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Abstract
In this paper we study the reachability problem in DAGs: given two nodes u and v, is there a
path from u to v? While the problem is linear in general, it can be answered faster by using a
precomputed index, which gives a compressed representation of the transitive closure of the graph.

In this context, algorithms are usually evaluated on three dimensions: the query time that the
algorithm needs to answer whether there is a path from one node to another, the memory that the
index uses per node, and the indexing time that is required to update the index when a node is
added to the graph. In this paper, we add a fourth constraint: we are interested in incremental
algorithms, where the index is append-only. In particular, the algorithms guarantee that queries are
answered properly even if new nodes are inserted while the query is processed.

Combining Jagadish’s index [9] with Felsner’s incremental chain-decomposition algorithm [7]
yields such an incremental algorithm. Its query time is constant, but its index size is heavily
dependent on the graph width, and as such is not competitive with recent indexing algorithms
(2-hop, tree-chain, . . . ). We propose an improved version of that algorithm, satisfying incrementality
constraints with a much lighter index. In the most compressed version, the query time becomes
O(log n). However, constant-time queries can be retained depending on the desired time/memory
trade-off.
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1 Introduction

The reachability problem in Directed Acyclic Graphs consists in deciding, given two nodes
u and v, whether there exists a path from u to v. It can be solved in linear time with a
depth-first search, visiting either all the ancestors of v or all the descendants of u before
one can answer negatively. A common improvement is obtained with a precomputed index
that allows future queries to be answered much faster. Several solutions have been proposed
for this problem relying on tree cover with interval labeling [1, 15], approximate transitive
closure [14, 12], and 2-hop [5, 16, 11].

The relative quality of such algorithms is usually evaluated on three dimensions: the
query time is the amount of time it takes to process a single reachability query; the memory
is the amount of information stored in the index; the indexing time is the amount of time
it takes to compute the index of a new node. In this paper, we add a fourth constraint, as
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2 Incremental Reachability

we only consider incremental algorithms, where the local index of the nodes do not change
when new nodes are added. Formally, the index should be an append-only array, i.e. such
that new entry insertions do not affect older entries. A small mutable manifest is acceptable,
containing additional data (e.g., graph size, ...). An index satisfying such constraints allows
for a number of useful features. Concurrent access: the index can be accessed by multiple
readers, concurrently with a writer inserting new nodes. In an incremental index the writer
can freely compute index entries for new nodes and append them to the end of the index
array, then she only needs to lock the manifest while it is updated to its new value. In
particular if the manifest is not necessary to answer queries (only for index updates, as is
the case in our algorithm), then no lock at all is necessary. Cache management: the index
is stored on disk and one or several clients may request values of I[u] and keep responses in
cache, then with an incremental index these caches remain valid even after inserting a node.
Data corruption: one can hash fragments of the index into checksums to avoid using a
corrupted index. With an incremental index, a checksum for any fragment remains valid
even after node insertions. Transactional updates: in the case of a rollback, i.e. if the last
k inserted nodes need to be removed from the graph, only the manifest needs to be reverted
to the previous point in time. The index, and cached entries or checksums if any, remain
automatically valid for all remaining nodes. Merkle Graphs: a Merkle Graph is a DAG
where each node holds immutable content; it is identified by a hash of its contents, including
its parent identifiers. Such a graph can only grow by adding children, i.e. in topological
order. Thus, an incremental index can then be distributed in each node’s contents, and only
the manifest needs to be stored separately.

An existing algorithm by Jagadish [9] offers a fast index, with constant-time queries,
based on a chain decomposition of the graph. Its chain decomposition is only computed
when the graph is complete, but it can easily be adapted to use the online decomposition by
Felsner [7] to become incremental as long as nodes are inserted in topological order. The
index size for this algorithm is, however, heavily dependent on the graph width, i.e., the
largest set of pairwise unreachable nodes. Thus, it is not, as such, competitive with the many
recent algorithms. We are not aware of any other incremental reachability index (recent
improvements [4, 10] on [9] optimize the chain decomposition once the graph is complete
and, as such, are not incremental).

Formalism for DAGs and Chains

▶ Definition 1 (Directed acyclic graphs). A directed acyclic graph (DAG) is a directed graph
G = (V, E) without cycles. If there is an arc u → v in E, we say that u is a parent of v

and v is a child of u. If there is a path u →∗ v (possibly with u = v), we say that u is an
ancestor of v, v is a descendant of u, and that u, v are comparable. A node without parents
is a source and a node without children is a sink.

In the scope of this paper, we assume that the nodes of G are inserted one by one, in
a topological order, that is, all nodes are sinks when they are inserted. Thus, each node is
identified with its insertion rank (i.e. V = {1, . . . |V |}). The topological order further implies
that u < v for any arc u → v and that u ≤ v for any pair of ancestor/descendant u →∗ v.

▶ Definition 2 (Chains and anti-chains). A chain of G is a set of pairwise-comparable nodes.
An anti-chain is a set of pairwise-non-comparable nodes. A chain decomposition of G is a
partition of V into chains. The width of G, denoted w(G), is the size of its largest anti-chain.

▶ Theorem 3 (Dilworth [6]). The minimum number of chains in a chain decomposition of G

is w(G).
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The optimal chain decomposition of a graph can be computed in polynomial time [8].
However, in the incremental setting we consider here, a chain decomposition must be extended
with each new node without editing previous chain assignments. This corresponds to the
on-line chain decomposition problem described by Felsner et al. [7, 3]: in this setting, any
algorithm yields a chain decomposition of size at least Ω(w(G)2) in the worst case. Felsner
also give an algorithm producing a chain decomposition of size W (G) ≤ 1

2 w(G)(w(G) + 1) =
O(w(G)2); see [3, Theorem 3.5] for a very concise description of this algorithm. The insertion
time is dominated by the cost of W (G) reachability queries performed in G (all using
the inserted node). Beside the chain decomposition itself, this algorithm maintains a size-
O(W (G)) manifest containing the last inserted vertices in each chain (and is only required
for node insertions). Note that in our experiments (for graphs generated with our algorithm),
we observe a linear dependency between W (G) and w(G), see Figure 6 in appendix.

Our contribution

Used with the incremental chain decomposition by Felsner [7], the chain-based reachability
index by Jagadish [9] offers an incremental index with O(1) query time and O(W (G))
memory per node. We propose an improved version of this algorithm based on two anchor
strategies, yielding a much lighter index while retaining incrementality. The query time
becomes O(log n) in the most-compressed version and can be reduced to O(1) depending on
the desired time/memory trade-off. The theoretical memory upper bound remains O(W (G))
in the worst case.

We run experimental evaluations of our algorithm both on generated and real-life graphs.
Compared to Jagadish [9], we obtain similar query times and reduce the index size by a
factor close to 10. With these encouraging results, we compare our algorithm against a
selection of non-incremental reachability index. We obtain in particular similar query time
as our implementation of 2-hop, with competitive index size in real-life graphs and generated
graphs of width up to 1.5

√
n.

Outline of the paper

Section 2 presents the chain index obtained by combining Jagadish’s index [9] with Felsner’s
online chain decomposition [7]; we then build upon this algorithm in Section 3 to present our
anchor-based index. We then describe the set-up for the experimental evaluation in Section 4,
and the conclusions in Section 5. Additional detailed results are given in appendix.

2 Simple Chain Algorithm [9, 7]

Throughout this algorithm, we maintain a chain decomposition with a list of chain identifiers,
and we use the term chain both for the chain identifier and the actual set of vertices. We
store, for each node u, [the identifier of] the chain containing u. We write Chains for the set
of chain identifiers.

▶ Definition 4. Given a vertex v and a chain C, the top vertex of a chain C under
v is tv[C] = max{u | u ∈ C and u →∗ v}. We write tv[C] = −1 if no such u exists.
Given a chain decomposition {C1, . . . , Cw} of G, the top set of vertex v is the set of pairs
{(Ci, tv[Ci]) | 1 ≤ i ≤ w}.

The core observation for the algorithm is the following: for any u ∈ C, u is an ancestor
of v if and only if u ≤ tv[C] (recall that node identifiers form a topological order on G).
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Figure 1 Left: A graph with a decomposition into 4 chains (C0, C1, C2, C3). Arcs are oriented
left-to-right and are not drawn, only ancestor sets of a selection of nodes are depicted: the shaded
area containing d represents all ancestors of d, the area containing g represents ancestors of g that
are not ancestors of d, etc. Right: the top vertices for each chain and each v ∈ {d,g,i,j}. For instance,
we have u→∗j since u ∈ C2 and u < f = tj [C2]

Indeed, the forward direction is clear since we took the maximal ancestor of v within chain
C. The converse direction is obtained by transitivity: tv[C] is an ancestor of v and, since u

and tv[C] are in the same chain C, u and tv[C] are comparable and u is an ancestor of tv[C]
since u ≤ tv[C]. The top vertex tv[C] is thus sufficient to answer reachability queries (u, v)
in constant time for any vertex in u ∈ C.

Description of the index

Since we rely on the chain decomposition by Felsner [7], we need to store the Chains list in
the manifest. Furthermore, for each node v, we store:

the identifier of the chain containing v in G;
the set {(C, tv[C]) | C ∈ Chains and tv[C] ̸= −1}.

The manifest size is thus W (G), and the each index entry has size 1 + 2|tv| = O(W (G)).
The sets tv can be stored either as sorted lists (for optimal storage) or as hashmaps (for
optimal look-up). We pick the latter for the theoretical analysis, since the asymptotic memory
requirement is identical. In practice, one can store the sorted lists on disk, use them directly
for isolated reachability queries, or build a hashmap when queries are expected to be repeated
for the same vertex.

Answering queries

In order to test whether u is an ancestor of v, we look-up the index C of the chain containing u,
and return true if u ≤ tv[C]. Using a hashmap for tv, we thus get constant-time reachability
queries.

Node insertion

Upon insertion of node v, we first compute the combined top vertices of the parents of v,
defined as

ctv[C] = max{tp[C] | p → v}

With this array we can answer reachability queries for v in constant time. Indeed, for a node
u in chain C, u is an ancestor of v if u = v or if u ≤ ctv[C] since any ancestor of v (beside v

itself) is an ancestor of some parent p of v. We can then assign a chain C∗ to v in O(W (G))
with Felsner’s algorithm [7], and compute tv as follows: tv[C∗] = v, and tv[C] = ctv[C] for
C ̸= C∗.
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Figure 2 Left: The graph from Figure 1, with additional anchor information drawn as bended
arcs (e.g. anc(g) = d). The shaded areas are thus exactly the restricted ancestor sets of d, g, i and
j. For instance, AL(j) = [j, g, d] and ad(j) = 3. Right: the restricted top sets of the same vertices,
which are subsets of the ones depicted in Figure 1, with much less redundancies. Here we have u→∗j
since u ∈ C2 and u < f = td

g[C2] with g = anc(j).

The complexity for inserting v is thus dominated by the computation of ctv in O(W (G)δ(v)).
Note that for high-degree graphs (δ(v) > W (G)), this complexity can be reduced to
O(W (G)2 + δ(v)) by considering only the top-most parent p in each chain.

3 Our Anchor-based Algorithms

We can now present our anchor-based approach, aiming at reducing the index size to a
minimum while keeping logarithmic queries. We present first the index itself, followed by
two strategies for picking anchors, and finally some possible extensions for specific use-cases.

3.1 Index construction

We introduce the notion of anchor of a node v, denoted anc(v). It can either be an ancestor
of v other than v itself, or anc(v) = ⊥ (no anchor given). As required by the incremental
setting, the anchor is picked upon node insertion and cannot be changed afterwards. We
discuss in the next section several anchor-picking strategies. We define the Anchor-List as
follows: AL(⊥) = [] and AL(v) = [v] + AL(anc(v)) for any node v. The anchor-depth of v,
denoted ad(v) is the length of AL(v), and ad(G) = max(ad(v) | v ∈ V ). Then, the anchor is
used to shrink the index, as we define the following restricted top set (see also Figure 2).

▶ Definition 5. Given a vertex v, a chain C and an anchor a, the restricted ancestor set of
v with anchor a is Ra

v = {u | u →∗ v and u ̸→∗ a} if a ̸= ⊥, Ra
v = {u | u →∗ v} otherwise.

The restricted top vertex of chain C under v with anchor a is ta
v [C] = max{u | u ∈ C, u ∈ Ra

v}
(−1 if no such u exists)

Given a chain decomposition {C1, . . . , Cw} of G, the restricted top set of vertex v with
respect to anchor a = anc(v) is the set of pairs ta

v = {(Ci, ta
v [Ci]) | 1 ≤ i ≤ w, ta

v [Ci] ̸= −1}.

Description of the index

For each node v, we store the identifier of the chain containing v in G, the anchor anc(v),
and the restricted top set t

anc(v)
v .

Note that the worst-case index size per node remains O(W (G)). However, if the restricted
ancestor set is small, then we also have a useful bound: |tanc(v)

v | ≤ |Ranc(v)
v |.
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Answering queries

In order to test whether u is an ancestor of v, we look-up the index C of the chain containing
u and compute tv[C] using the following recurrence (as before, u is an ancestor of v if and
only if u < tv[C]):

tv[C] =


t
anc(v)
v [C] if t

anc(v)
v [C] ̸= −1

−1 if t
anc(v)
v [C] = −1 and anc(v) = ⊥

tanc(v)[C] otherwise

The recurrence takes up to ad(v) iterations since in the worst case the whole anchor list
of v needs to be visited, so the running time becomes O(ad(v)).

In case of successive queries with the same vertex v, values tv[C] can be cached using
O(W ) temporary memory. Over N tests, only min(N, W (G)) different values of tv[C] need
to be computed, yielding an amortized time of O(1 + min(1, W (G)

N )ad(v)) per test, thus
converging to O(1). Such a cache can also speed up consecutive tests with different vertices,
since it is possible for different vertices to share a common anchor.

Node insertion

As in the simple chain algorithm, upon inserting v, we assign a chain to v, compute the
top sets tp of the parents of v and combine them into the top set tv. The bottleneck here
is the computation of the sets tp, since each has size W (G) and each top vertex takes time
O(ad(p)), so we need O(W (G)δ(v)ad(G)) in total.

We then compute the anchor of v (using tv for constant-time ancestor tests with respect
to v if necessary). Finally, we have t

anc(u)
v [C] = −1 if tv[C] →∗ anc(v) and t

anc(u)
v [C] = tv[C]

otherwise. This step requires N = W (G) ancestor tests with anc(v), which are thus performed
in time O(W (G)ad(G)).

3.2 Picking Anchors
An ideal anchor-picking strategy would satisfy the following criteria:

memory optimization: minimize the number of different chains in the restricted ancestor
set of v (so this set should be as small as possible)
query time optimization: minimize the length of the anchor chain (so the restricted
ancestor sets should be large enough)

We introduce two strategies, both of them aiming at logarithmic-size anchor chains with
near-constant average canonical set size. We further introduce parameterizations of both
strategies that help improve the query time for the first and index size for the second.

3.2.1 Record-based anchors
In this strategy, we assign a fixed random score to each node (chosen independently and
uniformly at random in, say, [0, 1]). The overall invariant is that the score of the anchor
should be higher than the score of the node. In simplified settings (see Lemma 7) below, this
guarantees a log(n) bound on the anchor chain length with high probability. Within this
constraint, we aim at minimizing the number of chains in Ra

v .

▶ Anchor Strategy 1 (With maximum depth D ∈ N ∪ {+∞}). For any v, let S =
⋃

p→v{a |
a ∈ AL(p) and score(a) > score(v)}. If S is not empty, let a ∈ S minimizing |ta

v |. Choose
anc(v) = a if ad(a) < D. In any other case, choose anc(v) = ⊥.
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This strategy is intended as a sub-linear approximation of the ideal strategy picking
an anchor with higher score than v and minimal size of |ta

v |. Intuitively, for most nodes,
the anchor is selected among the parents and the restricted ancestor set is thus minimized
(and the restricted top set has often size 1 or 2). For nodes with high scores, the restricted
ancestor set is larger, but anc(u) is much closer to the sources of the DAG, and has itself a
higher score, so the anchor list should have a bounded length.

▶ Proposition 6. For any constant D, the query time with Strategy 1 is O(1).

Proof. By construction, ad(v) ≤ D for all v, so the query time under this strategy is at most
O(D) = O(1). ◀

▶ Lemma 7. Consider Strategy 1 with D = +∞. Let A be the set of ancestors of v. If all
vertices in A have degree at most one, then ad(v) ≤ log(|A|) with high probability.

Proof. Write A = (a1, a2, . . . a|A|) with a1 = v and such that there exists a path a|A| → . . . →
a2 → a1. Then by the anchor strategy, we have ai ∈ AL(v) if and only if score(ai) > score(aj)
for all j < i. Since the scores are taken independently at random, each ai has probability
1/i to have the maximum score over {a1, . . . , ai}. Thus, ai is in AL(v) with probability 1/i,
hence the number of vertices in AL(v) is asymptotically O(log n). ◀

3.2.2 Power-based anchors

In this strategy, we do not use random scores, but instead keep track of the number of
ancestors (hereafter called rank) of nodes as they are inserted. Whenever the rank passes a
larger power of some integer B, the node is more likely to have a large restricted ancestor
set and to be an anchor for future nodes; however in most cases the nodes have a restricted
ancestor set of size ≤ B.

▶ Definition 8. Let v be a node. Write rank(v) for the number of ancestors of v, and lp(v)
for the parent p of v maximizing rank(p) (ties are broken arbitrarily, we write lp(v) = ⊥
for source nodes; we further write rank(⊥) = 0). Given an integer B, the base-B power of
v, denoted πB(v) is the largest integer π such that there exists an integer x with rank(v) ≥
xBπ > rank(lp(v)).

▶ Anchor Strategy 2 (With base B). For any v, define anc(v) as the first node a of AL(lp(v))
such that πB(v) ≤ πB(a).

Consider for example the path graph sketched in Figure 3. The rank of each node is depicted
above each drawn node, so there are 2302 nodes (we use rank(v) as a vertex identifier as well,
corresponding to an insertion order starting at 1). The anchor list of node 2302 is depicted:
AL[2302] = (2301, 2300, 2200, 2100, 2000, 1000). In this graph, the maximum ad(v) is reached
for v = 1999 (ad(v) = 19) Note that most nodes (those that are not multiple of 10) have a
trivial restricted ancestor set (containing the single node v), so the restricted set of chain
tops is a singleton for them, even if the graph is somehow decomposed into multiple chains.

Under this strategy, we can prove a logarithmic (deterministic) upper bound on the
anchor depth of each node, as well as an upper bound on the restricted ancestor set of all
nodes with small power.

▶ Lemma 9. For any v we have |Ranc(v)
v | ≤ BπB(v)+1 and ad(v) ≤ B⌊log(rank(v))⌋.
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Figure 3 Example of Anchor Strategy 2 on a simple left-to-right path of length 2302. Anchors
are depicted with bended blue arcs, and the base-10 power of each node is given below (e.g. node
2000 has power 3 since 2000 ≥ 2.103 > 1999).

Proof. Let (v0 = v, v1, v2, . . . , vℓ = ⊥) be the list of nodes defined with vi+1 = lp(vi) until a
source is reached.

Let p, q be the smallest indices > 0 such that πB(vp) ≥ πB(v) and πB(vq) > πB(v) (p = ℓ

and/or q = ℓ if no such index exists). Clearly p ≤ q. Also, note that anc(v) = vp: indeed, vp

is necessarily the anchor of vp−1, then it is in the anchor list of each vi for i from p − 1 to 1,
so it is picked as the anchor of v.

Let x = ⌊rank(v)/BπB(v)+1⌋, we show by induction that xBπB(v)+1 ≤ rank(vi) < (x +
1)BπB(v)+1 for all 0 ≤ i ≤ q. This is by definition of x for i = 0. For any 0 < i < q, note that
we have πB(vi) ≤ πB(v). Thus, xBπB(v)+1 ≤ rank(vi+1) < (x + 1)BπB(v)+1 by definition of
πB(vi).

In particular for vi = anc(v) = vp, xBπB(v)+1 ≤ rank(anc(v)) ≤ rank(v) < (x +
1)BπB(v)+1, so |Ranc(v)

v | = rank(v) − rank(anc(v)) ≤ BπB(v)+1.
Consider now vp, and assume that πB(vp) = πB(v), then vp ̸= vq, and the anchor of vp is

necessarily some vertex in (vp+1, . . . vq). Repeating this process, we have AL(v) = (v, vp0 =
vp, vp1 , . . .) + AL(vq), where each vpi

satisfies πB(vpi
) = πB(v). Thus, for each i there is an

integer x − B ≤ yi < x such that rank(vpi+1) < yiB
πB(v) ≤ rank(vpi

). Thus, there are at
most B such vertices vpi , and ad(v) ≤ B + ad(vq).

We can now show ad(v) ≤ B⌊logB(rank(v))⌋. More precisely, we show by induction that
ad(v) ≤ B(⌊logB(rank(v))⌋ − πB(v)). Indeed, πB(v) ≤ logB(rank(v)) for any v by definition.
For a vertex v with πB(v) = ⌊logB(rank(v))⌋, rank(lp(v)) < BπB(v), and necessarily anc(v) =
⊥, so ad(v) = 0. Now for any other v, define vq as above (with rank(vq) < rank(v) and
πB(vq) > πB(v); by induction

ad(vq) ≤ B(⌊logB(rank(vq))⌋ − πB(vq))
≤ B(⌊logB(rank(v))⌋ − (πB(v) + 1))
= B(⌊logB(rank(v))⌋ − πB(v)) − B

so ad(v) ≤ ad(vq) + B

≤ B(⌊logB(rank(v))⌋ − πB(v)).

◀

3.3 Possible extensions
We present two possible extensions to this algorithm for specific use cases, although not
covered by the experimental evaluation.

Distributed node creations

If multiple agents may insert nodes in parallel, the main difficulty is to maintain a correct
chain decomposition. Once this difficulty is overcome, each agent may compute the anchor
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and restricted top vertices for each node they insert, then publish the index entries along with
the rest of the node data. This can in particular be useful in VCS settings where commits
are decentralized.

A simple solution to maintain a chain decomposition is to ensure that any chain is
extended by at most one agent. For instance, if Alice needs to insert a node u and has no
available chain for u, then a new chain is spawned for u, and only Alice is “allowed” to insert
new nodes in this chain. Felsner’s algorithm [7] can be run by each agent independently,
each with their own disjoint set of chain heads.

2-way insertions

In some settings, it can be desirable to insert nodes either as sources or sinks. For instance,
if a server holds a long list of events, and a client needs to retrieve in priority the most recent
events. Then the client will progressively download events starting from the most recent, but
new events may also occur during this process, and need to be inserted on the other side of
the graph.

A possible approach for this scenario would be to maintain 2 disjoint graphs, each with
its own chain decomposition to perform reachability queries within each side. For queries
spanning both sides of the graph, we further store, for each node, the lowest vertex in each
chain of the other side at the time this vertex is created (or, at least, those lowest vertices
that are not already stored in the anchor list). Given a reachability query between u and
v, we look for the chain of v within the anchor list of u, and for the chain of u within the
anchor list of v. Overall, the index size remains linear in the graph width, and query time
should be multiplied by 2 for such wide queries.

4 Experimental Evaluation

We implemented the chain algorithm with both anchor strategies, as well as a selection of
literature algorithms. We use a corpus of 1 000 randomly generated graphs, as well as 97
real-world DAGs. For each graph, we draw 5 000 random queries. Then, we build the index
on each graph and perform all queries successively.

All algorithms were implemented in Python using standard data structures, in order
to obtain homogeneous running times. Furthermore, no disk access is performed during
the timed parts of the benchmark, as all operations are performed in RAM. We measure 3
quantities for each algorithm in each graph

Memory: Index size was evaluated as the number of integers (mostly node identifiers)
stored for each algorithm, counting both index and manifest.

Query time: The positive (resp. negative) query time is the average time to answer a
positive (resp. negative) query. The overall query time is the mean of these two quantities.
Since some algorithms perform better for one kind than the other, this helps have more
homogeneous results, independent of whether we tested more or less positive queries.

Indexing time: The average time (in ms) per node needed to build the index for the
whole graph (index construction / graph size).

All benchmark scripts are available at https://anonymous.4open.science/r/chain_
reachability-6783 for replication. All plots are drawn in log scale. We now describe more
precisely the graphs used in the benchmark, as well as the implemented algorithms.

https://anonymous.4open.science/r/chain_reachability-6783
https://anonymous.4open.science/r/chain_reachability-6783
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4.1 Random Graph Benchmark

We generated 1 000 random graphs with a tight control on their size, width, and average
degree. Concretely, we have 3 parameters:

N : size of the graph (number of nodes)
k: width of the graph (k ≤ N)
p: probability to add a new edge to a node

We use the following generation algorithm:
Start with k degree-0 nodes, remember each as a chain head.
For each new node u (repeat N − k times), add an arc from a random chain head v, and
replace v by u in the set of chain heads.
With probability p, add an arc from a random node < u to u and repeat this step.
Randomly shuffle the list of in-neighbors (parents) of the node.

Overall, we produce N nodes in topological order, with width exactly k (the first k nodes
form an anti-chain, and the nodes admit a partition into k paths), and expected average
degree 1/(1 − p). Note that some arcs may be drawn multiple times. The overall benchmark
is obtained by generating graphs for all combinations of the following parameters:
N ∈ {5 000, 10 000, 15 000, . . . , 100 000}
k ∈ {100, 200, 300, . . . , 1 000}
p ∈ {0.30, 0.60, 0.80, 0.90, 0.95}

4.2 Tests on the CARDS dataset

We also ran algorithms on real-life graphs selected in the CARDS dataset [13]. The whole
dataset contains dependency graphs from various sources (package dependencies, git/mer-
curial repositories, etc.). For repositories, we only used the 20 largest graphs from each
category, giving 97 graphs overall. We further truncated each graph to 100 000 nodes for
more homogeneous running times.

4.3 Competing algorithms

Since we have no knowledge of existing incremental reachability indexes, we selected two
algorithms with sub-linear insertion time allowing, at least, for fast update of the graph.

Hub Labeling (2-hop)

In the 2-hop algorithm(s) [5], the index contains two lists of hubs for each node: one among
its descendants and one among its ancestors. The central guarantee is that any pair of related
nodes have a common hub. The query time and size is dominated by the size of the hub lists.

Such an index is not incremental: if nodes are inserted in append-only mode, each
ancestor of a node becomes a hub, and the index size becomes quadratic. We thus chose
to compare with a dynamic algorithm by Zhu et al. [17] that allows graph insertions and
deletions without recomputing the index from scratch (but does edit hub lists of earlier
nodes). More precisely, we implemented the index building routine as described by Akiba et
al [2], using the node ordering presented in Zhu et al. [17]; we did not count the additional
memory needed to prepare for random node insertion/deletion. We also implemented a
random ordering strategy, to evaluate the impact of the ordering strategy on the index
performances.
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Figure 4 Memory and query time for each algorithm as the graph dimension grows.

BFL

In this algorithm [12], we pick a number A of semaphores. We store for each node (using
length-A bit-vectors) the sets of semaphores present in the ancestors and descendants.
Comparing 2 such bit vectors allows, for some pairs of nodes, to answer reachability queries
in constant time (positively if a semaphore appears as ancestor of one node and descendant
of the other, negatively if the ancestor semaphores of one are not included in the ancestors
of the others, or similarly for descendants). When this comparison is inconclusive, a DFS is
run from an endpoint testing each node along the way, until either a path is found after a
positive test or all branches have been pruned by negative tests.

5 Results

We first compare in a unified setting all presented algorithms. Out of these, we select 4
finalists for which we analyse running-times and memory in more details. Finally, we run two
selected algorithms on CARDS graphs [13] to ensure that the conclusions of the benchmark
carry over to real-life graphs.

Comparing all algorithms

The plots in Figure 4 show the performances of the algorithms presented here. Each graph is
assigned a dimension, defined as N +100∗k. All graphs with the same dimension are grouped
into a single point for each algorithm, with the query time as X coordinate and memory as y
coordinate. The choice of the dimension allows to simplify the scatter plots, while keeping
a good view of upper- and lower-bounds for each algorithms. Indeed, our anchor-based
algorithms are mostly dependent on k, while other algorithms are mostly dependent on the
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graph size N . The right plot shows all algorithms, and the left plot gives a zoom-in on our
anchor-based algorithms. Finally, Table 1 (in appendix) gives numeric results over the largest
graphs of the data-set, corresponding to the top-right-most points of the plots.

Overall, each algorithm family behaves rather uniformly. As expected, chain-based
approaches give the best (near-constant) query times, with a high memory cost for the
original chains-only approach [9]. Algorithm BFL has prohibitive running times, even with
up to 1024 semaphores. Considering 2-hop, the degree heuristic indeed reduces significantly
the worst-case time and memory.

Detailed comparisons

We elect the following four algorithms for more extensive performance analysis. Our Anchor
algorithms with strategy 1 (D = 64) and strategy 2 (B = 256) are the two “extreme”
algorithms in the memory/time trade-off. We also include the original chain algorithm [9],
as well as the 2-hop algorithm with degree heuristic, giving the best performances among
literature algorithms on our benchmark.

Figure 5 helps compare these algorithms for each criteria as a function of each graph
parameter. As mentioned already, the memory requirements for the original chain algorithm
are prohibitive, even for the smallest graph width, however its query and indexing times
remain optimal for all dimensions. The memory requirements for our anchor-based heuristics
are comparable with those of 2-hop in this favorable setting with bounded graph width, and
queries remain an order of magnitude faster. Considering the degree of the graph, it can be
seen that it mainly affects the indexing time (since all algorithms need to visit each edge at
least once); however, it does not have a significant impact on the index performances.

On CARDS dataset

Figure 7 shows the performances of our Anchor algorithm (with the lowest memory needs,
i.e. Strategy 2 with B = 256) compared with 2-Hop. Unsurprisingly, the worst-case query
times appear for 2-hop. Considering memory, their appear to be many very simple graphs
(e.g. with isolated nodes or small paths): on such graphs, the anchor algorithm’s memory is
dominated by constant-size overheads (chain assignments, anchors, powers, etc.) rather than
chain tops themselves, while 2-hop has no such overhead and also maintains very short hub
lists. Detailed results are given in Table 2 in appendix.

Conclusions

We can see that strategy 2 (with a large enough value of B) has comparable or lower memory
needs than 2-hop for all values of k up to 1.5

√
N . Compared to the original chain algorithm,

we maintain bounded query and indexing times (within a factor 2 of the original), but
improve by a factor 10 the memory requirements.

Performance with a real-life dataset indicates that our proof-of-concept algorithm performs
similarly to our implementation of 2-hop, within the same order of magnitude.

Clearly, our benchmark does not cover all exiting algorithms for the reachability problem,
nor does it include the most efficient ones. The generated graphs are also very constrained,
in order to precisely see the limits of each algorithm. The overarching goal is to ensure
that performances are within the same order of magnitude as standard algorithms, while
introducing the incremental feature required in many applications. A more precise benchmark
would need to simulate real-life operations such as rollbacks, cache management, concurrent
access, etc. where the incremental feature alone can save orders of magnitude in index
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maintenance. We hope our work can help introduce efficient reachability indexes in real-world
applications, instead of a slow DFS, to help them scale up to larger graphs.
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Figure 6 Number of chains produced by Felsner’s algorithm (W ) [7] compared to the actual
width of the graph (k) for generated random graphs. Although W = O(k2) in the worst case, in our
setting we have W = 1.85k on average, and W ≤ 2.53k for all graphs.

Algorithm Query (ms) Memory (ints/ node) Indexing (ms per node)
[Jagadish] Chains only 0.002 2770.697 1.614
Anchor 1 (D=+∞) 0.004 498.900 8.085
Anchor 1 (D=64) 0.003 498.602 7.778
Anchor 2 (B=2) 0.004 363.158 2.737
Anchor 2 (B=32) 0.004 236.599 4.035
Anchor 2 (B=256) 0.005 193.859 5.568
[Cohen et al.] 2-hop (degree) 0.070 283.423 36.269
[Cohen et al.] 2-hop (rand) 0.099 428.571 82.426
[Su et al.] BFL (A=1024) 0.261 32.000 0.008
[Su et al.] BFL (A=256) 0.744 8.000 0.007

Table 1 Average performances of all compared algorithms over the 30 largest graphs in the
benchmark (N ≥ 90 000, k ≥ 900)
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Figure 7 Performances of Anchor and 2-hop on 97 truncated graphs from the CARDS dataset [13].
Each dot represents one algorithm execution on one graph of the dataset. Unsurprisingly, the worst-
case query time appear for 2-hop
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Table 2 Details of the CARDS dataset [13]. There are 18 families split into 4 main types: VCS
graphs, package dependencies, library dependencies, and miscellaneous. We limited to 20 graphs per
family and 100 000 nodes per graph. Each result is an average over all graphs of the family. The
reachability ratio is the proportion of pairs of nodes {u, v} such that u →∗ v. The width is the one
computed by Felsner’s algorithm [7].
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