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Abstract—Online Continual Learning (OCL) is a framework
where models learn continuously from a stream of data without
revisiting previously seen data. This is crucial for many real-
life applications, e.g., autonomous driving, healthcare moni-
toring, and robotics, where data evolves over time. However,
current state-of-the-art continuous learning methods struggle
with dynamic and unbalanced data, often failing to adapt and
leading to severe performance degradation. In this paper, we
introduce Memory Selection with Contrastive Learning (MSCL),
an advanced approach to Continual Learning (CL) designed
to tackle these challenges. MSCL integrates Feature-Distance
Based Sample Selection (FDBS) for effective memory adaptation,
emphasizing inter-class similarities and intra-class diversity, with
a novel contrastive learning loss (SCL) for evolving data repre-
sentation consolidation. Our extensive evaluations on datasets
including CIFAR-100, Mini-ImageNet, PACS, and DomainNet
demonstrate that MSCL not only surpasses existing memory-
based CL methods on data balanced scenarios, but also excels
particularly in imbalanced scenarios, thereby establishing a novel
state of the art in both balanced and imbalanced learning
contexts. Additionally, we carefully conduct ablation studies to
highlight the contribution of each component, i.e., FDBS and
SCL, and analyze the impact of the key hyperparameter, i.e.,
memory size, on the performance of the proposed MSCL method.

Index Terms—Continual Learning, Transfer Learning, Mem-
ory Selection

I. INTRODUCTION

Continual Learning (CL) involves a model learning from a
continuous stream of data over time without access to previ-
ously encountered data, posing the challenge of catastrophic
forgetting—the loss of previously acquired knowledge when
new information is learned.

Current CL methods fall into three main categories:
Regularization-based approaches [1], [2], Parameter Isolation
approaches [3], [4], and Rehearsal-based approaches [5]–[8].
Various CL paradigms have also been explored [9], such as
Task-Incremental Learning (TIL), Domain-Incremental Learn-
ing (DIL), and Class-Incremental Learning (CIL). Early CL
methods like [1], [10] primarily used the TIL paradigm,
assuming access to task boundaries during both training and
inference, which is often unrealistic. Consequently, recent

research has shifted towards CIL [11]–[13], where models
learn from sequential, mutually exclusive class tasks and infer
without task boundary information.

In CIL, each class is learned only once per task, with
all class data available for learning, limiting further class
adaptation when data distributions shift, particularly with new
domains. Additionally, most CIL methods assume balanced
data distributions across classes and tasks and are bench-
marked using single-domain datasets like Cifar and mini-
ImageNet. However, real-world data streams are typically non-
stationary and imbalanced [14] [15].

[16] present a novel approach to quantifying dataset distri-
bution shifts across two dimensions. Their analysis reveals that
datasets such as ImageNet [17] and Cifar [18] primarily exhibit
correlation shifts in the relationship between features and
labels. Conversely, datasets like PACS [19] and DomainNet
[20] exemplify diversity shifts, where new features emerge
during testing.

We investigate a broader Continual Learning (CL) frame-
work known as task-free online CL (OCL), where data is
streamed continuously without defined task boundaries [21],
mirroring the non-stationary nature of real-world data. This
setup results in imbalances in class and domain distributions,
with varying sample availability and domain representation in
each batch. As a result, there is a need for continual adjustment
of class and data representations to handle the diversity and
overlap of class boundaries, especially with the introduction
of new class or domain data.

Previous research [5], [7], [9], [22] suggests that rehearsal-
based methods are effective in mitigating catastrophic for-
getting across various CL scenarios by using a memory set
for data replay. This approach is crucial for maintaining CL
efficiency in dynamic, imbalanced data conditions. However,
existing methods often rely on basic selection strategies, such
as random [5] or herding-based sampling [11]. These strategies
do not account for imbalanced data distributions and fail
to address the increasing intra-class diversity and decreasing
inter-class boundaries that occur as new domain and class data
are introduced, as illustrated in Fig. 1 (a). Consequently, they
are unable to adapt previously acquired knowledge to novel
data streams, which require the evolution of learned class
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boundaries.
In this paper, we argue that not all streamed data samples are

equally beneficial for preserving and enhancing prior knowl-
edge. The most valuable samples often capture the evolving
diversity within classes and the similarities between them. To
leverage this, we introduce a novel memory-based online CL
approach called MSCL. This method has two core features:
1) Dynamic Memory Adaptation: MSCL selects samples
from incoming data streams that best represent the diversity
within classes and the similarities between different classes. To
achieve this, we developed the Feature-Distance Based Sample
Selection (FDBS). FDBS calculates an importance weight
for each new sample based on its representational signifi-
cance compared to the memory set. Especially in imbalanced
datasets, our method emphasizes diverse samples within each
class and similar samples across different classes, ensuring
adaptation of a comprehensive memory set. 2) Enhanced Data
Representation Consolidation with Contrastive Learning:
We introduce a novel contrastive learning loss, denoted as
SCL, which comprises two key components. The first one
is the standard supervised contrastive learning loss SUP
[23]. This component employs various data augmentations
on the original images and enhances representation learning
by evaluating the similarity between instances within the
current batch. The second one is IWL which utilizes the
importance weight from FDBS, allowing it to incorporate
the similarity between the memory set and the current batch.
This approach effectively brings similar class instances closer
together while distancing different class instances, thereby
enhancing data representation consolidation in the presence
of a non-stationary data stream.

The proposed MSCL implements reminiscence of memory
plasticity [24], [25] through its Dynamic Memory Adaptation
and Enhanced Data Representation Consolidation. By selec-
tively choosing samples that best represent class diversity
and similarities, MSCL continuously adapts and updates the
memory set, ensuring it remains comprehensive and relevant.
Additionally, the contrastive learning loss (SCL) consolidates
data representation, facilitating the incorporation of new in-
formation and preserving essential knowledge, akin to how
human memory plasticity operates.

Our contributions are threefold:
• We design benchmarks for the problem of task free online

CL with respect to imbalanced data both in terms of
classes and domains, and highlight the limitations of
existing CL methods in handling such complex non-
stationary data.

• We introduce a novel replay-based online CL method,
namely MSCL, based on: 1) a novel memory selection
strategy, FDBS for memeory adaptation, and 2) a novel
data importance weight-based Contrastive Learning Loss,
SCL, for consolidation of data representation.

• The proposed online CL method, MSCL, has been rig-
orously tested across various datasets and architectures,
demonstrating superior performance over state-of-the-
art memory-based CL methods. It excels particularly in
challenging scenarios with imbalanced classes, domains,
and combined imbalances. Additionally, we show the ver-

satility of the proposed MSCL which can easily integrate
with existing CL methods, significantly enhancing their
performance.

Preliminary results appeared in [26]. In this paper, we
have significantly enhanced our method by incorporating a
projection head, employing data augmentation techniques, and
extending our previous contrastive loss with a supervised con-
trastive learning loss (SUP). Additionally, we have conducted
further detailed ablation studies to highlight the importance of
each major design choice.

This paper is organized as follows. Sec. II overviews the
related work. Sec. III defines the problem statement. Sec. IV
describes our method. Sec. V discusses the experimental set-
tings and results. Sec. VI details the ablation studies. Sec. VII
concludes the paper.

II. RELATED WORK

A. Task-Free online continual learning

[5], [21] introduce a novel CL scenario where task bound-
aries are not predefined, and the model encounters data in an
online setting. Several memory-based strategies have been pro-
posed to navigate this scenario. Reservoir Sampling (ER) [5]
assigns an equal chance for each piece of data to be selected in
an online setting. However, this method can be easily biased
by imbalanced data stream in terms of class and/or domain
and inadvertently miss data that are more representative.
Maximally Interfered Retrieval (MIR) [6] makes use of ER
for data selection but retrieves the samples from the memory
set which are most interfered for current learning. Gradient-
based Sample Selection (GSS) [7] proposes to maximize the
variance of gradient directions of the data samples in the replay
buffer for data sample diversity but with no guarantee that the
selected data are class representative. Furthermore, the replay
buffer can be quickly saturated without any further update
when local maximum of gradient variance is achieved. Online
Corset Selection (OCS) [8] also employs the model’s gradients
for cosine similarity computation to select informative and
diverse data samples in affinity with past tasks. Unfortunately,
they are not class aware and its effectiveness diminishes when
handling imbalanced data. In contrast, our proposed MSCL
makes use of FDBS to promote the selection of informative
data samples in terms of intra-class diversity and inter-class
similarity in the feature space for storage. It further improves
discriminative data representation using a built-in contrastive
loss SCL.

B. Imbalanced continual learning

[14] highlighted the limitations of existing CL methods,
such as iCaRL [11], in handling numerous classes. The authors
attributed these shortcomings to the presence of imbalanced
data and an increase in inter-class similarity. To address this,
they proposed evaluating CL methods in an imbalanced class-
incremental learning scenario, where the data distribution
across classes varies ((also known as Long-Tailed Class Incre-
mental Learning, as defined by [15])). In order to mitigate this
issue, they introduced a simple bias correction layer to adjust
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the final output during testing. One approach described by
[22] is CBRS (Class-Balancing Reservoir Sampling), which is
based on the reservoir sampling technique [5]. This algorithm
assumes equal data storage for each category and employs
reservoir sampling within each category. However, when faced
with imbalanced domain-incremental learning scenarios where
the data distribution within domains is uneven, CBRS can only
perform random selection, limiting its effectiveness. Instead,
our proposed MSCL performs dynamically class informed data
sample selection.

a) Contrastive learning in Continual learning: Continual
learning methods(e.g., [27]–[29]) utilizing contrastive learning
primarily rely on supervised contrastive learning proposed
by [23]. These methods typically necessitate extensive data
augmentation to enhance representation learning, yet they
often neglect the memory selection process. In our method, we
introduce a novel contrastive learning loss. Compared to the
standard supervised contrastive learning loss, it exhibits two
main differences: 1) It evaluates not only the similarities within
the current batch but also between the memory set and the
current batch. 2) The loss functions as an adversarial process
against our memory selection method, helping to create a more
compact feature space.

III. PRELIMINARY AND PROBLEM STATEMENT

We consider the setting of online task-free continual learn-
ing. The learner receives non-stationary data stream O through
a series of data batches denoted as Sstrt = (xi, yi)

Nb

i=1 at time
step t. Here, (xi, yi) represents an input data and its label,
respectively, and Nb denotes the batch size. The learner is
represented as f(·;θ) = g ◦F , where g represents a classifier
and F denotes a feature extractor. We define a memory set
as Smem = (xj , yj)

M
j=1, where M is the memory size. We

use the function l(·, ·) to denote the loss function. The global
objective from time step 0 to T can be computed as follows:

l∗ =

T∑
t=0

∑
(xi,yi)∈Sstrt

l(f(xi;θ), yi) (1)

However, within the setting of online continual learning, the
learner does not have access to the entire data at each training
step but only the current data batch and those in the memory
set if any memory. Therefore, the objective at time step T can
be formulated as follows:

lT =
∑
SstrT

l(f(xi;θT−1), yi)

current loss

+
∑
Smem

l(f(xj ;θT−1), yj)

replay loss

(2)

As a result, to enable online continual learning without catas-
trophic forgetting, one needs to minimize the gap between l∗

and lT :

min(l∗ − lT ) = min(

T−1∑
t=0

∑
Sstrt \Smem

l(f(xi;θT−1), yi)) (3)

In this paper, we are interested in memory-based online CL.
Our objective is to define a strategy which carefully selects
data samples to store in the memory set and continuously
refines data representation to minimize the gap as shown in
Eq. (3).

IV. METHODOLOGY

The proposed method, denoted as MSCL, consists of two
main components, namely Feature-distance based sample se-
lection (FDBS) (sect.IV-A) and contrastive learning for better
discriminative feature representation (sect.IV-B). The whole
algorithm is sketched in algo.1.

A. Feature-Distance based sample selection

In the context of imbalanced online domain and class
continual learning scenarios, models need to contend with
at least two types of distribution shifts: correlation shift and
diversity shift. In classification problems, these distribution
shifts can result in increased inter-class similarity and intra-
class variance, ultimately leading to catastrophic forgetting.
Current memory selection methods (e.g., ER [5], CBRS [22],
GSS [7], OCS [8]) are unable to effectively address both
of these challenges simultaneously. To tackle this issue, we
introduce our feature-based method, referred to as Feature-
Based Dissimilarity Selection (FDBS). FDBS encourages the
model to select data points that are the most dissimilar within
a class and the most similar between different classes. This
strategy aims to enhance both inter-class similarity and intra-
class variance within the memory set. Consequently, FDBS
helps to narrow the gap between the memory set and the true
data distribution, as highlighted in Equation 3.

Let M to denote the memory size and K the number of
data samples so far streamed. Let p to denote our projection
head. The current batch size is set to Nb, and the sampled
memory batch size is Nm. When the learner receives a batch
of data Sstr from the stream O, we check for each new data
sample xi in Sstr whether the memory set is full. If it is not
full, we can directly store xi. However, if the memory set is
full, we need to evaluate the importance weight wi of the new
data sample xi to determine whether it is worth storing. The
key to this process is to keep the memory set aware of intra-
class diversity and inter-class boundaries based on the feature
distances between the new data sample xi and the memory
set. It involves the following three main steps:

• Sample a batch of data, denoted as Sm, from the memory
set with size Nm. Double views the current batch and the
memory batch. Smdoub contains both the original images
and the augmented views from the memory batch. Apply
the same notation to Sstrdoub. To get the features, we use
z(x) = p ◦ F (x).

• We then calculate the feature distance, denoted as D
(refer to Eq. (4)), between every data point in the set
Sstrdoub and each data sample stored in Smdoub. Subsequently,
we identify the minimum distance between the input data
and the memory set for each input data sample, resulting
in the vector dstr as defined in Eq. (4)

Di,j = dist {z(xi), z(xj)}(xi∈Sstrdoub;xj∈Smdoub)
(4)

• Subsequently, we compute Dmem, as in Eq. (5), the
feature distance between every data in Smdoub and Smem,
and the minimum distance for each data point in the
memory set in dmem, as shown in Eq. (5). We then
calculate a as in Eq. (7) a weighted average distance
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Fig. 1. Both figures illustrate domains using colors and categories with shapes. (a) Shows models adapting to datasets with high inter-class similarity and
intra-class variance, highlighting the challenge of differentiating closely related categories.(b)Our proposed MSCL involves mapping input data and a memory
set into a shared feature space. Here, Di,j represents the distance between input data xi and data xj in the memory set. We use the same indexing convention
for other formulas. We calculate distances, D and a, between input data and memory set, and then derive an importance weight matrix quantifying each
input data representative importance w.r.t those in the memory set based on the analysis of their intra-class diversity or inter-class similarity in the feature
space. These importance weights are combined with random selection to give birth to our Feature-Distance based Sample Selection (FDBS) which identifies
the most representative input data points for storage into the memory set. Armed with this importance weight matrix, we proceed to craft a novel Contrastive
Loss (SCL) aimed at refining the feature space by compacting intra-class data and creating greater separation among inter-class data.

from a data point in the memory set to all other points,
using a RBF kernel as in Eq. (7) to weight the distances.
We aim to assign higher weight to closer distances.

Dmem
i,j = dist {z(xi), z(xj)}(xi∈Smdoub,xj∈Smem) (5)

dstr
i = min(Di,:);d

mem
i = min(Dmem

i,j ̸=i) (6)

• By computing the difference between a and D, we can
derive an importance weight for each new data. This
weight is subsequently combined with the reservoir sam-
pling coefficient to determine the probability of selecting
the new data point.

αi,j = e−
∥Dmem

i,j −dmem
i ∥2

2σ2 ; ai =

∑M
j ̸=i D

mem
i,j αi,j∑M

j ̸=i αi,j

(7)

Importance weight is the core concept of our proposed
method. It serves to assess the significance of a new data
sample with respect to the memory set, with a focus on
promoting diversity among previously encountered intra-class
data while also considering the potential closeness to inter-
class boundaries. Specifically, we calculate this importance
weight, as defined in Eq. (9), to capture the influence of each
data point in the memory set on an input data sample. This
influence is determined by whether they belong to the same
class, as illustrated in Fig. 1 (b). Our approach is based on the
intuitive notion that when two points, xi and xj , are closer in
proximity, the impact of xj on xi becomes more pronounced.
To achieve this, we employ a Radial Basis Function (RBF)
kernel, as expressed in Eq. (8). This kernel ensures that the
influence of distant points diminishes rapidly. Additionally, we
use the sign function, as shown in Eq. (8), to assign a value
of 1 if the classes are the same and -1 otherwise.

When comparing a new data sample xi with a memory
set data point xj , we consider two scenarios based on their

class labels. If they share the same class label, as shown
in Fig. 1 (b), and if the feature distance Di,j significantly
exceeds aj , it implies a substantial difference between xi

and xj . In this case, we assign Wi,j a value greater than 1,
promoting the selection of xi for storage. However, when xi

and xj have different class labels, we aim to store data points
near decision boundaries to capture closer class boundaries
caused by increased inter-class similarities. We achieve this
by setting Wi,j using Eq. (9) with the sign function returning
-1. If aj significantly surpasses Di,j , it implies that despite
their different labels, xi closely resembles xj , motivating us to
store xi. Conversely, if aj is substantially smaller than Di,j ,
it suggests that the model can readily distinguish between xi

and xj , leading us to exclude xi from storage. When Di,j is
approximately equal to aj , we consider xi as a typical data
point close to xj , leading Wi,j to approach 1, resulting in a
random selection.

βi,j = e−
∥Di,j−dstr

i ∥2

2τ2 ; sgn(yi, yj) =

{
1 if yi = yj
−1 if yi ̸= yj

(8)

Wi,j = e
sgn(yi,yj)

Di,j−aj
Di,j+aj

βi,j
(yi ∈ Sstrdoub; yj ∈ Smdoub) (9)

To take into account the influence of all data points in
the memory set on a new input data point for its importance
weight, we directly multiply the impact of each memory point
as shown in Eq. (10).

To get the final probability pi for a new data sample xi to
be chosen for storage in memory, we introduce the reservoir
sampling. Given a fixed memory size M and the number of
data samples observed so far in the data stream, denoted as
K, M/K represents the probability of each data sample being
randomly selected. We then use the importance weight wi

to adjust the probability of the new data sampled xi being
selected, as shown in Eq. (10). This allows us to handle
imbalanced data and retain a certain level of randomness.
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wi =

∑2Nm

j=1 Wi,j

2Nm

; pi = min(wi
M

K
, 1) (10)

B. Contrastive learning for better discriminative feature rep-
resentation

Our Feature-Distance Based Sample Selection (FDBS) can
effectively store the most representative samples during train-
ing. However, the latent space of our memory set may not be
compact, potentially degrading our classification performance.
To address this issue, we introduce the use of contrastive
learning loss. Previous methods, such as OnPro [30] and
CaSSLe [31], have already employed supervised contrastive
learning [23] to learn instance-wise representations:

LSUP =

2Nb∑
i=1

1

|Ibi |
∑
j∈Ibi

log

(
exp(sim(zbi , z

b
j )/τsc)∑

k ̸=i exp(sim(zbi , z
b
k)/τsc)

)

+

2Nm∑
i=1

1

|Imi |
∑
j∈Ibi

log

(
exp(sim(zmi , zmj )/τsc)∑
k ̸=i exp(sim(zmi , zmk )/τsc)

)
(11)

Where Nb and Nm represent the number of training data
in the current batch and the batch sampled from the memory
set, respectively. Ii is the set of positive samples for zi. This
equation separately computes the supervised contrastive loss
for current data and data from the memory set. However, it
overlooks the distance between the memory set and current
data. To address this issue, we propose the use of an impor-
tance weight to compute a specific contrastive learning loss.

The importance weight Wi,j , derived from Eq. (9), mea-
sures feature space similarity between data points and is differ-
entiable. Inspired by contrastive learning’s goal to distinguish
between similar (positive) and dissimilar (negative) sample
pairs. IWL aims to decrease inter-class similarity and intra-
class variance, serving as an adversarial element to memory
selection and compacting the feature space for better memory
selection. For a data batch of size Nb, we select a minibatch
from the memory set of size Nm, and compute LIWL as per
Eq. (12), optimizing Wi,j to align data points with matching
class labels closer and separate those with differing labels.

LIWL =

∑2
i=1 Nm

∑2Nb

j=1 log(Wi,j)∑2Nm

i=1

∑2Nb

j=1 βi,j

(12)

Thus, our total contrastive learning loss is:

LSCL = LSUP + LIWL (13)

V. EXPERIMENTS AND RESULTS

We introduce balanced CL benchmarks in sect.V-A, define
imbalanced ones in sect.V-B, describe the baselines and im-
plementations details in sect.V-C, and present the experimental
results both on balanced scenarios in sect.V-D and imbalanced
ones in sect.V-E.

Algorithm 1 Train a batch at time step t
Input: F , g ,Smem, Sstr, n, K, Zmem stores the features of
the memory set, Nb is the current batch size, and Nm is the
memory batch size.

1: for n steps do
2: sample batch I,Xm,ym of size Nm from Smem {I :

the index of the samples in Smem}
3: Xstr,ystr = Sstr
4: Xm

doub = cat(aug(Xm),Xm)
5: Xstr

doub = cat(aug(Xstr),Xstr)
6: Zm, ŷm = p ◦ F (Xm

doub), g ◦ F (Xm
doub)

7: Zstr, ŷstr = p ◦ F (Xstr
doub), g ◦ F (Xstr

doub)
8: α = 0.1 + 0.9 ∗ 0.99t
9: Current Loss : Lcur = ℓ(ŷstr,ystr)

10: Replay Loss : Lr = ℓ(ŷm,ym)
11: Update Zmem[I] = Zm[: Nm]
12: Dmem = dist(Zm,Zmem) as Eq. (5)
13: Compute a based on Eq. (7)
14: D = dist(Zstr,Zm) as Eq. (4)
15: Compute w based on Eq. (9) and Eq. (10)
16: LIWL = LIWL(w) as Eq. (12)
17: LSUP = LSUP (Xstr,ystr,Xmem,ymem) as Eq. (11)
18: Total Loss : L = αLcur + (1−α)Lr +LIWL +LSUP

19: Update: F, g : Adam.step( )
20: FDBS(Smem,Sstrt ,w,D,M ,K,Zmem) as shown in Al-

gorithm 2
21: end for

A. Balanced benchmarks

Building upon previous research [7], [9], [13], we utilize
three well-established Continual Learning (CL) benchmarks:
Split Mini-ImageNet, Split CIFAR-100, and PACS. For Split
CIFAR-100, we partition the original CIFAR-100 dataset [18]
into ten subsets, with each subset representing a distinct task
comprising ten classes. For Split Mini-ImageNet [17], we
partition the original Mini-ImageNet dataset [18] into 10 sub-
sets, with each subset representing a distinct task comprising
ten classes. As for PACS [19], it encompasses four domains:
photo, art painting, cartoon, and sketch. Each domain consists
of the same seven classes. In our experiments, we treat each
domain as an individual task, resulting in a total of four
tasks. Notably, due to significant differences between images
in each domain, one can observe a notable increase in inter-
class variance within this dataset.

B. Imbalanced benchmarks

Existing CL benchmarks, with uniform class and domain
distributions, fail to test CL methods on non-stationary, im-
balanced data. Thus, we’ve created benchmarks specifically to
assess CL methods’ robustness to data imbalance.

1) Imbalanced Class-Incremental Learning (Imb CIL).:
To establish an imbalanced Class-incremental scenario for
split CIFAR-100 and split mini-ImageNet, we build upon the
approach introduced by [22]. Unlike traditional benchmarks
that distribute instances equally among classes, we induce
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Algorithm 2 FDBS at time step t
Input: Smem, Sstr, w, D, M , K,
Zmem

1: Xmem,ymem = Smem;
2: for each data i, (xi, yi) in Sstrt do
3: K = K + 1
4: if len(Smem) < M then
5: store (xi, yi) in Smem

6: else
7: p = wi ∗M/K
8: r = random.rand()
9: if r < p or yi /∈ Smem then

10: c = most frequent(ymem)
11: I = index(ymem == c)
12: k = random.choice(I)
13: Xmem[k],ymem[k] = xi, yi;
14: Zmem[k] = Z(xi)
15: else
16: ignore (xi, yi)
17: end if
18: end if
19: end for

class imbalance by utilizing a predefined ratio vector, de-
noted as r, encompassing five distinct ratios: (10−2, 10−1.5

, 10−1, 10−0.5, 100). In this setup, for each run and each class,
we randomly select a ratio from r and multiply it by the
number of images corresponding to that class. This calculation
determines the final number of images allocated to the class,
thus establishing our imbalanced class scenario. We maintain
the remaining conditions consistent with the corresponding
balanced scenario.

2) Imbalanced Domain-incremental Learning (Imb DIL):
We adapt the PACS dataset, encompassing four domains, and
follow an approach akin to our Imbalanced Class-Incremental
method. For each domain, we randomly select a ratio from
r, multiply it with the image count of the domain, thereby
maintaining a balanced class count within the imbalanced
domain.

3) Imbalanced Class and Domain Incremental Learning
(Imb C-DIL).: We further refine the PACS dataset to gener-
ate an imbalanced class-domain incremental scenario, which
mirrors a more realistic data setting. This scenario involves
randomly selecting a ratio from r for each class and domain,
and multiplying it with the count of instances for that class
within the domain. This operation yields 4∗7 values for PACS,
resulting in a diverse number of data points across different
classes and domains. This approach accentuates the growth
of inter-class similarity and intra-class variance. Because both
the class and domain are already imbalanced in the original
DomainNet [20], we directly use its original format to gener-
ate the imbalanced scenario. We adhere to a sampling without
replacement strategy for data stream generation. Once data
from a pair of class and domain is exhausted, we transition to
the next pair.

C. Baselines and implementation details

As the proposed FDBS is a memory-based online CL
method, we compare it primarily against other memory-centric
techniques such as Experience Replay (ER) [5], Gradient-
Based Sample Selection (GSS) [7], Class-Balancing Reservoir
Sampling (CBRS) [22], Maximally Interfering Retrieval (MIR)
[6], and Online Corset Selection(OCS) [8]. Online Proto-
type Learning(OnPro) [30] achieved the SOTA performance
in the Class-incremental scenario over Cifar-100 and Mini-
ImageNet.

We compare Fine-tuning (F.T.), where pre-existing model
parameters are used as starting points for new tasks without
additional data, against i.i.d. offline training, a method that
grants complete access to the dataset, allowing multiple data
reviews for maximum performance. In this comparison, FT
represents the lower bound of performance, while offline train-
ing serves as the upper bound. Our method introduces Feature-
Distance Based Sampling (FDBS) for choosing samples and
Contrastive Learning Loss for better representation learning.
We test the effectiveness of FDBS combined with LSCL in
our experiments.

We adopt a reduced ResNet-18 architecture similar to that
used in [5]. We maintain a fixed batch size of 20 for the
incoming data stream, with one update steps per batch. We set
the σ value in our radial basis function (RBF) kernel at 0.1,
and the τ value in Eq. (9) at 1.0. Our approach’s performance
is evaluated across the balanced and imbalanced benchmarks
through five independent runs, from which we compute the
average accuracy.

D. Results on balanced benchmarks

Results for balanced scenarios are shown in Tab. I. In
class incremental learning (CIL) scenarios such as split Mini-
ImageNet and CIFAR-100, classical methods like ER, CBRS,
and GSS do not perform well with low memory sizes. This
is because, with a low memory size relative to the training
data size, these methods heavily bias towards the memory
data. As the memory size increases, the performance of these
methods significantly improves. OnPro, which uses rich data
augmentation and evaluates the class mean for each update,
performs very well in these scenarios. In comparison, our
method uses a more representative selection strategy and incor-
porates a comprehensive contrastive loss, leading to consistent
improvements in results. In domain incremental learning (DIL)
scenarios such as PACS, OnPro does not perform as well
as in CIL scenarios, because the class mean loses its sig-
nificance across multiple domains. However, our method still
achieves the best results. Our memory selection strategy aims
to increase intra-class variance, leading to greater diversity in
the memory and improved performance. Additionally, MSCL
maintains stable performance with lower standard deviations,
indicating more reliable and consistent results. This robust-
ness, combined with its superior accuracy, highlights MSCL’s
efficiency and reliability in handling various memory sizes and
datasets.
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TABLE I
WE REPORT THE RESULTS OF OUR EXPERIMENTS CONDUCTED ON BALANCED SCENARIOS. WE PRESENT THE FINAL ACCURACY AS MEAN AND

STANDARD DEVIATION OVER FIVE INDEPENDENT RUNS.

Mini-ImageNet CIFAR-100 PACS
F.T. 4.2 ± 0.2 4.4±0.2 20.6±0.2
i.i.d. Off 52.5 ± 0.1 49.8±0.3 59.6±0.1

M=1k M=2k M=5k M=1k M=2k M=5k M=0.1k M=0.2k M=0.5k
ER 10.1±0.7 13.2±0.8 16.5±1.8 11.0±0.7 14.2±0.5 20.2±0.9 36.1±1.2 38.6±1.4 39.8±1.5
GSS 10.2±0.6 13.1 ± 1.2 14.2±0.9 10.3 ± 0.5 13.3 ± 0.5 17.5 ± 1.2 35.8 ± 2.8 37.8 ± 3.2 38.7 ± 2.2
CBRS 10.3±0.8 13.5 ± 0.9 16.4±2.1 11.0 ± 0.6 14.5 ± 0.8 20.5± 0.8 36.3 ± 1.1 38.8 ± 1.6 40.1 ± 1.7
MIR 10.7±0.7 14.8 ± 1.1 17.5±1.5 11.5 ± 0.4 15.1 ± 0.5 21.7 ± 0.9 37.6 ± 0.9 40.2 ± 0.8 43.2 ± 1.2
OCS 10.8±0.5 15.1 ± 1.1 17.8±1.6 11.4 ± 0.5 14.8 ± 0.8 21.3 ± 0.9 36.8 ± 0.7 39.6 ± 0.7 42.2 ± 1.1
OnPro 21.2±0.4 30.5 ± 0.5 34.5±0.8 26.6 ± 0.5 30.6 ± 0.8 36.6 ± 0.8 36.3 ± 1.3 40.5 ± 1.3 41.4 ± 1.5
MSCL(ours) 24.7±0.4 33.9 ± 0.5 36.9±0.9 27.5 ± 0.4 31.2 ± 0.7 37.5 ± 0.8 38.8 ± 0.9 42.7 ± 1.1 45.8 ± 1.3

TABLE II
RESULTS ON OUR IMBALANCED SCENARIOS. WE PRESENT THE FINAL ACCURACY AS MEAN AND STANDARD DEVIATION OVER FIVE INDEPENDENT

RUNS. FOR PACS, THE MEMORY SIZE WAS SET TO 1000, WHILE FOR ALL OTHER SCENARIOS, THE MEMORY SIZE WAS SET TO 5000.

Scenarios Imb CIL Imb DIL Imb C-DIL
CIFAR-100 Mini-ImageNet PACS PACS DomainNet

Fine Tunning 3.1± 0.3 3.5± 0.2 15.5± 1.3 14.3± 1.2 2.3± 0.6
i.i.d. Offline 41.6± 0.5 43.1± 0.6 46.3± 0.4 46.1± 0.9 37.2± 0.7
ER 7.1± 0.8 8.2± 1.3 25.6± 2.1 22.4± 1.3 6.2± 0.6
GSS 8.3± 0.7 7.9± 0.5 24.4± 1.7 20.2± 2.1 5.1± 0.4
CBRS 10.2± 0.4 11.3± 0.6 25.9± 1.5 23.6± 1.7 6.1± 0.6
MIR 7.5± 0.9 8.9± 0.3 25.8± 2.1 22.2± 2.5 6.4± 0.4
OCS 11.6± 0.6 12.3± 0.4 27.1± 1.4 24.7± 1.3 8.4± 0.7
OnPro 22.3± 0.5 15.8± 0.7 27.1± 1.7 25.5± 1.4 11.2± 0.9
MSCL(Ours) 24.8±0.6 17.2±0.4 31.2±0.8 30.6±0.7 12.4±0.7

E. Results on imbalanced scenarios

Tab. II displays the experimental results in the imbalanced
settings. For imbalanced CIL scenarios, the CBRS method,
which maintains an equal count of images from each class
in memory, outperforms the basic ER approach. Meanwhile,
OCS, by continuously evaluating data batch gradients, filters
noise and selects more representative data, shining particularly
in imbalanced contexts. However, our method stands out,
consistently leading in all imbalanced tests. As scenarios
evolve from Imb DIL to Imb C-DIL, other methods’ accuracy
drops significantly, but FDBS maintains robust performance.
Its strength lies in using feature-distance to fine-tune memory
selection, preserving class boundaries and boosting intra-class
diversity.

VI. ABLATION STUDY AND HYPERPARAMETER ANALYSIS

We conduct an ablation study in Sec. VI-A, discuss the
impact of σ and τ of RBF kernel in Sec. VI-B, compare
the running time of different methods in Sec. VI-C, assess
the impact of memory size in Sec. VI-D, evaluate average
forgetting in Sec. VI-E, illustrate the distribution of our
memory set in Sec. VI-F, explore the integration of our method
with other methods in Sec. VI-G, and finally present the results
of the methods in the classical class incremental scenario in
Sec. VI-H.

A. Ablation study

Our method comprises two key components: the memory
selection method (FDBS) for memory adaptation and the
contrastive learning loss LSCL, as detailed in Eq. (13), for

evolving data representation consolidation. Tab.VI-A high-
lights the contributions and effectiveness of each component.
As can be seen there, memory adaptation by FDBS and data
representation consolidation through LSCL prove to be both
useful and complementary, with FDBS consistently enhancing
performance, especially in imbalanced scenarios, while LSCL
appears further critical.

TABLE III
ABLATION STUDIES ON BALANCED CIFAR-100 AND IMBALANCED

DOMAINNET. WE SET THE MEMORY SIZE TO 5000.

Method Balanced CIFAR-100 Imb DomainNet
F.T. 4.4± 0.2 2.3± 0.6
w/o LSCL 22.1± 1.2 7.8± 0.8
w/o FDBS 34.7± 0.9 9.5± 0.9
MSCL 37.5 ± 0.8 12.4 ± 0.7

B. The impact of σ in RBF kernel

The Radial Basis Function (RBF) kernel is a widely used
kernel function in machine learning, defined as [32]:

K(x1, x2) = exp(−||x1 − x2||2

2σ2
) (14)

In our implementation, we normalize the feature vectors x1

and x2 such that ||x1|| = 1 and ||x2|| = 1. With this
normalization, the squared Euclidean distance between x1 and
x2 satisfies ||x1 − x2|| ∈ [0, 2], since the maximum distance
occurs when x1 and x2 are in opposite directions.

To illustrate the effect of σ on the kernel values, we plot
K(x1, x2) for different values of σ over the range ||x1−x2|| ∈
[0, 2]:
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Fig. 2. RBF kernel values with different σ

τ \σ 0.1 0.5 1.0 1.5
0.1 30.5 28.7 28.9 30.1
0.5 29.6 28.2 28.0 28.8
1.0 31.5 29.1 29.5 30.6
1.5 30.6 30.3 29.6 30.5

TABLE IV
RESULTS OF VARING σ AND τ ON BLANACED CIFAR-100 WITH A

MEMORY SIZE OF 2000.

As shown in Fig. 2, the parameter σ controls the radius of
influence of the kernel function. When σ is small, the kernel
value K(x1, x2) is significant only when x1 and x2 are very
close; for larger distances, the kernel value approaches zero
rapidly. Conversely, a larger σ results in a broader influence,
allowing more distant points to contribute meaningfully to the
kernel value.

To evaluate the impact of σ and another parameter τ on
our method, we conducted experiments using a memory size
of 2000 on the Balanced CIFAR-100 dataset. The results are
summarized in Tab. IV.

In our framework, σ is the parameter in Eq. (7), which
determines the number of points that significantly contribute
to the calculation of the average distance a from a data point
in the memory set to other points. A smaller σ means that
only nearby points have a substantial impact on a, effectively
focusing on local neighborhoods.

Similarly, τ is the parameter in Eq. (8), which influences the
calculation of the importance weights w. A larger τ allows for
contributions from more distant points when computing these
weights.

Our experimental results indicate that setting σ = 0.1 and
τ = 1.0 yields the best performance. This suggests that
when calculating the average distance a within the memory
set, it is beneficial to focus on the nearest points, as distant
points may introduce noise or irrelevant information. However,
when computing the importance weights w, considering the
influence of all points in the memory set (achieved by a larger
τ ) is advantageous.

Fig. 3. Running Time of different methods on Blanced CIFAR-100.

C. Running Time

In this section, we evaluate the overall running time of our
method on the Balanced CIFAR-100 scenario with a memory
size of 5K. The results are presented in Fig. 3. Our method
shows only a minor increase in running time compared to ER
and MIR, while achieving significantly better performance.

D. The impact of memory size

We compare our FDBS with other memory selection meth-
ods by adjusting the size of the memory set. The experiments
were conducted using the imbalanced class-domain incremen-
tal scenario of PACS, and the results are presented in Tab. V.

The experimental results show consistent performance im-
provements for our proposed FDBS method across all mem-
ory sizes tested. Our method outperforms all other memory
selection methods in each case, with the magnitude of the
improvement being more pronounced for larger memory sizes.

TABLE V
COMPARISON OF DIFFERENT MEMORY SELECTION METHODS ON IMB

C-DIL PACS FOR THREE DIFFERENT MEMORY SIZES. WE PRESENT THE
FINAL ACCURACY AS MEAN AND STANDARD DEVIATION OVER FIVE

INDEPENDENT RUNS

Memory size
Methods 100 200 500 1000
ER 16.4±2.3 18.3±2.5 20.4± 1.8 22.4± 1.3
GSS 15.7±1.6 16.6±1.9 18.2±2.3 20.2±2.1
CBRS 17.2±2.1 19.1±2.1 21.6±1.5 23.6±1.7
OCS 18.3±1.8 21.4±2.2 22.7±1.6 24.7±1.3
FDBS 19.7±1.9 23.5±2.6 24.7±2.0 26.8±2.2

E. Comprehensive Evaluation of Average Forgetting

We use the metric known as Average Forgetting [33] to
measure the extent of knowledge forgotten after training. We
compare our method with different approaches across three
typical scenarios: balanced CIFAR-100, imbalanced CIFAR-
100, and imbalanced class and domain PACS. For the experi-
ments, we set the memory size to 5k for CIFAR-100 and 1k
for PACS.
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TABLE VI
COMPARISON AVERAGE FORGETTING OF DIFFERENT METHODS ON

BALANCED CIFAR-100, IMBALANCED CIFAR-100, AND IMBALANCED
CLASS-DOMAIN PACS. WE PRESENT THE FINAL ACCURACY AS MEAN

AND STANDARD DEVIATION OVER FIVE INDEPENDENT RUNS

CIFAR-100 Imb CIFAR-100 Imb C-DIL PACS
F.T. 53.2 ± 2.8 27.5 ± 1.6 35.5 ± 2.2
ER 40.8 ± 3.5 22.7 ± 1.3 23.9 ± 1.5
GSS 38.2 ± 2.3 23.5 ± 1.8 25.7 ± 1.4
CBRS 37.4 ± 3.1 17.8 ± 1.1 22.8 ± 1.5
MIR 35.6 ± 1.8 22.3 ± 1.5 23.5 ± 1.9
OCS 22.5 ± 1.5 16.5 ± 0.9 21.4 ± 1.4
OnPro 16.3 ± 1.4 14.7 ± 0.9 20.4 ± 1.4
MSCL(ours) 15.4 ± 1.1 13.6 ± 0.8 17.5 ± 0.9

Tab. VI demonstrates that, in both balanced and imbalanced
scenarios, our method achieves the lowest forgetting and has
a lower standard deviation. This indicates that our method is
better at retaining learned knowledge while adapting to new
information.

F. The distribution of our memory set

To gain deeper insights into the efficacy of our memory
selection method, we examine the distribution of our mem-
ory set. Our experiments focus on the challenging task of
imbalanced Domain-Incremental Learning using the PACS
dataset, which comprises four distinct domains (e.g., photo, art
painting, cartoon, and sketch). Following training, we analyze
the distribution of our memory set, shedding light on how our
method has shaped the representation of critical data points
within this dynamic learning environment. The results of this
analysis are presented in Tab. VII, while the ratios of different
domains within the memory set generated by various methods
are shown in Fig. 4.

Methods such as ER and CBRS opt for random image
selection, aiming to maintain a distribution akin to the original
dataset. In contrast, our method prioritizes increasing intra-
class diversity, thereby influencing a more balanced distri-
bution of stored images. This approach plays a crucial role
in improving the overall performance of continual learning.
Additionally, the integration of our Contrastive Learning Loss
(SCL) further enhances the feature space consolidation within
our memory set. This refinement proves instrumental in effec-
tively capturing images from minority domains, contributing
to a more robust and balanced representation of data.

Methods /Domains Photo Art Painting Cartoon Sketch
Our Scenario 500 1000 2000 3000
ER 78 155 320 447
GSS 125 570 248 57
CBRS 73 162 342 423
OCS 130 183 286 401
FDBS(ours) 156 193 339 312
MSCL(Ours) 190 227 291 292

TABLE VII
COMPARISON OF MEMORY SET COMPOSITION ACROSS METHODS IN

IMBALANCED DOMAIN-INCREMENTAL LEARNING (IMB DIL) SCENARIO
OF PACS. WE SET THE MEMORY SIZE AS 1000.

Fig. 4. The ratio of different domains within the memory set compared to
the original scenario.

G. Collaborative Learning with other memory-based methods

In our evaluation, we consider three notable continual
learning methods, PodNet [13] and AFC [34]. We integrate
our Feature-Distance Based Sample Selection (FDBS) method
instead of their primary memory selection method, which was
originally either random or based on herding. We also intro-
duce our novel contrastive learning loss SCL. Our experiments
encompass two distinct scenarios: Balanced CIFAR-100 and
the imbalanced Class-Domain Incremental Learning (imb C-
DIL) of PACS. The results of these experiments are presented
in Tab. VIII. Remarkably, our method consistently enhances
the performance of these continual learning methods both on
balanced and imbalanced scenarios.

Methods Split-CIFAR100 Imb C-DIL PACS
PodNet 19.5 ± 1.4 20.4 ± 1.1
PodNet + MSCL 25.6 ± 2.3 29.5± 0.8
AFC 19.4 ± 1.7 21.5 ± 1.2
AFC + MSCL 25.4 ± 2.6 27.6± 0.9

TABLE VIII
COMBINING FDBS WITH OTHER MEMORY-BASED METHODS:

EXPERIMENTS ON BALANCED SPLIT CIFAR-100 (MEMORY SIZE: 5000)
AND IMBALANCED CLASS-DOMAIN INCREMENTAL LEARNING ON PACS
(MEMORY SIZE: 1000).THE FINAL ACCURACY WAS PRESENTED AS THE

MEAN AND STANDARD DEVIATION OVER FIVE INDEPENDENT RUNS.

H. Results on Balanced class-incremental learning scenario

We have further evaluated the effectiveness of our proposed
approach in the context of classic balanced class-incremental
learning. In this scenario, the task boundary is well-defined,
and for each task, we employ offline training for multiple
epochs. For this purpose, we conducted an experiment named
Cifar 100-B0 as detailed in [35]. In this experiment, we
partitioned the original Cifar 100 dataset into 10 and 20
distinct tasks, with each task encompassing a set of 5 distinct
classes. The memory size is set as 2000. The result is presented
in Tab. IX. Even in the classic class-incremental learning
scenario, our proposed method can still significantly improve
the previous state-of-the-art method.
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Methods 10 steps 20 steps
iCaRL* [11] 65.2 ± 1.0 61.2 ± 0.8
BiC* [14] 68.8 ± 1.2 66.4 ± 0.3
PodNet* [13] 58.0 ± 1.3 53.9 ± 0.8
AFC [34] 61.2 ± 1.4 54.7 ± 0.8
WA* [36] 69.4 ± 0.3 67.3 ± 0.2
MSCL(ours) 72.5 ± 0.4 70.5 ± 0.5

TABLE IX
RESULTS FOR CLASSIC CLASS-INCREMENTAL LEARNING ON CIFAR-100.
RESULTS MARKED WITH ’*’ ARE OBTAINED DIRECTLY FROM [35]. THE

MEMORY SIZE IS SET TO 2000.

VII. CONCLUSION

This paper presents a new online Continual Learning (CL)
method, MSCL, consisted of Feature-Distance Based Sam-
ple Selection (FDBS) and Contrastive Learning Loss (SCL).
FDBS selects representative examples by evaluating the dis-
tance between new and memory-set data, emphasizing dis-
similar intra-class and similar inter-class data, thus increasing
memory awareness of class diversity and boundaries. SCL
minimizes intra-class and maximizes inter-class distances,
enhancing discriminative feature representation. Extensive ex-
periments confirmed that FDBS and SCL together outperform
other memory-based CL methods in balanced and imbalanced
scenarios. Future work will explore combining MSCL with
a distillation-based CL method to further improve its perfor-
mance.
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