψ satisfies (A). We begin by proving (1.9) through a
characterization of the limits of a sequence (un, vn)n≥0 verifying (1.8).

Lemma 3.1. Given a solution (un, vn)n≥0 to (1.8), the following dichotomy holds: Either

lim
n→∞

vn = ∞ and lim
n→∞

1

n
log un = logΨ(∞) > 0

or

lim
n→∞

vn ≤ 0 and lim
n→∞

un = 0.
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Proof. We remark that vn+1 − vn = un ≥ 0 for all n ∈ N, thus (vn)n≥0 is nondecreasing.
As a result, (vn)n≥0 either converges to a nonpositive limit, or all vn are nonnegative for
sufficiently large n.

In the first situation, since vn converges to a finite limit, we have un = vn+1 − vn → 0
as n→ ∞, which is the desired conclusion.

Let us now assume that there exists N ∈ N such that vn > 0 for all n ≥ N . In this case,
we infer un+1 = unΨ(vn+1) > un for all n ≥ N , using that Ψ′(0) = 1. Therefore, both
un and vn are strictly increasing for n ≥ N and, as a consequence, we have vn − vN ≥
(n−N) uN , which shows that limn→∞ vn = ∞. With this, we conclude

lim
n→∞

un+1

un
= lim

n→∞
Ψ(vn+1) = Ψ(∞)

and then

lim
n→∞

1

n
log un = lim

n→∞

1

n

n−1∑

k=0

log
uk+1

uk
= logΨ(∞).

by an appeal to the Stolz-Cesàro lemma. �

Next, we prove that the free energy is well-defined and characterizes the supercritical
domain when Ψ satisfies (B), thereby proving Proposition 1.2.

Proof of Proposition 1.2. Recall that the free energy is defined as

F (u0, v0) = lim inf
n→∞

Ψ(∞)−nun

and note that, if limn→∞ vn ≤ 0, then F (u0, v0) = 0 by Lemma 3.1. Therefore, we need
only consider the case where vn → ∞.

The monotonicity of Ψ implies

un+1

Ψ(∞)n+1
=

un
Ψ(∞)n

Ψ(vn+1)

Ψ(∞)
≤ un

Ψ(∞)n
,

and since (Ψ(∞)−nun)n≥0 is nonincreasing, we infer that F (u0, v0) is well-defined as the
limit of this sequence.

We now assume that, in addition, (B) holds and demonstrate that F (u0, v0) > 0 when-
ever vn → ∞. By Lemma 3.1, for any 1 < ̺ < Ψ(∞), we have un > ̺n for all n large
enough. Thus, as vn = v0 +

∑n−1
i=0 ui, we have

lim inf
n→∞

̺−nvn ≥ 1

̺− 1
lim inf
n→∞

̺−nun ≥ 1

̺− 1
.

Next, we use (1.8) to write

(3.1)
un

Ψ(∞)n
= u0

n∏

j=1

Ψ(vn)

Ψ(∞)
= u0 exp

(
n∑

j=1

log
Ψ(vj)

Ψ(∞)

)

and then conclude from (B) that
∑

n∈N log
Ψ(vn)
Ψ(∞)

converges and thus that un/Ψ(∞)n con-

verges to a positive limit as n→ ∞. �

The following monotonicity lemma, which will frequently be used in our analysis, can
be succinctly summarized by stating that (1.8) preserves the order when replacing Ψ by
a smaller or larger function.

Lemma 3.2. Let (un, vn)n≥0 be a solution to (1.8) and Ψ,Ψ be two nonnegative nonde-
creasing functions such that

Ψ(x) ≤ Ψ(x) ≤ Ψ(x) for all x ∈ R.
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If (un, vn)n≥0 and (un, vn)n≥0 are solutions to (1.8) with Ψ replaced by Ψ and Ψ, respec-
tively, and 0 ≤ u0 ≤ u0 ≤ u0 and v0 ≤ v0 ≤ v0, then

(3.2) 0 ≤ un ≤ un ≤ un and vn ≤ vn ≤ vn

for all n ∈ N.

Proof. The proof follows by a simple induction. Assuming that (3.2) holds for some n ∈ N,
we obtain by summation

vn+1 ≤ vn+1 ≤ vn+1.

Then, by using that un and Ψ(vn+1) are nonnegative, we find by immediate comparison
that

un+1 ≤ un+1 ≤ un+1. �

We now examine a duality relationship for the recursion equation (1.8), which is based
on time reversal. Specifically, we show that the type of the recursion remains unchanged
when time is reversed.

Proposition 3.3. Let (un, vn)n≥0 be a sequence defined recursively by (1.8). We fix N ∈ N

and define
qun := uN−n and qvn := −vN−n+1 for 0 ≤ n ≤ N.

Then, for all 0 ≤ n < N , we have

(3.3)

(
qun+1

qvn+1

)
=

(
qun/Ψ(−qvn+1)

qun + qvn

)
.

We see from Proposition 3.3 that the backward evolution of (un, vn)n≥0 is a solution

to (1.8) with Ψ replaced by qΨ(x) = 1/Ψ(−x). We note that if Ψ satisfies (A) and if

limx→−∞Ψ(x) > 0, then qΨ satisfies (A) as well and satisfies limx→−∞
qΨ(x) > 0.

Proof. The proof follows by simple computations and can be omitted. �

4. Evolution along the critical line

The main goal of this section is to describe the set C, defined in (1.10), as the set of
initial conditions (u0, v0) such that limn→∞ vn = 0. As noted in Lemma 3.1, the sequence
(vn)n≥0 either converges to a nonpositive limit or diverges to ∞. Moreover, by Lemma 3.2,
we observe that the function φv, which assigns to each u ∈ R+ the quantity limn→∞ vn with
the initial conditions (u0, v0) = (u, v), is nondecreasing. The range of φv is (−∞, 0]∪{∞}.

We show that C is the graph of a continuous function, which can be described as follows:

(4.1) h : v 7→ inf{u ∈ (0,∞) : φv(u) = ∞}.
Note that this definition of h coincides with the one given in (1.11). Since φv is nonde-
creasing, we immediately deduce that limn→∞ vn = ∞ if h(u0) > v0 and limn→∞ vn ≤ 0 if
h(u0) < v0. The behavior of the limit when u0 = h(v0) remains unclear at this stage. In
other words, we have:

(4.2) {(u, v) : u < h(v)} ⊂ C ∪ U and {(u, v) : u > h(v)} ⊂ P,
which is a first step toward proving (1.14). Finally, using Lemma 3.2 again, we observe
that h is nonincreasing. Furthermore, since (un)n≥0 is nondecreasing when v0 ≥ 0, we see
that h(x) = 0 for all x ≥ 0.

The rest of the section is organized as follows. We prove in Subsection 4.1 that the
function h forms the only nontrivial solution to the functional equation stated in Theo-
rem 1.1. This equation then allows us to identify the subcritical, critical and supercritical
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domains of the dynamic via (1.14). We then study the regularity of this function h and
finally, in Subsection 4.2, the asymptotic behaviour of (un, vn) provided that u0 = h(v0).

4.1. Functional equation and analysis of the critical curve. The main result of the
section is the following proposition, which establishes the existence of a unique function
h satisfying (1.12). Additionally, we show that the function h corresponds to (4.1).

Proposition 4.1. Let A > 0 and Ψ : [−A,∞) 7→ R+ be a nondecreasing C2 function,
such that Ψ(0) = Ψ′(0) = 1. There exists a unique function g : [−A,∞) 7→ R such that
g(x) = x for all x ≥ 0, g(x) > x for all x ∈ [−A, 0) and

(4.3) g(g(x)) = g(x) + Ψ(g(x))(g(x)− x) for x ∈ [−A, 0].
Furthermore,

(i) the function g is nondecreasing, 1-Lipschitz, that is, Lipschitz continuous with Lip-
schitz constant 1, and satisfies

(4.4) g(x)− x ∼ x2

2
as x ↑ 0,

(ii) given a solution (un, vn)n≥0 to (1.8),

(4.5) lim
n→∞

vn






= ∞ if g(u0)− u0 > v0,

= 0 if g(u0)− u0 = v0,

< 0 if g(u0)− u0 < v0.

Proof. We observe that the fact that x 7→ g(x)− x satisfies (4.5) implies g(x) = x+ h(x)
for all x ∈ R, with h the function defined in (4.1). Consequently, demonstrating that a
solution to (4.3) satisfies (4.5) establishes the uniqueness of the function.

In the first part of the proof, we show the existence of a function g satisfying (4.3) via an
approximation argument, using a fixed-point approach. Next, we establish the regularity
of g stated in part (i) by analyzing the properties of its approximating sequence. Finally,
we prove that g satisfies (4.5).

Proof of (4.3). We fix an arbitrary constant K > 0 such that

K ≥ sup
x∈[−A,0]

(Ψ(x) + (x+ A)Ψ′(x))

and introduce the auxiliary function

σ : [−A, 0] ∋ x 7→ Kx− (x+ A)Ψ(x).

It is straightforward to verify that σ′(x) ≥ 0 for all x ∈ [−A, 0], implying that σ is non-
decreasing. We also note that (4.3) can be rewritten as

(4.6) (K + 1)g(x) = g(g(x)) + σ(g(x)) + (x+ A)Ψ(g(x)) for x ∈ [−A, 0].
We now define recursively a sequence of functions (gn)n≥1 on [−A, 0] as follows. We

begin by fixing g1 as the unique solution to the differential equation y′ = Ψ(y) on [−A, 0]
with the initial condition y(0) = 0. Then for any n ≥ 1 and x ∈ [−A, 0], we define gn+1

by the relation

(K + 1)gn+1(x) := gn(gn(x)) + σ(gn(x)) + (x+ A)Ψ(gn(x))(4.7)

= gn(gn(x)) + Kgn(x) − (gn(x)− x)Ψ(gn(x)).(4.8)

In the second line, we used the definition of σ. We prove by induction on n that the
sequence (gn)n≥1 is nondecreasing on [−A, 0] and consists of nondecreasing functions that
are C2, 1-Lipschitz, and satisfy gn(0) = 0 and g′n(0) = 1 for all n.
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We immediately observe from the definition of g1 that it is a C2 function with g1(0) = 0,
using the fact that Ψ is C1, and that g′1(0) = Ψ(0) = 1. Moreover, we have

0 ≤ Ψ(g1(x)) = g′1(x) ≤ 1 for all x ∈ [−A, 0].
Therefore g1 is nondecreasing and 1-Lipschitz, and since g′1 = Ψ◦g1 is also nondecreasing,
we have that g1 is convex. As a result, by the definition in (4.8),

(K + 1)(g2(x)− g1(x)) = g1(g1(x))− (g1(x) + (g1(x)− x)Ψ(g1(x))) ≥ 0

for all x ∈ [−A, 0], where we used the fact that y 7→ (y − x)g′1(x) + g1(x) is the tangent
of g1 at point x, and hence smaller than g1, in particular at y = g1(x).

Turning to the inductive step, we fix n ∈ N and assume that gn is a nondecreasing
function that is C2 and 1-Lipschitz with gn(0) = 0 and g′n(0) = 1. We also assume that
gn+1(x) ≥ gn(x) for all x ∈ [−A, 0]. By (4.8), gn+1 is then clearly C2 as well, and we have

(K + 1)gn+1(0) = gn(gn(0)) +Kgn(0)− gn(0)Ψ(gn(0)) = 0

since gn(0) = 0.

Regarding the first derivative of gn+1, we compute using (4.8)

(K + 1)g′n+1(x)

= g′n(gn(x))g
′
n(x) +Kg′n(x)− (g′n(x)− 1)Ψ(gn(x))− (gn(x)− x)Ψ′(gn(x))g

′
n(x)

= g′n(gn(x))g
′
n(x) + Ψ(gn(x)) + g′n(x)

(
K −Ψ(gn(x))− (gn(x)− x)Ψ′(gn(x))

)
.

We first observe that g′n+1(0) = 1. Moreover, since gn is nondecreasing and 1-Lipschitz,
we know that gn(x)− x ≥ 0 for all x ∈ [−A, 0] and can therefore estimate

(K + 1)g′n+1(x) ≤ 1 + Ψ(gn(x)) + (K −Ψ(gn(x))) ≤ K + 1.

Additionally, since gn(x) ∈ [−A, 0], we can use the definition of K to obtain the following
lower bound:

(4.9) K −Ψ(gn(x))− (gn(x)− x)Ψ′(gn(x)) ≥ K − sup
y∈[−A,0]

Ψ(y)− (y + A)Ψ′(y) ≥ 0.

Thus, we conclude that g′n(x) ∈ [0, 1] for all x ∈ [−A, 0], which shows that gn is nonde-
creasing and 1-Lipschitz.

Finally, we show that gn+2 ≥ gn+1, using (4.7). We have

(K + 1)(gn+2(x)− gn+1(x)) = gn+1(gn+1(x))− gn(gn(x))

+ σ(gn+1(x))− σ(gn(x)) + (x+ A)(Ψ(gn+1(x))−Ψ(gn(x))).

Since gn and gn+1 are monotone with gn+1 ≥ gn, we have gn+1(gn+1(x))− gn(gn(x)) ≥ 0.
Similarly, using the monotonicity of σ and Ψ, and noting that x + A ≥ 0, we infer that
gn+2(x) ≥ gn+1(x) for all x ∈ [−A, 0]. Next, we define g as the increasing limit of gn, i.e.,

g(x) := lim
n→∞

gn(x) for all x ∈ [−A, 0].

Using the properties of the sequence (gn)n≥1, we observe that g is nondecreasing, 1-
Lipschitz, and satisfies g(0) = 0. Moreover, for all x ∈ [−A, 0), we have g(x) ≥ g1(x) > x.
By continuity of Ψ, we also have

(K + 1)g(x) = g(g(x)) +Kg(x)− (g(x)− x)Ψ(g(x)) for all x ∈ [−A, 0],
which shows that g satisfies equation (4.3).
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Proof of (4.4). It remains to show that g(x)− x ∼ x2/2 as x → 0. First, observe that
by construction, g ≥ g1, where g1 is a C2 function with g1(0) = 0, and g′1(0) = g′′1(0) = 1.
Therefore, by a Taylor expansion of g1 around x = 0, we have

g(x)− x ≥ g1(x)− x =
x2

2
(1 + o(1)).

To complete the proof, we therefore only need to show that for any w > 1/2, there exists
δ > 0 such that

g(x) ≤ x+ wx2 for all x ∈ [−δ, 0].
To this end, we fix δ ∈ (0, A/3) such that g1(x) ≤ x+ wx2 and Ψ(x) ≤ (1 + wx)2 for all
x ∈ [−δ, 0], using the fact that Ψ(1) = Ψ′(1) = 1. We will prove by induction that for all
n ≥ 1 and x ∈ [−δ, 0], the inequality gn(x) ≤ Q(x) := x + wx2 holds, from which (4.4)
will follow by passage to the limit.

Assuming gn(x) ≤ Q(x) for all x ∈ [−δ, 0] and using formula (4.7), it follows that

(K + 1)gn+1(x) ≤ Q(Q(x)) + σ(Q(x)) + (x+ A)Ψ(Q(x))

≤ Q(Q(x)) +KQ(x)− (Q(x)− x)Ψ(Q(x)),

since gn is 1-Lipschitz, thus gn(x) ≥ −δ for all x ∈ [−δ, 0]. Now consider the expression
Q(Q(x))− (Q(x)− x)Ψ(Q(x)):

Q(Q(x))− (Q(x)− x)Ψ(Q(x)) = Q(x) + wQ(x)2 − wx2Ψ(Q(x)).

This simplifies to

Q(x) + wx2
(
(1 + wx2)−Ψ(Q(x))

)
.

Since Q(x) ≥ x, we have (1 + wx2)−Ψ(Q(x)) ≤ 0, which shows that

Q(Q(x))− (Q(x)− x)Ψ(Q(x)) ≤ Q(x).

Hence, we conclude that

(K + 1)gn+1(x) ≤ (K + 1)Q(x),

which completes the induction step and the proof of (4.4).

Proof of (4.5). To complete the proof of Proposition 4.1, it remains to show that the
function h∗ : x 7→ g(x) − x and the function h in (4.1) are identical on [−A,∞). Using
the properties of g, we observe that h∗ is a continuous solution of the functional equation

(4.10) h∗(x+ h∗(x)) = h∗(x)Ψ(x+ h∗(x)) for all x ∈ [−A, 0].
such that 0 ≤ h∗(x) ≤ (−x)+ for all x ∈ R and h(x) > 0 for x < 0. We underscore that to
prove h∗ coincides with h on [−A,∞), no additional regularity conditions on h∗, such as
monotonicity or 1-Lipschitz continuity, are required. Let v∗0 < 0 and define (u∗n, v

∗
n)n≥0 as

the solution of the recursive equation (1.8) with initial conditions (u∗0, v
∗
0) = (h∗(v∗0), v

∗
0).

By induction, we immediately observe that u∗n = h∗(v∗n) for all n ≥ 1. This follows from
the recurrence relation

u∗n+1 = u∗nΨ(v∗n+1) = h∗(v∗n)Ψ(h∗(v∗n) + v∗n) = h∗(v∗n + h∗(v∗n)) = h∗(v∗n+1),

where we used (4.10) for the last equality. Note that if v∗n ≤ 0, then v∗n+1 = v∗n+h
∗(v∗n) ≤ 0

as well since h∗(x) ≤ (−x)+. Therefore, supn≥0 v
∗
n ≤ 0. Since (v∗n)n≥0 is a nondecreasing

sequence, we have v∗∞ := limn→∞ v∗n ≤ 0. Furthermore, u∗∞ := limn→∞ u∗n = h∗(v∗∞), and
thus u∗∞ > 0 if v∗∞ < 0. But this contradicts (1.9) and we conclude that limn→∞ v∗n = 0.
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Next, let (un, vn)n≥0 be a solution to (1.8) with u0 > h∗(v0). By Lemma 3.2, we know
that un ≥ u∗n and vn ≥ v∗n for all n ∈ N. Moreover, we have the inequality

vn+1 − v∗n+1 = vn − v∗n + un − u∗n ≥ vn − v∗n ≥ v1 − v∗1 .

Since v1−v∗1 = u0−h(v∗0) > 0, it follows that limn→∞ vn > 0. By Lemma 3.1, we conclude
that limn→∞ vn = ∞.

Similarly, if u0 < h(v0), then for all n ∈ N, we have un ≤ u∗n and vn ≤ v∗n, with

vn+1 − v∗n+1 ≤ vn − v∗n ≤ v1 − v∗1 < 0.

Thus, we deduce that limn→∞ vn < 0. �
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Figure 2. Numerical computations of gn(x)−x and x2/2, where η = −0.5,K =
10, and Ψ(x) = 1+2x

1+x corresponding to the generalized DR model described in
Section 2.1 with Z = 1 and p = 0.5.

We conclude this section with the proof of Theorem 1.1.

Proof of Theorem 1.1. For each A > 0, we apply Proposition 4.1 to construct the unique
function gA on [−A,∞) that satisfies (4.3). By the compatibility property, for any B > A,
the restriction of gB to [−A,∞) equals gA. Thus, we can construct g on R by taking the
projective limit.

Next, define the function h∗ : x 7→ g(x)− x. We deduce from Proposition 4.1 that this
is the unique nonincreasing 1-Lipschitz, non-trivial solution to the functional equation
(1.12), and by the same result, we know that h∗(x) ∼ x2/2 as x ↑ 0. Finally, for any
(u0, v0) ∈ R+ × R, we have the following characterizations:

(u0, v0) ∈ C ⇐⇒ u0 = h∗(v0), (u0, v0) ∈ P ⇐⇒ u0 > h∗(v0)

and (u0, v0) ∈ U ⇐⇒ u0 < h∗(v0).

This proves that h = h∗ and establishes the decomposition in (1.14). �

The duality relationship outlined in Proposition 3.3 enables the definition of a curve qh,
which plays the same role as h in the backward evolution of the dynamics. Heuristically,
it can be described as the trajectory of (un, vn) such that (u0, v0) lies within a small
neighborhood of (0, 0).
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Corollary 4.2. Assume (A). There exists a unique nondecreasing and continuous func-

tion qh, with 0 ≤ qh(x) ≤ Ψ(x) x+ for all x ∈ R, that satisfies the functional equation

(4.11) qh(x+ qh(x)) = Ψ(x+ qh(x))qh(x) for all x ∈ R+,

with the asymptotics qh(x) ∼ x2/2 as x ↓ 0, and qh(x) → ∞ as x→ ∞.

Proof. Using the notation of Proposition 3.3, we first apply Proposition 4.1 to the function

qΨ : x 7→ 1

Ψ(−x) .

This defines a function h̃ such that if (quk, qvk)k≥0 is the solution to (1.8) with qΨ in place

of Ψ, and with initial condition qu0 = h̃(qv0), then quk = h̃(qvk) for all k ≥ 1. Let N ≥ 2.
Applying the duality relationship from Proposition 3.3 to un := quN−n and vn := −qvN−n+1

for 0 ≤ n ≤ N , we obtain un = h̃(qvN−n) = h̃(−vn+1). Since un+1 = unΨ(vn+1), we get

un+1 = qh(vn+1), where qh(x) := h̃(−x)Ψ(x) for x ∈ R.

Thus, qh satisfies (4.11) and exhibits regularity similar to that of h̃ near 0. Moreover, since
qh is nondecreasing and Ψ(∞) > 1, it follows that qh(x) → ∞ as x→ ∞.

Finally, to prove the uniqueness of the solution to (4.11), we proceed as follows. Let ph

be another solution to (4.11), satisfying the same regularity conditions as qh. We aim to

show that the function x→ ph(−x)/Ψ(−x) defines the critical curve associated with qΨ. By

the uniqueness of critical curve, this implies ph(−x)/Ψ(−x) = h̃(x), and therefore ph = qh.

To this end, we verify that the function f(y) := ph(−y)/Ψ(−y) satisfies the equation

f(y + f(y)) = qΨ(y + f(y))f(y), y ≤ 0.

We proceed by making the change of variables y = −(x + ph(x)) with x ≥ 0. Such an

x exists and is unique because x + ph(x) is increasing and tends to ∞ as x → ∞. From

(4.11), we have ph(−y) = Ψ(−y)ph(x), which implies f(y) = ph(−y)/Ψ(−y) = ph(x). Next,

observe that y + f(y) = y + ph(x) = −x, by the definition of y. Therefore

f(y + f(y)) = f(−x) =
ph(x)

Ψ(x)
.

Using the facts that ph(x) = f(y) and 1/Ψ(x) = qΨ(−x) = qΨ(y + f(y)), we conclude that

f(y + f(y)) = qΨ(y + f(y)) f(y),

showing that f is the critical curve associated with qΨ. This completes the proof. �

Remark 4.3. The above proof shows that if (un, vn)n≥0 is a solution of (1.8) satisfying

v0 ≥ 0 and un = qh(vn) for all n ≥ 0, then for any N ≥ 2, the dual system defined by

(qun, qvn) := (uN−n,−vN−n+1) for 0 ≤ n ≤ N,

is also a solution to (1.8), but with qΨ in place of Ψ. Moreover, we have qun = h̃(qvn) for

0 ≤ n ≤ N , where h̃(x) := qh(−x)qΨ(x). In other words, the dual system (qun, qvn)0≤n≤N

moves along the critical curve associated with qΨ. This observation will be helpful in the
proof of Lemma 4.5.

The regularity of the critical curve h will play a crucial role in the proof of the Derrida-
Retaux conjecture in the nearly supercritical regime. In this section, we prove that the
function h is C1 and convex in a neighborhood of 0, with a Lipschitz first derivative.
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Similarly to the previous section, we establish this result for the function g satisfying
(4.3), by analyzing its approximation sequence.

Lemma 4.4. Assume (A), and let g be the unique nontrivial solution to (4.3). For all
b > 1, there exists η > 0 such that g is convex and C1 on [−η, 0], with g′ being b-Lipschitz
on [−η, 0].
Proof. Let (gn)n≥1 be the sequence of functions defined inductively by (4.8) in the proof
of Proposition 4.1. Recall that g1 is the solution of the equation y′ = Ψ(y) with initial
condition y(0) = 0. Therefore, g1 is convex and C2, with g1(0) = 0 and g′1(0) = g′′1(0) = 1.

Let b ∈ (1, 4/3) and set a = 2 − b ∈ (2/3, 1). We will prove by induction that there
exists η > 0 such that

(4.12) g′′n(x) ∈ [a, b] for all x ∈ [−η, 0].
We first choose δ > 0 such that g′1(x) ∈ [a, b] for all x ∈ [−δ, 0]. The value of η ≤ δ will
be determined later. Additionally, define C = supx∈[−δ,0] |Ψ′′(x)|. If necessary, we reduce
δ so that Cδ < 1.

Now assume that (4.12) holds for some fixed n ∈ N. By direct integration, we observe
that g′n(x) ∈ [1 + bx, 1 + ax] holds for all x ∈ [−η, 0]. Moreover, since |Ψ′′| is bounded by
C, we have

Ψ′(x) ∈ [1 + Cx, 1− Cx] and Ψ(x) ∈ [1 + x− Cx2/2, 1 + x+ Cx2/2].

Next, differentiating (4.8) twice yields the equation

(4.13) (K + 1)g′′n+1(x) = g′′n(gn(x))g
′
n(x)

2 + g′n(gn(x))g
′′
n(x) + g′′n(x)Un(x) + g′n(x)Vn(x),

where we have defined

Un(x) := K −Ψ(gn(x))− (gn(x)− x)Ψ′(gn(x)),

Vn(x) := 2(1− g′n(x))Ψ
′(gn(x))− (gn(x)− x)g′n(x)Ψ

′′(gn(x)).

Bounding Un. We first bound Un using the known bounds for Ψ. We have:

Un(x) ≤ K − 1− gn(x) +
Cgn(x)

2

2
− (gn(x)− x)(1 + Cgn(x))

≤ K − 1 + x− 2gn(x) + Cxgn(x),

and similarly

Un(x) ≥ K − 1 + x− 2gn(x)− Cxgn(x).

Let us introduce D > 0 such that for all x ∈ [−δ, 0], we have

Cxgn(x) ≤ Cxg1(x) ≤ Dx2.

Thus, we obtain

K − 1 + x− 2gn(x)−Dx2 ≤ Un(x) ≤ K − 1 + x− 2gn(x) +Dx2.

Bounding Vn. Next, we bound Vn(x) in a similar manner, using the bounds on Ψ′, Ψ′′.
We write:

2(1− g′n(x))(1− Cgn(x))−
Cbx2

2
≤ Vn(x) ≤ 2(1− g′n(x))(1 + Cgn(x)) +

Cbx2

2
.

Since 1 − g′n(x) ∈ [−ax,−bx] and gn(x) ∈ [x − bx2/2, x− ax2/2], we conclude that there
exists E > 0, depending only on C, a, b, such that

2(1− g′n(x))−Ex2 ≤ Vn(x) ≤ 2(1− g′n(x)) + Ex2.
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Bounding g′′n+1 from above. Since g′′n(x) ≤ b, equation(4.13) yields

(K + 1)g′′n+1(x) ≤ bg′n(x)
2 + bg′n(gn(x))

+ b(K − 1 + x− 2gn(x)) + 2g′n(x)(1− g′n(x)) +Rx2 =: Pn(x)

where R > 0 is a sufficiently large constant, depending only on a, b, C,D and E. We
observe that Pn(0) = b(K + 1), and that P ′

n is increasing on [−η2, 0]. To see this, we
compute the derivative

P ′
n(x) = 2bg′n(x)g

′′
n(x) + bg′′n(gn(x))g

′
n(x) + b(1− 2g′n(x)) + 2g′′n(x)(1− 2g′n(x)) + 2Rx.

We then bound this from below as follows:

P ′
n(x) ≥ 2bg′′n(x) + bg′′n(gn(x))− b− 2g′′n(x) + Sx

where S is a constant depending on R, a, b, and we used the fact that g′n(x) ∈ [1+bx, 1+ax]
for all x ∈ [−δ, 0]. Therefore, by the inductive hypothesis that (4.12) holds for g′′n, we
have

P ′
n(x) ≥ 2(b− 1)g′′n(x) + ab− b+ 2Sx ≥ 2(b− 1)a+ ab− b+ Sx ≥ 3ab− 2a− b+ Sx.

Since a = 2 − b and b ∈ (1, 4/3), we have 3ab − 2a − b = (b − 1)(4 − 3b) > 0. Thus, we
can choose η2 > 0 small enough such that 3ab − 2a + Sx ≥ 0 for all x ∈ [−η2, 0]. We
conclude that Pn is nondecreasing on [−η2, 0], with Pn(0) = (K + 1)b. Therefore, for all
x ∈ [−η2, 0], we have

(K + 1)g′′n+1(x) ≤ Pn(x) ≤ Pn(0) = (K + 1)b.

Bounding g′′n+1 from below. The lower bound is treated in the same manner. Using
g′′(x) ≥ a, we obtain from (4.13) the following lower bound for g′′n+1

(K + 1)g′′n+1(x) ≥ ag′n(x)
2 + ag′n(gn(x))

+ a(K − 1 + x− 2gn(x)) + 2g′n(x)(1− g′n(x))−Rx2 =: Qn(x),

where R > 0 is a sufficiently large constant, depending only on a, b,D and E. We note
that Qn(0) = a(K + 1). Next, we compute the derivative of Qn(x):

Q′
n(x) = 2ag′n(x)g

′′
n(x) + ag′′n(gn(x))g

′
n(x) + a(1− 2g′n(x)) + 2g′′n(x)(1− 2g′n(x))− 2Rx.

Using again that g′n(x) ∈ [1 + bx, 1 + ax], we can bound this expression, namely

Q′
n(x) ≤ 2ag′′n(x) + ag′′n(gn(x))− a− 2g′′n(x)− Sx,

with a constant S depending on R, a, b. Since g′′n(gn(x)) ≤ b and g′′n(x) ≥ a we get

Q′
n(x) ≤ 2(a− 1)a+ ab− a− Sx ≤ a(2a+ b− 3)− Sx

Using a = 2−b, we find that a(2a+b−3) = (2−b)(b−1) < 0 for all b ∈ (1, 2). Therefore,
we can choose η3 > 0 small enough such that Q′

n(x) ≤ 0 for all x ∈ [−η3, 0]. We conclude
that Qn is nonincreasing on [−η3, 0], and thus

(K + 1)g′′n+1(x) ≥ Qn(x) ≥ Qn(0) = (K + 1)a.

Finally, by setting η = min(η1, η2, η3), we observe that we have proved (4.12) for g′′n+1.

Convexity of g. Now, since (4.12) holds for all n ∈ N, the sequence (g′n)n≥1 forms a fam-
ily of continuous, increasing, and b-Lipschitz functions on [−η, 0] . By the Arzelà-Ascoli
theorem, we can therefore extract a subsequence (g′nk

)k≥1 that converges pointwise to a



22 GEROLD ALSMEYER, YUEYUN HU, AND BASTIEN MALLEIN

continuous, increasing, and b-Lipschitz limit function f . Using the dominated convergence
theorem, we then obtain

g(x) = − lim
k→∞

∫ 0

x

g′nk
(y) dy = −

∫ 0

x

f(y) dy.

This shows that g is C1 on [−η, 0] with g′ = f . As g′ is increasing, we conclude that g is
convex. This completes the proof. �

4.2. The critical regime. In this subsection, we prove Theorem 1.4. For a fixed initial
condition (u0, v0) ∈ C, we examine the precise asymptotic behavior of (un, vn) as n→ ∞.

Proof of Theorem 1.4. Let v0 < 0, and fix u0 = h(v0). Let (un, vn)n≥0 the solution to
(1.8). From Proposition 4.1, we know that un = h(vn) for all n ≥ 1, and that

lim
n→∞

un = lim
n→∞

vn = 0.

Therefore, using the asymptotic relation h(x) ∼ x2/2 as x ↑ 0, we immediately obtain
un ∼ 2/n2 once we establish that vn ∼ −2/n.

To this end, let 0 < w1 <
1
2
< w2 and δ > 0 such that w1x

2 ≤ h(x) ≤ w2x
2 for all

x ∈ [−δ, 0]. Thus, for sufficiently large n, we have

vn+1 = vn + un = vn + h(vn) ∈ [vn + w1v
2
n, vn + w2v

2
n],

which implies the inequality

1

vn+1
≤ 1

vn(1 + w1vn)
≤ 1

vn
(1− w1vn) =

1

vn
− w1,

using 1
1+x

≥ 1− x for all x > −1. Hence, we deduce that

lim sup
n→∞

1

nvn
≤ −w1.

Similarly, for w′
2 > w2, there exists an n large enough such that

1

vn+1
≥ 1

vn(1 + w2vn)
≥ 1

vn
− w′

2,

which gives lim infn→∞ 1/nvn ≥ −w′
2. We conclude that limn→∞ nvn = −2, completing

the proof. �

We conclude this section by applying the duality relationship to analyze the time it
takes for the sequence (un, vn) to evolve from the first time when vn ≥ 0 to the first time
when un ≥ 1. For all initial points (u0, v0) ∈ P, we define

(4.14) n∗ = n∗(u0, v0) := inf{n ≥ 0 : vn ≥ 0 and un ≥ 1}.
Lemma 4.5. Let v0 < 0 and u0 > h(v0). Defining N ′

0 := inf{n ≥ 0 : vn ≥ 0}, there exists
a positive constant c > 0 such that

(n∗ − k)+ ≤ c

vk
for any k > N ′

0.

Proof. Recall the function qh from Corollary 4.2. We begin by verifying that uN ′

0
> qh(vN ′

0
).

If vN ′

0
= 0, this is trivial since qh(0) = 0. If vN ′

0
> 0, there exists a unique x > 0 such that

vN ′

0
= x+ qh(x). By definition, we have

vN ′

0
= vN ′

0−1 + uN ′

0−1 < uN ′

0−1,
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which implies uN ′

0−1 > qh(x) and

uN ′

0
= uN ′

0−1Ψ(vN ′

0
) > qh(x)Ψ(x+ qh(x)) = qh(x+ qh(x)) = qh(vN ′

0
).

By induction, we get that un > qh(vn) for any n ≥ N ′
0.

Now consider k > N ′
0. If uk ≥ 1, n∗ ≤ k and there is nothing to prove. Otherwise,

assume that uk < 1, thus qh(vk) < 1. Then vk is bounded from above, because qh(x) → ∞
as x→ ∞.

We now examine the system (ũ∗j , ṽ
∗
j )j≥0, where (ũ∗0, ṽ

∗
0) = (qh(vk), vk) and

(ũ∗j , ṽ
∗
j ) = (qh(ṽ∗j ), ṽ

∗
j−1 + ũ∗j−1) for j ≥ 1.

This system satisfies the recursive equation (1.8) with the same function Ψ. An induction
shows that uj+k ≥ ũ∗j and vj+k ≥ ṽ∗j for all j ≥ 0. Therefore, n∗ − k ≤ nk, where

nk := inf{j ≥ 0 : ũ∗j ≥ 1}.
To complete the proof, it therefore suffices that nk ≤ c/vk for some positive constant c.
The idea is to apply the duality in Proposition 3.3 to

(quj, qvj)0≤j≤nk
:= (ũ∗nk−j ,−ṽ∗nk−j+1)0≤j≤nk

.

By Remark 4.3, the system (quj, qvj)j≥0 is a solution to (1.8) with qΨ(x) := 1/Ψ(−x), x ∈ R,
replacing Ψ. Moreover, nk is the time it takes for this system to evolve along its critical
curve from the initial position (ũ∗nk

,−ṽ∗nk+1) to (ũ∗0,−ṽ∗1).
Next, observe that ṽ∗1 > ṽ∗0 = vk. If we can show that ṽ∗nk+1 ≤ c′ for some positive con-

stant c′, then by the monotonicity in the starting point (see Lemma 3.2), we have

nk ≤ inf{j ≥ 0 : qvj ≥ −vk},
where (quj, qvj)j≥0 now lies on the critical curve with qv0 = −c′. We obtain nk ≤ c/vk for
some positive constant c by applying Theorem 1.4 to the critical system (quj, qvj)j≥0.

We are thus left with proving that ṽ∗nk+1 ≤ c′. Since ṽ∗nk+1 = ṽ∗nk
+ qh(ṽ∗nk

), it suffices to

show that ṽ∗nk
is bounded from above. By the definition of nk, we have qh(ṽ∗nk−1) = ũ∗nk−1

< 1. Since qh(x) → ∞ as x → ∞, it follows that ṽ∗nk−1 must be bounded from above.
Furthermore, note that

ṽ∗nk
= ṽ∗nk−1 + ũ∗nk−1 < ṽ∗nk−1 + 1.

Consequently, ṽ∗nk
is bounded from above by a constant. This completes the proof. �

5. The Derrida-Retaux conjecture

The primary goal of this section is to prove Theorem 1.3, which establishes the Derrida-
Retaux conjecture for the recursive equation (1.8). This result, in turn, implies that the
free energy of both solvable Derrida-Retaux models described in Section 2 undergoes an
infinite-order BKT-type phase transition.

As a first step, we relate the free energy of (u0, v0) to the number of steps n∗ required
by the recursion (1.8) to bring (un, vn) into the domain [1,∞)× R+.

Lemma 5.1. Assume (A) and (B). Then there exists a constant c > 0 such that

F (1, 0)Ψ(∞)−n∗ ≤ F (u0, v0) ≤ max(u0, 1)Ψ(∞)−n∗+1,

where n∗ is defined in (4.14).
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Observe that if n∗ is large, then logF (u0, v0) is comparable to n∗ log Ψ(∞), up to a
correction of order O(1). Consequently, the estimate for the free energy logF (h(v0)+ε, v0)
as ε→ 0 reduces to a proper estimate for the asymptotic behavior of n∗ = n∗(h(v0)+ε, v0)
as ε → 0.

Proof. Recall that un/Ψ(∞)n is nonincreasing. Therefore, we have two possible cases:

(1) n∗ = 0 and F (u0, v0) ≤ u0.

(2) n∗ > 0 and

F (u0, v0) ≤ un∗−1

Ψ(∞)n∗−1
≤ max(1, u0)Ψ(∞)−n∗+1.

Here, we used that either un∗−1 < 1 or vn∗−1 < 0. In the second case, u is decreasing for
k < n∗ and thus un∗−1 < u0.

Next, we establish a lower bound for F (u0, v0). We observe that

F (u0, v0) = lim
n→∞

un
Ψ(∞)n

= lim
n→∞

un+k

Ψ(∞)n+k
= F (uk, vk)Ψ(∞)−k.

Hence,
F (u0, v0) ≥ Ψ(∞)−n∗F (un∗

, vn∗
) ≥ Ψ(∞)−n∗F (1, 0),

where the final inequality follows from the fact that F is nondecreasing with respect to
both u and v, as stated in Lemma 3.2. �

Let (u
(ε)
n , v

(ε)
n ) be a solution of (1.8), where v

(ε)
0 = v0 < 0 is fixed and u

(ε)
0 = h(v0) + ε.

We define

(5.1) N
(ε)
0 = N0(u

(ε)
0 , v

(ε)
0 ) := max{n ∈ N : v(ε)n ≤ 0},

and observe that u
(ε)

N
(ε)
0

= infn∈N u
(ε)
n , because u

(ε)
n+1/u

(ε)
n = Ψ(v

(ε)
n+1) ≤ 1 if n+1 ≤ N

(ε)
0 and

u
(ε)
n+1/u

(ε)
n = Ψ(v

(ε)
n+1) > 1 if n + 1 > N

(ε)
0 .

The proof of Theorem 1.3 will proceed in three main steps. First, we establish the
existence of a constant c⋆ > 0 such that

(5.2) lim
ε→0

1

ε
u
(ε)

N
(ε)
0

= c⋆.

This critical step allows us to connect the distance to the critical curve at the initial point
of the evolution to its distance at the minimum, where the analysis is simpler (since the
critical point is 0 at that stage).

For A > 0, we observe that n∗, defined in (4.14), can be decomposed as

n∗ = n
(1)
A + (n

(2)
A − n

(1)
A ) + (n∗ − n

(2)
A ),

where n
(1)
A and n

(1)
A are defined as

(5.3) n
(1)
A := inf{n ∈ N : v(ε)n > −Aε1/2} and n

(2)
A := inf{n ∈ N : v(ε)n > Aε1/2}.

The second step is to show that

(5.4) lim
A→∞

lim
ε→0

(c⋆ε)
1/2
(
n
(2)
A − n

(1)
A

)
= π

√
2,

which will rely on the fact that, on this time-interval, (u
(ε)
n , v

(ε)
n ) is well-approximated by

an Eulerian scheme for the function tan, with an initial condition given by (5.2). Details
will follow later, see (5.22)–(5.24)

Finally, we will prove that

(5.5) lim
A→∞

lim sup
ε→0

ε1/2
(
n
(1)
A + (n∗ − n

(2)
A )
)
= 0,
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and thus show that n∗ is well-approached by n
(2)
A −n(1)

A , for sufficiently large A. The proof
of Theorem 1.3 will then be completed by applying Lemma 5.1.

The proofs of (5.2), (5.4), and (5.5) are provided in the following three steps. For
simplicity, we will omit the superscript (ε) in un, vn, and N0 where there is no risk of
confusion.

Step 1: Proof of (5.2). We begin by proving a lemma that enables us to restrict our at-
tention to the case where v0 lies in any neighbourhood of 0. For δ > 0, we define

(5.6) n
(3)
δ = n

(3)
δ (u0, v0) := inf{n ∈ N : vn > −δ}.

Lemma 5.2. Assume (A), and let v0 < 0 and u0 = h(v0) + ε. Then

lim sup
ε→0

n
(3)
δ <∞ for any δ > 0.

Moreover, for any sufficiently small δ > 0, there exists a constant C = C(δ) > 0 such that

u
n
(3)
δ

− h(v
n
(3)
δ
) ∼ Cε as ε → 0.

The second part of this lemma allows us to describe the relationship between the param-
eter ε = u0−h(v0) and the corresponding parameter for the sequence (u

n
(3)
δ +n

, v
n
(3)
δ +n

)n≥0.

Proof. Recall from Lemma 4.4 that there exists some η > 0 such that h(x) = g(x) − x
is C1 on [−η, 0]. Let 0 < δ < η. For each k ∈ N, we consider (uk, vk) as a function of
(u0, v0) and write uk = uk(u0, v0) and vk = vk(u0, v0). We observe that (uk(·, ·), vk(·, ·)),
as an iteration of C2 functions, is also C2. Let K = K(δ) be the smallest positive integer
such that

vK(h(v0), v0) ≥ −δ.
Note that this constant K does not depend on ε > 0. We will now prove that limε→0 n

(δ)
3 =

K. By the monotonicity of the vk, we have vK(h(v0)+ε, v0) > −δ for any ε > 0. Moreover,
by continuity,

vK−1(h(v0) + ε, v0) < −δ for all sufficiently small ε > 0.

Thus, n
(3)
δ = K for all sufficiently small ε. This completes the first part of Lemma 5.2.

Next, for all sufficiently small ε > 0, we have

u
n
(3)
δ

− h(v
n
(3)
δ
) = uK(ε)− h(vK(ε)),

where, for notational convenience, we define

uK(ε) := uK(h(v0) + ε, v0) and vK(ε) := vK(h(v0) + ε, v0)).

It is easy to check that u′K(0) > 0 and v′K(0) > 0. The function ε 7→ uK(ε)− h(vK(ε)) is
C1 in a neighborhood of 0, and vanishes there. Therefore, we have

uK(ε)− h(vK(ε)) ∼ C ε, as ε→ 0,

with C := u′K(0)− h′(vK(0))v
′
K(0). Since h′(vK(0)) ≤ 0, it follows that C ≥ u′K(0) > 0.

This completes the proof of Lemma 5.2. �

Let us introduce some preliminary notation and concepts. Recall the definition of N0

from (5.1). Specifically, we have

N0 = N0(u0, v0) = n
(3)
δ +N0(un(3)

δ
, v

n
(3)
δ
).

By considering the recursive system (u
n
(3)
δ +n

, v
n
(3)
δ +n

)n≥0 and applying Lemma 5.2, we

can extend (5.2) to all v0 < 0, with the constant c⋆ potentially being multiplied by C(δ),
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provided we can establish (5.2) for v0 ∈ (−δ, 0). In particular, using Lemma 4.4, we choose
δ > 0 small enough such that h is C1, convex with a Lipschitz continuous derivative h′ on
(−δ, 0). The precise value of δ will be determined later (see (5.12) and (5.13)).

From this point on, we assume that v0 ∈ (−δ, 0) and u0 − h(v0) = ε, and we define

∆n := un − h(vn) for 0 ≤ n ≤ N0.

Note that ∆n > 0 for any n ≥ 0 with the initial condition ∆0 = ε.

Let (u∗n, v
∗
n) denote the solution of (1.8) with u∗0 := h(v∗0) and v∗0 = v0, which we refer

to as the critical system. By comparison, we have 0 > vn ≥ v∗n ∼ −2/n. This implies
that for some positive constant c, uniformly in ε ∈ (0, 1), we have the bound

(5.7) |vn| ≤
c

n + 1
for all 0 ≤ n ≤ N0.

We further note that by monotonicity, N0 is an increasing function of ε, and since limε→0 vn
= v∗n < 0 for each fixed n, we conclude limε→0N0 = ∞.

In particular, the bound in (5.7) implies that limε→0 vN0 = 0, and using vN0+1 =
uN0 + vN0 > 0, we see that 0 ≥ vN0 > −uN0 . Since h(x) = o(x) as x ↑ 0, we obtain

(5.8) ∆N0 = uN0 − h(vN0) ∼ uN0 as ε→ 0.

Therefore, to complete the proof of (5.2), it suffices to prove the existence of a positive
constant c⋆ such that

(5.9) lim
ε→0

∆N0

ε
= c⋆.

The proof of (5.9) involves on studying the variation of the ∆n. For n < N0, by
definition, we have

∆n+1 = unΨ(vn+1)− h(vn+1) = (h(vn) + ∆n)Ψ(vn+1)− h(vn+1).

Recall from Section 4 that we have set g(x) = x + h(x) (for x ≤ 0). Therefore, we can
express vn+1 = un + vn = g(vn) + ∆n. Substituting into the expression for Ψ(vn+1), a
Taylor expansion provides

Ψ(vn+1) = Ψ(g(vn)) + Ψ′(g(vn))∆n +Bn ∆
2
n,

with

Bn :=

∫ 1

0

(1− s)Ψ′′(g(vn) + s∆n) ds

Now fix b ∈ (1, 4/3). By Lemma 4.4, we can choose δ small enough such that h is C1,
convex and h′ is b-Lipschitz. Then for any −δ ≤ x ≤ y ≤ 0 with δ ∈ (0, η), we have the
estimate

(5.10) 0 ≤ h(y)− [h(x) + h′(x)(y − x)] ≤ b

2
(y − x)2.

Using this, we obtain the approximation

h(vn+1) = h(g(vn)) + h′(g(vn))∆n + Cn∆
2
n

for some Cn ∈ [0, b/2]. Recall that for x ≤ 0, we have h(g(x)) = Ψ(g(x))h(x). Thus, for
any n ≤ N0, we arrive at the following expression for ∆n+1,

(5.11) ∆n+1 = An∆n +Dn ∆
2
n,

where

An := h(vn)Ψ
′(g(vn)) + Ψ(g(vn))− h′(g(vn)),

Dn := h(vn)Bn − Cn +Ψ′(g(vn)) +Bn∆n.
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Observe that |Bn| ≤ supx∈[−δ,0] |Ψ′′(x)| and h(vn) ≤ supx∈[−δ,0] h(x). Since Ψ′(0) = 1

and 0 ≤ Cn ≤ b
2
< 2

3
, we can choose (and fix) a sufficiently small δ > 0 such that for all

n ≤ N0,

(5.12) Dn ∈ [1/3, 2].

We further assume that δ is small enough to satisfy the following conditions:

(5.13) h(x) ≥ x2

3
and b2h(x) ≤ g′(x)x2, for x ∈ [−δ, 0],

which is possible since h(x) ∼ x2/2 and g′(x) → 1 as x ↑ 0 and b2 < 2.

We now compare An with 1 by using the convexity of h. For x < 0, differentiating the
expression h(g(x)) = Ψ(g(x))h(x) gives

h′(g(x))g′(x) = Ψ′(g(x))g′(x)h(x) + Ψ(g(x))h′(x).

Since g′(x) = 1 + h′(x), we get

An =
Ψ(g(vn))

g′(vn)
=

h(g(vn))

h(vn)g′(vn)
.

Next, we examine the expression h(g(x))
h(x)

− g′(x). Using the definition of g(x) = x+ h(x),

we can expand as follows:

h(g(x))

h(x)
− g′(x) =

h(x+ h(x))− h(x)

h(x)
− h′(x) = h′(yx)− h(x)

for some yx ∈ [x, x + h(x)]. Since h is convex, we have h′(yx) − h(x) ≥ 0 and therefore
conclude that

An ≥ 1.

This together with (5.12) shows that ∆n is increasing on [0, N0], in particular ∆n ≥ ∆0 = ε
for all n ≤ N0.

We now turn to deriving an upper bound of An. Again, using (5.10),

h(g(x)) = h(x+ h(x)) ≤ h(x) + h′(x)h(x) +
b

2
h2(x).

Thus, we obtain

An − 1 =
h(g(vn))− h(vn)g

′(vn)

h(vn)g′(vn)
≤ b2h(vn)

2g′(vn)
< v2n,

where the last inequality follows from (5.13). Using (5.11), we get that for any 0 ≤ k < N0,

(5.14) ∆N0 = ∆k

N0−1∏

n=k

(1 + (An − 1) +Dn∆n).

This equation allows us to complete the proof of (5.2). Specifically, using the same rea-
soning as in Lemma 5.2, we can deduce that for all (fixed) k ∈ N,

∆k ∼ Ckε as ε→ 0,

for some constant Ck > 0. Since ∆N0 ≥ ∆k, we obtain

(5.15) lim inf
ε→0

∆N0

ε
≥ Ck
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for all ε > 0 sufficiently small such that N0 ≥ k and all k ∈ N. On the other hand, using
(5.14) and noting that An − 1 < v2n and Dn ≤ 2, we get the bound

∆N0 ≤ ∆k exp

(
N0−1∑

n=k

v2n + 2∆n

)
.

We estimate the sum as follows: since
∑N0

n=k ∆n ≤∑N0

n=k un ≤ vN0 − vk, and v2n ≤ c2

(n+1)2

(from (5.7)), there exists decreasing null sequence (Rn)n≥1 such that for all k ∈ N,

∆N0 ≤ ∆ke
Rk+vN0

−vk .

Taking the limit as ε → 0, we obtain

(5.16) lim sup
ε→0

∆N0

ε
≤ Cke

Rk−v∗k <∞,

using that vN0 → 0 and vk → v∗k as ε→ 0.
Observe that (Ck)k≥1 is a nondecreasing sequence because ∆k+1 ≥ ∆k for all k ∈ N.

From (5.15) and (5.16), we also have Ck ≤ C1e
R1−v1 for all k. Consequently, the Ck

converge to a finite constant c⋆. Moreover, since limk→∞(Rk − v∗k) = 0, we can apply
(5.15) and (5.16) to conclude that (5.9) holds, thereby completing the proof. �

Step 2: Proof of (5.4). The main idea here to approximate the function Ψ, in a neigh-
borhood of 0 of width ε1/2, by the simpler function x 7→ 1+ x. Specifically, we substitute
this approximation into the recursion (1.8), resulting in the simplified system:

(5.17)

(
an+1

bn+1

)
=

(
an(1 + bn+1)
bn + an

)
.

obtained by specifying (1.8) to the function Ψ : x 7→ 1 + x. This simplified system has
been considered in [17]. Let for δ > 0,

(5.18) n
(4)
δ = n

(4)
δ (u0, v0) := inf{n ∈ N : vn > δ}.

Lemma 5.3. Assume (A), let η ∈ (0, 1) be small and fix δ > 0 such that

(5.19)
Ψ(x)− 1

x
∈ [(1− η), (1 + η)] for all x ∈ [0, δ].

Let (un, vn)n≥0 satisfy (1.8) with initial conditions u0 > 0 and v0 ∈ (−u0, 0]. Then for all

1 ≤ k < n
(4)
δ , we have

(5.20) a
(η,−)
k < uk < a

(η,+)
k and b

(η,−)
k < vk < b

(η,+)
k ,

where (a
(η,±)
k , b

(η,±)
k )k≥0 are the solutions to the simplified recursion (5.17) with the respec-

tive initial conditions (a
(η,±)
0 , b

(η,±)
0 ) := ((1± η)u0, (1± η)v0).

Lemma 5.3 enables us to compare the system (un, vn)n≥0 with (an, bn)n≥0 up to a mul-
tiplicative factor 1± η on the initial conditions. In particular, the evolution of the system

(uN0+k, vN0+k)k≥0 can be controlled by the two systems (a
(η,±)
k , b

(η,±)
k )k≥0 with initial con-

ditions (a0, b0) = ((1± η)uN0, (1± η)vN0).

Proof. The proof follows from a direct application of Lemma 3.2 with the functions

Ψ(x) = 1 + x− η|x| and Ψ(x) = 1 + x+ η|x|.
In particular, if u0 > 0 and v0 ∈ (−u0, 0], we have (using the notation of that lemma)

(
un+1

vn+1

)
=

(
un(1 + (1− η)vn+1)

vn + un

)
and

(
un+1

vn+1

)
=

(
un(1 + (1 + η)vn+1)

vn + un

)
.



THE DERRIDA-RETAUX MODEL ON A GEOMETRIC GALTON–WATSON TREE 29

We then observe that the sequence ((1−η)an, (1−η)bn)n≥0 satisfies the same recursion as
(un, vn)n≥0, and similarly ((1+η)an, (1+η)bn)n≥0 follows the same recursion as (un, vn)n≥0.
This completes the argument for the direct application of Lemma 3.2. �

By (5.2), we have uN0 ∼ c⋆ε, and therefore the study of n
(2)
A − N0 reduces to that of

the corresponding quantity for the system (an, bn)n≥0. For N0 − n
(1)
A , we consider the

dual system (uN0−n, vN0+1−n)0≤n≤N0 as in Proposition 3.3, and note that the function
qΨ(x) := 1/Ψ(−x) also satisfies (5.19). Thus, we can again apply Lemma 5.3 to the

dual system, reducing the study of N0 − n
(1)
A to that of (an, bn)n≥0. Both n

(2)
A − N0 and

N0−n
(1)
A contribute equally to the order in (5.4), which explains why the constant on the

right-hand-side of (5.21) below is half that of (5.4).

From the previous discussion, it suffices to show that for (an, bn)n≥0 defined by (5.17)
with initial condition a0 = ε and b0 ∈ (−ε, 0], we have

(5.21) lim
A→∞

lim
ε→0

ε1/2m
(ε)
A =

π√
2
,

where
m

(ε)
A = m

(ε)
A (a0, b0) := inf{n ≥ 0 : bn > A

√
ε}.

Note that, if a1 > ε and b1 > 0, then

m
(ε)
A (ε, 0) ≤ m

(ε)
A (a0, b0) ≤ 1 +m

(ε)
A (ε, 0)

by monotonicity. Therefore, we assume without loss of generality that a0 = ε and b0 = 0
from now on.

Next, define x
(ε)
n = an/ε and y

(ε)
n = bn/ε

1/2. We observe that

(5.22)

(
x
(ε)
n+1 − x

(ε)
n

y
(ε)
n+1 − y

(ε)
n

)
=

(
ε1/2x

(ε)
n y

(ε)
n+1

ε1/2x
(ε)
n

)
.

with initial conditions x
(ε)
0 = 1 and y

(ε)
0 = 0. This is an Euler scheme for the differential

system

(5.23)

(
x′

y′

)
=

(
y
xy

)
.

The solution to this system is given by

(5.24) x(t) = 1 + tan(t
√
2)2, y(t) =

√
2
−1

tan(t
√
2) for all t < T :=

π√
2
.

We then use the following classical result related to Euler schemes for solving differential
systems (see [14, Chapter V.2.3]).

Fact 5.4. For all δ > 0, we have

(5.25) lim sup
ε→0

sup
k≤(T−δ)ε−1/2

∣∣∣x(ε)k − xkε1/2
∣∣∣+
∣∣∣y(ε)k − ykε1/2

∣∣∣ < ∞.

Since mA(ε) = inf{n ≥ 0 : y
(ε)
n > A}, it follows from (5.25) that

lim inf
A→∞

lim inf
ε→0

ε1/2mA(ε) ≥
π√
2
− δ for any δ > 0.

Letting δ → 0 gives the lower bound. For the upper bound, note that for all t < π/
√
2,

(5.26) lim
ε→0

b⌊tε−1/2⌋

ε1/2
= lim

ε→0
y
(ε)

⌊tε−1/2⌋
=

tan(t
√
2)√

2
.
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For future reference, we also have the following limits for any A > 0:

(5.27) lim
ε→0

bmA(ε)/ε
1/2 = A, and lim

ε→0
amA(ε)/ε = 1 + A2/2.

By monotonicity, we deduce from (5.26) that

lim
ε→0

b⌊Tε−1/2⌋/ε
1/2 = ∞.

This implies that

lim sup
A→∞

lim sup
ε→0

ε1/2mA(ε) ≤
π√
2
.

We have then proved (5.21) and completed the proof of (5.4). �

Step 3: Proof of (5.5). We begin by considering n
(1)
A , comparing the supercritical system

(un, vn)n≥0 with the critical system. Let (u∗n, v
∗
n)n≥0 satisfy the recursive equation (1.8)

with v∗0 := v0 < 0 and u∗0 := h(v0). Since u0 = h(v0) + ε > u∗0, Lemma 3.2 implies that
vn ≥ v∗n for all n. Therefore, we have

n
(1)
A ≤ inf{n ≥ 1 : v∗n > −Aε1/2}.

By Theorem 1.4, we know that v∗n ∼ −2/n as n→ ∞. Hence

lim sup
ε→0

ε1/2n
(1)
A ≤ 2

A
.

Next, we consider n
(2)
A , using (5.27) to obtain

v
n
(2)
A

∼ Aε1/2 as ε → 0.

An application of Lemma 4.5 provides the bound

lim sup
ε→0

ε1/2(n∗ − n
(2)
A ) ≤ c

A
.

Therefore, (5.5) follows. �

Proof of Theorem 1.3. By combining (5.4) and (5.5), we conclude that

lim
ε→0

ε1/2n∗(h(v0) + ε, v0) = c−1/2
⋆ π

√
2.

The result then follows from Lemma 5.1. �
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