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The prevalence of cancer and age-related diseases is a major public health problem associated with high cost

in European countries. Currently, there is still an insufficient level of sensitivity and specificity in diagnosis, as

well as a lack of targeted personalized treatments. Quantitative imaging is a central issue for the success of early

diagnosis and in vivo treatment monitoring. Despite an already large offer of conventional imaging techniques,

there are still limitations in terms of contrast, spatial or temporal resolution, radiation dose, and most

techniques only provide partial information. Several innovations can be foreseen to increase the diagnostic

value of imaging techniques by providing new multi-physics characterization of tissue properties. Cancer

radiotherapy, which is one of the most conventional treatments, may be associated to over- or under-dosage,

tumor recurrence, radio resistance, and complications. To overcome these issues, nonstandard techniques are

considered for catalyzing the effects of treatment. The highly innovative radiotherapy techniques include:

particle radiotherapy (offering a better targeting of the tumor), high spatial and temporal fractionation

(micro-beams, ultra-high dose rates), nanoparticle- or photo-activated radiotherapy, targeted-alpha therapy.

Such techniques are still in an early stage of diffusion due to insufficient fundamental knowledge on the

impact of such irradiation on living cells and tissues, as well as the lack of appropriate detection systems to

monitor and control these treatments. Thus, there is a need to improve the prediction of benefits and risks for

each patient and to propose new efficient, well-prepared, and controlled therapies.

In this context, the PRIMES project gathered expert scientists from renown laboratories from the Auvergne-
Rhône-Alpes Region to invent, develop, and demonstrate the benefit of new technologies including novel

imaging methods for diagnosis, treatment and follow-up, as well as innovative radiotherapy developments

supported by state-of-the-art radiobiology. The PRIMES consortium represents about 200 researchers from 16

laboratories. Such breakthrough and scientific progresses relied on the coupling and integration of dedicated

instrumentation to advanced numerical processing, the technical developments being strongly coupled to

experiments and pre-clinical validation and going towards clinical trials. The final goal of PRIMES is the

development of the entire chain from disruptive proof of concept to clinical transfer and clinical demonstration

(see Figure 1).

Regarding imaging, the two main pillars of the PRIMES project activities are image formation and image

analysis to “see better and see more”. In particular, PRIMES not only works on state-of-the-art imaging

equipment such as MR/PET (combination of magnetic resonance imaging and positron emission tomography),



Figure 1: General overview of PRIMES project.

high-field pre-clinical magnetic resonance imaging (MRI) and X-ray spectral CT, but also contributes to the

emergence of new devices in multimodality imaging at different levels of the conception chain. Within the

multidisciplinary consortium of PRIMES, we have the ability to address the design of new systems in X-ray

imaging, MRI, US, optical, and nuclear medicine imaging modalities for targeted radiotherapy or online

control of radiotherapy and state of the art X-ray imaging systems with a privilege access to a synchrotron

facility at the ESRF (European Synchrotron Radiation Facility). This involved not only instruments, but also

data processing, the two components being increasingly entangled to push forward outcomes. This activity

involves new physical and computational concepts that have to be integrated within an instrument and also

requires the proof of concept of the developed techniques for the given clinical applications considered.

In terms of image analysis, research in machine learning is now evolving towards the exploitation of deep

learning approaches. Such approaches also revolutionize the field of medical imaging with an exponential

growth of the literature. However, deep learning approaches still raise many challenges regarding the

performance that can be achieved with such data driven methods for given applications, the availability

of training imaging data and the robustness of the developed techniques with respect to various imaging

modalities. It has to be mentioned that, conversely to the mainstream of researches in the area of deep

learning dedicated to image segmentation and image analysis, such techniques are more than relevant in the

image formation domain, then making a link between image formation and image analysis.

In the field of radiotherapy (RT), PRIMES gathers a unique consortium having the task force to have an

integrated approach on various innovative aspects of radiotherapies, namely particle therapy, synchrotron

radiation therapy, radiosensitizer-enhanced therapy, targeted alpha therapy, in close connection with

conventional radiotherapy centers and coupled to multi scale modeling of biological efficiency. Radiobiological

irradiation and analysis platforms are available. This research axis brings together different teams and

expertise required for the overall development of innovative radiotherapy techniques, from bench to bedside.

This includes instrument development like high-intensity beam monitors or Compton imaging; radiobiological

tools including irradiation platforms for data acquisition coupled to multiscale modelling of biological

efficiency; simulations for 4D-therapy planning; preclinical studies, with end-to-end studies toward clinical

trials on specific cancers. Recent developments foreseen in the project also involve high-risk topics, such as

X-ray-induced photodynamic therapy (PDT-X).



Coupling these innovative developments in imaging and radiotherapy places PRIMES in a leading position

with few equivalents at the international level, especially when considering applications in cancer and

age-related disease. With a strong involvement of the oncology community, from the diagnosis stage to

the treatment, including radiobiology studies, PRIMES has an original position with the combination of

simulation and modeling to experimental evaluation going from the molecular scale to clinical studies. In

this domain, we already achieved several first-in-man studies involving clinicians in cardiovascular and

musculoskeletal disease working on unique and well-recognized multiscale/multimodality imaging and

biomechanical modeling studies.

This book summarizes main achievements of PRIMES on different scientific topics and their position within

the international context. Such achievements were made possible thanks to a continuous effort toward

interdisciplinary collaborations between the partner teams. This were done in strong connection with

education, by means of master trainings, PhD supports, the organization of practice classes and summer

schools.

All the research publications performed within the frame of PRIMES were gathered in an open-based

repository: https://hal.science/PRIMES.

https://hal.science/PRIMES
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1.1 Introduction

Ion-beam therapy (also called hadrontherapy) offers excellent ballistic

properties in respect to conventional radiotherapy using 𝛾 rays. Indeed,

ion energies are adjusted so that the ions stop in the tumor volume with

a maximum of energy deposition at the end of their path. However ion

ranges are sensitive to treatment uncertainties [2] and the treatment

planning systems apply the two following mitigation strategies: they use

sub-optimal multi-irradiation fields without organ-at-risk downstream

the Bragg peak and safety margins around the tumor volume to ensure

the complete irradiation of cancerous cells [3].

Therefore, the online monitoring of ion ranges inside the patient is highly

desirable in order to fully benefit from the ballistic properties of ions. The

main modalities that have been investigated for 30 years are based on

the detection of secondary radiations, mainly annihilation and prompt 𝛾
rays but also secondary protons. The CLaRyS collaboration (IP2I Lyon,

LPC Clermont-Ferrand, CPPM Marseille and CREATIS) has investigated

these 3 monitoring modalities with emphasis on 𝛾-rays detection thanks

to the LabEx support.

1.2 PET imaging

One of the possibilities for ballistic control is based on the real-time

on-line measurement of the spatial distribution of positron-emitting

radionuclides produced by the fragmentation reaction between the

projectile and the target and thus on the coincident detection of two

photons. The LPC group focused on the development of a large acceptance

PET camera prototype (A Rozes & A Bongrand PhDs) that has been

eventually transferred to the Centre Antoine Lacassagne (CAL) cancer

treatment center in Nice in 2018.

Figure 1.1: CAD view of the com-

plete large acceptance pixellated detector

(LAPD) [4].
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More specifically, a first prototype called LAPD was designed and built

at the Clermont Physics Laboratory. Initially, the PhD work of Arnaud

Rozes [5] allowed to compare the predictions of two hadronic models

implemented in Geant4 with experimental measurements performed by

Dendooven et al. [6] at 55 MeV. The focus was then on characterizing the

performance of the LAPD and determining its potential when used in

a clinical beam. For this purpose, a Monte-Carlo simulation dedicated

to understand the associated physics was developed, the detector and

the experiments carried out on 65 MeV proton beam at the Institut
Mediterranéen de Protonthérapie (IMPT) in Nice. Finally, as the LAPD

will eventually be coupled with a high-bandwidth acquisition system

(µTCA, Micro Telecommunications Computing Architecture) allowing

the sending and processing of the measured data in real time, a study of

the performances expected on the PROTEUS ONE line of the IMPT at

120 and 230 MeV has been carried out.

1.3 Prompt-gamma imaging

1.3.1 Early studies and projects before LabEx’s start

The Prompt Gamma Imaging activity started in IP2I Lyon in late 2000’s

with the first experimental evidence of the correlation between PG profile

as a function of target depth and ion range with carbon ion beams [7]. This

promising result led to ‘Gamhadron’ ANR project (2009-2014) gathering

IP2I Lyon, LPC Clermont-Ferrand and CREATIS. This project initiated

the investigation of PG imaging with collimated and Compton camera

(CC) coupled to a beam hodoscope (Figure 1.2). The European projects

ENVISION (2010-2014) and ENTERVISION (2011-2015) as well as the

ETOILE project and the IN2P3 institute also supported the LabEx teams

involved on PG imaging at this period. The main advances during this

period were the following:

▶ First measurements of PG yields with proton and carbon ion beams

and first simulation of collimated cameras

▶ First evaluation of hadronic models in Geant4 (Monte Carlo simu-

lations for particle transport in matter) [8, 9],

▶ Optimization of the Compton camera prototype of the CLaRyS

collaboration (IP2I Lyon, LPC Clermont-Ferrand, CPPM Marseille

and CREATIS) [10, 11],

▶ Optimization of the collimated camera prototype of the CLaRyS

collaboration and publication of a series of PG yields measurements

with proton and carbon ion beams [12, 13],

▶ Assessment and improvement of hadronic models in Geant4 for

protons [14] and carbon ion beams [15].

1.3.2 Main LabEx’s contributions

The LabEx contribution on this activity started in 2013 with the funding

of J.-L. Ley’s thesis (2013-2015) followed by the ones of M. Fontana (2016-

2018) and O. Allegrini (2020-2022). The first thesis allowed us to perform

the first tests of the various detectors, namely (Figure 1.3):
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Figure 1.2: Collimated and Compton

cameras developed coupled to a beam

hodoscope for ion-range verification dur-

ing hadrontherapy.

▶ the silicon detectors of the CC scatterer: 7 double-sided silicon strip

detector (DSSD) from SINTEF with an active area of ∼ 9 × 9 cm
2

to

be cooled down in a thermal box at temperatures close to 0°C,

▶ the bismuth germanate (BGO) scintillators of the CC absorber: 30

blocks of 35 × 38 × 30 mm,

▶ the beam hodoscope made of squared 1 mm
2

fibers arranged in two

perpendicular planes and coupled to multi-anode photomultipliers.

In addition to these instrumentation developments, preliminary results

on the evaluation of CC performances during hadrontherapy were

obtained by means of Monte Carlo simulations [16].

Figure 1.3: Prototype of the Compton

camera (CC) and the beam hodoscope

developed by the CLaRyS collaboration

with the following detectors: BGO scin-

tillators (CC absorber), silicon detectors.

The BGO detectors and the beam hodoscope were characterized during

M. Fontana’s thesis (2016-2018) and the performances of the CC prototype

were evaluated for both hadrontherapy verification and for non-invasive

diagnostics in nuclear medicine. Despite their relatively poor energy

resolution, the BGO detectors present very good detection efficiency

especially to detect high energy 𝛾-rays such as PG [17]. However, the

detection efficiency of the CC prototype is actually similar to the one of

physically collimated systems. Moreover, CC prototypes have to cope

with high counting rates in clinical beam conditions leading to high rates

of random coincidences. Further improvement of CC detection efficiency

could be considered which could motivate the use of reduced beam

intensities at the beginning of the treatments (to limit the rate of random
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coincidences) in order to perform ion-range verification with a few spots

probing the irradiation conditions [18]. Finally the application of CC

to nuclear medicine was investigated by comparing CC performances

(detection efficiency and spatial resolution) with the ones of a commercial

single photon emission tomography (SPECT)-Anger device (the General

Electric HealthCare Infinia system with a High Energy General Purpose

collimator) for new radio-emitters emitting 𝛾 rays of relatively high

energies (250 keV– 2.5 MeV). Monte Carlo simulations showed that, with

the same dimensions, the CC prototype has a detection efficiency larger

than the one of the Anger camera by a factor ∼ 20 associated with an

enhanced spatial resolution for energies beyond 500 keV [19].

The main results of the last thesis funded by the LabEx on this topic

(Allegrini’s thesis, 2020-2022) were the following:

▶ the beam hodoscope with scintillating fibers was finally character-

ized with in beam tests during O. Allegrini’s thesis (2020-2022)

(see next chapter);

▶ the characterization of the silicon detectors (CC scatterer) and

their associated electronics unfortunately revealed noise issues

in the electronics boards that could not be resolved during the

thesis [20]. Further developments could be considered within

a collaboration with the IFIC group in Valencia that intends to

use such silicon detectors in their CC prototype MACACO (the

CLaRyS collaboration and the IFIC group in Valencia (Spain) have

collaborated within the IEA project INCONI (2019-2021) on the

comparison of CLaRyS and MACACO prototypes);

▶ the absorber was successfully tested during in-beam tests with a

collimated camera composed of the BGO blocks and a tungsten-

alloy collimator placed in front of a poly(methyl metacrylate)

(PMMA) target irradiated with the 65 MeV proton beam of the

CAL-Nice: the measured PG profiles was in very good agreement

with the profile simulated with Geant4 [20].

▶ a new version of the Gate/Geant4 voxellized prompt-gamma

track length estimator (vpg-TLE) module was developed within

this thesis. The vpg-TLE module is a Monte-Carlo (MC) variance

reduction technique developed for the calculation of PG emission

in proton therapy. The module provides the PG energy spectra

per incident proton in each voxel of the simulated geometry with

gains in computing times of the order of 10
3

[21]. In addition to the

PG energy spectra, the new module developed during the thesis

(vpg-TLE-TT) also provides the PG emission time [20] which is of

utmost importance for many PG detection techniques using time

of flight (ToF) measurements to retrieve information on ion-range

(the PG Timing technique and the PG Time imaging) or to reduce

the background induced by secondary neutrons (the ToF gamma

cameras, the PG Spectroscopy technique and the PG Peak integral

technique) [22].

▶ the characterization and the in-beam tests of the detectors studied

within the PCSI project CLaRyS-UFT (see section 1.3.3);
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1.3.3 Projects in close connection with the ‘PG imaging’
topic

It is worth mentioning the other projects funded by the LabEx in the WP

‘MC simulation’ in close connections with the topic of hadrontherapy

verification by means of PG detection:

▶ B. Huisman’s thesis (2014-2017) on the development in Gate of the

aforementioned vpg-TLE module [21] and the development of an

analytical model to predict PG collimated cameras performances

(multi-parallel slit and knife-edge slit prompt gamma cameras)

[23].

▶ the develoment of another Gate module during the 2-year post-

doc of A. Extebeste (2018-2019): the CCmod which is a generic

module allowing for simulations and analyses of Compton cameras

[Etxebeste2020]

This activity has been extended to ‘ultra fast timing devices’ within

the PCSI project CLaRyS-UFT (2017-2021). One of the objectives of this

projet was to study the possibility to determine the PG emission point

from the 2 points of the line-cone intersection provided by the CLaRyS

Compton camera and a beam hodoscope (line and cone correspond

respectively to the beam trajectory measured by the hodoscope and

the Compton cone). Results show that the PG emission point can be

indeed retrieved from the 2 points of the line-cone intersection by means

of precise ToF measurement of ∼ 200 ps (rms) [Livingstone2021]. This

study was also supported by the LabEx with a 6-month position of invited

researcher for J. Livinstone. In parallel, instrumentation developments

were carried out in collaboration with the ‘Damavan Imaging’ company

to couple their Temporal modules composed of CeBr3 scintillators with

diamond detectors and estimate the timing resolution that could be

achieved between a Compton camera and a beam tagging hodoscope.

The characterization of these detectors and the in-beam tests in the

CAL-Nice were performed within O. Allegrini’s thesis. The preliminary

results obtained with the 65 MeV proton beams were quite promising

with ToF resolution of about ∼ 500 ps (rms) [20].

Another project of ion-range monitoring by means of PG detection has

also emerged at LPSC: it consists in PG imaging by the sole time-of

flight measurement, between an incident proton and a detected PG. This

method, called prompt-gamma timing imaging (prompt-gamma timing

imaging (PGTI)) [24], is now investigated in the frame of an ERC-EU

project.

1.3.4 Conclusion

In conclusion, a very dynamic research activity has been developed for

15 years around PG imaging within the CLaRyS collaboration gathering

3 laboratories of the LabEx (IP2I Lyon, LPSC Grenoble, CREATIS) and

the CPPM Marseille. This activity was strongly supported by the LabEx

which allowed us to build an ambitious program from PG cross-section

measurements to image reconstruction (see chapter 13), including instru-

mentation developments and Monte Carlo simulations. This dynamics

allowed us to raise other funds such as the PCSI project CLaRyS-UFT
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with promising results on the Compton camera with precise ToF mea-

surements. The CLaRyS collaboration intends to investigate further the

Compton camera application to nuclear medicine initiated in [19, 25]. An-

other PCSI project carried out by the CLaRyS collaboration is the project

‘GammaDosi’ (2013-2015) investigating an non-imaging PG detection

technique, namely the prompt-gamma peak integration (PGPI) technique

recently extended to high intensity beams PGEI with the LabEx’s support

for the funding of P. Evereare’s thesis (next section).

1.4 Prompt-gamma monitoring with
non-imaging techniques

In the middle of the 2010’s, two non-imaging PG detection techniques

were proposed in order to provide ion-range verification with relatively

compact devices in respect to the various gamma cameras (collimated

and Compton cameras) developed for PG detection: the prompt-gamma

timing (PGT) [26] and the prompt-gamma spectroscopy (PGS) techniques

[27] using the correlation between ion ranges and the prompt gamma ToF

and energy spectra, respectively. With the same objective of compactness

and to overcome the limitations of the aforementioned techniques, the

CLaRyS collaboration proposed the PGPI that was patented in July 2016

[28] at the end of the PCSI projet ‘Gammadosi’. The principle of this

technique consists in detecting PG in a few detectors placed around the

patient: more specifically, PG generated in the patient are discriminated

from background events by means of ToF selection and the various ratios

of PG statistics measured in the detectors provide millimetric precision on

ion-range on a beam-spot basis (10
8

incident protons). Such results were

obtained with both Geant4 simulations and experimental measurements

performed with a demonstrator in the CAL cancer treatment center in

Nice [29].

In order to valorize this technique, a market study was carried out through

PULSALYS (the société d’accélération de transfert de technologie (SATT) of the

University of Lyon). Its main conclusion was that further developments

were required before a potential transfer of technology. Within this

context, the CLaRyS collaboration proposed a new thesis project funded

in 2020 by the LabEx PRIMES (P. Everaere’s thesis, 2020-2023 [30])

to investigate the extension of the PGPI technique (mainly developed

for cyclotrons) to the synchro-cyclotrons used in recent protontherapy

centers (e.g. the Proteus One facility in the CAL treatment center in Nice).

The challenge of PG detection with such synchro-cyclotrons arises from

the high beam intensity during beam extractions (∼ 1 µA) in respect

to standard cyclotron beam intensities used in protontherapy centers

(∼ 1 nA). In order to cope with high PG detection rates while maintaining

large detection statistics, we proposed the PGEI technique that consists

in measuring the energy deposited during each beam pulse (typically

a few 10
7

protons in ∼ 10 µs) in the various detectors placed around

the patient. As expected, the precision on ion-ranges offered by this

technique is slightly degraded in respect to the PGPI technique based on

event-by-event detection. However, according to Monte Carlo simulation,

this precision is of the order of a few millimeters at the scale of a beam

pulse (10
7

incident protons). Moreover we showed experimentally that
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lead-tungstate scintillators (PbWO4) can cope with the high instantaneous

gamma count rates for PGEI at synchro-cyclotrons [31].

These developments will be continued within S. Otmani’s thesis (2023-

2026) funded by the ‘MITI-CNRS’ (project call ‘80|Prime’, collaboration

CLaRyS in association with CAL) with the following main objectives: the

estimation of the PGEI performances in more realistic conditions (i.e. use

of anthopomorphic phantoms and treatment plans) and the development

of a demonstrator to be tested in the Proteus One facility of the CAL

treatment center.
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2.1 Introduction

PRIMES teams in Workpackage 1 ‘Methods and Instruments for Inno-

vative Radiotherapies’ have contributed to several developments for

clinical beam monitoring and online dosimetry. These developments are

most often undertaken in collaboration with clinical partners. They are

based on the teams expertise in particle and nuclear physics instrumen-

tation and modelling, with a strong technical support within the teams

laboratories.

Beam monitors have been developped for Intensity Modulated Radiation

Therapy, where the photon beams are dynamically shaped by multileaves.

Therefore, A 2D-real-time detector is necessary to map the instantaneous

flux, and correlate it to the deposited dose.

In particle therapy, an important issue is the need of range verification,

which benefits from a 2D beam-trigger in order to perform time-of-flight

measurement of secondary radiation (see previous chapter on gamma

detection). A first hodoscope made of crossed-scintillating fibers was

designed to reach 100 % efficiency for each incident ion or ion bunch.

Pushing forward the performance of time-of-flight, a diamond-based

hodoscope was developed in order to reach 100 ps timing resolution.

With the recent advent of FLASH therapy, a proton beam monitor for

high-intensity pulsed beams is under tests.

Then, a diamond stripped detector was developped and tested for portal

monitoring of synchrotron microbeam radiotherapy, and used during

the veterinary clinical trial held at ESRF-Grenoble.

On-line dosimetry for MRT is presently under study by means of innova-

tive scintillator devices.

2.2 Beam monitoring

2.2.1 TraDeRa beam monitor for Intensity Modulated
Radiotherapy

In 2009, the LPSC’s Medical Applications group initiated the development

of TraDeRa, a gaseous transmission detector for real-time monitoring

of photon flux at the accelerator outlet, i.e. upstream of the patient. The

aim was to develop a detector to monitor conformal IMRT. This highly

technical procedure consists of varying the shape of the irradiation beam

during the same session to adapt to the shape and volume constraints of
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the organ to be treated. In this context, TraDeRa scientific objectives were

to be able not only to evaluate the dose delivered during the treatment

but also to image the shape of the beam in order to provide an effective

response to the problem of over- or under-dosing in real time, while

being easy to use on a daily basis in a hospital environment. The project

involved a collaboration with the radiotherapy department at Grenoble

CHU Hospital (Pr J. Balosso and J.-Y. Giraud, members of PRIMES). This

detector was designed and characterized during Robin Fabbro’s thesis

funded by the LabEx PRIMES (2014 – 2017). The main technical objectives

that led to TraDeRa development were to set up a detector suitable for

quality control that could measure the 2D characteristics of the beam in

real time with the emphasis on: transparency (measuring with minimum

attenuation of the beam), spatial resolution (of the order of a millimeter

at the point where the dose is prescribed), ease of use, resistance over

time to intense irradiation.

Figure 2.1: The TraDeRa detector posi-

tioned on the head of a radiotherapy

accelerator at the CHU Michallon. Right:

Zoom on the 324-channel, 14×14 cm
2

ef-

fective area (blue square) prototype.

Therefore, a 2D matrix of detectors (Figure 2.1) coupled to reading

electronics and an acquisition system was designed. The sensitive part of

the detector consists of a matrix of anode electrodes (one patent pending

Arnoud et al.) engraved on a PCB (Printed Circuit Board) capable of

withstanding very high dynamics. This PCB is followed by a high-voltage

grid, with air simply flowing between the two. When the photons from

the beam interact with the PCB (the active zone), secondary electrons

are emitted, followed by ionization and the creation of electron-ion pairs

that migrate to the anode (the pixels) for the ions and to the cathode

(the high-voltage grid) for the electrons. The signal measured on each

pixel is proportional to the current induced by the charge drift. The

detector supplies current pulses generated by the drift of electrons. These

pulses are processed electronically to determine the charge collected

by each pixel, which is proportional to the dose in the detector. The

electronic devices used are therefore charge amplifier integrator systems.

The aim of developing readout electronics for a 1:1 detector with 1600

channels led to the design of the charge to digital converter (QDC) LPSC

application-specific integrated circuit (ASIC) [32].

At first, the TraDeRa charge measurement capacity was validated at

the CHU Michallon, during R. Fabbro PhD thesis, by comparison with

the reference measurement system, which consists of an electrometer

coupled to an ionisation chamber. The measurements demonstrate the

excellent suitability, within 0.1 %, of three charge measurement systems:

the CHU reference (used in clinical mode), the first discrete electronics

and finally the ASIC, the two latter being developed at LPSC. Then,

the potential of TraDeRa to image, in real time, the movement of the

multileaf collimator and detect any positioning error has been evaluated

by R. Fabbro Figure 2.2. The results obtained highlight the potential of

TraDeRa 324 which is capable, in real time, to reproduce the movement
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Figure 2.2: Comparison of two successive

acquisitions (left) with an error induced

on the position of the blades (middle) af-

ter image subtraction by TraDeRa (right)

Figure 2.3: TraDeRa 1:1 (1600 channels,

40× 40 cm
2
)

of the collimator leaves and to flag a positioning error of the order of

1 millimetre which corresponds to an over-response of 4 %. This also

fully meets the requirements of the specifications and consequently

validates the prototype, its electronics and the calibration procedure.

Indeed, in practice, any overdose greater than 5 % is likely to cause

severe clinical complications and any underdose below 95 % can render

the treatment ineffective. R. Fabbro’s thesis work was concluded with

entire caracterization of the 324 channels TraDeRa first prototype and the

construction of the 1:1 detector: "TraDeRa 1600" (1600 reading channels)

Figure 2.3. In addition, R. Fabbro worked on a Monte Carlo method to

evaluate the characteristics of the electron beam of a LINAC accelerator,

based on the measurement of depth-dose profiles in a water tank, and

adjustment of a minimum number of parameters. A precision of 10 keV

at 6 MeV was achieved for the electron energy, much smaller than current

values in the literature (∼50 keV) [33]. This method is a necessary step to

convert the signal from the detector into the measurement of the dose

deposit in the patient. This is a key issue to allow the device to be used

in clinical IMRT.

2.2.2 Scintillating fiber hodoscope for hadrontherapy

In the context of hadrontherapy, the CLaRyS collaboration has proposed

a system for detecting the ion range in the patient based on the detec-

tion of secondary prompt gamma (see previous chapter). This system

makes use of the time of flight of photons between the patient (the

target) and the detector, in order to eliminate the significant background

noise induced by neutrons and other scattered radiation. This improves

the contrast-to-noise ratio, and therefore the sensitivity of the method.

Therefore, an important element in measuring the time of flight is the

use of a beam tagging hodoscope. The same hodoscope can also be used

for proton radiography (particle tracking). The requirements for such

a detector are to be transparent (or at least induce a fixed range shift

with minimum scattering), a time resolution ∼ 1 ns for prompt-gamma

selection, an efficiency >∼ 90 % for ToF measurement, and count rate

capability of 100 MHz for single carbon detection or single bunch de-
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Figure 2.4: 65 MeV proton beam profile,

recorded at a counting rate of 20 MHz

in coincidence mode (logical AND) be-

tween the two fiber-planes

tection with protons. The Scintillating Fiber hodoscope was initiated by

the Gamhadron ANR and FP7-ENVISION projects for prompt gamma

monitoring (also supported by Rhône-Alpes Region), followed within

the CLaRyS collaboration. It consists in two planes of 1 mm
2

squared-

shaped scintillating fibers, readout by 64-channel matrix photomultiplier

tube (MaPMT)s. A dedicated readout ASIC and acquisition board has

been developed at IP2I [34]. The photomultiplier tube (PMT)s were

characterized during the PhDs of Jean-Luc Ley[35] [36] [37] and Mattia

Fontana [38]. The data acquisition system developed by the CLaRyS

collaboration using fast µTCA has been developed for the Compton

camera, including the hodoscope acquisition [39] [40]. A 32+32-fiber

prototype has been tested first with carbon ions at GANIL, and second

with the data acquisition system at CAL-Nice with proton beams, within

the PhD of Oreste Allegrini [41]. The scintillating-fibers beam hodoscope

was finally characterized in beam tests during O. Allegrini’s thesis using

65 MeV proton (in the protontherapy center in Nice, Centre Antoine

Lacassagne) as well as 95 MeV/u
12

C beams (in GANIL, Caen) at various

intensities. This hodoscope successfully provided 2D images of proton

beams (Figure 2.4) with a detection efficiency larger than 98 % with

logical OR condition between the two fiber planes. Moreover, the timing

resolution is around 1.8 ns FWHM. Overall, the performances show that

such a technology is viable for beam monitoring during hadrontherapy

[42]. A 128 + 128 fibers prototype, read-out with 8 MaPMTs, has also

been assembled (Figure 2.5).

2.2.3 Diamond hodoscope for fast timing in
hadrontherapy

The CLaRyS-UFT project (LPSC IP2I CPPM CREATIS), funded by the

INCa Cancer Plan over the period 2017-2021, supported by Université
Grenoble Alpes with the funding of S. Curtoni PhD thesis (2017-2020)

and by the LabEx PRIMES with the funding of P. Everaere PhD thesis

(2020 – 2023), proposed such a very innovative development based on

the use of diamond detectors in order to achieve time resolutions of less

than 100 ps. Indeed, compared to other semiconductors, chemical vapor

deposition (CVD)-diamonds (Chemical Vapor Deposition) exhibit a high

resistivity (>10
13 Ω.m) associated to a large electronic gap (5.48 eV) that
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Figure 2.5: Scintillating fiber hodoscope,

2× 128 fibers, read out by 8 MaPMTs

results in an almost negligible leakage current, and thus a low noise

level. They are also highly resistant to radiations and, most of all, the

high charge carrier mobility ( ∼2000 cm
2

V
−1

s
−1

) leads to a very fast

response allowing tens of picoseconds time resolution and high count-

rate capability. Consequently, diamond is an excellent candidate for such

a targeted beam monitoring. Eventually, this diamond beam hodoscope

is aimed to be used in a single particle regime, either at clinical intensities

for carbon-therapy, or at reduced intensity during proton therapy.

The active part of the hodoscope, built at LPSC, tested and fully charac-

terized in beam conditions (CAL and ARRONAX proton beam facilities)

during S. Curtoni and then P. Everaere PhD theses, is made of diamond

sensors (Figure 2.6): either single (sCVD) or polycrystalline (pCVD) ones.

The choice between the two types of diamond here depends on the

signal-to-noise ratio which is closely linked to the purity of the diamond

(sCVD is the purest one) and which results from the analysis of the elec-

trical signals generated by the collection of charges in the volume asset.

Indeed, the energy deposition of an incident particle in the substrate is

25 times higher for carbon ions of 400 MeV/u than for protons of 70

MeV, allowing the use of pCVD diamonds of lower quality but available

with larger surface (optimized coverage of the irradiation field). Then,

the diamond read-out is performed by dedicated discrete (eventually

integrated) reading electronics (low noise, high counting and timing reso-

lution capacities). This hodoscope is to satisfy the conditions imposed for

use in proton therapy and carbon therapy, which implies: counting rate

performances at the level of 100 MHz for the entire detector, which results

in ∼10 MHz per channel, a targeted time resolution of 100 ps and a spatial

resolution of about 1 mm and finally, a radiation resistance enabling

their functioning at 10
13

protons/cm
2
/year (20 sessions/day). In such an

application, the diamonds are used as solid ionisation chambers. Charges

are created by the interaction of ionising particles with the material, as

in the case of TraDeRa. An electric field causes the carriers to migrate

towards the electrodes, where the signal is collected and amplified before

being processed by the data acquisition system. To ensure optimum

coverage of the hodoscope, the sCVD diamonds are arranged in a mosaic.

The metalization for both sCVD and pCVD diamonds is in the form of
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Figure 2.6: Top: the 32 channels dia-

mond beam hodoscope demonstrator

equipped with the 4 4.5× 4.5 mm
2

sCVD

diamond mosaic (daughter board) read-

out by fast preamplifiers (mother board).

Bottom: the 2 × 2 cm
2

pCVD daughter

board

Figure 2.7: Time resolution achieved

with the diamond active volume read out

by the whole electronic read-out chain.

dT is the rms value of the fit function

strips orthogonal on each face (inducing possible X,Y spatial locations).

Current preamplifiers were designed [43] using discrete components,

at the LPSC, to instrument the diamond strip - by - strip readout. The

rest of the electronics chain includes a Constant Fraction Discriminator

(CFD), which provides a time measurement independent of fluctuations

in the amplitude of the diamond signal at the output of the preamplifiers.

And, finally, a Time to Digital converter (TDC) (40 TDC are embedded

on a single FPGA) which makes it possible to achieve the temporal

resolution between two X and Y strips impacted by the incident ion. S.

Curtoni and P. Everaere demonstrated that the expected performance,

93 ps rms time resolution (Figure 2.7), could indeed be achieved by the

diamond hodoscope using a 70 MeV proton beam in the single particle

regime with 70 MeV protons and sCVD diamonds [44]. Such a result fully

validates the developments undertaken and will bring, in a near future,

a significative value for the prompt gamma detection for hadrontherapy

on-line monitoring.

2.3 On-line dosimetry

2.3.1 Online monitoring of microbeam radiation therapy

The advent of synchrotron radiation (SR) has added a new dimension to

the use of X-rays in imaging and therapy. Faced with the complexity of

these techniques, clinicians, medical researchers, medical and nuclear

physicists are working closely with synchrotron scientists to transfer

these developments to clinical trials. The STROBE team and the LPSC-

PNAM team collaborate since 2018 within the context of N. Rosuel PhD
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Figure 2.8: The MRT principle and illus-

tration of the diamond portal monitor

downstream the patient

thesis (2018-2021) funded by PRIMES, to the development of an on-

line monitoring system for MRT using a portal diamond beam monitor

(downstream of the patient Figure 2.8), with a spatial resolution enabling

each microbeam (∼ 50µm width) and each inter-beam space (∼ 350µm)

to be measured. This work lays the foundations for the veterinary clinical

trial in synchrotron microbeam radiotherapy, which started in 2021.

Furthermore, in 2023, this research received the support of the INCa

Cancer Plan with the funding of the project IODA MASTER which

extends until 2027 (STROBE, LPSC, INL, CHU-Grenoble-Alpes).

Spatial fractionation in the context of X-ray radiotherapy is the practice

of collimating a beam into an array of smaller beams to provide an

inhomogeneous distribution of radiation dose to the target. This principle

is particularly well-suited to coherent radiation such as that delivered by

a synchrotron (ESRF in Grenoble), allowing high dose deposits to deep

tumours while minimising damage to surrounding healthy tissues, thus

improving the therapeutic ratio. This spatial fractionation is preserved

throughout the patient volume. As this emerging technique is still in

its evaluation phase, it obviously requires in-depth methodological

and medical development. A further implementation consists in in vivo
dosimetry, which is the real-time assessment of the actual dose delivered

to target volumes (tumor volumes) and surrounding organs during

treatment. The question of in vivo dosimetry is particularly difficult and

has not been addressed so far for this type of therapy. In vivo dosimetry

in conventional X-ray radiotherapy (in hospitals) is currently performed

with diodes or a matrix of silicon diodes: this is the so-called “portal”

detector located downstream of the patient. This system is not suitable

for synchrotron radiation due to the low energy of the photons (50

– 200 keV) associated to a very high flux (10
4

Gy/s). In this context,

the objective that was set with the diamond portal detector was to

measure the flux transmitted for each micro-beam, using a multi-channel

segmented diamond detector, in order to be able to compare this flux

with the predictions resulting from simulations of the treatment plan. In

such a design, the diamond must allow a 1D localization, consequently

one face of the diamond is metalized in the form of strips, the other is
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Figure 2.9: Detector current measure-

ment versus dose rate (Gy/s).

uniformly metalized. The size of the strips as well as the space between

two consecutive strips have been calculated so that one track measures the

charge in the peaks, the next in the valley and this at the distance where

the detector is located behind the patient. In addition, MC simulations,

conducted by N. Rosuel in his PhD thesis [45], made it possible to estimate

an optimized diamond thickness for the detector of 150 𝜇m (Figure 2.9).

So, the detector is of sufficient sensitivity not to saturate in the peaks

and to be able to also detect the signal in the valley which is two orders

of magnitude lower. Experiments carried out at the ESRF also made it

possible to test the linearity of the response of the diamond active volume

readout by electronics developed at the LPSC (on the model of what was

developed for TraDeRa [32]), as a function of the dose rate (intensity

for a microbeam) Figure 2.9. This has been validated over the current

range provided for MRT measurements. These results led to the design

of a first prototype of 32 read channels in discrete electronics then to a

second version equipped with integrated electronics, developed at LPSC

as well. This 8-channel prototype has demonstrated all its performance

and been used in clinical routine on dog veterinary patients as part of

the INCa PAIR TUMC project. The data analysis was performed by F. Di

Franco during her postdoctoral studies funded by PRIMES in 2023 [46].

It has been proven that the detector was able to measure direct and

attenuated microbeams as well as inter beam fluxes with a 1 % precision

level. Phantoms’ tests (RW3 and anthropomorphic head phantoms) were

performed and compared to simulations. A preliminary study showed

that absolute differences between simulated and recorded transmitted

beams are within <2 %, even with complex geometries. Eventually, a

153-channel detector was built in 2023 on this principle, and tested

successfully during the last ID-17 beam-time in July 2003.

2.3.2 Flash therapy - pulsed proton beams: DIAMMONI
diamond beam monitoring

Time fractionation makes it possible to deliver doses of the order of Gy in 1

ms, or even 1 𝜇s. In this case, the rapidity with which the dose is delivered

makes in vivo control more problematic. As we have seen, on-line in vivo
control of radiotherapy can be done by secondary radiation from nuclear

reactions in hadrontherapy. The trend towards increasing the intensity

of clinical beams for flash therapy now poses new challenges: adapting

the counting capacity of detectors, electronics and data acquisition. On

the other hand, the ion accelerators allowing the delivery of such beams

create the need for very precise monitoring of the ion flux with fast
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Figure 2.10: Reconstruction by a full met-

allized diamond detector of a ∼ 100 µs

train made of 4 ns proton pulses emitted

at 30.45 MHz. During data acquisition

performed by a digital sampling oscillo-

scope, the proton flux was at the level of

410 kGy/s

counting in a strongly radiative environment. An important issue is

the adaptation to the temporal beam structures, which vary greatly

depending on the type of accelerator (cyclotrons, synchro-cyclotrons or

synchrotrons), in terms of useful cycle or peak intensity. The intrinsic

qualities of diamond make this semiconductor a perfect candidate, here

too, to meet monitoring requirements with such accelerators. This led to

the DIAMMONI project funded by ANR (R. Molle PhD thesis 2022-2024

collaboration LPSC, Subatech, ARRONAX) and supported by the LabEx

PRIMES (internship R. Molle in 2022).

DIAMMONI proposes the development of a diamond detector for beam

monitoring at ARRONAX with an application to proton flash radiother-

apy. The beams used are very intense pulsed beams. Key issues in the

project are 1) to be able to mark the “start” and “end” of each train of

pulses and 2) to integrate the current in each successive train. As in "flash"

treatment, the objectives are to increase proton beam intensity of the

order of µA which stands for 10
5

to 10
6

particles per single proton pulse,

it represents a real challenge. At first, the choice of diamond detector

active part is crucial. It implies to use thin diamond (50 µm) highly biased

(4 V/µm instead of 1 V/µm which is standard use) in order to avoid

charge recombination inducing charge loss. Then it implies the design of

a dedicated readout electronics for the current integration. Preliminary

experimental studies on the ARRONAX cyclotron have demonstrated

that the “start” and “end” train stamp in expected time is well performed

Figure 2.10. A zoom on the diamond signal (upper right corner) proves

that the pulsation of the signals corresponds to the expected period of

33 ns. Front-end diamond read-out electronics were then developed at

the LPSC. It allows the integration of the current in a proton train of

variable duration (dt) with an interval between two consecutive trains

(dit) also adjustable according to the average beam intensity desired for

the delivery of the treatments. The current integration was validated

under experimental conditions at the ARRONAX cyclotron under 70

MeV proton beams. In addition, the linearity of the detector’s response

under flash therapy conditions has been proven [R. Molle et al. article in

preparation]. Finally, ageing studies were performed showing that the

diamond active part withstands a fluence of 10
13

Gy/cm
2
/year which

corresponds to the specifications of the cumulative fluence over one year

of such an hadrontherapy treatment.
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2.4 Online dosimetry for Small-Field and
Microbeam Radiation Therapy using
innovative detectors and QA systems

2.4.1 QASys: A novel QA system implementing 2D dose
tomography for small-field radiotherapy

Small radiation fields have increasingly been used during external beam

radiotherapy, e.g. in Stereotactic RadioSurgery for intra-cranial and extra-

cranial treatments. Small-field dosimetry and quality assurance (QA) raise

some challenging issues due to (i) lack of charged particle equilibrium

over most of the radiation field, (ii) partial source occlusion by the LINAC

collimation system and (iii) steep dose gradients resulting from important

contribution of penumbrae. [47] The detector choice or the system design

for small field QA should especially take into consideration the size of

the sensitive volumes (volume averaging effect), its water equivalence

(energy dependence and dose perturbation) as well as other figures of

merits of dosimeters response (dynamic range and linearity, dose rate

independence, . . . ).

The QASys consortium (INL, CREATIS, TIMC, HCL, LHE-EPFL) in the

framework of the project funded by the InCa Cancer Plan over the period

(2018-2021) and supported by the LabEx PRIMES (Master Internship

A. Zouaoui, 2021) has developed a novel system for small-field QA. It

is based on the scintillating fiber (SciFi) detector initially developed

for the LHCb experiment at CERN, which is made of tissue-equivalent

scintillating plastic fibers with a fiber pitch of 275µm [48].

The first version of the system was focused on the QA of small fields

defined by SRS cone collimators. The scintillating signal at the SciFi

detector output (which represents the projected field profile along the

fibers axis) is read out by a complementary metal-oxyde semiconductor

(CMOS) camera and then processed by a specific iterative reconstruction

method. System testing for determining beam profiles and collimator

output factors has been carried out at Lyon Sud Hospital (HCL) under 6

MV photon beam irradiation. The reconstructed profiles for cone sizes

from 4 to 15 mm diameter are coherent with data from EBT3 radiochromic

films and micro-TLD [49, 50]. Another version of the system shown in

Figure 2.11. is to monitor two-dimensional (2D) dose distributions of

small elliptic and rectangular fields.It is based on 6 SciFi detectors stacked

with in-plane 30° rotated orientations from each other.

Each detector output is coupled to a linear array of silicon photodiodes.

The six acquired projected dose profiles at different orientations are

processed by a two-step method (i.e. geometric tomography followed

by penumbra determination) to perform 2D dose reconstruction [52].

Gamma index analysis using EBT3 films as reference has been performed

on data obtained with a 6-MV photon beam, as illustrated in Figure 2.12.

It shows that the reconstructed 2D dose distributions have gamma in-

dex pass rates higher than 95 % for all the tested configurations with

1 %-Dose-Distance / 1 mm-Distance-To-Agreement criteria [51]. A tomo-



2.4 Online dosimetry for Small-Field and Microbeam Radiation Therapy using innovative detectors and QA systems 19

Figure 2.11: QASys Instrumented phan-

tom prototype for small field QA, imple-

menting a stack of 6 SciFi detectors with

in-plane 30° rotated orientations and 768

photodetection channels [51]

Figure 2.12: Measurement of 2D dose

distribution for a 20x10 mm2 RT field by

QASysy prototype and EBT3 films: Field

profiles and Gamma index analysis with

1 %-DD /1mm %-DTA [51]

graphic reconstruction algorithm for cross-sectional imaging of IMRT

beams from six projections has also been proposed and experimentally

validated [53]. According to the obtained results, such a real-time system

could potentially be an alternative to film dosimetry, which is still widely

used as reference in clinical practice for small field QA. Moreover, the

same system with minor changes could be adopted for a quick and highly

resolved Percentage Depth Dose curve (PDD) measurement or check

without using a water tank [54]. Its high depth resolution also makes it

possible to measure PDD in heterogeneous cavity conditions.

2.4.2 Novel detectors for Synchrotron Microbeam
Radiation Therapy dosimetry and QA

Synchrotron Microbeam Radiotherapy, which uses low-energy photon

beams at extremely high flux (∼10 kGy/s) with submillimeter spatial

fractionation, raises multiple challenges for dosimetry and quality assur-

ance, for example in terms of micrometer spatial resolution, dynamics

and tissue equivalence of detector response, and radiation hardness. The

Ioda-Master project (STROBE, INL, LPSC CIC-IT CHUGA), funded by

INCa’s Cancer Plan over the period 2023-2026, supported by PRIMES
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Figure 2.13: MRT dosimetry and QA

detector prototype implementing an ar-

ray of plastic micro-scintillators coupled

with a multi-mode multi-core optical

guide

(F. Thevenet PhD 2021- 2023 and M. Moussaoui internship in 2023),

proposes to meet these challenges using instrumentation based on the

use of micro-scintillator arrays.

High resolution PSD detector for synchrotron MRT

Compared with other detection technologies being considered for real-

time MRT dosimetry, which use materials with Z and/or densities much

higher than the tissue, plastic scintillation detectors (PSD) have a much

lower energy dependence of their responses for low-energy photon MRT

beams. Archer et al. have shown that a point detector, consisting of a

10µm-thin disc of plastic scintillator coupled to an optical fiber, can

withstand the extremely high dose rates used in MRT [55].

Based on these interesting properties, we have developed for MRT

dosimetry and QA, a novel detector by implementing an array of plastic

micro-scintillators coupled to a multi-mode multi-core optical guide. It is

worth mentioning that the detector microfabrication process allows self-

alignment of each core in the guide with a single micro-scintillator and

thus, preserves the full detector resolution. Prototypes with more than

100 channels at half the MRT beams pitch have been built to measure

peak and valley doses simultaneously across the full width of the field

as shown in Figure 2.13.

The first prototype of the detector allows a full beam coverage (20 mm)

with single beam spatial resolution (60 µm). The detector output is read

out by a high-resolution linear CMOS sensor. The prototype testing

carried out at ESRF under MRT conditions confirm the technology’s

good radiation hardness, with no observable degradation in detector

response after irradiation of 100 kGy carried out at extremely high dose

rate (several kGy/s). The detector has a linear dose response with no

dose-rate dependence, as shown in Figure 2.14 . These encouraging

results validate the undertaken developments. We are currently working

on system improvements in terms of SNR optimization and fabrication

process for lower inter-channels variation.

Highly-heterogeneous-cavity-based-detector for synchrotron MRT

It is worth mentioning that high-yield PSD are based on a couple of

dopants implementing a two-step conversion, i.e. (i) scintillation and (ii)
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Figure 2.14: Detector response to single

microbeam and full MRT field irradiation

measured at ESRF

Figure 2.15: Sparse scintillation layer of

a few microns thick, based on perovskite

QDots

wavelength shifting which limits the miniaturization possibilities of the

PSD.

To overcome this difficulty, we are studying an alternative approach based

on highly heterogeneous cavities made up of a thin, sparse scintillating

layer embedded in a tissue-equivalent polymer matrix. This new type

of detector is expected to show low energy dependence of its response

because of its principle of operation. Indeed, when such a detector is

implemented in a RW3 phantom and thanks to this polymer matrix, it

can be considered as a large cavity not disturbing the flux of the primary

photons (the charge particle equilibrium is established). Therefore, the

collision Kerma gives a good approximation of the absorbed dose in

this (large) cavity. The sparse scintillation layer, which comprises high-Z

scintillation micro-cavities, mainly detects the electrons resulting from

this dose deposition. The response of such a detector can be modeled

with a combined use of large and small cavity theories.

To establish the proof of concept for this new detector, we have developed

prototypes with a sparse scintillation layer of a few microns thick, based

on perovskite QDots. This layer is embedded in an epoxy polymer matrix.

Two microfabrication processes have been developed in the framework

of M. Moussaoui Master internship (supported by the LabEx Primes) to

produce layers with scintillating microcavities that are either organized

or randomly distributed. Images of such layers are shown in Figure 2.15.

Detectors using an array of highly heterogeneous cavities have been
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Figure 2.16: Highly-heterogeneous-

cavity-based-detector testing at ESRF in

MRT conditions

designed, built and tested under synchrotron MRT conditions at ESRF.

Figure 2.16 shows the experimental set-up and the measured response of

the detector for a 1 s irradiation at different dose rates.

The detector response is linear and does not depend on the dose rate.

It exhibits a radiation hardness to be considered for a routine use in

synchrotron MRT dosimetry. The detector response shows no energy

dependence with the spectrum modification due to the use of PMMA

plates (ranging from 0.5 cm to 20 cm) to change the irradiation dose

rate. This is in line with predictions from our modelling. Further work is

underway to study the energy dependence of this type of detector over a

wider range of X-ray photon spectra. Scintillating layers based on other

QDots will also be studied as part of the Ioda-Master project.

2.5 Conclusion

Several developments were conducted within the frame of LabEx PRIMES

to provide innovative therapeutic beam monitors. In order to be widely

used, monitors for IMRT should become mandatory in each treatment

facility, which is not yet the case. More focused monitors, such as time- and

position-beam hodoscope in particle therapy, and synchrotron-radiation

QA and real-time monitoring systems, may have specific applications

and deserve forefront research and developments. Such developments

are still ongoing.
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3.1 Introduction

The advent of synchrotron radiation (SR) has added a new dimension

to the use of x-rays in imaging and therapy [56]; and several beamlines

currently have active research programs in medicine using high-flux

coherent x-ray beams produced by a synchrotron source. Regarding the

complexity of these techniques, clinicians, medical researchers, medical

physicists have been collaborating closely with synchrotron scientists

to spearhead this development towards clinical trials. The concepts of

the two main Synchrotron radiotherapy modalities are summarized on

Figure 3.1. The first phase I/II clinical study of synchrotron radiotherapy

ever realized has recently been performed at the European Synchrotron

Radiation Facility (ESRF), in a dose escalation protocol on 15 patients [57,

58]. Synchrotron Microbeam Radiotherapy (MRT) is now also entering a

clinical transfer phase [59] with large animal studies for toxicity studies

[60] and a veterinary trial that just started at the European Synchrotron

[61] on dogs bearing primary malignant brain tumors. The present chap-

ter introduces the rationale of synchrotron radiotherapy and its high

potential in cancer and drug resistant epilepsies management. A focus is

made on the synchrotron stereotactic radiation therapy clinical trial and

on the translational research in MRT, and related perspectives, to empha-

size on the groundbreaking medical physics, clinical and translational

research that occured in the frame of the LabEx PRIMES to enable these

successful milestones that are definitely game changers in the world of ra-

diotherapy. The radiobiology fundamentals of synchrotron radiotherapy

are described in more details in the experimental radiobiology section

(cf 4).

Figure 3.1: Synchrotron Radiotherapy

Modalities
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3.2 Synchrotron radiation therapy

Radiation therapy (RT) is the use of ionising radiation to treat

cancer and some other types of non-cancerous lesions such as drug-

resistant epilepsy. Along with surgery and chemotherapy, RT is one of

the most effective methods for cancer treatment. Around 50 % of all

cancer patients will receive RT at some stage during the course of their

illness [62]; and among all patients with malignant brain tumours, almost

85 % had indications for curative- or adjuvant-intent RT [63]. The main

challenge of radiotherapy is to deposit a therapeutic radiation dose in the

tumour without exceeding the nearby healthy tissue tolerances. For some

particularly radio-resistant tumours, RT only offers a palliative option due

to the high morbidity of the surrounding healthy tissues. New techniques

are under development in order to improve the therapeutic index of

radiotherapy i.e. the balance between the probability of tumour control

(TCP, for Tumour Control Probability) and the risk of normal tissue

complications (NTCP, for Normal Tissue Complications Probability). The

objective of these new modalities is to widen the so-called therapeutic

window. This is achieved when a treatment scheme offers a similar TCP

for lower NTCP values, or an improved TCP for similar NTCP values.

The use of low energy x-rays in this context is attractive if the x-ray

source can be brought inside or close to the target volume, because of

the steep depth-dose curves inherent to these poorly penetrating beam

qualities. These techniques are already implemented in clinics with good

results in the management of some solid tumours: brachytherapy [64],

intrabeam therapy [65] or contact therapy [66] are classical examples.

However, the use of low to medium energy x-rays in external beam radio-

therapy was almost completely disregarded by the medical community

for treating deep seated tumours due to the lack of beam penetration.

Several systems have been recently proposed to use kilovoltage x-rays in

dynamic arctherapy (kVAT), as a cheaper alternative to linear accelerator-

based dynamic treatments [67–69]. These techniques have to be optimised

to reach clinical practice, especially by improving the organ at risk doses

distributions [68].

Synchrotron radiation can produce high flux (10
5

times higher than

a conventional x-ray source), quasi-parallel coherent x-ray beams in the

50-200 keV energy range. The particularities of this x-ray source offer sig-

nificant advantages in external beam radiotherapy using low to medium

energy x-rays. Innovative therapeutic applications of synchrotron radia-

tion have thus been developed in the past 20 years, where the poor beam

penetration is compensated by the use of:

▶ high-Z elements radiosensitizers for local dose enhancement:
the higher the atomic number of the target, the higher the lo-
cal energy absorption. The numerous preclinical studies have

clearly demonstrated the therapeutic efficacy (significant increase

of local energy absorption and of survival time in rodents) of

this modality for various radiosensitizing agents: iodinated con-

trast agents [70]; platinum based chemotherapeutic agents [71,

72]; gold, gadolinium,iron or lathanides nanoparticles [73–77]. An

increased differential effect is obtained when irradiating tumors

previously loaded with high atomic number elements. If a high-

enough radiosensitizer concentration is reached without toxicity,
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a local increased energy deposition occurs due to the rise of the

photoelectric effect cross section on heavy atoms irradiated with

low-to-medium energy x-rays and associated secondary particles

(photoelectrons, Auger electrons and fluorescence x-rays). These

combined treatment modalities benefit from a much greater local

dose enhancement at synchrotron beams of low to medium ener-

gies, when compared to high-energy photons from a linac [73, 74,

77].

▶ high dose rate x-ray beams to take advantage of the so-called
flash effect: the higher the dose rate, the higher the healthy
tissue tolerance.The potential of ultrahigh dose-rate single-dose

irradiations has been recently shown (< 40 Gy/s, flash, 6 MeV

electron beams). In flash irradiations, the occurrence and severity of

early and late complications affecting normal tissue is significantly

reduced [78, 79] relative to that of conventional irradiations (0.05

Gy/s) at the same dose, with a similar tumor control probability.

Medical beamlines in synchrotron facilities can achieve dose rates

of 0.1 to 10 kGy/s at 2 cm depth in water (2×2 cm
2

square field),

which clearly shows the potential of these sources for exploiting

the benefits of the flash effect in external beam radiotherapy using

photons sources [80].

▶ submillimetric fields for a spatial fractionation of the dose: the
smaller the field size, the higher the tolerances of the healthy
tissues. The use of submillimetric field sizes allows to explore the

limits of a concept called dose-volume effects: the smaller the field

size, the higher the tolerances of the healthy tissues [81, 82]. These

tolerances increase dramatically when field sizes smaller than a

certain threshold are used [83]. The spatial fractionation of the dose

could provide a further gain in tissue sparing due to the biologi-

cal repair of the microscopic lesions by the minimally irradiated

contiguous cells [84]. It has also been recently demonstrated that

microbeam radiation therapy significantly improved survival of

glioma bearing rats when compared with broad beam radiation

therapy delivered at a comparable dose [85, 86]. Therefore, spatial

fractionation of the dose using submillimetric field sizes may lead

to a simultaneous shift of the TCP and NTCP curves in opposite

directions, widening the therapeutic window for radioresistant tu-

mors such as gliomas [87]. The coherent high dose rate synchrotron

generated x-ray beams are of particular interest for this technique,

with a blurring effect [88] minimised by short irradiations times,

and micrometric penumbras [89] due to short electron ranges and

high spatial beam coherence.

3.3 Clinical trials in contrast-enhanced
synchrotron stereotactic radiotherapy

Clinical therapeutic applications of synchrotron x-rays are thus

becoming a reality. Fifteen oligo-brain-metastatic patients have been

successfully treated at the European Synchrotron Radiation Facility

medical beamline (ESRF-ID17), using 80 keV high-flux quasi-parallel

monochromatic x-ray beams, in the presence of iodinated compounds
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injected immediately before irradiation [57, 58]. These clinical trials have

been proposed from the promising in vitro and in vivo preclinical trials

performed in the early 2000's [70, 90, 91]. The medical physics challenges

[92] that have been successfully addressed to implement these clinical

trials are detailed thereafter. A dedicated treatment room has been built

at the ESRF medical beamline [93] together with a irradiation control

system interfaced with a state of the art patient safety system (see the

left part of Figure 3.1). After a phase of optimisation of the treatment

plan parameters (energy, ballistic, etc) performed by Edouard et al. [94], a

dedicated TPS was adapted to contrast-enhanced synchrotron stereotaxic

radiotherapy (SSRT) in which the synchrotron beamline geometry and

the transport of low to medium energy polarised photons in presence of

high-Z material were modelled [95] (see Figure 3.2).

Figure 3.2: Synchrotron Stereotactic Ra-

diotherapy: Beamline model and treat-

ment planning

Dedicated dose prescriptions and absolute dosimetry protocols have

also been implemented [96, 97]. Finally a dedicated dosimetry CT protocol

including the quantification of the radiosensitizer biodistribution has

been proposed, validated and used for treatment planning [98].

Figure 3.3: Synchrotron Stereotactic Ra-

diotherapy: clinical trial workflow

These interdisciplinary approaches and close collaboration between

the Grenoble-Alpes hospital, university team and the ESRF scientists and

engineers, lead to the first radiotherapy clinical trial ever performed using

synchrotron x-rays. It consisted of a dose escalation protocol to show the

feasibility and safety of the technique and 15 patients were successfully

treated with an increasing part of their hypo-fractionated stereotactic

radiotherapy treatment course being performed using Contrast Enhanced

Synchrotron Stereotactic Radiation Therapy (CE-SSRT, see Figure 3.3). In

the frame of this clinical trial, our team also presented the very first live
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human computed tomography (CT) dataset obtained on a synchrotron

source with monochromatic x-rays at a clinical radiation dose [99].

This clinical trial has clearly shown the feasibility and safety of this

combined treatment technique using iodinated contrast agents. However,

due to the limited uptake of iodine (2 mg/mL on average in the planned

target volume (PTV) [98]), and the fact that the contrast agent remains

extracellular during the irradiation, there is a particular interest for

Platinum based chemotherapeutic drugs or Gadolinium nanoparticles to

reach a higher therapeutic efficacy in SSRT with molecules that have an

approval for being used in the context of combined radiotherapies.

As combined therapies using Carboplatinum [72], or Aguix Gd

nanoparticles [74] have shown interesting results under MV irradiations

in preclinical trials on rodents, several clinical trails have started using

conventional hospital MV Linacs. As a direct consequence of Rousseau

et al. work [72], a Phase I trial of intracerebral convection-enhanced

delivery of carboplatin for treatment of recurrent high-grade gliomas

has recently started in the USA [72] for combined radio-chemotherapy

using carboplatinum [100]. After years of academic development through

collaboration of several French and International laboratories, AGuiX , a

sub-5 nm nanoparticle based on a polysiloxane network surrounded by

gadolinium chelates has been developed as theranostic agent to be an

effective MRI contrast agent and radiosensitizer. This new technology has

successfully been transferred in human at Grenoble with the achievement

of “First in Man” clinical trial sponsored by CHUGA, the NANORAD

trial [101].

These preclinical and clinical trials are paving the way of the future

SSRT trials (as for example a Phase II clinical study of SSRT for re-

irradiation of local relapsing glioblastoma in presence of Aguix Gd

Nanoparticles which has been proposed to the ESRF), using the unique

capability of Synchrotron Radiation (SR) tuneable monochromatic x-rays

to be produced at clinical dose rate. This achievement allows one to

consider, from then on, that the SSRT installation at ESRF combined with

the CHUGA expertise to identify, recruit and treat patients at ESRF/ID17,

could be an operational platform of SSRT open to external users in

collaboration with the radiation-oncology team of the CHUGA. However,

the ESRF decided to disregard the continuation of the SSRT program at

the end of this first trial. In 2023, the ESRF decided to close ID17 and

hence put an end to the feasibility of any in vivo medical applications of

synchrotron radiation.

3.4 Toward clinical trials in microbeam
radiation therapy

There is undoubtedly an improved differential effect (higher TCP

with lower NTCP) when using arrays of synchrotron x-rays minibeams

(0.5 mm wide beams replicated at a 1 mm pitch [102] ) or microbeams

(0.05 mm wide beams replicated at a 0.4 mm pitch [85]), in the context

of spatially fractionated radiotherapy. In particular, the outstanding im-

proved healthy tissue sparing effect of synchrotron MRT [103] enable to

deliver several tenth of Gy in the PTV and hence reach an much higher
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tumor control with less side effects, when compared to broad beam

irradiations [85, 86]. After two decades of preclinical studies, the clinical

transfer of MRT in oncology [59] and epilepsy [104, 105] management be-

comes a reality. Regarding the complexity of these techniques, clinicians,

medical researchers, medical physicists had collaborated closely with

synchrotron scientists to spearhead this development towards clinical

trials. As these high dose rate techniques are still in their conception

phase, they obviously had required extensive methodological devel-

opment for their implementation in transnational research. Rigorous

medical physics clinical codes of practice had to be implemented on the

beamlines involved. Such protocols are well established in conventional

clinical radiotherapy, but they are not directly applicable to synchrotron

radiotherapy due to the low to medium energy x-ray spectrum, very

high dose rates and radiation detectors and modeling tools limitations

if being used for submillimetric beams. The medical physics works,

related to the transfer of spatially fractionated beams into transnational

research on large animals, is presented thereafter to highlight the strong

added value of the LabEx PRIMES collaborative effort to reach these

outstanding milestones. A focus is made on theoretical and experimental

dosimetry challenges and end to end studies that have been addressed

in the preparation of MRT clinical trials.

Several teams from the LabEx PRIMES are collaborating to develop

a full medical physics suite (instrumentation, detectors, simulations,

treatment planning) for state of the art synchrotron RT programs: MRT

and FLASH photon radiotherapy. The final goal of these projects is to

propose the contours and methodology of a phase I/II synchrotron

radiosurgery clinical trial using these instrumentation and software. Four

main research axes have been identified as key challenges to be addressed

to that respect: beam characterization, beam monitoring and portal

dosimetry; developing instrumented phantoms for dose measurements;

modelling the dose distribution and its biological consequences; and

providing the adequate methodology for initiating the clinical transfer

of MRT.

Measuring the microbeams dose accurately and reliably is a fun-

damental step towards trials with human patients as precise delivery

of the dose prescribed by the oncologist must be ensured. Indeed, the

technique is based on the spatial fractionation of the dose using an array

of parallel microbeams having a width comparable to that of a human

hair (∼50 micrometres) and being separated by regions of almost zero

radiation (400 micrometres pitch).

An absolute dosimetry protocol has also been proposed, slightly

modified from the IAEA TRS 398 code of practice [106], and using a

pinpoint chamber in a centimetric square field [107]

Absolute real time dosimetry methods have been successfully bench-

marked using a microdiamond detector [108–110], in the framework of a

LabEx PRIMES - Australian synchrotron collaborative effort.

Film dosimetry applied to MRT Quality Assurance has been ex-

tensively studied by Pellicioli et al. [111]. Despite some substantial im-

provements the method still suffers from large uncertainties, bias due

to the reading modality using a single channel microscope and requires

lots of post-processing which makes it difficult to be implemented in a
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clinical workflow. Ocadiz et al. developed a patient specific QA based on

film dosimetry [112]. This modality has however been set with a limited

spatial resolution and with separate outputs for peak and valley doses. It

also suffers from high uncertainties due to the noise in the film’s readout

procedure. An extensive study has been performed as part of a PhD

funded by LabEx PRIMES [113], to find the most suitable film type for

MRT dose assessment under irradiation conditions that were identical to

the treatment.

The INCa has recently granted 3 teams of the LabEx PRIMES with

fundings to develop dose calculations algorithm, treatment planning

and evaluation tools, beam monitoring devices and in vivo dosimetry

modalities. Three PhD students were also funded by the LabEx PRIMES

in that context.

Figure 3.4: Medical Physics suite devel-

oped for Microbeam Radiation Therapy

(MRT). Top: Patient specific quality assur-

ance based on micro-metric scintillating

detectors. Middle : Transmitted beam

monitoring using diamond detectors for

transit dosimetry.Bottom: high resolu-

tion dose calculation Algorithm for treat-

ment plans assessments accounting for

the MRT dose distribution complexity.

The developments related to this medical physics suite is represented

on Figure 3.4.

The Lyon Institute of Nanotechnology (INL) is currently working on

new detectors and methods to address the challenges of patient-specific

quality assurance in MRT. Planar scintillating waveguide technology cou-

pled via clear waveguides to linear CMOS camera have been developed in

the framework of Florian’s Thevenet PhD’s project. A new type of detec-

tion system using 105 scintillating plastic microstrips has been designed,

fabricated and tested under MRT conditions. It exhibits a linear dose

response without dose rate dependence. Its radiation hardness makes it

suitable for routine use in MRT QA. These preliminary results are very

encouraging. Further work is underway to reduce losses in optical guides

and increase the signal-to-noise ratio. Alternatives to BC-408 are also

being explored to address issues with narrower microstrips [114]. The INL

is also working on detectors for orthovoltage small field dosiemtry. These

detectors are made base on heterogeneous cavities made of a sparse high-

Z scintillation layer (such as perovskites), embedded in a tissue equivalent

epoxy resin. To meet the needs of modelling small-sized detectors of

orthovoltage X-rays, for spatially fractionated radiotherapy,Thevenet in
vivo proposed a model to determine the responses of these detectors.

The detector model considers that X-ray photons mainly interact with

medium surrounding the scintillation layer, and that the output of the
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detector mainly results from secondary electrons in this layer. This model

was compared to measurements performed on the Small Animal Radi-

ation Research Platform SARRP, installed on the IRMaGe platform in

Grenoble. Simulations results compared with measurement data were

encouraging with differences lower than 16% for beam energies in the 60

kVp to 220 kVp range. These differences could be reduced by refining

the model such as with more accurate local secondary particles spectrum

modelling [115].

Moreover, within the frame of a treatment, full coverage of the

MRT field is required for beam monitoring control, and possibly transit

dosimetry. Large area, single crystal diamond detectors developed at

LPSC appear as good candidates for this challenge. Recently, during

his PhD thesis, N. Rosuel showed the excellent linearity of a diamond

detector with dose rate from 1 to 10000 Gy/s [45]. As a proof of con-

cept, a prototype of striped diamond portal detector enabling online

microbeam monitoring during synchrotron MRT treatments has been

devlopped. The detector, a 550 mm bulk monocrystalline diamond, is

an eight-strip device, of height 3 mm, width 178 mm and with 60 mm

spaced strips, surrounded by a guard ring. An eight-channel ASIC circuit

for charge integration and digitization has been designed and tested.

Characterization tests, performed at the ID17 biomedical beamline of

the ESRF, showed that the detector can measure direct and attenuated

microbeams as well as interbeam fluxes with a precision level of 1%. Tests

on phantoms were performed and were compared with Monte Carlo

simulations. A 2% difference between experiments and simulations was

found for solid water phantoms. In more complex geometries such as

the anthropomorphic phantom, a preliminary study showed that the

absolute differences between simulated and recorded transmitted beams

were within 2%. These results showed the feasibility of performing MRT

portal monitoring using a microstriped diamond detector [116]. Online

dosimetric measurements have also been performed during preclinical

and clinical veterinary trials at ESRF. Two multichannel micro stripped

detectors are being developed for this project, including fully integrated

electronic readouts. They will be positioned upstream and downstream

the patient position and will cover the whole microbeam array extension.

The first detector aims at monitoring the incoming flux when the sec-

ond will measure the transmitted microbeams and be used for transit

dosimetry.

Until recently, none of the developed dosimetry tools combined all

the requirements for a clinical use in a MRT dedicated TPS: precision, time

efficiency and spatial resolution. In her PhD funded by the LabEx PRIMES

[113], Sarvenaz Keshmiri recently developed a full high-resolution MC

calculation engine based on PENELOPE which is capable of taking into

account the 3D conformal MRT fields, to be used as calculation core in a

clinical MRT-TPS [117]. This calculation engine named penMRT aims at

being reliable, fast enough to ensure dose calculation in a clinical context.

It also allows the display of high resolution (5𝜇m) dose maps and high res-

olution.This precise micrometric dose calculation engine is a significant

added value to understand the underlying radiobiological mechanisms of

MRT, when being used as multi-directional treatments. High-resolution

3D dose maps for treatment planning and dose prescription in exter-

nal beam radiotherapy with spatially fractionated microbeams enable
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accounting for the dose distribution heterogeneities at the micrometric

scale, specific to this disruptive treatment modality. A recent work from

Keshmiri et al. lead to new dose metrics, not available so far, and adapted

to microbeam radiation therapy. These metrics can be used for developing

prediction and/or biophysics models in microbeam radiation therapy. A

retrospective study was performed on survival data from MRT treatment

on rats bearing gliomas and we were able to establish a survival increase

prediction model based on peak doses, which is to our knowledge the

first correlation ever shown between dose metrics adapted to microbeam

radiation therapy and the outcome of a dose escalation study [118].

As proof of principle and cornerstone for the safe clinical transfer

of MRT, we conducted the first international therapeutic microbeam

irradiation of a spontaneous malignant brain tumor in a veterinary patient

[119]. This project was mainly funded by the French National Cancer

Institute INCa, the French Healthcare ministry (DGOS) and the LabEx

PRIMES. Under the conditions of a clinical trial, we have validated the

safe delivery of 3- dimensional conformal MRT as exclusive radiosurgical

treatment to a pet dog bearing a malignant brain tumor [120].

3.5 Perspectives

These preclinical and clinical trials are paving the way of the future MRT

trials, using the unique capability of Synchrotron Radiation (SR) x-rays

to be produced at ultra high dose rates. This achievement allows one to

consider, from then on, that the MRT installation at ESRF combined with

the CHUGA and LabEx PRIMES teams expertise should be upgraded to

a MRT clinical research facility. However, the ESRF decided to disregard

the continuation of the MRT program after July 2023. The closure of ID17

has definitely put an end to the feasibility of transferring MRT to clinics

in a reasonable time. The only beamline in the world that is pursuing

these unique radiotherapy studies on a synchrotron source is the Imaging

and Medical Beamline (IMBL) at the Australian Synchrotron. Compact

sources such as the line focus source developed in Munich might be an

alternative to bring MRT to clinics, however in a mid/long term future

[121].
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4.1 Introduction - innovative radiotherapies

In 2012, when the LabEx-1 project began, the field of innovative radiother-

apies was more limited compared to today. At that time, radiotherapies

mainly relied on improving conventional photonic radiotherapy devices

such as Intensity-Modulated Radiation Therapy (IMRT), Stereotactic

Body Radiation Therapy (SBRT), Gamma Knife, and CyberKnife. The

focus was on better targeting tumor volume. Additionally, there was a

growing interest in proton therapy and carbon therapy treatment cen-

tres, although scientific validation of their effectiveness through clinical

studies was still insufficient. In academic research, there was a focus on

developing metal nanoparticles (Au, Pt, Gd, Fe...) used in combination

with radiotherapy to increase the dose locally while sparing healthy

tissues. There was also interest in using synchrotron light for Stereotaxic

Synchrotron Radiation Therapy (clinical trial at ESRF) and Microbeam

Radiation Therapy (MRT) studies with pre-clinical models. The five con-

stituent teams of WP3 (Experimental Radiobiology) with complementary

skills in radiobiology and chemistry deployed a project around three

main areas:

1. Synchrotron irradiation (photo-activation of Z elements and MRT).

Two teams of GIN (Inserm U836 - Grenoble), led by Drs Hélène

Elleaume and Raphaël Serduc, are leading teams for the devel-

opment of innovative radiotherapy techniques using synchrotron

radiation and CIBEST group from UMR5819 (CEA - Grenoble), led

by Dr Jean-Luc Ravanat, is specialized in radiation-induced DNA

damage.

2. Combination of metallic nanoparticles with conventional irradia-

tion. The FENNEC team at ILM (CNRS UMR 5620 - Lyon), led by Dr

Olivier Tillement, synthesized and developed the AguIX nanopar-

ticles. The RCM team at IP2I (CNRS-IN2P3 UMR5822 - Lyon), led

by Pr Claire Rodriguez-Lafrasse, participated in the in vitro and in
vivo proof of concept of the nanoparticles’ radiosensitizing effect.

3. Ion irradiation (mainly carbon ions). RCM team of IP2I, led by

Pr Claire Rodriguez-Lafrasse, has recognized experience in the

molecular mechanisms specifically involved in the response to

carbon ion irradiation.

Their goal was to quantify and understand the biological effects induced

by these three irradiation modalities, focusing on DNA damage, chromo-

somal aberrations, oxidative stress, signaling and cell death, and tumor

escape, in different models (cellular, preclinical, and clinical). They also
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aimed to optimize irradiation parameters, evaluate treatment effective-

ness, and assess the potential for clinical transfer. Today, the radiation

therapy landscape has evolved with the introduction of innovations such

as FLASH radiation therapy, which delivers ultra-high doses of radia-

tion at ultra-high dose rates, minimizing damage to healthy tissue. The

combination of radiotherapy with sensitizers such as metal nanoparticles

and immunotherapy has shown promising results in improving patient

survival. Additionally, boron neutron capture therapy (BNCT) and X-ray-

induced photodynamic therapy have gained attention for their potential

in precise cancer treatment. In response to these advances, the research

program for the second phase of LabEx has evolved. The ILM-FENNEC

team has transitioned out of the network as the AGuIX nanoparticles

have entered an industrial transfer phase. They have been replaced by

the Santé team of LPC (CNRS UMR6533 - Clermont-Ferrand), which

is working on the development and evaluation of gold nanoparticles.

Furthermore, the consortium has been strengthened by the addition of

the ProMD team (UMR5249 CEA-CNRS-UGA, CEA - Grenoble), led

by Dr. Serge Candéias, focusing on the response of healthy tissues to

different types of radiotherapy.

4.2 Photo-activation of high-Z elements
(potentially included in nanoparticles)
acting as radiation dose-enhancers

Combining radiotherapy with chemotherapeutic agents that sensitize

tumors to ionizing radiation has long been considered a promising strat-

egy (i.e. radiosensitization). However, when combined, these drugs can

increase normal tissue damage and radiation-related side effects due to

their inherent cytotoxicity. Another method to improve the therapeutic

efficacy of radiotherapy is to increase the dose delivered to tumor cells

using high-Z elements that have large photon interaction cross sections,

producing a wide variety of secondary emissions such as secondary

electrons, Auger electrons, and Compton electrons, leading to reactive

oxygen species generation (indirect damages) as well as direct damages.

This concept was first introduced in the early ’80s by Norman’s lab

using an iodinated contrast agent as a radiation dose-enhancer [122].

Hainfeld in 2004 [123] proposed the use of nanoparticles containing high

Z elements to act as dose enhancers and showed a remarkable survival

rate of mice carrying subcutaneous mammary carcinomas, treated with

gold nanoparticles. In this domain, various high-Z radiation dose en-

hancers have been evaluated such as Au, Hf, Gd, Pt, and Fe. Different

types of radiosensitizing or radiation dose-enhancer nanoparticles were

developed and/or evaluated during the LabEx period.

4.2.1 Contrast-enhanced Synchrotron Stereotactic
Radiotherapy (CE-SSRT)

The advent of synchrotron radiation (SR) has added a new dimension

to the use of X-rays in imaging and therapy. In addition to conventional

X-ray sources, synchrotron radiation has also demonstrated significant
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Figure 4.1: Synchrotron-based activa-
tion of high-Z elements: A) 3D render-

ing of the gold distribution using high

resolution synchrotron CT imaging (spa-

tial resolution 45 microns, X-ray energy

35 keV). Gold was infused intracerebrally

by convection-enhanced delivery (CED)

(5 𝜇L at 25 mg/mL Aurovist 15 nm), 10

min before imaging. The blue volume

represents the gold surface that encloses

more than 1.25 mg/mL of gold (5% of

the injected solution concentration). B)

Overlap of the distribution of the high

Z elements after intra cerebral (blue) in-

jections and the tumor volume (yellow),

obtained with K-edge Synchrotron CT.

advantages in external radiotherapy, in particular, the potential of com-

bined therapies using medium-energy synchrotron X-rays to induce

photoelectric effect on high-atomic number elements.

The numerous preclinical studies that we have conducted clearly demon-

strated the therapeutic efficacy of this modality for various radiation

dose-enhancers: iodinated contrast agents [70]; gold, gadolinium, or iron

nanoparticles [124–127]. An increased differential effect was obtained

when irradiating tumors previously loaded with elements of high atomic

number. If a sufficiently high concentration of radiation dose-enhancer is

achieved without toxicity, a local increase in energy deposition occurs due

to the increased cross-sectional area of the photoelectric effect on heavy

atoms irradiated with low- to medium-energy X-rays and associated

secondary particles (photoelectrons, Auger electrons, and fluorescence

X-rays). These combined treatment modalities benefit from a local dose

increase only when using medium-energy synchrotron beams, but not

with high-energy photons from a LINAC [124–128]. The absence of local

dose enhancement for high-energy photons and gold nanoparticles has

been confirmed theoretically (see next chapter).

The biodistribution of the heavy elements (contrast agents or nanopar-

ticles), after intravenous or intra cerebral injections, was studied in a

preclinical model of glioblastoma (F98 model) using synchrotron spectral

computed tomography (CT). We demonstrated the prime importance of

the distribution of the nanoparticles relative to the tumor volume (Figure

4.1).

Iron-based nanoparticles also show great potential despite their much

lower atomic number and, consequently, photoelectric cross-section.

Indeed, Fe nanoparticles have low toxicity and the ability to accumulate

in tumor cells in large quantities and concentrate directly in the target

volume [128]. However, these nanoparticles are not as advanced toward

clinical trials as Gd nanoparticles and would require a substantial amount

of additional preclinical work to reach the clinic, including quantitative

biodistribution studies as a function of time and injection modality,

precise microdosimetry studies and optimization of preclinical treatment
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planning.

Close collaborations between the Grenoble-Alpes University Hospital on-

cologists and European Synchrotron Radiation Facility (ESRF) scientists

and engineers have resulted in the first worldwide clinical radiotherapy

trial using synchrotron X-rays. This was a dose escalation protocol de-

signed to demonstrate the feasibility and safety of the technique. Fifteen

patients were successfully treated, with an increasing proportion of

their hypofractionated stereotactic radiotherapy treatment performed

using contrast-enhanced synchrotron stereotactic radiotherapy. The pa-

tients were treated at the medical beamline of the European Synchrotron

Radiation Facility (ESRF-ID17), using 80 keV high-flux quasi-parallel

monochromatic X-ray beams, in the presence of an iodinated contrast

agent injected immediately before irradiation [129]. The first part of the

treatment was delivered at the ESRF (one or two fractions), the other

fractions were delivered at the Grenoble-Alpes University Hospital. In

this study, we demonstrated the feasibility of this new modality and

paved the way for the evaluation of other agents such as nanoparticles to

improve the efficacy of radiotherapy.

4.2.2 Gadolinium-based nanoparticles (AGuIX, CuPRiX)

The chemists of one of the LabEx teams have developed an ultrasmall

(<5 nm) gadolinium-based nanoparticle (GBN) which presents ideal

biodistribution (no uptake of the reticuloendothelial system and a blood

half-life of 42 ± 3 min), accumulation in the tumor thanks to increased

permeability and retention effect (EPR), and rapid and high renal excre-

tion (96% of GBN eliminated 18 days after intravenous injection) [130].

Thanks to the work of the LabEx teams summarized below and nation-

al/international collaborations, AGuIX® (Activation and Guidance of

Irradiation by X-Ray) nanoparticles could be produced industrially by

the company NHTherAGuIX, under GMP conditions and brought to the

clinics in a phase I clinical study by a radiotherapist of the LabEx [131].

Currently, only two nanoparticles are clinically used in the world, in

combination with radiotherapy, the AGuIX® and the NBTXR3® hafnium

nanoparticles developed by the Nanobiotix company.

In the framework of LabEx, the sensitizing effect of GBNs, associated with

photon irradiation at energies between 220 keV and 6 MeV or with carbon

ions, was first evaluated in cellular models of tumors known for their low

survival rate: squamous cell carcinoma of the head and neck (HNSCC)

[132], metastatic melanoma [133] and more recently chondrosarcoma

[134]. A radiosensitization factor between 1.2 and 2.1 was obtained,

demonstrating the radiosensitizing effectiveness of these GBNs in 2D and

3D cell cultures, even in combination with carbon ions [134, 135]. From a

mechanistic point of view, we have shown that GBNs enter cancer cells by

passive diffusion and macropinocytosis [136], localize in the cytoplasm,

as free particles or trapped in lysosomes, at the immediate proximity of

mitochondria [137]. Gadolinium combined with irradiation can produce

a wide variety of secondary emissions, such as photo-electrons, Auger

and Compton electrons, fluorescence-rays, leading to the production

of reactive oxygen species (ROS) that trigger intramitochondrial stress

(production of ROS, decrease in transmembrane potential, deletion of

mitochondrial DNA (mtDNA) and nuclear DNA damage). Finally, a
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process of mitotic catastrophe precedes death by late apoptosis [132, 137].

The X-ray interaction probability with the Gd nanoparticles is strongly

dependent on the X-ray energy. Using monochromatic X-rays from the

synchrotron, we were also able to demonstrate, through experimental

clonogenic studies and Monte Carlo simulations, that the AguIX® can

act as radiation dose-enhancers when present at 2 mg/mL in the culture

medium and irradiated with low energy synchrotron X-rays. As predicted

by Monte Carlo simulations, this effect is negligible when using LINAC

high-energy irradiation [126]. However, the AGuIX® also have a biological

action that is independent of the X-ray energy [125].

The efficacy of AGuIX® has also been demonstrated in xenograft tumor

models of HNSCC, metastatic melanoma, and chondrosarcoma as a proof

of concept for future clinical transfer [132–134]. Regulatory toxicity studies

were carried out in parallel in rats and monkeys. Building on all these

results, the first human clinical study was launched by a clinical partner

of the LabEx affiliated with the Grenoble-Alpes University Hospital, in

patients with multiple brain metastases. The phase 1 dose-escalation study

showed that the AGuIX® combination with pan-encephalic radiotherapy

specifically targets brain metastases and is retained in tumors for up to 1

week under feasible and safe conditions [131]. A phase II study (NANO-

RAD2) is currently underway in Grenoble Hospital (NCT03818386), as

well as four other clinical trials around the world in cervical, pancreatic,

and lung cancers.

As copper levels in serum and tumor tissues have been directly linked

to cancer progression and metastasis formation, a new generation of

AGuIX®, called CuPRiX, containing gadolinium atoms and free chelates,

has been recently developed to allow: (i) localized copper depletion in

tumors to prevent cell dissemination and metastasis, and (ii) increased

tumor sensitivity to RT due to the presence of Gd atoms. In cells from

three cancer models (lung, breast, head and neck), CuPRiX NPs were

able to slow cell migration and invasion, inhibit the activity of the copper-

dependent lysyl-oxidase (LOX) enzyme involved in these processes

and radiosensitize tumor cells [138]. In a syngeneic mouse model of

metastatic breast cancer, combining CuPRiX treatment with fractionated

radiotherapy led to a differential gene expression profile (Nanostring®

technology), a significant reduction in the tumor growth and number of

metastases, as well as an increase in mouse survival (figure 4.2) (Vernos et
al., in preparation). This new generation of AGuIX®, CuPRiX, combining

radiosensitization and copper chelation, thus appears to be a promising

strategy for the treatment of radioresistant and potentially metastatic

cancers.

4.2.3 Functionalized gold nanoparticles

Mitochondria, with their own genome, could constitute an alternative

target to the nucleus to kill tumor cells. MtDNA alterations can lead to

mitochondrial dysfunction but have also been correlated with an increase

in the invasive capacity of certain tumor types, such as prostate cancer.

Interestingly, irradiation of human cells induces nuclear damage but

does not alter the readdressing of repair molecules to the mitochondria,

as described with EXD2 [139]. Moreover, mtDNA double-strand breaks

led to selective mtDNA degradation in human cell lines (HEK293) [140].
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Figure 4.2: Gadolinium-based nanopar-
ticles: A) Schematic representation of

AGuIX (adapted from [138]. B,C) In vivo
evaluation of the efficacy of combined

AGuIX (intratumoral injection) and ra-

diotherapy (4 Gy) treatment in HEMC-

SS bearing mice (chondrosaroma model)

(adapted from [134]. B) Evolution of

tumor growth following treatment ex-

pressed as mean % of tumor growth

±SEM C) Survival curves (Kaplan-Meier)

obtained in response to the different treat-

ments. D) Schematic representation of

CuPRiX, a gadolinium- (blue dots) based

nanoparticle able to chelate copper (or-

ange dots) (adapted from [138]). E) Effect

of CuPRiX and AGuIX on the motility

of a breast cancer cell line, 4T1, assessed

with the scratch-wound assay. Data are

expressed as a percentage of wound con-

fluence (relative density). F,G) In vivo
evaluation of the efficacy of combined

CuPRiX and radiotherapy treatment in

an orthotopic syngeneic mouse model of

breast cancer. F) Evaluation of the tumor

growth following treatment, data are pre-

sented as a percentage of tumour growth

on day 23 compared with the first day of

treatment. G) Number of lung metastatic

colonies at the end of the therapeutic

sequence.

Targeting mitochondria with metals such as gold in combination with

X-irradiation could thus radiosensitive tumor cells, through an increased

local dose deposit in relation to the amount of metal and the induction

of mitochondrial damage.

In collaboration with the Clermont-Ferrand Chemistry Institute (ICCF),

one LabEx team has developed organometallic compounds (N-heterocyclic

gold carbenes: gold-NHC complexes) which, thanks to their lipophilic

and cationic structure, accumulate in mitochondria. These compounds

cause radiosensitization of human prostate tumor cells (PC3) submitted

to X-irradiation. Mechanistic studies of the involved processes show

(1) mitochondrial depolarization in the presence of these compounds,

and (2) modification of mitochondrial respiratory chain proteins, with

the loss of some complex III sub-units. These modifications, prior to

irradiation, are responsible for the toxic effects of gold-NHC complexes

independently of the physical processes of dose enhancement [141]. This

first proof of concept to target mitochondria for radiosensitization shows

the interest in increasing local gold concentration to induce energy dose

deposit enhancement in the vicinity of the mitochondrial network. This

first set of experiments led us to develop gold nanoparticles (to increase

local gold concentration) functionalized with specific labelling to achieve

mitochondrial targeting in prostate tumor cell lines. This was carried out

using specific triphenylphosphonium (TPP) moiety combined with gold

nanoparticles during synthesis. These TPP@Au NP were internalized

in prostate tumor cells and localized in autophagosomes-like structures

and mitochondria, even if a low density of internal NP was observed

(figure 4.3) [142].

At the same time, rebuilding the mitochondrial network based on decon-

volved widefield microscopic images from fibroblast cells was achieved
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Figure 4.3: Functionalized gold
nanoparticles: Electron microscopy

(TEM) of A) PC3 cells incubated

with AuNP-TPP or B) AuNP citrate

showing nanoparticles accumulation

in autophagosome-like structures. C)

Energy dispersive spectroscopy (EDS)

of the AuNP-TPP treated cells showing

signals from carbon (C), Copper (Cu)

and gold (Au). D) Clonogenicity curves

from PC3 cells treated without NP

(yellow), with AuNP-citrate (pink) or

with AuNP-TPP (purple).

and microdosimetry was performed using irradiation with 250 keV

photons [143]. Energy deposition was also evaluated through simula-

tion study of gold nanoparticles (30 nm) nearby mitochondrial network

during 120 keV photons irradiation [144].

4.2.4 Nanoscintillators to improve radiotherapy (PDT-X)

Whereas scintillators were originally developed to detect ionizing radia-

tion, the physical characteristics of nanoscintillators give them promising

biomedical properties. Nanoscintillators down-convert ionizing radiation

into photons with energies ranging from ultraviolet (UV) to near-infrared.

It was recently proposed to use nanoscintillators to induce PDT using

ionizing radiation. The cytotoxic effects induced by PDT originate mainly

from ROS that are specifically generated when tumor-localized photo-

sensitizers are excited by visible light. The optical penetration depth of

such photons is only a few mm through the tissues. Therefore, PDT can

only be used for superficial and/or fiber-optic accessible tumors. The

limited penetration of light in tissues remains the main Achilles’ heel of

PDT. To overcome this limitation, nanoscintillators (NS) were proposed

as intra-tumor light sources that can be activated by X-rays to excite

nearby photosensitizers. Because nanoscintillators can be made of high Z

elements, they are another promising type of nanoparticles to induce radi-

ation dose-enhancement as previously described. We recently published

the first proof that NS induce radiation dose-enhancement in an aggres-

sive preclinical model of glioblastoma (figure 4.4) [145]. Nanoscintillators

that emit UV photons, and more specifically UV-C photons that DNA

efficiently absorbs, can help control tumor progression by causing specific

DNA damage. While X-rays create double-strand breaks, UV-C photons

generate pyrimidine dimers and oxidized guanine, both of which can

lead to cell death. The use of nanoscintillators to generate UV-C-induced

DNA damage instead of X-rays is particularly interesting because it is

independent of tumor oxygenation. As hypoxia is a cancer characteristic
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Figure 4.4: Nanoparticles dose-
enhancement & X-ray induced photo-
dynamic therapy (PDT-X): LaF3:Ce:

A) Radiation dose-enhancement by

LaF3:Ce leads to a full recovery of 15

% of the animals bearing a F98-brain

tumor. Survival curve obtained after

treatment when LaF3:Ce nanoparticles

are delivered by convection-enhanced

delivery (CED) (20 𝜇L of 50 mg mL
−1

).

B) Nanoparticles distribution in the

brain by Laser Induced Breakdown

Spectroscopy (LIBS). Image of a of

a long-term survivor’s slice of the

brain. LaF3:Ce nanoparticles are still

visible in the brain 129 days post tumor

implantation. Scale bar = 1 mm. Source:

Bulin et al. 2020 [145]

often associated with resistance to RT, UV-radioluminescence could be a

powerful tool for overcoming hypoxia-related radioresistance. [146].

4.3 Microbeam Radiation Therapy (MRT)

The treatment of aggressive brain tumors remains a therapeutic impasse.

A major obstacle is the radiosensitivity of normal brain tissue which

limits the dose of radiation. Previous studies highlighted the exceptional

tolerance of normal tissues to MRT. The latter is a radically new approach

of radiosurgery where X-rays from a synchrotron light source are colli-

mated in a set of parallel planar microbeams, a few tens of microns thick,

separated by a few hundred microns. This discontinuous irradiation

geometry preserves the normal tissue while delivering considerable

doses to the targeted lesion. During the last ten years, MRT research

was focused on the clinical transfer of this promising technology by

optimizing irradiation efficiency on rodents, by technically moving to

large animal exposures, and by treating spontaneous gliomas in dog

patients.

Delivery of high-radiation doses to brain tumors via multiple arrays of

synchrotron X-ray microbeams permits huge therapeutic advantages.

Brain tumor (9LGS)-bearing and normal rats were irradiated using a

conventional, homogeneous Broad Beam (BB), or MRT. MRT with a valley

dose of 10 Gy deposited between microbeams, delivered by a single port,

improved tumor control and median survival time of tumor-bearing

rats better than a BB isodose. An increased number of ports and an

accumulated valley dose maintained at 10 Gy delayed tumor growth

and improved survival. At identical valley isodose, each additional MRT

port extended survival, resulting in an exponential correlation between

port numbers and animal lifespan. A 10 Gy valley dose, in MRT mode,

delivered through 5 ports, achieved the same survival rate as a 25 Gy

BB irradiation because of tumor dose hot spots created by intersecting

microbeams. Multiport MRT reached exceptional 2.5-fold biological

equivalent tumor doses [86]. The unique normal tissue sparing and

therapeutic index were eminent prerequisites for clinical translation.
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Figure 4.5: Microbeam Radiation Ther-
apy (MRT): A) The dog’s head is main-

tained in a non-invasive stereotactic ra-

diotherapy frame. Metallic beads are po-

sitioned on the mask for the MRT treat-

ment positioning. B) One of the two syn-

chrotron beam radiographs, acquired for

isocenter positioning using the metal-

lic markers that can be seen on the im-

age. C) Lipowitz alloy mask for conform-

ing the microbeam array to the PTV.

D) Gafchromic film showing the confor-

mal microbeam array treatment beam. E)

MRI follow-up of the first MRT patient.

Axial T2W images acquired before, one,

three, and six months after MRT treat-

ment with 4 Gy cumulated valley dose.

The veterinarian trials foreseen by our teams required technological

improvements and the transfer of MRT technology to larger animals.

We developed a clinical suite in order to perform safe, image guided

and TPS-based microbeam irradiations. We applied such methodology

to caudate nucleus exposures in pig brains [60]. We were able to study

long-term effects of multiport MRT on normal brain tissue at doses up to

those that will be delivered in the future vet trial.

As proof of principle and cornerstone for the safe clinical transfer of

MRT, a “first in dog” trial was conducted under clinical conditions to

evaluate whether 3D conformal MRT can be safely delivered as exclusive

radiosurgical treatment in animal patients (figure 4.5). A 17.5 kg French

Bulldog received microbeam radiation therapy for his suspected glioma

with conformal microbeam arrays of synchrotron-generated X-rays. The

dose prescription was adjusted to deliver 2.8 Gy to the PTV. With

these parameters, each beam delivered 20-25 Gy to the target as peak

doses. Clinical follow-up over 3 months did not indicate radiotoxicity; a

significant improvement in the dog’s quality of life with the disappearance

of tumor-induced seizures. MRI performed 3 months post-irradiation

revealed that the mass effect was minimized with normalization of the

left lateral ventricle and a tumor volume reduction of 87.4 %. To our

knowledge, this neuro-oncologic veterinary trial is the first 3D conformal

synchrotron X-ray MRT treatment of spontaneous intracranial tumor in a

large animal ever performed. This vet trial is the essential last step before

the clinical transfer of MRT in a synchrotron facility in the near future

as it will demonstrate the feasibility and safety of treating deep-seated

tumors using synchrotron-generated microbeams.

4.4 Hadrontherapy

High-energy ions have the particularity to deposit a maximum of energy

at the end of their course. The Bragg peak, characteristic of proton

[1H] and carbon ion [
12𝐶] beams, clearly enables a dose distribution in

patients superior to the most advanced photon radiotherapy modality,

such as IMRT (intensity modulated radiotherapy). In addition, the linear

energy transfer (linear energy transfer (LET)) of carbon ions, greater

than that of protons, gives them a relative biological efficiency (RBE),
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evaluated between 2 and 3 compared with photons and only 1.1 for

protons. The properties of ions permit hypofractionated treatments and

lead to better tumor control, increased survival, and better quality of

life for patients. Proton therapy is reserved for the treatment of tumors

close to organs at risk (ocular tumors, chordomas, and chondrosarcomas

of the cranial base. . . ) and is particularly attractive for the treatment

of paediatric tumors (3 centers in France (Paris, Nice, Caen)). Carbon

therapy, more expensive and unavailable in France until 2028, is reserved

for radioresistant tumors (soft tissue sarcomas, adenoid cystic carcinomas,

mucosal melanomas...) close to organs at risk. Restraint regarding the

deployment of carbon ions in the clinic mainly concerns the risk of

long-term toxicity and of secondary cancers possibly affording from their

higher RBE and fragmentation tail, which have not been clearly proved by

randomized studies. In this context and while awaiting the results of such

clinical studies, the molecular specificities of the tumor response to carbon

ions have been extensively studied in cellular models within the LabEx.

Proton irradiation was performed at the Centre Antoine Lacassagne (CAL)

in Nice and carbon ion irradiation at the Grand Accélérateur National

d’Ions Lourds (GANIL) in Caen, National Institute of Radiological

Sciences (NIRS) in Chiba (Japan) and very recently a collaborative contract

was signed with the Centro Nazionale di Adroterapia Oncologica (CNAO)

at Pavia in Italy.

Monte-Carlo simulations performed within WP3 of the OH° production

at 10-12 seconds, in the nuclear volume, after a 2 Gy photon or a 1 Gy

carbon ion irradiation revealed two different profiles of distribution.

Photon irradiation induces a dense and homogeneous ROS distribution,

whereas ROS remain condensed in clusters along the carbon ions tracks.

Based on this differential ROS distribution at the nanometric scale and all

the biological experimental results, we recently proposed that the higher

biological efficacy and specificities of the molecular response to carbon

ions rely on a ‘stealth-bomber’ effect [147].

The "bomber" effect represents most of the deleterious properties of

carbon ions on cancer cells at the molecular and cellular levels. It is

triggered when the biological targets, such as DNA or organelles, are

on the trajectories of carbon ions. In this case, the ROS clustered in the

tracks are responsible for: the complex and irreparable DNA damage

[148, 149]; the increased level of oxidized proteins (in preparation); the

absence of dependency on telomere length [150] and on the intracellular

oxygen concentration [135]. The consequence, at an equivalent physical

dose of photons, is a higher cell killing effect of carbon ion irradiation

[151], specifically on cancer stem cells [152], by a p53-independent and

ceramide-dependent mechanism [153].

The “stealth” effect symbolizes the property of carbon ions to deceive

the cellular defenses. Thus, the absence of significant ROS production

outside the carbon ion tracks does not allow the achievement of a decisive

ROS threshold necessary to activate survival pathways and defense

mechanisms. This is objectified by: the decrease in the detection of DNA

lesions and the activation of their repair [148, 149]; the non-activation of

proliferative and invasive pathways [154]; the absence of stabilization

of the HIF-1𝛼 (hypoxic inhibitory factor) transcription factor [135] and

the non-activation of its numerous targets; the specific regulation of key
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Figure 4.6: The stealth-bomber
paradigm: A) Monte Carlo simulations

of the OH• radical distribution in water

in response to photons and to a mixed

radiation field of C-ions (dose-averaged

linear energy transfer (LET) 50 keV/𝜇m)

at physical and biological equivalent

doses of 2 Gy photons and in a volume

corresponding to that of a cell nucleus. B)

Diagram illustrating the ‘stealth-bomber’

paradigm. Adapted from [147].

effectors of the proteostasis (Wozny et al in preparation); and the absence

of stress granule formation [155].

Altogether, these results led us to propose a new paradigm, setting ROS

spatial distribution at the nanometric scale as a highly relevant point, to

explain the differential cellular responses to C-ion and X-ray irradiation.

It also strongly suggests that hadrontherapy with C-ions will always

display a much better efficacy than the most advanced conventional

radiotherapy technology.

4.5 Radiobiology of healthy tissues

In addition to radiation-induced tumor cell death, a lot of work has been

devoted in recent years to the characterization of the effects of radiation on

healthy cells and tissues that are inevitably exposed during radiotherapy.

We were more specifically interested in inter-cellular signaling events

that may activate - or interfere with - immune responses. Irradiated cells

can indeed secrete inflammatory mediators and/or release intracellular

molecules that can bind to receptors on surrounding immune cells

present in every tissue, or recruited by radiation-induced tissue damage

[156, 157]. This form of radiation-induced bystander signals can modify

the tissue radiation response and eventually contribute to radiation-

induced detrimental effects. These effects are usually thought to be more

prominent after low-dose exposure.

We addressed this question in vitro, in supernatant transfer experiments.

Primary human fibroblasts and keratinocytes obtained from the same

donors were exposed to low and high X-ray doses. Their conditioned

culture media, harvested one- and two-days post-exposure, were found

to reduce the transcription of genes coding for inflammatory cytokines

and the inflammatory activation of freshly purified peripheral blood

mononuclear cells (PBMCs). These effects were different for fibroblasts
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and keratinocytes on the one hand, and after low and high dose radiation

on the other hand [158]. Additional studies in a tumor model (SW1353

chondrosarcoma) showed that bystander signals elicited after exposure

to the same doses of X-rays or carbon ions induce different inflammatory

responses in primary endothelial cells [159]. We concluded that soluble

signals elicited from irradiated primary and transformed human cells

modulate the inflammatory status and response in bystander cells, in

relation to the cell type and the radiation type and dose.

In a different approach, the direct effects of radiation exposure on

circulating leukocytes were analysed in tumor-free mice after hemi- or

whole-brain exposure with X-rays or protons at two different dose rates.

Irradiation with protons was found to be more conservative. Exposure of

lymph nodes, which are spared during proton exposure, was found to

be an important determinant of lymphopenia. Thus, radiation type and

parameters have a profound influence on immune cells [160].

4.6 Prediction of the tumor response to
radiotherapies

The use of innovative radiotherapies requires understanding tumor

response mechanisms at the cellular and molecular levels but also pre-

dicting which patient groups are the best responders to each of them.

This is essential for an optimized and secure therapeutic management

of patients. In order to initiate work addressing this question, predic-

tive biological markers for the response to photon radiotherapy have

been studied in the context of three clinical trials. To initiate works

addressing this question, predictive biological markers for the response

to photon radiotherapy have been studied in the context of two clinical

trials focused on oropharyngeal cancers. These are cancers with a poor

prognosis, most often diagnosed at an advanced stage, often presenting

locoregional recurrences and metastatic extension, and a 5-year survival

rate of patients which does not exceed 40 %. Apart from HPV status,

there are no biomarkers for early diagnosis, prognosis, and therapeutic

choice/monitoring, adapted to the characteristics of the tumor.

As part of the ChemRad clinical study (NCT02714920), we focused on

the detection and repair of double-strand breaks via the study of 𝛾H2AX

foci, the phosphorylation of ATM, and the expression of the stem cell

marker CD44 on tumor biopsies slices cultured and irradiated ex vivo.

Overexpression of 𝛾H2AX, pATM and CD44 in patients who did not

respond to treatment was associated with a poor prognosis at baseline.

In addition, the ratio of the expression of these three markers at 24 hours

after irradiation at 4 Gy versus 0 Gy was also predictive of a poor response

to treatment. Finally, the combination of these three markers increased

the predictive potential of response to treatment [161]. Furthermore, the

morphological and phenotypic analysis of circulating tumor cells (CTCs)

on liquid biopsy revealed a correlation between the increase in the number

of CTCs between two courses of chemotherapy and a decrease in overall

survival [162]. In a second cohort of patients, the expression of NRF2,

a transcription factor involved in the response to oxidative stress, was

analysed as well as that of peroxiredoxin 6, a protein regulated by NRF2.
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Immunohistochemical analysis on tissue microarray (TMA) showed that

high expression of NRF2 and peroxiredoxin 6 was a poor prognostic

factor for overall and progression-free survival. The association of these

two biomarkers reinforced the significance of the results (Philouze et al.,
submitted). We thus proposed a combination of biomarkers predictive

of the response to radio(chemo)therapy in oropharynx cancers. These

biomarkers will now be validated in larger cohorts of patients to offer

personalized treatments, based on their analysis in initial tumor biopsies

before any treatment, and on subsequent liquid biopsies to improve

monitoring by identifying resistance to treatment and early recurrences.

4.7 Conclusions and perspectives

The work conducted within the LabEx framework has led to significant

advancements in knowledge regarding innovative radiotherapies, ie

photo-activation of high-Z elements including nanoparticles, microbeam

radiation therapy and hadrontherapy. These cover various fields, ranging

from molecular mechanisms at the cellular level to pre-clinical inves-

tigations and their translation into clinical practice. The work carried

out within the LabEx framework in Experimental and Clinical Radio-

biology for Innovative Radiotherapies has led to significant progress

in understanding the photo-activation of high-Z elements, including

nanoparticles, microbeam radiation therapy, and hadrontherapy. These

cover various fields, ranging from molecular mechanisms at the cellu-

lar level to pre-clinical investigations and their translation into clinical

practice. Without being exhaustive, they have led to several world firsts:

- a clinical trial using synchrotron radiation in radiotherapy associated

with iodinated contrast agents as dose-enhancers ; - a clinical trial using

nanodrug intravenously injected in man for tumor radiosensitization ; -

a TPS-based, image-guided, conformal MRT in pigs and pet patients ; - a

demonstration of the stealth-bomber paradigm to explain the high RBE

of carbon ions. More recently, research has expanded to the effects of

radiotherapies on healthy tissues and the prediction of tumor response

to radiotherapy, further enhancing the scope of investigation.

The future of innovative radiotherapies is set for significant advance-

ments, focusing on precision improvement, side effect minimization, and

combining them with radiosensitizing treatments. Envisaged progress

includes personalized therapies tailored to individual patient character-

istics (tumor and healthy tissues radiosensitivities), the integration of

artificial intelligence for enhanced treatment planning and adaptive radia-

tion delivery, and the synergy between radiotherapy and immunotherapy

to enhance the immune response against cancer. The democratization of

radiotherapy devices combining imaging tools, such as MRI-LINAC, will

allow daily and personalized adjustment of the doses delivered to the

tumor, guaranteeing optimal radiation delivery to radioresistant tumor

areas with minimal impact on the healthy tissues. Ongoing enhancements

in imaging techniques, particularly functional and molecular imaging

(radiomic), hold the promise of improved tumor visualization for more

precise treatment targeting.

Particle therapies, such as proton- and carbon-therapies, are undergoing

refinements to enhance accessibility and efficacy across diverse cancer
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types. Emerging methods like Boron Neutron Capture Therapy (ILM) and

Flash Radiotherapy are gaining recognition for their potential to deliver

highly targeted doses with reduced damage to surrounding tissues.

The use of nanovectors and nanodrugs, as well as vector-based internal

radiotherapy, show potential for targeted drug delivery, improving the

therapeutic effect on cancer cells while preserving normal tissues.

In conclusion, the future of innovative radiotherapies holds promising

advancements, focusing on further improving the precision of treatment

delivery and, consequently, efficacy. This includes decreasing the duration

of treatment, reducing side effects, and enhancing the overall quality of

life for patients.
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5.1 Introduction

Modeling of biological effects of radiotherapy is a huge challenge, con-

sidering the complexity and variety of biological systems. The latter

may consist of molecules, subcellular entities, cells, assemblies of cells,

animals or patients. Moreover, considering the context of innovative

radiotherapy, the level of description, at least for the initial mechanisms

of radiation interactions, needs to reach the nanoscopic scale. This do-

main is highly multidisciplinary and requires strong interaction with

experimental activity, either to obtain experimental data, or to better

understand the mechanisms to be modeled. Another critical constraint

to consider is the limit of computer resources. Presently, the only feasible

approach is multiscale and multidisciplinary.

This chapter, is organized according to this strategy of modeling. Within

the LabEx PRIMES, we chose to combine various modeling at various

scales, starting from basic processes and going up to models of tumor con-

trol. Moreover, we undertook studies for innovative radiotherapy based

on both low and high LET radiation, in parallel to experimental studies

undertaken within the LabEx. New collaborations have been successfully

created for the real benefit of scientific progress and dynamics.

5.2 Low LET radiations

5.2.1 DNA damage

DFT simulation

The formation of oxidatively-induced DNA lesions is ubiquitous, yet

the chemical reaction routes toward a given lesion are not always delin-

eated, and we have sought to rely on density functional theory (DFT)

to investigate the formation of several adducts. We have first relied

on quantum chemistry, rooted in DFT for the isolated system guanine

+ 1O2, to delineate a mechanistic pathway that involves a high-lying

endoperoxide intermediate. We then rely on DFT/MM-MD (Density

Functional Theory/Molecular Mechanics-Molecular Dynamics) simula-

tions combining a quantum chemistry level description to a molecular

mechanics description to account for the role of the B-helix environment,

which blocks the formation of the spiro derivative of the major product,

coupled to a molecular mechanical description of the B-DNA helix. We
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have probed a marked environment effect as the B-helix tunes the singlet-

oxygen addition leading to the formation of 8-oxoguanine in B-DNA,

whereas a spiro derivative is obtained if the guanine is isolated [163].

The higher reactivity of guanine over adenine was also traced back to the

intramolecular charge transfer between the partially negatively-charged

O-O fragment and the guanine fragment, which is more prone to be

partly positively-charged [164]. A review paper was also written during

the LabEx initiative to sum up our findings concerning
1𝑂2 reactivity.

We also relied on molecular dynamics simulations to investigate the

association of polyamine cations with B-DNA, in direct line with the

experimental evidences obtained by Jean-Luc Ravanat [165]. Once the

reaction is described with an accurate assessment of the free energy

barriers into play, we rely on extensive classical molecular dynamics

(MD) simulations to probe the structural and dynamic signature of DNA

defects within oligonucleotides. We have also studied the formation of

lysine-guanine adducts generated upon one-electron oxidation of short

oligonucleotides [166].

These two proof-of-concept studies have given rise to a new research

line where we situate the chemistry of nucleosomal DNA relying on

all-atom, explicit-solvent molecular dynamics eventually coupled to

tight-binding DFT, which allows to gain 2–3 orders of magnitude on the

computational time and thus to explore DNA chemistry exhaustively

in its native environment. Dr. Natacha Gillet, recruited at CNRS, will

further consolidate this research line of a computational microscope for

DNA lesions in Lyon/Grenoble.

Chromosomal aberrations

As part of a collaboration of the PhaBio group at IP2I with Dr. Komowa

(Laboratory of Radiation Biology, Joint Institute for Nuclear Research,

Russia), a study was undertaken to estimate if a low priming dose of

radiation prior to a dose of one Gray could offer a radiation protection

effect. Precisely, various values of priming dose in a range covering

phenomena of hypersensitivity and enhanced radioresistance were tested.

The biological endpoint was chromosomal aberrations, and cells were

human blood cells obtained from three donors. The challenging dose

was given 24 hours after the priming dose. While hypersensitivity and

enhanced radio resistance were observed after the priming dose, no

effect was observed after the challenged dose whatever the value of the

priming dose [167].

As effects of fluctuations in the deposited dose at the scale of chromosome

were suspected, an estimation of these fluctuations was undertaken

within the experimental conditions using the Monte-Carlo simulation

LPChem [168]. Fluctuations had indeed been observed, quantified and

parameterized. However, the establishment of a link between them

and the fluctuations in the observed chromosomal aberrations was not

obvious. Conversely, the small number of donors (only three) may not be

significant to derive a clear conclusion.

Besides, benefiting from the parametrization of energy-deposition fluctu-

ations, a modeling of hyper sensibility and enhanced radiation effects

was proposed [167]. The idea was to assume that radio resistance was
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triggered by the deposition of a sufficient quantity of energy into one or

more targets. It has been concluded that a scenario based on the hitting

of only one nanotarget gave a prediction of chromosomal aberrations far

from the experimental data. Instead, the hitting of numerous nanotargets

to trigger radioprotection led to a dose response curve in agreement

with experimental data. Alternatively, if the target size was chosen of the

order of magnitude of the cell size, the scenario based on one hit led also

to a correct behavior.

5.2.2 Mini- and micro- beam radiotherapy

Calculation of RBE and DNA breaks for VHEE - interest in FLASH
and MBRT

The LPSC worked in collaboration with the ĲCLab, Institut Curie and

IRSN, on the development of VHEE (~70-300 MeV) therapy. VHEE beams

represent an interesting prospect in external radiotherapy because they

have more advantageous dose profiles over photons for treating deep

tumors, they can be focused magnetically and are less sensitive to tissue

inhomogeneities than proton and photon beams, improving the robust-

ness of treatment plans to uncertainties. In addition, their characteristics

would allow combining them with Spatially Fractionated Radiation Ther-

apy (SFRT), such as grid or minibeam (minibeam radiotherapy (MBRT))

therapy, or with FLASH therapy for the treatment of deep tumors, two

promising approaches that lead to better tolerance of healthy tissues to

irradiation. However, these beams are in technological development and

there is currently no VHEE radiobiology platform allowing to study their

biological effects, a necessary step before using them in treatment.

Our approach was to characterize theoretically the radiobiological proper-

ties of VHEE and optimize their dosimetry for VHEE SFRT approaches to

prepare preclinical trials. This project led to 5 published articles, among

which 2 studies dedicated to radiobiological modeling are described. A

first one aimed at evaluating the direct simple (SSB) and complex DNA

damage (SSBcplx or DSB) to compare 3 MBRT approaches with photons,

protons and VHEE for the treatment of a human brain tumor. We used a

multiscale Geant4 Monte-Carlo approach and the DBSCAN algorithm to

determine the mixed field that neuronal cells would see at different depth

along peak and valley regions and the number and complexity of DNA

breaks that these fields undergone in a full-nucleus DNA geometrical

model. We showed that proton MBRTs were the most favorable, allowing

to minimize damage in the valleys and obtain the highest rate of complex

breaks at the cerebral depth level, but VHEE MBRT would also be a

good compromise because it allows to have homogeneous coverage of

damage in the tumor, favoring good tumor control, and to maintain a

marked spatial fractionation in upstream healthy tissues (indicator of

better tissue protection), with machines potentially at a lower cost than

protons [169].

A second study aimed to characterize the macro and microdosimetric

behavior of the VHEE beams (without SFRT) as well as their relative

biological effectiveness (RBE) and corresponding cell survival response,

using the GATE code and the microdosimetric kinetic model (MKM)

biophysical model. The objective was to compare relatively 100 and
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300 MeV VHEE beams among others used in clinics, or of interest for

innovative MBRT therapies, as of electron beams of clinical energy (5

and 20 MeV), photons (1.25 MeV, radiobiological reference for an RBE=1)

and protons and light ions (
12

C and
20

Ne). This study validated that

the RBE of VHEEs should be equivalent to that of clinical electrons

(𝐸 ≤ 20 MeV), although presenting a higher LET (see Figure 5.1). No

biological effects would have to be considered in treatment planning

which gives confidence in the rapid implementation of these beams in

clinics for radiotherapy [170]. In vivo experiments should be nevertheless

undertaken to confirm this conclusion.

Figure 5.1: a) Dose-averaged LET (left),

microdosimetric spectra (right) and b)

theoretical cell survival curves obtained

for VHEE beams compared to clinical

electrons, photons and other ion beams

of interest in radiotherapy [170].

(a)

(b)

5.3 Nanoparticles

As mentioned in Chapter 4, experimental data on nanoparticules (NP)

were obtained with AGUIX NP, which consist of 10 gadolinium atoms

around a silica core. It would have been natural to use these AGUIX NP

to perform a theoretical study of the influence of nanoparticles on the

physico-chemical processes induced by ionizing radiations. However,

gold nanoparticle (GNP)s were chosen as model because:

▶ they contain a very high concentration of high-Z atoms, while

AGUIX NP contain only 10 gadolinium atoms,

▶ the geometry of GNP is simpler,

▶ enhancement of biological response had already been observed

with GNP in in vitro cells.

Simulation work had been started in the context of BIOHYDRA physique

Cancer project on gold material and allowed more efficient studies within
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the LabEx duration. For the development of this strategy, the LabEx

has funded 2 PhD students (Floriane Poignant, Chen-Hui Chan) and

one-year post-doc (Ricardo Ramos).

5.3.1 Gold nanoparticle structure and Monte-Carlo
simulation of electron transport

DFT study of the structure of functionalized gold nanoparticles in
aqueous medium

As part of Chen-Hui Chan’s PhD thesis, which was defended in July

2019 at Laboratoire de Chimie of ENS-Lyon, a theoretical modeling

of functionalized gold nanoparticles was developed in the context of

cancer treatment by radiotherapy. Atomistic theoretical models of gold

nanoparticles were studied in a size range from 0.9 to 3.6 nm by DFT.

The effect of the biological environment was first described by solvating

the nanoparticles with explicit water monolayers interacting with the

metal surface. The results showed that in the size range 0.9-1.8 nm, water

can transform the morphology of some metastable nanoparticles into

lower energy solvated structures, although the interaction between gold

and water is weak overall [171].

Then, more realistic DFT models of functionalized gold nanoparticles

were developed, showing that the role of PEGylation around these

nanoparticles is twofold :

1. The organic ligand shell promotes the stellation of certain nan-

oclusters (regular Au54 decahedron as shown in the figure) in a

size range going from 1.1 to 1.3 nm. The greater stability of the

polyethylene glycol (PEG) ligands adsorbed on the star decahedral

cluster leads to a greater energy cost to desorb them and there-

fore to a lower propensity for the star nanoparticle to exchange

ligands with the cell membrane. This theoretical result was in

qualitative agreement with the experiments that were carried out

to test the ability of various forms of gold nanoparticles (nano-stars,

nano-rods, nano-tips, nano-spheres, etc.) to cross cell membranes.

2. PEGylation promotes the confinement of a few water molecules in

the vicinity of the gold nanoparticles, through hydrogen bonds with

the PEG ligand chains. This phenomenon was observed in particular

for spherical morphologies, which exhibit the greatest capacity to

exchange ligands with the membrane and therefore to penetrate the

cell. This last result opened the discussion of reactivity, concerning

the localization of water molecules around gold nanoparticles at

the time of X-irradiation, during radiotherapeutic treatment. The

publication of these results [172] was featured on the cover of the

journal (see an illustration of the cover art below).

In parallel with this study, other properties such as the electrostatic

potential of bulk gold and hydrated gold nanoparticles were calculated

by DFT to be used for the development of a Monte-Carlo simulation of

electron transport in gold material and nanoparticles.
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Figure 5.2: Functionalized gold nanopar-

ticles optimized by DFT. (a) Au49 (Marks

decahedron), (b) Au54 (regular decahe-

dron), (c) Au55 (icosahedron), (d) Au55

(ino-decahedron), and (e) Au79 (irreg-

ular truncated octahedron) are covered

with a monolayer of PEG ligands ad-

sorbed on the surface of the nanoparti-

cles and close to saturation. The stellation

observed in the Au54 case leads to a more

ordered organization of the organic layer

(of the “regular brush” type), while the

non-symmetric deformations obtained

for the other nanoclusters induce a disor-

dered organization (of the “brush” type).

Figure 5.3: Cover of the journal where the

results of Chan’s work were displayed

([172]).
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Development of a Monte-Carlo simulation of electron transport in
gold material and nanoparticles

We developed a Monte-Carlo simulation of low-energy electron trans-

port into gold nanoparticles. To allow a comparison with experimental

data, the simulation was first developed with bulk gold. This simulation

included various mechanisms such as core ionisations, Auger and flu-

orescence relaxation, surface and bulk plasmons [173]. In line with the

work by Beuve et al. [174, 175], it included a surface potential through

the introduction of a mesoscopic potential. The latter was calculated

through DFT calculations described in the previous section [176]. The

predictions of the simulation were compared to yields and energy spectra

of electron emitted as a consequence of the irradiation of mono-energetic

electron beams. A good agreement was observed for electrons emitted

with an energy higher than few hundreds of electron Volt. The agreement

was less accurate for low-energy electrons, but sufficient for considering

the simulation to study the physical-chemical processes modified by

the presence of GNP in water irradiated with mono-energetic beams

of photons. To this purpose, a calculation of the mesoscopic potential

was performed for GNP using DFT. We observed that the change of

mesoscopic potential had an influence on the emission of low-energy

electrons only. The influence of the value of this mesoscopic potential on

the physical-chemical processes induced in water containing GNP was

expected therefore at the very surface of GNP and moderate.

5.3.2 Micro and nanodosimetry

Average doses at cellular and nano-scales around gadolinium NP

Work was carried out within the framework of the ANR RAPHAELO

in collaboration between the LM2S laboratory at CEA Saclay and the

STROBE team at the ESRF in the context of heavy element photoactivation

therapy. The objective was to determine the impact of the internalization

of Gadolinium nanoparticles (GdNP), in comparison to Gadolinium

contrast agents (GdCA), in the experimental cell survival response and

characterize them by micro and nanodosimetry. Clonogenicity tests

were performed with cells incubated 5h (or not) with GdNPs or GdCA

and irradiated in a monoenergetic synchrotron beam of 30 to 90 keV

and compared with
60

Co irradiation (~1.25 MeV). The experiments

showed that GdNP incubated with the cells were particularly effective

compared to non-incubated GdNPs and GdCA, reaching sensitization

enhancement ratio at 4 Gy (SER4𝐺𝑦) up to a factor of 3 after the Gd

K-edge. The modeling work carried out with PENELOPE and Geant4

permitted to quantify, at the nanometric level, the emission spectra

of secondary particles (electron/photon) as a function of the photon

irradiation energy and the NP size. According to the most realistic location

of GdNP in cells (on membrane or cytoplasm, from microscopy images),

we showed that the particles responsible for a possible enhancement

of cell nucleus damage were photoelectrons from the K and L shells of

Gadolinium and not Auger electrons that had a minor role in the dose

enhancement factor (DEF), and were maximized for photon energies

5 to 15 keV above Gd K-edge. Furthermore, simulations carried out at

the cellular scale by physically considering the geometry of GdNP or
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GdCA allowed to determine the DEF obtained at different other cellular

organelles as potential biological critical targets (membrane, cytoplasm

or nucleus) according to internalization assumptions (homogeneously

distributed in cytoplasm, concentrated in lysosomes or adsorbed on

membranes). While non-incubated GdNP or GdCA conditions correlated

well with microdosimetry modeling at all energies, incubated cells with

GdNPs led to an almost energy-independent sensitization ratio, that

was explained by a biological action of GdNP in the cell cellular cycle

which blocked them in the more radiosensitive phase G2/M [74]. We

showed that the membrane DEF with GdNP adsorbed on it (the closest

to the experimental conditions), was the dose increase that could explain

the best the important SER observed experimentally after K-edge (see

figure 5.4) [177].

Figure 5.4: Top: Example of Monte-Carlo

modeling of dose-enhancement factors

(DEF) obtained for a 65 keV photon ir-

radiation at the cellular scale with dif-

ferent hypothesis of gadolinium distri-

butions in a cell considering homoge-

neously distributed Gd (= GdCA con-

dition) or GdNP of 50 nm radius dis-

tributed in cytoplasm, lysosomes or on

membrane at the experimental concen-

tration of 2.1 mg Gd/mL. Down: experi-

mental result of cell survival (converted

in DEF through linear quadratic model)

as a function of photon energy and com-

pared with modeled DEF calculated at

nucleus, cytoplasm and membrane for

the experimentally verified conditions

of GdNP adsorbed on cell membranes

[177].

Nanodosimetric spectra around gold NP

While the calculation of mean physical dose gives interesting information

for a low cost of calculation, it may lead to artifacts and misunderstand-

ings when energy deposition in targets fluctuates importantly [178].

Alternatively, calculating spectra of specific energy in realistic conditions

of irradiation would give information closer to molecular damage. For

instance, simulating the irradiation with few grays at charged-particle

equilibrium of a large water volume containing a nanoparticle, and

calculating a spectrum of energy deposition in a nano-target set close

to the nanoparticle, would be useful to estimate realistically the impact

of nanoparticle on damage formation. However, this represents a huge

challenge to a numerical point of view and had never been done before.

Indeed, we estimate that calculating one nanodosimetry spectrum, as

show in Figure 5.5, required 500 centuries on one computer. After an

important effort of theoretical formalization and algorithm optimization,

we reduced the computing time to 24 hours, a world premier [179].

We then could calculate spectra of nanodosimetry, changing the photon

energy, the radius of the nanoparticle and the distance separating the

nanotarget from the nanoparticle. We observed that the presence of a

nanoparticle could increase the probability of depositing high values

of specific energy. This probability enhancement varied according to
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Figure 5.5: Probability density of the re-

stricted specific energy (x-axis in Gy
−1

)

for a 11-mm distance of the nanotarget

(10 nm) to the surface of the GNP. The

figure shows spectra for 2 photon ener-

gies (20 keV and 50 keV), 2 GNP radii (5

and 50 nm) and 1 Gy irradiation [179].

the nanoparticle size and the photon energy. We also observed that the

boost was due to Auger cascades and was limited to the proximity of the

nanoparticles. Beyond 200 nm, the spectra looked like the one observed

in pure water.

To estimate the effect of this boost on a biological point of view, we

transferred these spectra to the NanOx model and calculated cell sur-

vival assuming the concentration of nanoparticle was homogeneously

distributed in cells, including the cell nucleus. Using realistic irradiation

dose and nanoparticle concentration, no enhancement of cell killing

was observed. This was an outstanding result, knowing that so far the

only interpretation of the biological effect enhancement with NP was

associated to the boost of physical dose around NP. This interpretation

was mainly based on the predictions of the LEM (Local Effect Model)

[180–184]. This model was developed initially to predict biological effects

associated to hadrontherapy. It assumes that cell survival can be deduced

from the mean number of local lethal events generated in the cell nucleus,

which may be derived from the radial dose around ion trajectories. In

the application of the LEM to NP, the radial dose around the NP was

used with nanoparticles homogeneously distributed in cells. However,

as already underlined in [178], neglecting dose fluctuations at nanoscale

was found critical. Replacing the radial dose by an actual distribution

of energy deposition in nanotargets led to the disappearance of the

biological effect predicted by the LEM for both hadrontherapy [178] and

NP [185]. Finally, these results reinforce the requirement of prudence

when interpreting the biological effects in terms of high dose deposition

around NP.

5.3.3 Free radical production

While theoretical studies have mostly focused on physical mechanisms

and dose enhancement, studies of free radical production were scarce. We

investigated the primary yield of free radicals (OH and H2O2) induced

by 20-90 keV monoenergetic photons, for small GNPs concentrations

[186]. Our study was based on a Monte-Carlo approach which enables

electron transport down to low energy, both in water and in gold. We

obtained, for a gold concentration of 1 mg/mL, an average chemical
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enhancement varying from 6 to 14%, depending mostly on the photon

energy and, to a lesser extent, on the chemical species and size of the

GNP. This enhancement was strongly correlated to the dose deposition

enhancement, although not strictly proportional. We focused then on the

production of radicals around the nanoparticles [187]. In the micrometer

range, we obtained an excess of chemical species following GNP ioniza-

tion, as compared to a reference water nanoparticle (WNP) ionization.

This difference came from the dominant processes of photon interaction,

i.e., Compton for water and photoelectric for gold, which are character-

ized by different emitted-electron energy spectra. The overproduction of

chemical species could be up to five times higher for GNP, depending on

the photon energy. The concentration of chemical species within 100 nm

from the GNP surface was higher for GNPs compared to WNPs due to

Auger electrons when the nanoparticle radius was equal to 5 nm. On

the contrary, it was quite comparable when the nanoparticle radius was

equal to 50 nm. This reveals that gold Auger-electrons do not necessarily

induce a significant boost of chemical species in the vicinity of GNP, as

compared to WNP.

5.4 Hadrontherapy

5.4.1 Monte-Carlo simulations of physico-chemical
processes

In hadrontherapy, the variation of the biological effectiveness as a function

of ion species and energy must be taken into account. This biological

effectiveness can be characterized by cell survival curves described by the

well-known linear-quadratic models and its alpha and beta coefficients,

usually used in the treatment planning systems. In order to provide such

tables of alpha and beta coefficients, biophysical models are required.

The input data of these models generally consist of information on

nano/micro dosimetric quantities and, concerning some models, reactive

species produced in water radiolysis. In order to fully account for the

radiation stochastic effects, these input data have to be provided by

Monte-Carlo track structure (MCTS) codes allowing to compute physical,

physico-chemical, and chemical effects of radiation at the molecular scale.

Although the uncertainties associated to these MCTS are very difficult to

quantify from a theoretical point of view, they can be estimated through

the benchmark of several codes. This was the objective of the study

reported in this section and carried out within the PhD thesis of Yasmine

Ali funded by the LabEx PRIMES (collaboration IP2I, LPC Clermont-

Ferrand, CREATIS). The benchmark proposed in this study dealt with

Geant4-DNA (Options 2, 4, and 6) [188] and LPCHEM [189], that are

useful codes for estimating the biological effects of ions during radiation

therapy treatments [190].

Micro and nanodosimetry

We considered the simulation of specific energy spectra for monoenergetic

proton beams (10 MeV), using two codes, LPCHEM and GEANT4-DNA.

We compared probability distributions of energy transfer points in
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cylindrical nanometric targets (10 nm) positioned in a liquid water box.

Overall, the specific energy spectra and the chemical yields obtained

by the two codes are in good agreement, considering the uncertainties

on experimental data used to calibrate the parameters of the MCTS

codes. For 10 MeV proton beams, ionization and excitation processes

are the major contributors to the specific energy deposition (larger than

90%) while attachment, solvation, and vibration processes are minor

contributors.

Radiolysis species production

The radiolysis species production for both electron (1 MeV) and pro-

ton (10 MeV) beams were also studied, namely the
•
OH, e

−
𝑎𝑞 , H3O

+
,

H2O2, H2, and OH
−

yields simulated between 10
−12

and 10
−6

s after

irradiation. LPCHEM simulates tracks with slightly more concentrated

energy depositions than Geant4-DNA which translates into slightly faster

recombination than Geant4-DNA. Relative deviations with respect to the

average of evolution rates of the radical yields between 10
−12

and 10
−6

s

remain below 10%.

Computing times

When comparing execution times between the codes, we showed that

LPCHEM is faster than Geant4-DNA by a factor of about 4 for 1000

primary particles in all simulation stages (physical, physico-chemical, and

chemical). In multi-thread mode (four threads), Geant4-DNA computing

times are reduced but remain slower than LPCHEM by ~20% up to

~50%.

5.4.2 Biological dose modelling

Development of the NanOx Model

Two different biophysical models are currently implemented in the

treatment planning systems (TPS) of hadrontherapy facilities all over

the world: the first version of the local effect model (LEM) [191] and the

modified microdosimetric kinetic model (mMKM) [192, 193]. In order

to overcome some of their shortcomings, other biophysical models have

emerged in recent years proposing alternative frameworks [194–198].

The NanOx biophysical model that we developed and published in 2017

[194] is one of them: its theoretical framework gathered and combined

the premises of some of the models proposed in the literature, while

fully considering the stochastic nature of energy deposition down to the

nanometric scale. It is worth noting that NanOx was developed to predict

cell survival in the context of hadrontherapy, but it was designed to be

applied to any kind of radiotherapy within a single consistent theoretical

framework. This model can indeed be applied for instance to conventional

radiotherapy (with gamma ray) and it is currently extended to targeted

alpha therapies and boron neutron capture therapy involving low-energy

ions. The fully innovative aspects introduced in the NanOx model were

the following [199, 200]: the notion of global events that intends to
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model the lethal effects of the oxidative stress and of the accumulation of

sublethal lesions, induced at the scale of the cell sensitive volumes; ii) the

notion of chemical specific energy, representing the toxic accumulation

of oxidative stress, i.e., the imbalance between the production of reactive

oxygen species and antioxidant defenses, or sublethal damage at a cellular

level; iii) the construction of the function related to the inactivation of

nanotargets. With no a priori assumptions on this function except for

the monotonic increase, its shape was resolved by means of a linear

combination of basis functions and a fit of the weight values of this

linear combination to get a good agreement with experimental data.

The resulting function presented a threshold and a saturation that were

discussed with respect to features of other models [201].

Irradiations with mono-energetic beams

Cell survival prediction in the context of hadrontherapy was the first

application of the NanOx model. The meaning and relevance of most of

the NanOx parameters were discussed by evaluating their influence on

the linear-quadratic coefficient 𝛼 and on the dose deposited to achieve

10% or 1% of cell survival. The predictions of the model were compared

to experimental data obtained with 3 cell lines (HSG, V79 and CHO-K1)

irradiated by monoenergetic protons and carbon ions. We conclude that,

in the current version of NanOx, the modeling of a specific cell line relies

on five parameters, which have to be adjusted to several experimental

measurements: the average cellular nuclear radius, the linear-quadratic

coefficients describing photon irradiations and the 𝛼 values associated

with two carbon ions of intermediate and high-LET values [202].

Moreover, we also compared the predictions of NanOx with the ones

of 5 other biophysical models for HSG, V79 and CHO-K1 cells: the

four versions of the local effect model (LEM) and the microdosimetric

kinetic model (MKM). Although the LEM IV and the MKM predictions

accurately reproduced the trend observed in the data, NanOx predictions

were more often more accurate than the ones issued from the other

models for the three considered cell lines [203].

Irradiations with Spread-Out Bragg Peak (SOBP)

In order to estimate the biological dose for Spread Out Bragg Peak (SOBP)

irradiations, the databases of survival fraction coefficients for several ion

types have been implemented into GATE, a Monte-Carlo toolkit. Yasmine

Ali conducted these first developments during her PhD thesis, and an

article has been published in the Cancers journal on the benchmark

of the biological dose estimates with the NanOx and mMKM actors

against experimental data [190] with SOBP treament plans coming from

a simplified model of the HIBMC 320 MeV/u carbon-ion beam line in

Hyogo. This feasablility study paves the way towards the use of the

mMKM and NanOx models on clinical beams using patient CT scans.
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5.4.3 Modelling of tumor control probability

In the context of the PhD thesis of Marie-Anne Chanrion funded by

the Center of hadrontherapy of Marburg (Germany) and co-supervised

at IP2I by Prof. Beuve, modeling of Tumor Control Probability (TCP)

was undertaken for treatment with carbon ions [204]. The principle of

this modeling consisted in assuming that a model of TCP developed for

standard radiotherapy could be applied, provided that the physical dose

of photons was replaced by the biological dose of ions. For the calculation

of the biological dose, the TPS developed at this period by Siemens was

considered and the LEM I version was used to calculate the alpha, beta

tables.

To test this modeling, prostate cancer was chosen for three reasons.

First, clinical data were existing, issued from publications by the first

world-wild center of carbon therapy (Japan). Second, the geometry of

prostate tumor does not vary too much from one patient to another. It

was therefore not required to perform a treatment planning for each

patient, which is important since patient images were not available.

Third, the center of Marburg had the perspective to treat patients with

prostate cancers. We chose as TCP model a Poisson model since such

model was based on cell survival probability, consistently with biological

dose modeling in hadrontherapy. We studied the influence of the model

parameters and tested various TCP models developed for prostate cancer

treated by conventional radiotherapy.

While all parameters were found to have an impact on the TCP value, the

most critical parameter was the threshold dose of the LEM I model. Then,

for three different risks of prostate cancer, we determined the value of

the threshold dose by fitting the TCP predictions to the clinical data.

5.5 Radiotherapy with low-energy ions: BNCT
and TAT

If hadrontherapy provides a therapeutic solution to increase the biological

effectiveness in aggressive and localized cancer treatments, thanks to

the high LET of ions, the approach reaches its limits in the case of very

infiltrative or metastatic cancers. Promising solutions are proposed by

combining a molecular targeting through dedicated vectors and a local

emission of very high LET and short-range ions. It is the case in targetted

alpha therapy (TAT), where the alpha emitter is directly attached to the

chemical vector, or in BNCT where a compound enriched in
10

B isotope

is first injected, accumulates in tumor and submitted to a neutron field,

which capture eventually leads to the emission of very aggressive He and

Li ions. Both approaches present common difficulties in dosimetry and

treatment planning due to the high heterogeneity of the dose deposition

at micrometric scale, depending both on the bio-distribution of the

targeting vector and the short range of ions (few cells). In addition, the

RBE of ions varies significantly in this short range, a phenomenon that

needs to be properly considered in simulation for relevant biological

effect predictions.
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The LPSC with IP2I team PRISME started a collaboration on this subject

in 2016, with two Master students who laid the first foundations for

coupling the macroscopic Geant4 simulation of a BNCT treatment with

the use of the NanOx model. It allowed to provide a first estimation of

the biological dose received by a brain tumor in the approximation of a

mixed field algorithm including ion-RBE variation up to their stop (but

without micrometric precision). This collaboration demonstrated the

feasibility and interest of this coupling for BNCT and led to the PICTURE

project (INCa funds), started in 2021, aiming at going further in the

predictions by including the microscopic distribution complexity and

the consideration of extranuclear damage in the cell survival predictions.

The LabEx thesis of Victor Levrague (LPSC/IP2I, 2021-2024) is dedicated

to the improvement of biological effect predictions for TAT treatment

of microtumors. Mario Alcocer-Ávila, a PICTURE postdoctorant who

beneficiates from a grant complement from the LabEx, is working in par-

allel on the NanOx developments needed for PICTURE’s objectives. The

project is still ongoing, but two major achievements were accomplished

with this work so far:

1. Adaptation of NanOx algorithm for low-energy (< 10 MeV) ions:

to adapt the NanOx model from the high energies of hadrontherapy,

to the low-energies of TAT or BNCT ions, NanOx needed to include

the consideration of the energy loss in cell nuclei traversal (i.e. the

sensitive volume). The estimation of cell survival now integrates

the variation of a density function of lethal-event along the ion

track that depends on its type and energy at each step. This was

accompanied by a narrow-track approximation saving considerable

simulation time, valid for low-energy ions, that allowed to neglect

the energy deposited outside the sensitive volume due to secondary

electrons. The new algorithm was compared with the original

implementation of the NanOx model in terms of the inactivation

cross-section of HSG cells irradiated by 𝛼-particles, and showed

consistent predictions above 1 MeV/n. This work is currently the

object of an article in submission process.

2. Determination of heterogeneous distribution of alpha-emitters
in dosimetry, cell survival and TCP predictions: using this new

algorithm, we performed a systematic study in order to determine

how the micro-distribution and cell internalization of the alpha-

emitters impact predictions with different TAT treatment scenarios.

To that end, we used the CPOP/Geant4 code to generate realistic 3D

multicellular geometries and adapted a new version of this code for

TAT in collaboration with LPC-Clermont who developed initially

CPOP. Several parameters of influence were studied, such as the

size and cancer cell density of the micro-tumor considered, the

type (energy) of alpha-radionuclide, the possible diffusion of the

radionuclide daughter (in the case of
211𝐴𝑡) and the intra-tumoral

distribution of the radionuclides, following a uniform or lognormal

law. We showed for example that for tumors of radius less than

50 µm, deviations up to 30% could be observed according to the

cell internalization of radionuclides, while differences were modest

in larger tumors. In regions of low activity, the predicted TCP

varied significantly according to the intracellular and for lognormal

distributions, and RBE of alphas varied from 2.9 and 3.6. This

new calculation chain can be useful in preclinical and clinical trials
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to quantify the error made in TAT treatment predictions when

intracellular and intratumoral distributions are unknown. This

study is also in the process of article submission.

Next steps in the PICTURE project developments include the integration

of an extranuclear sensitive volume in the determination of cell survival,

to see if considering damage to the cytoplasm organelles can lead to cell

survival predictions closer to experiments when BNCT compounds or

alpha-emitters are internalized. In addition, developments are ongoing

to link the macroscopic dosimetry to these microscopic predictions to

provide a full multiscale calculation chain. This is worth mentioning

that this project will be pursued beyond the INCa funding and is now

a collaboration between five LabEx teams at IP2I, LPSC, LIRIS and

LPC-Clermont.

5.6 Conclusion

The LabEx PRIMES has permitted to create a multidisciplinary dynamic

of modelling of radiobiological effects. New fruitful collaborations have

started, and many are going to continue. Two major and synergetic

actions guided the dynamics. One dealing with nanoparticles, in par-

allel to the experimental chemical and biological activity of the LabEx.

This action, supported by 2 PhD and one-year post-doc funded by the

LabEx, allowed us to fill the gap between complex quantum computing

and biological dose predictions using the NanOx model through the

development of Monte-Carlo simulations of radical production and nan-

odosimetry. The numerical challenge was to perform estimation based

on realistic geometry, conditions and nanoparticle concentration. These

results questioned the consensual scenario on the role of nanoparticles

in the observed enhancement of biological effects, namely the spike of

dose in the proximity of the nanoparticles. A second action, supported

by two PhD and one-year post-Doc, concerned the development and

applications of the NanOx model. This model can predict the proba-

bility of cell survival for any ionizing radiation, taking into account all

stochastic effects of radiation from the nanoscale and the production of

ROS. Through an exhaustive comparison with experimental data and

the model considered for Hadrontherapy, we proved this model to be

competitive with the other models. These results encouraged the LabEx

teams to develop a new actor in the GATE toolkit to predict biological

dose for clinical irradiation. Work is in progress to extend these pre-

dictions to the probability of tumor control (TCP), which is a quantity

closer to clinical objectives. In parallel, the NanOx model application has

been extended to innovative radiotherapy, BNCT and TAT, for which

the biological effectiveness is due to low-energy ions. This was a new

computing and mathematical challenge for the implementation of the

NanOx model, since the variation of the ion energy within cells cannot

be ignored. Geant4 with a low-energy option was then used, and some

cell geometries were determined using confocal microscopy and image

analysis. For TAT, predictions of biological dose and TCP were obtained

for microtumors. For BNCT, the formalism and algorithms have been

designed and need to be implemented. For all these innovative therapies,
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the research undertaken by the LabEx on radiobiological modeling was

intended to go as far as possible toward clinical applications.
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6.1 Introduction

The GATE open-source software, developed by the Opengate collabo-

ration, has been available to the scientific community for 20 years, with

its first release in 2004 [205–208]. Built on the Geant4 toolkit [209, 210]

developed at CERN, GATE provides a versatile platform for conducting

Monte Carlo simulations in various medical physics applications. It is

widely used for simulating advanced nuclear imaging systems such

as PET, SPECT, and Compton Cameras, as well as for predicting dose

distributions in radiation therapy, including internal or external beam

therapy, brachytherapy, hadrontherapy and more recently in radiation

biology. Over the years, members of the LabEx Primes have actively

contributed to the development and enhancement of GATE as well as

its thorough validation. In the following sections, we describe the major

advancements made in the past 10 years.

6.2 Developments around GATE in the past 10
years

6.2.1 GATE for ion beam treatments

Proton beam modeling is crucial in hadrontherapy because of the precise

energy deposition at the Bragg peak, enabling targeted tumor treatments

while minimizing damage to healthy tissues. Monte Carlo simulations

are essential for accurately modeling proton interactions with tissue,

accounting for range uncertainties and heterogeneities. However, these

simulations are computationally demanding as they need to capture

complex physical processes, making efficient and accurate modeling a

significant challenge in proton therapy.

Building on earlier developments [211–213], further advancements were

made by Grevillot and Elia et al., leading to the implementation of

a specific proton beam model in GATE [214–216]. This model allows

for precise dose distribution predictions without requiring a detailed

description of the entire proton beam head. The work, conducted by

LabEx members in collaboration with researchers from the MedAustron

therapy center, led to the adoption of GATE as an independent dose

calculation tool to evaluate clinical treatment plans. To go further, LPCA,

IP2I and CREATIS collaborated on the implementation and validation of

biophysical models to estimate the biological dose in ion beam therapy

treatments [217]. The modified microdosimetric Kinetic Model (mMKM),
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preliminary developed by the NIRS in Chiba (Japan) for the treatment

planning software (TPS) HIPLAN and, recently available in the latest

version of the RayStation treatment planning software by RaySearch

Laboratories AB (Stockholm, Sweden), as well as the NanOx model,

able to model the local lethal events at the nanometric scales and the

non-local events with the production of chemical reactive species at

micrometric scale, have been proposed in the BioDoseActor, a new

GATE software module, able to predict at the voxel scale biological

doses for patient treatments using protons or carbon ions (see previous

chapter on radiobiology modeling). Lastly, GATE and Geant4-DNA

have been combined and tested to estimate the production of radiolytic

species after proton irradiation [218], this study opened the door to the

perspective of integrating the entire chemistry module of Geant4-DNA

to the GATE platform in the objective to cover the needs in multi-scale

applications, from the simulation of sub-cellular damage to the estimation

of macroscopic doses to organs.

Additionally, an empirical model for calculating collimator contamination

dose in therapeutic proton beams was developed using GATE simula-

tions [219]. This enhanced the accuracy of analytical dose calculations

while maintaining reasonable computation times, improving the overall

precision of proton therapy treatments.

6.2.2 GATE for Prompt-Gamma and PET-based Dose
Monitoring in hadrontherapy

Prompt-gamma imaging has emerged as a key method for real-time

dose monitoring in hadrontherapy, particularly in proton and carbon-ion

therapy [7]. The ability to track secondary particles generated during

treatment provides valuable information for verifying the proton beam

range and ensuring accurate dose delivery. GATE has been extensively

used to model prompt-gamma emissions and to evaluate the feasibility

and accuracy of different monitoring techniques.

In early work, Robert et al. [220] conducted a detailed comparison between

GATE/Geant4 and FLUKA Monte Carlo codes for the simulation of

secondary particle distributions in proton and carbon-ion therapy. This

study demonstrated the capacity of GATE to accurately simulate the

complex interactions leading to prompt gamma emissions, essential for

dose verification in hadrontherapy. Dose monitoring for carbon beam

can also be studied with PET imaging: in the study by Jan et al [221], we

explored the feasibility of integrating GATE with PET imaging systems for

real-time dose monitoring in carbon-ion therapy. Further research [222]

assessed the performance of five different PET system designs for proton

therapy dose verification, simulating realistic clinical conditions. This

study highlighted the potential of GATE to optimize PET-based and

prompt gamma monitoring systems.

Gueth et al. [223] proposed a machine learning-based approach to

patient-specific dose monitoring using GATE simulations, improving

the precision of real-time treatment verification. Kanawati et al. [224]

introduced a Monte Carlo simulation method using a specific track

length estimator (TLE) to simulate prompt gamma emissions in pro-

ton therapy. To address computational challenges, Huisman et al. [21]
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developed accelerated prompt-gamma estimation techniques, enabling

faster simulations suitable for clinical applications. More recently, [225]

expanded on this work, focusing on the analytical modeling and Monte

Carlo simulations of multi-parallel slit and knife-edge slit prompt gamma

cameras, and [226] introduced an extension of the TLE module that

incorporates the prompt-gamma emission time, which is tagged from

the proton tracking. Based on these developments, [227] explored the

influence of sub-nanosecond time-of-flight (ToF) resolution on online

range verification in proton therapy, using the line-cone reconstruction

method in Compton imaging. The study demonstrated that achieving

sub-nanosecond ToF resolution can enhance the accuracy of proton

beam range verification by improving the precision of prompt gamma

detection.

In conclusion, GATE has been significantly updated in the last 10 years

to allow advanced prompt gamma and PET-based dose monitoring in

hadrontherapy. Its simulations have improved the accuracy of dose veri-

fication and range estimation through improved modeling, integration

with PET systems, and advanced techniques like high-resolution ToF

measurements. These developments contributed to the improved de-

sign and precision of online dose monitoring systems in proton therapy

treatments.

6.2.3 GATE for Compton Camera

Compton cameras, though an old concept [228] with still limited real-

world medical applications, still hold significant promise for hadron-

therapy monitoring and nuclear imaging. The ability to image gamma

radiation without collimation can substantially enhance the efficacy of

imaging systems, improving precision in both therapeutic and diagnostic

contexts. Despite their potential, designing these systems and developing

associated reconstruction algorithms remains complex. Monte Carlo

simulations are crucial for studying and optimizing Compton cameras.

In GATE, key advances in Compton camera simulations include the

work by Hilaire [229], which explored the impact of the broad energy

spectrum of prompt gamma radiation on proton therapy monitoring.

This study highlighted challenges and provided solutions to improve

imaging accuracy in varying energy conditions. Etxebeste [230] then

introduced the CCMod module for GATE, specifically designed to enable

detailed simulation of Compton camera imaging, facilitating more accu-

rate modeling and analysis of Compton camera performance. Feng [231]

used this GATE model to investigate the influence of Doppler broadening

model accuracy on Compton camera list-mode MLEM reconstruction,

highlighting the importance of precise modeling in enhancing image

quality and diagnostic capability. More recently, Munoz [232] developed

techniques based on GATE simulations to image polychromatic sources

using Compton spectral reconstruction, improving the ability to visualize

complex radiation sources.

These developments collectively enhance our understanding of Compton

cameras by providing versatile Monte Carlo simulations tools available

to the whole community.
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6.2.4 GATE for dosimetry in radiopharmaceutical therapy

Dosimetry for radiopharmaceuticals treatments, such as with
177

Lu and

90
Y, has seen significant progress in recent years, driven by advances in

Monte Carlo simulations and patient-specific methodologies. GATE has

played a pivotal role in improving the accuracy and practicality of these

techniques.

Sarrut et al [233] developed a 3D voxel-based approach for absorbed

dose distribution in radionuclide therapy, applying Monte Carlo methods

to model the biodistribution of therapeutic agents such as monoclonal

antibodies labeled with
90

Y targeting synovial sarcoma. This work intro-

duced more precise modeling techniques for dose estimation, improving

treatment planning accuracy. The GATE platform was used for different

dosimetry studies in rabbits further extrapolated to humans prior to

their use in phase I clinical trials. It has been the case for two radio-

pharmaceuticals: [131I]ICF01012 used to treat human melanoma [234]

and [99mTc]NTP15-5 used in cartilage imaging [235]. In parallel, [236]

conducted a first-in-human study targeting FZD10 in metastatic synovial

sarcoma, highlighting the importance of accurate dosimetry for safe and

effective treatment, using the proposed method.

For in vitro applications, the GATE platform aims to integrate the CPOP

platform [237], an open source C++ cell POPulation modeler for radiation

biology using internal or external radiation beams on spheroids (3D cell

populations) using or not nanoparticles.

Further work by [238] utilized digital photon counting PET for quantita-

tive
90

Y dosimetry, providing a foundation for more accurate phantom

studies. More recently, Vergnaud et al. [239, 240] expanded these meth-

ods by introducing patient-specific dosimetry approaches, including

motion-compensated SPECT reconstructions for selective internal radia-

tion therapy (SIRT) with
90

Y and for
177

Lu therapies. These improvements

allowed better adaptation to variable imaging schedules, reducing the

number of SPECT/CT acquisitions needed for
177

Lu therapies without

compromising dosimetric accuracy. Dosimetry was also performed via

specific tools in GATE, via the dose-rate method as an alternative to the

conventional MIRD (Medical Internal Radiation Dose) approach.

Other advances include [241], who proposed image-based SPECT cal-

ibration methods for more precise activity quantification, and [242],

who demonstrated the feasibility of in vivo gadolinium nanoparticle

quantification using SPECT/CT imaging, together with specific GATE

imaging modeling. Together, these developments contribute to improved

dosimetry workflows, improving both the precision and efficiency of

radiopharmaceutical therapy.

Through these advances, GATE now contains a set of tools dedicated

to dosimetry in radionuclide therapies and advanced SPECT imaging

capabilities.

6.2.5 GATE and Artificial Intelligence

The integration of artificial intelligence (artificial intelligence (AI)) tech-

niques has brought new possibilities for improving Monte Carlo simula-
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tions in medical physics. GATE has been at the forefront of incorporating

AI to improve simulation accuracy and efficiency.

A first investigation in this area is the work of Sarrut et al. [243], where

neural networks were employed to accelerate Monte Carlo simulations

by learning the angular response function of SPECT detectors. This

approach significantly reduced computation times while maintaining

accuracy. Building on the idea of using neural networks to replace part of

Monte Carlo simulation, [244] introduced the use of GANs (Generative

Adversarial Network) to create compact beam source models, demon-

strating their potential to simplify complex source geometries without

sacrificing precision in dose distribution predictions. Based on this idea,

[245] extended the application of GANs to model complex particle phase

spaces for SPECT simulations. In this situation, the neural network is

trained from a low-statistics Monte Carlo simulation to generate gammas

exiting a patient from a source distribution. Saporta et al. [246] expanded

on this by using conditional GANs to model families of particle distribu-

tions for SPECT simulations, offering enhanced flexibility in representing

diverse clinical scenarios with various source distributions. In a more

recent study, [247] introduced a GAN-based model for annihilation pho-

ton sources in PET simulations. All of these concepts were described in

[208], providing a review of AI integration into Monte Carlo methods in

medical physics.

These AI-driven advancements have the potential to change the way

Monte Carlo simulations are conducted in medical physics, reducing

computation times and increasing the adaptability of simulation models

while maintaining the high accuracy required in clinical applications. It

is still a field in its infancy; further developments are expected in the

coming years.

6.2.6 Other Topics

GATE has also been used and developed by LabEx members in a variety

of specialized developments beyond the core areas of dosimetry and

imaging, including X-ray dose calculations, SPECT simulations...

Baldacci et al. [248] introduced a track length estimator (TLE) method

for dose calculations in low-energy X-ray irradiations. This method

demonstrated improved accuracy in modeling dose deposition for low-

energy radiation (gamma below 1 MeV), which is particularly relevant for

small animal studies. Building on this, [249] proposed a split-exponential

track length estimator (seTLE) tailored for Monte Carlo simulations

in small-animal radiation therapy, improving the precision of dose

calculations in preclinical research.

In the field of SPECT, [250] developed a fixed forced detection (FFD)

technique to accelerate Monte Carlo simulations. This approach signif-

icantly reduced simulation times without compromising the accuracy

of SPECT image reconstructions, facilitating faster preclinical and clin-

ical assessments. Abbani et al. [251] extended the use of Monte Carlo

simulations to deep learning-based segmentation for prostate radiation

therapy using simulated cone-beam computed tomography (CBCT). This
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integration of AI with Monte Carlo methods helped enhance the accu-

racy of segmentation models, potentially improving radiation treatment

planning.

Recently, Sarrut et al. [252] introduced a photon source model for alpha-

emitter radionuclides, expanding the simulation capabilities of GATE

for therapies involving these high-LET emitters. Additionally, [253]

developed a PET digitization chain within GATE to refine the Monte

Carlo simulation of PET imaging systems, further improving image

quality and quantitative accuracy.

These diverse developments demonstrate GATE’s flexibility and its

contributions to various areas of medical physics.

6.2.7 GATE reviews papers

Several comprehensive reviews have highlighted the advancements and

growing impact of GATE in medical physics. [207] provided an overview

of GATE’s use in radiation therapy and dosimetry, emphasizing its role in

improving dose calculations and modeling complex therapies. [254], fo-

cused on the advancements in emission tomography, particularly in PET

and SPECT imaging systems. In 2022, [255] reviewed the broader Open-

GATE ecosystem, summarizing its evolution, key tools, and community

contributions, reflecting GATE’s expanding influence and capabilities in

medical imaging and therapy simulations.

6.3 Conclusion

Over the past decade, members of the LabEx Primes collaboration have

significantly contributed to the development of GATE. Achievements

include advancements in dosimetry for radiopharmaceuticals, enhanced

proton beam and prompt gamma modeling, and the integration of AI

techniques like GANs to improve simulation accuracy and efficiency.

LabEx members also played a key role in expanding GATE’s applications

to new imaging modalities and therapeutic techniques. However, ongoing

challenges remain, particularly in reducing computational demands and

refining complex reconstruction algorithms for clinical use.

GATE remains an open-source platform, available to the entire scientific

community, and is developed collaboratively. It is available on https:

//github.com/OpenGATE/opengate. Given the collective nature of its

development, distinguishing contributions made specifically by LabEx

members from those of other researchers can be challenging. In this

review, we have chosen to highlight works that were either initiated or

actively contributed to by LabEx members.

Looking ahead, LabEx members will continue to contribute to key devel-

opments, including the release of GATE 10, which will be Python-based,

offering a more user-friendly interface and streamlined workflows. Future

research will focus on faster simulations, deeper AI integration, and

optimizing imaging systems for emerging therapeutic technologies.

https://github.com/OpenGATE/opengate
https://github.com/OpenGATE/opengate
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7.1 Introduction: Presentation of the Research
Context

In conventional radiation therapy, beams of X rays (high energy photons)

are delivered to the patient to destroy tumor cells. Conventional X-ray

radiation therapy is characterized by almost exponential attenuation

and absorption, delivering a maximum energy near the beam entrance,

but continuing to deposit significant energy at distances beyond the

targeted volume. Inevitably, some radiation dose is always deposited in

the healthy tissues. To optimize the dose deposit within the target, it is

then necessary to use several directions of beam delivery.

Hadron Therapy (HT) is an advanced radiotherapy technique for can-

cer treatment. It offers a better irradiation ballistic than conventional

techniques and requires some appropriate quality assurance procedures.

Contrary to conventional radiotherapy that uses high-energy photons for

tumor irradiation, HT uses charged particles such as protons or carbon

ions. The strength of HT lies in the unique physical and radiobiological

properties of these particles; they can penetrate the tissues with little

diffusion and deposit a maximum of energy just before stopping. This

allows a precise definition of the specific region to be irradiated. The

peaked shape of the hadron energy deposition is called Bragg peak. With

the use of hadrons, the tumor can be irradiated while the damage to

healthy tissues is less than with X-rays. Moreover, the radio-biological

effectiveness of hadrons could be up to 3 times higher than photons. Thus,

they could be used to treat radio-resistant tumors. Radiation therapy

as well as hadron therapy requires precise control over the position of

tumor volume during treatment to minimize the irradiation of healthy

tissue. When the tumor is in a moving organ, the major difficulty is to

target the tumor during treatment and to be able to calculate the exact

position of the dose deposit. This limiting factor is particularly marked

in the case of lung tumors, which explains the still unsatisfactory clinical

results. We have also the specific problem of hadrontherapy. As stated

before, the beam deposits a maximum of energy in a very localized area

corresponding to the Bragg peak. The position of the Bragg peak depends

on the density of the matter traversed by the beam. So, in hadrontherapy,

we need information about the moving organs density variation that

are traversed by the beams because movement and deformation modify

densities. Thus, the target motion together with the continuous density

variation along the beam path can lead to unexpected dose distributions.

In current clinical practice, three main volumes of tissue are defined

during the treatment plan design to guide the beam delivery. The first is

the gross target volume (GTV), which is the position and the extent of

the gross tumor. The second volume includes the GTV and an additional
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Figure 7.1: Projection of lung tumor

trajectories measured with fluoroscopic

images, tumor had a mean motion of

24.6±3.8mm. Some trajectories show hys-

teresis during a complete breathing cycle

[260].

margin that takes into account malignant tissue spread that cannot be

entirely imaged, and it is called the clinical target volume (CTV). A third

volume, named the ITV for Internal Target Volume, was added in the

ICRU report 62 to take into account the variations in the size and position

of the CTV relative to the patient’s reference frame. Last, the planning

target volume (PTV) takes into account the geometrical variations. In the

case of moving tumors, the PTV is increased so that the tumor lies inside

the treatment field at all times and the GTV motion range is about 2 cm

[256].

Respiratory-induced organ motion constitutes one of the most difficult

challenges to tumor tracking, to treatment planning, as well as to nu-

clear imaging used for treatment verification. Breathing is an active and

complex process where the respiratory motion is non-reproducible [257].

As shown by many studies, the breathing periodicity, amplitude and

baseline shifts of patients can vary during a single imaging or treatment

session [258, 259]. Lung tumors can even present hysteresis in their

trajectories [260], making them more difficult to locate with precision

(Figure 7.1).

One of the solutions to calculate tumor position is to use implanted

markers. However, this involves an invasive procedure to implant the

markers and there are a number of other potential problems, including

the possibility of marker migration. Other techniques based on imaging,

such as Cone-Beam or deformable image registration, attempt to predict

the position of lung tumors [261]. Unfortunately, these methods assume a

reproducible motion of the respiratory system. Thus, the complex organ

deformations occurring during breathing together with the variability

of the patient breathing patterns render existing image-based motion

compensation techniques prone to errors. The Cone-Beam technique is

invasive and would greatly increase the radiation dose to the patient

due to imaging. Generally, it is very difficult or impossible to accurately

identify the tumor location and density variability during the treatment.

An ideal radiotherapy procedure would continuously adapt the beam to

the variation of the tumor’s position. Moreover, in the case of HT it would

have to adapt to the continuous density changes along the beam path. A

full four dimensional continuous imaging of the internal anatomy of the

patient during the treatment procedure is yet not feasible. An alternative

solution is to use a motion model that tries to find the correspondence

between the internal displacements and deformations of the organs and

the external respiratory surrogate signals during treatment, taking into

account respiratory variability. To overcome these limitations, we have

proposed and developed a non-invasive approach for lung tumor track-

ing based on a biomechanical patient-specific model of the respiratory

system, which takes into account the physiology of respiratory motion

to simulate the real non-reproducible breathing motion. The developed
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Figure 7.2: Unified patient-specific multi-

physics approach, based on same tetra-

hedral elements. All the physical quan-

tities (deformation of the organs, their

densities, deposited dose and nuclear

activities for positron emission tomogra-

phy (PET) imaging) are assigned to the

vertices of the tetrahedrons.

model, also takes into account the density variations due to breathing and

that can be used during External Beam Radiation Therapy (EBRT). In our

works, we chose to use a geometric representation based on tetrahedral

geometry, while most models for describing movement are based on

hexahedrons. More precisely, we have proposed and implemented a new

unified biomechanical patient-specific approach, based on tetrahedral

elements, where the transformations (deformations and displacements)

are calculated by Finite Element Methods (FEM). In this so-called "multi-

physics" approach, all the physical quantities calculated (deformation

of the organs, their densities, dose deposit and nuclear activities for

positron emission tomography-PET imaging) are as in FEM assigned to

the vertices of the tetrahedrons, which represent the organs geometry

obtained from CT scan images(Figure 7.2). In this chapter, We focus on

some challenges related to organ motion modeling for radiation therapy,

specifically, aspects of lung tumor tracking, 4D dose distribution and 4D

PET imaging for treatment verification. This research has been carried

out within the scope of the European project, ENVISION (co-funded by

the European Commission under the FP7 Collaborative Projects Grant

Agreement), ETOILE Research Program, France Hadron, ministry fund-

ing and supported by the Laboratory of Excellence (LabEx) PRIMES

project.

7.2 Patient-specific biomechanical model of the
respiratory system

In the context of the PhD of Matthieu Giroux, we have proposed and

developed a new 4D biomechanical and physiological model of the

respiratory system, permitting the simulation of a full cycle of respiratory

motion, to predict with high precision the lung displacement and defor-

mation. Firstly, we have developed a 3D geometric modeling pipeline to

build a 3D model of the respiratory system, issued directly from medical
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image data and adapted for biomechanical simulation. After automatic

and semi-automatic segmentation of different respiratory organs (lung,

lung tumor, diaphragm and thorax and all skeletal structure) a 3D surface

mesh is created for each volume. Due to the excessive number of nodes

and large number of bad quality elements, a Computer Aided Design

(CAD) based approach has been developed. The segmented anatomic

volumes are rebuilt as a solid using non-uniform rational basis spline

(NURBS) surface reconstruction. Then a quality 3D mesh with four-node

tetrahedral elements is generated. The organs are considered as isotropic,

elastic, and hyperelastic materials. The behavior of the lungs is directly

driven by simulated actions of the breathing muscles, i.e. the diaphragm

and the intercostal muscles (the rib cage). The lung model is monitored

and controlled by a personalized lung pressure/volume relationship

during a whole respiratory cycle. The lung pressure and diaphragmatic

forces are patient-specific and calculated by an optimization framework

based on inverse finite element analysis.

Figure 7.3: Qualitative analysis of patient

specific biomechanical simulation; lungs

and diaphragm deformations of the res-

piration between the End Expiration EE

(T50) to End Inspiration EI (T90) and in-

termediate states(T00, T10, T20, T30 and

T40

L
u

n
g

s 
+

 D
ia

p
h

ra
g

m
 

 D
ia

p
h

ra
g

m
 T00 T20 T40 T50

EI EEPhase Phase

Tumor 

Displacement field

7.2.1 Quantitative and qualitative analysis

In order to demonstrate the validity of our patient specific biomechanical

model, quantitative and qualitative analyses of simulations were con-

ducted. We have compared the results of a simulated motion with the

experimental data provided directly from the 4D CT scan images DirLab

database [262]. We have evaluated the motion estimation accuracy on

five selected patients, with small and large breathing amplitudes (Patient

1=10.9 mm, Patient 4=18.1 mm, Patient 6=27.2 mm, Patient 9=15.5 mm

and Patient 10=26.06mm). We have also evaluated the lung tumor motion

identified in 4D CT scan images and compared it with the trajectory

obtained by finite element simulation. The effects of rib kinematics on

lung tumor trajectory were investigated.

The Fig.7.3 shows the total deformation and the maximum displacement

components of the lungs and diaphragm during breathing. We can

observe the maximum displacement of the diaphragm on the right-

posterior (RP) and left-posterior (LP) sides. It is also possible to notice a
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slightly larger (RP) side motion than (LP) side motion, in concordance

with the physiological anatomy. For the lungs deformation, the maximum

displacement occurs in the posterior region along the superior-inferior

(SI) direction (diaphragm direction).
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Figure 7.4: Mean errors ± standard

deviation of lung tumor position dur-

ing the whole cycle of breathing (10

phases between the EI and EE) be-

tween the trajectory issued from 4D

CT images compared to the trajectory

calculated by biomechanical finite ele-

ment simulation coupled with the lung-

pressure/diaphragm-force optimization

for two patients P6 and P10.

7.2.2 Lung tumor motion

We have compared the finite element simulation results on 300 landmarks,

at end inspiration (EI), end expiration (EE) states, and 75 landmarks at

each intermediate respiratory state, obtained by manual delineations. The

average error for anatomical landmark inside the lung at end inspiration

(EI) and end expiration (EE) states as well as the intermediate states, for

five patients, is less than 2.5 ± 1.5𝑚𝑚 [263].

To evaluate the impact of the rib kinematics on lung tumor motion, we

have evaluated also the tumor motion and 3D trajectory identified in

4D CT scan images from the same Dataset DIR-Lab [262], where the

tumor location is visible. These trajectories are compared and evaluated

with the 3D trajectories obtained by FE simulation, during the whole

cycle of breathing (10 phases between the EI and EE). The Fig.7.4 shows

the mean errors ± standard deviation of lung tumor position. We have

also evaluated the impact of the thoracic respiration on the position of

the lung tumor. Thus, in our evaluation we have compared during the

whole cycle of the breathing the position-error taking into account the

ribs kinematics, generating the thoracic respiration[263, 264]. The figure

demonstrates that our patient specific biomechanical model for lung

tumor position estimation is very accurate (less than 3 mm).
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7.3 4D dose calculation including internal
organ motion

The second research area is the estimation of four dimensional dose

calculation using deformable tetrahedral geometries. In the context of the

PhD of Petru Manescu, the dose distributions are calculated using a time-

dependent tetrahedral density map. The internal motion is calculated by

patient-specific biomechanical model based on finite element method.

Unlike methods based on the conventional voxel-based structures, the

deposited energy is accumulated inside each tetrahedron during de-

formation, thus overcoming the problem of tissue tracking since that

the tetrahedron is defined as a part of a tissue whose chemical compo-

sition and topology do not change. Thus, in order to obtain a unified

Figure 7.5: (a) Passive scattering tech-

nique used in hadron therapy [265]. (b)

Treatment planning configuration for

lung tumour. Two single-field passive

beams were used in opposite directions,

each with its own range compensator

and collimator

(b)
 

(a)
 

model with the process of dose deposition, we replaced the discrete

representation of the densities (voxel model) by a continuous approach,

as for the finite elements, by placing the densities on the vertices of the

tetrahedral meshes. For the internal points, these values are obtained by

interpolation. Thus, for each organ, the voxelized attenuation values (CT

scanner) are converted into “continuous density” maps and distributed

at the vertices of the tetrahedral, respecting the principle of mass con-

servation. Contrary to voxel-based methods that use image registration

algorithms to track individual voxels from one frame to another, our

tetrahedral-based method implicitly tracks the tissues as the tetrahedral

meshes maintain their topology from one deformation step to another.

An implementation of the deformable tetrahedral model was done using

the Geant4 Monte Carlo code in order to simulate particle-matter inter-

actions and including the deformable tetrahedral geometries together

with the passive scattering beam line where the energy of the incident

particles is constant (Fig.7.5). We consider our approach to be more

accurate, since the deformable image registration methods are based on

a series of approximations and interpolations (Fig.7.6). Unfortunately, for

Monte Carlo simulations using Geant4, only one density is supported for
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each tetrahedral element. To overcome these limitations, other density

calculation methods have been investigated. We have also studied the

impact of the resolution of the tetrahedral mesh on the accuracy of dose

distribution[266, 267].

In the context of the PhD of Yazid Touileb, funded by LabEx PRIMES

TumorTumor Tumor

No motion RBD methodOur method 

Figure 7.6: 3D tetrahedral dose maps for

different scenarios. Left: Static simulation.

Center: Dose distribution taking into ac-

count organ motion using the method

presented in this study. Right: Dose distri-

bution taking into account organ motion

using the Rigid Body motion and Defor-

mation RBD method.

(2014-2018), another problem arose with the relatively excessive number

of tetrahedrons. This required considerable time to load the geometries

to simulate ion-organ interaction using Monte Carlo simulations. To

address this problem, we have defined another dose calculation method

that guarantees an accurate dose distribution while reducing the number

of elements in the mesh [268, 269]. The new approximation approach

takes into account the direction of the beam to minimize the error of

the integral of densities, traversed by the beam, converted into water

equivalent thickness before the tumor volume. The first results of our

simulations are in good agreement with some clinical indicators used

in radiotherapy, since the Rigid Body motion and Deformations (RBD)

method makes use of a series of approximations. Nevertheless, an exper-

imental validation/comparison within real clinical Treatment Planning

System (TPS) is required in order to confirm this statement.

7.4 4D PET imaging for treatment verification

In hadron therapy, dose delivery verification is desired to ensure that the

treatment was performed as planned. Thus, the objective of treatment

verification is to detect and correct the deviations from the treatment plan

that compromise the advantages of hadron therapy. To perform such dose

verification, the nuclear positron emission tomography (PET) is currently

the only method used clinically, a strategy allowing the dose delivery

verification [270]. However, the respiratory motion induces displacements

and deformation of the organs, which need to be taken into account when

reconstructing the spatial radiation activity. As stated before, classical

image-based methods that describe motion using Deformable Image

Registration (DIR) algorithms cannot fully take into account the non-

reproducibility of the respiratory motion nor the tissue volume variations

that occur during breathing. In order to overcome these limitations, a

new method of correcting motion artifacts in PET image reconstruction

based on deformable tetrahedral meshes is proposed. More precisely,

the Maximum Likelihood Estimation (MLEM) iterative reconstruction

algorithm is adapted to motion estimation models. In contrast with the

deformable image registration approaches, the radiation activity was

reconstructed on deformable tetrahedral meshes.
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Figure 7.7: Simple time-dependent pro-

jection matrix calculation with a de-

formable tetrahedral geometry using line

intersection.
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7.4.1 Projection matrix calculation

As opposed to the classical formulation, in the case of a deformable

tetrahedral geometry, the projection matrix varies with time, i.e. 𝑎𝑖𝑘(𝑡)
refers to the geometric probability that the source of the coincidence

recorded on the LoR 𝑖 at the time 𝑡 was inside the tetrahedron 𝑇𝑘 . These

probabilities are computed by intersecting the grid of tetrahedral with

the LoRs during each time step as the tetrahedral elements deform and

change their position (Figure 7.7).

7.4.2 Simulation on patient-specific biomechanical lung
motion

The deformations were computed using a biomechanical model of the

lungs. Five breathing states between End Exhale (EE) and End Inhale (EI)

were used. Projection matrices were computed and coincidences were

recorded in a list-mode format for each deformation state. Photon attenu-

ation was not taken into account for these simulations. One thousand

punctual sources of 1000 Becquerel each were uniformly spread inside

the tetrahedral elements of the tumor. Figure 7.9 shows the original CT

image of the patient combined with the reconstructed PET images. As

a result of the biomechanical motion simulation, the centroid of the

tumor is shifted by 1.5 cm in the cranio-caudal direction. This motion

severely affects the results of the PET reconstruction. When no motion

correction is applied, there is only a Pearson Correlation Coefficient PCC

= 75% correlation between the gold standard image and the reconstructed
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0, 0, 0

Tetrahedral representation 

of the patient anatomy

Planar

detector block 

Figure 7.8: Tetrahedral meshes represent-

ing the human anatomy placed inside the

PET scanner. The radioactivity sources

are uniformly spread inside each tetra-

hedron of the tumor mesh.

one. When motion information is taken into account, there is a good

correlation between the reconstructed image and the gold standard with

PCC = 92%[271].

1. Gold standard 2. Reconstructed activity

without motion correction
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3. Reconstructed activity

with voxel-based 

motion correction 

4. Reconstructed activity

with tetrahedral-based 

motion correction 

Figure 7.9: Reconstructed activities on

patient-specific biomechanical lung mo-

tion.

The simulations performed in this study show that the motion compen-

sated reconstruction based on tetrahedral deformable meshes has the

capability to correct motion artifacts. Results demonstrate that, in the case

of complex deformations, when large volume variations occur, the devel-

oped tetrahedral based method is more appropriate than the classical

voxel-based one. This method based on patient-specific biomechanical

model can correct motion artifacts in PET images and thus reduce the

need for additional internal imaging during the acquisition.

7.5 Conclusion

A dynamic research activity has been developed for 15 years around organ

motion modeling, gathering 2 laboratories of the LabEx PRIMES (LIRIS

and IP2I Lyon). This activity was supported by LabEx PRIMES which

allowed us to build an original unified patient-specific approach, based

on tetrahedral elements, allowing simultaneous movement quantification

of the respiratory system, 4D dose distribution (on-line) and tomographic

reconstruction for PET imaging (off-line). In our approach, all the physical

quantities: deformation of the organs, their densities, deposited dose

and nuclear activities for PET imaging, are assigned to the vertices of

the tetrahedrons. We believe that our approach can potentially open

interesting perspectives for other imaging techniques.
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8.1 Introduction

Bone osteoarticular diseases are increasing in the aged population world-

wide. It includes bone fragility disease such as osteoporosis, responsible

for fractures and disabilities, and affecting one women over three after the

age of fifty years. Osteoarthritis is also a serious public health problem,

affecting a large percentage of patients and is expected to increase over

the next 10 years, being a major source of pain in aged patients. In the

most frequent cancers (e.g. breast, lung, prostate), the primary tumor

migrates in the bone which is the third most frequent location [272].

These bone metastases which have been poorly studied so far, can induce

a risk of fracture.

It is clear that imaging, modeling and biomechanics are playing a major

role in research on bone osteoarticular diseases. The LabEx PRIMES has

allowed us to gather a multidisciplinary community in these domains,

which have been at the heart of many works since 2012. In view of progress

in understanding the biological mechanisms but also in diagnosis and

treatment, we have conducted works at different levels. We will review

results and advances in both more fundamental and patient-oriented

research.

8.2 Microscopic imaging and biomechanics of
bone

8.2.1 X-ray micro CT

Although osteoporosis is still diagnosed by dual-energy X-ray absorp-

tiometry (DXA), mostly evaluating bone mass, the role of other factors

collected under the name of bone quality, including bone micro archi-

tecture and bone material properties, has been highlighted since the

1990s [273]. Research on trabecular microarchitecture has been a major

driver of the development of X-ray computed tomography (CT)-based

techniques like QCT (Quantitative Computed Tomography) and 3D

micro-CT [274–277]. These techniques have allowed us to obtain images

of the trabecular and cortical bone at spatial resolutions of up to a few

micrometers in human and animal models [278–280].

Bone possesses an optimized multiscale hierarchical organization and

its biomechanical properties depend on all scales from the microscale

to the nanoscale. In the past decade, a new attention has been brought

to the osteocytes, the most abundant bone cells, earlier considered to
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Figure 8.1: Illustration of the 3D lacuno-

canalicular network in human femoral

cortical bone obtained from phase syn-

chrotron nano-CT imaging ( voxel size :

100 nm). The display was obtained after

the segmentation of osteocyte lacunae

(yellow) and the small canaliculi joining

them (green) showing the dense network

in an osteon. Scale bar : 40 µm

be passive and rediscovered to be regulators of bone remodeling [281].

They are distributed throughout the bone matrix and interconnected via

dendritic processes, and embedded in the so-called LCN. A large part

of our research since 2012, has been the development of synchrotron

microCT techniques to assess the LCN at the micro or the nano scale,

which has been a unique research. Within the activities of the LabEx

PRIMES, this work was at the interface of X-ray CT imaging and advanced

image processing.

8.2.2 Research on the lacuna-canaliculi network (LCN)

Despite new interest in the osteocyte system, the latter was difficult to

assess by using common optical-based microscopy techniques due to its

deep inclusion within the mineralized matrix. In a preliminary work,

we observed that we could perceive osteocyte lacunae by pushing the

spatial resolution of SR micro CT close to the micrometer level [282].

Later on, with spatial resolution at or below the micrometer level, we

showed that it was possible to analyze in details bone lacunae from 3D

SR micro-CT images. We developed automatic image analysis tools for

the segmentation and quantification of osteocyte lacunae and used them

to quantify thousands of bone lacunae in human femoral bone [283]. This

work had a major impact on our later research during the LabEx PRIMES

since it has been applied to many further studies.

Nevertheless, in this work as well as in the literature using X Ray micro-

CT, only the osteocytes lacunae were visible and not the canaliculi joining

them due to a lack of spatial resolution. By optimizing the 3D SR parallel

beam micro CT setup (beamline ID19, ESRF, Grenoble), we could later

image the entire LCN including osteocytes lacunae and canaliculi for the

first time at a voxel size of at 300 nm [284] (cf Figure 8.1).

We also demonstrated the use of quantitative phase nano-CT at 60 nm

[285] to get a better rendering of osteocytes and their junctions (beamline
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ID22, ESRF). This later technique is based on propagation phase-contrast

imaging involving the acquisition of several scans at different distance

acquisitions. The same device was used in the PhD of B Hesse (PhD co-

tutored with Univ La Charité, Berlin, Prof K Raum) to study samples from

patients suffering from osteonecrosis of the jaw due to bisphosphonate

treatment (BRONJ "Bone Related Osteo Necrosis of the Jaw"). We analyzed

the osteocyte network architecture at two resolutions (300nm micro-CT

and 60nm nano-CT), as well as the mineral variations in the vicinity

of lacunae and canaliculi [286, 287]. The work on the LCN was later

pursued on a new setup of magnified holographic phase nano-CT

system developed at beamline ID16A, at the ESRF (coll P Cloetens).

This device exploits a Kirkpatrick-Baez mirror system to reduce the

focal spot and reach nanoscale imaging. A phase retrieval algorithm

is first applied to the images of the different scans providing a set of

phase projections used then to retrieve the 3D phase volumes through

tomographic reconstruction. Within the PhD of B Yu, we studied optimal

conditions for data acquisition and phase retrieval to recover the LCN

with voxels sizes between 120nm down to 30 nm [288].

Such images permit to clearly observe the small canaliculi joining the

osteocytes lacunae, nevertheless the 3D binarization of the network

remains a challenge. This is due to noise inherent to the image formation

problem, dose limitation and the size of canaliculi which can be even

smaller than the voxel size. To cope with these problems, we implemented

various segmentation methods : a nonlinear filtering associated with a

dedicated region growing scheme [289] and an original method based

on 3D geodesic path and image tessellation [290]. These methods were

later exploited to analyze the properties of LCN in human femoral bone

at various resolutions [291, 292].

8.2.3 Research on bone micro cracks

At the tissue level, other important features for understanding the re-

sistance mechanisms of bone are bone microdamage and micro-cracks.

These structures are known to be essential in the triggering of bone

remodeling but are difficult to assess. Linear microcracks present as

very thin gaps in bone, with thicknesses below the µm range, and had

mainly ben observed by 2D microscopic techniques. In earlier work, we

demonstrated the feasibility of imaging and quantifying them in 3D by

SR micro-CT [293, 294].

Within LabEx PRIMES, these methods have been exploited in many

collaborative works, in particular to analyze micro-cracks resulting

from different modes of mechanical loading [295]. More recently, the

goal of the PhD of R Gauthier, in collaboration between the LBMC,

the Lyos and CREATIS, was to characterize the toughness of human

cortical bone at different sites (femoral shaft, femoral neck, radius) by

coupling biomechanical, biochemical measurements and synchrotron

imaging. This work led to many results [296–299]. In the postdoc of R

Gauthier funded by LabEx PRIMES, we particularly analyzed osteonal

and interstitial tissue in human radii cortical bone thanks to the properties

of SR micro-CT [298, 299]. These works will be pursued by examining

the biomechanical properties of bone tissue in the vicinity of osteocytes

lacunae and canaliculi. To this aim, a large collection of LCN from human
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Figure 8.2: Human radius cortical bone

sample after a toughness test under

quasi-static loading, left : SR micro-CT

image (voxel size = 0.7 µm) of the sam-

ple, right: 3D rendering after image seg-

mentation showing the Havers/Wolk-

man network (grey), the osteocyte lacu-

nae (yellow) and the cracks (red). The

high toughness of the radius was associ-

ated with its capacity to deviate cracks

through its complex microarchitecture,

as illustrated in the image where the

crack follows the cement line

femoral bone samples (n=32) acquired at a voxel size of 100 nm will be

further investigated [300].

8.2.4 Research on bone vasculature in oncology

Micro vascularization plays a key role during bone formation but also

in the development of cancer tumors. Nevertheless, the structure of

microvasculature within bone metastases and its response to treatment is

poorly understood. In a collaborative study between the CREATIS, Lyos

(UMR 1033, joint research unit between Inserm and UCBL), and Sainbiose

labs (Inserm, Ecole des Mines, Saint Etienne), we have studied the vascular

system in bone metastases in a mouse model to quantify the efficacy

of anti-angiogenic agents used as inhibitors of metastasis development.

This work has relied on previous preliminary works in which we had

demonstrated the possibility of simultaneously imaging vascularization

and bone in pre-clinical rat models [301, 302]. In his PhD, X Hao has

proposed new methods to quantify 3D bone vasculature in trabecular

and cortical mouse femoral bone. A new segmentation technique, based

on a dedicated watershed scheme has been implemented and thoroughly

evaluated on simulated and real data [303]. This method has then been

exploited to analyze the effect of three treatment protocols in groups of

mice (72 samples). It provided unequaled high spatial resolution images

and parameters on the bone and vasculature networks simultaneously

[304].

8.2.5 Biomechanical models of bone metastases

A doctoral thesis was funded by the LabEx (2016-2019) in collaboration

between the LBMC (UMR-T 9406, joint research unit between Univ Eiffel

and UCBL) the Lyos (UMR 1033, joint research unit between Inserm

and UCBL) and Lyon hospital (Hospices Civils de Lyon) to initiate the

validation of the biomechanics models based on QCT images [305]. As a

first step, an osteolytic mice model was considered. One group of mice

received a subcutaneous injection of tumoral cells. Then, the tumor was

resected, characterized by rheology and compared to the mechanical

properties of the skin, the fat and the muscles of the same mice. It was
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Figure 8.3: Global workflow to assess tu-

moral properties (upper part) and biome-

chanics models predicting failure load

on a lytic mice model (lower part) from

[305].

shown that the multifrequency shear modulus measurements allows to

discriminate tumorous from healthy tissues [306]. On other groups of

mice, tumoral cells were injected intra-tibially to induce a tumor in the

bone. Tomographic (𝜇CT) images were obtained to build subject-specific

finite element models. A compression test was performed on each tibia

and used to assess the finite element models (Figure 8.3).

8.3 Patient scale imaging and biomechanics of
bone

8.3.1 Super resolution in HR-pQCT

While the previous section is related to fundamental studies in bone

research, the quantification of bone microarchitecture at the patient scale

remains difficult due to the unavoidable compromise between X-ray dose

and spatial resolution in X-ray CT. New clinical research devices, named

High Resolution peripheral QCT (HR-pQCT), permit to obtain in vivo
images at peripheric sites (tibia and radius). However, since the spatial

resolution of HR-pQCT images is comparable to the mean trabecular

thickness, this limits the quantitative analysis of trabecular microarchitec-

ture. In the PhD of A. Toma, funded by LabEx PRIMES, in collaboration

between CREATIS and Lab Hubert Curien (CNRS, Saint Etienne), our

goal was to improve the quantification of trabecular bone from HR-pQCT

images by developing super resolution techniques. The problem was

formalized as an ill-posed inverse problem for which we used TV regular-

ization to perform joint super resolution and segmentation. An ADMM

based algorithm was implemented and tested on noisy low resolution

images obtained by simulation from SR microCT images [307–309]. This

work showed that we could recover lost connections between trabeculae

and highlighted the improvement in topologic parameters which are

particularly biased when the resolution decreases [310].

This work was pursued to move towards real patient data in the PhD

of Yufei Li, which poses additional problems, and in particular that of

estimating the impulse response of the degradation model. To this aim,
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several techniques based on optimization methods with specific priors

or models were developed [311–313]. We also developed a method based

on dictionary-based [313] and carried out preliminary works using deep

learning-based methods, yielding to very promising results [314].

Following these pioneer works, the developments based on deep learning

applied to HR-pQCT images as part of a collaborative project from Lab

Hubert Curien, Sainbiose and CREATIS, thanks to the PhD of Rehan

Jhuboo funded by the EUR SLEIGHT. In this work, various state of the

art deep learning methods were compared and evaluated to improve the

resolution of micro-CT images in mice [315]. Then in order to improve

the results, the methods were guided by a new specific bone parameters-

based network (work in progress).

8.3.2 Spectral CT for the early diagnosis of osteoarthritis

At the beginning of LabEx PRIMES, the teams in Lyon had been successful

to an Equipex project to obtain a state-of-the-art X-ray spectral CT proto-

type from Philips, unique in Europe, that would be installed at CERMEP

Lyon. Compared to standard X-ray CT, this emerging modality has the

potential to provide additional information such as the quantitative con-

centration at a given pixel in several materials (such as bone, soft tissue,

contrast agent). Its principle is to acquire energy resolved data thanks

to photon-counting detectors. Nevertheless, the processing of such data

is more complex than in standard CT and involves non-linearities that

require ad’hoc reconstruction methods. This has motivated a number

of studies funded by LabEx PRIMES to develop regularize material

decomposition methods or one step reconstruction methods.

In the context of osteoarticular diseases, we started one work to study

the ability of X-ray spectral (SP-CT) based on photon-counting detectors,

to characterize cartilage and meniscus integrity for the early diagnosis

of osteoarthritis. This project combined the development of simulation

and data processing methods with experimental acquisition of normal

and osteoarthritic knees on the SP-CT prototype as well as on SR CT and

HR-pQCT. During this work, we showed in particular that the virtual

mono-energy images that can also be generated from the spectral CT

data were particularly adequate to observe the cartilage simultaneously

to bone [316]. The images were compared to SR CT and we could quantity

the cartilage thickness [317]. We also developed deep learning methods

for material-based spectral decomposition and production of mono

energy images [318–320].

8.3.3 Clinical CT for early diagnosis of risk of fracture:

In case of bone metastases, the clinicians need to assess this risk of

fracture to choose the best treatment for the patient: either a preventive

surgery to avoid the fracture or a chemotherapy or a radiotherapy to treat

the cancer. Currently, the clinicians use scores such as the Mirels’ score

for the femur to assess this fracture risk. However, this score presents

a limited sensitivity and specificity [321]. Biomechanical models based

on clinical QCT have been proposed at the beginning of the 21st century

[322], applied on ex vivo human femurs [323] and then on patient data
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Figure 8.4: Biomechanical model based

on Quantitative Computed Tomography

(QCT) images to assess femoral failure

load

[324]. In 2012, when the LabEx PRIMES was created, very few teams

across the world had developed such approach to help clinicians in the

assessment of the fracture risk for patients with bone metastases. The

validation was limited to few cases, no inter-laboratories studies have

been conducted and this approach was at the early stages of the research

process.

Our goal in Lyon was to develop tools for the clinicians using our

expertise on biomechanical models based on QCT images in the case of

osteoporosis. The specific needs were to develop credible models.

Based on the initial work mentioned in paragraph II.5, a doctoral thesis

(M Gardegaront) was funded by the LabEx (2020-2023) in collaboration

between the LBMC (UMR-T 9406, joint research unit between Univ Eiffel

and UCBL), the Lyos (UMR 1033, joint research unit between Inserm and

UCBL), CREATIS and Lyon hospital (Hospices Civils de Lyon) to move

towards the application of biomechanical models based on QCT images

on human femoral bones [325] (Figure 8.4).

Another doctoral thesis (V Allard 2022) was funded by Claude Bernard

University to apply this methodology on vertebrae. These researches

allowed to improve the credibility of these biomechanical models by

a validation on large experimental datasets ex vivo considering inter-

laboratories studies to assess the reproducibility and the replicability of

the models. On the femur, sensitivity studies to evaluate the influence of

the operators and those of the input parameters were performed. Key

input parameters were identified such as the segmentation. To avoid

operator influence, this step is currently automatized (doctoral thesis of

E Saillard, collaboration between the Lyos and CREATIS [326]).

8.4 Conclusion and perspectives

The LabEx has allowed to strengthen the research on bone osteoarticular

research in the aged propulation. In one hand, it has allowed the Lyon

teams to be leaders on research in new X-ray CT imaging modalities

including synchrotron micro CT, phase nano CT and spectral CT with

applications to bone imaging. We have demonstrated unique results
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to image the LCN and bone micro cracks joined with biomechanical

studies.

In addition, this work has generated various developments in data

processing, either for image reconstruction, denoising, image segmen-

tation and quantification. If at the beginning of the LabEx PRIMES, the

focus was on compressive sensing methods, the trend has shifted to-

wards deep learning methods receiving increasing interest. Our research

on bone super resolution has yield to new collaborations within the

Auvergne-Rhones-Alps region (with Lab Hubert Curien, PhD Rehan

Julboo, defended Janv 2024.

Concerning applications to biomechanics in cancer, we moved from the

initial study on a lytic mice model to the application of the biomechanical

models on QCT images from patients with bone metastases. The proof

of concept of the clinical application has been done on clinical QCT

images collected in a multicentric study in France. The next step will be

the application of the methodology in a longitudinal clinical study. A

research project at the European level is under discussion to gather the

strengths on that topic.
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9.1 Introduction

The introduction of X-ray tomography (CT) in the 1970s was a major

breakthrough as it was the first technique allowing to display sections

of the human anatomy non-destructively. X-ray CT has evolved from

a 2D to a 3D technique with many improvements in spatial, temporal

and contrast resolution and remains the most widely spread medical

imaging modality. Its extension to micro and nano-CT now also plays a

major role in pre-clinical animal imaging and in microscopic imaging

studies. These evolutions have resulted from the combined progresses in

X-ray sources and detectors, hardware and reconstruction algorithms. It

is expected that medical x-ray imaging will know two major evolutions

in the coming years: spectral imaging will be further developed with the

advent of photon counting detectors and phase-contrast imaging could

be transferred from synchrotrons to clinical applications. The teams of

LabEx Primes participated, for the past 10 years, in developing both novel

modalities in synchrotrons, laboratory and clinical settings. This chapter

aims to summarize the different works performed in this domain.

9.2 Spectral Computed Tomography

9.2.1 Spectral CT reconstruction

X-Ray Spectral CT involves the acquisition of projection data in several

energy channels, and thus a specific processing workflow is required to

reconstruct spectral CT images. Typically, the object is decomposed in a

material basis (like bone, soft tissue and/or contrast agents) or in Compton

and photoelectric maps as suggested by Alvarez and Macovski [327].

When including the object model, two approaches have been considered

(Figure 9.1): the one-step approach consisting in recovering the object

decomposition from the energy-resolved data directly, or the two-step

projection-based approach, consisting in first recovering the projected

material maps from the energy-resolved data, and then performing the

tomographic reconstruction from a standard CT algorithm (like FBP for

instance).

Considering the two-step projection-based approach, we first showed

that regularized methods led to significantly improved material decom-

position on numerical phantom data [329]. This work was pursued in the

context of the PhD of Tom Hohweiller, funded by the LabEx (2016-2019).

The spectral CT material decomposition problem was formalized as a

non-linear inverse problem and solved by minimizing a cost function
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Figure 9.1: The three classes of inversion

methods for spectral CT are image-based

decomposition (bottom row), projection-

based decomposition (top row) and one-

step inversion. Figure adapted from

[328].
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Material
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Material
volumes

Single-energy
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Decomposition Reconstruction
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Reconstruction Decomposition

Figure 9.2: Example case of a carotid

spectral photon-counting CT angiogra-

phy in a 68-years-old man using VMIs

at 40 keV and 70 keV and iodine images.

The one-step spectral images enable a bet-

ter depiction of a severe carotid stenosis

associated with a calcified plaque in com-

parison to the two-step images (zoomed

areas). Figure from [337].

composed of a data fidelity term and a regularisation term embedding a

prior knowledge on the projected material maps [330]. First, we imple-

mented a projected Gauss-Newton algorithm that enforces the positivity

of the material projections [331]. Second, we implemented a constrained

alternating direction method of multipliers (ADMM) enforcing the con-

sistency between the contrast agent projections [332]. We also proposed

a method for choosing the hyperparameters in an automated fashion. All

the methods were tested on experimental datasets that were acquired

by a 5-bin spectral scanner prototype and compared to a state-of-the-art

unregularized decomposition algorithm [333].

In parallel, we have also developed a one-step decomposition. Jointly

solving the material decomposition and the tomographic reconstruction

is far more complex and we first investigated several optimization algo-

rithms for reconstructing two maps for patient tissues and an additional

K-edge contrast agent map [334]. The most efficient one used separa-

ble quadratic surrogates and was implemented in RTK (Reconstruction

ToolKit) [335]. The approach was later improved for uniformizing the

convergence in real acquisitions with a helical geometry [336]. The image

quality improvement of a one-step approach over a two-step approach

was recently demonstrated on several patient images acquired on Lyon’s

prototype photon counting scanner [337] (Figure 9.2).

9.2.2 Scatter correction in spectral CT

The PhD fellowship of Odran Pivot [338], partly funded by LabEx PRIMES,

aimed at correcting for scatter in spectral cone-beam CT images. Scatter

is a challenge in single-energy cone-beam CT and the ill-posedness of

material decomposition makes it an even more striking issue in spectral

CT. This work used a primary modulator mask in front of the source to
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discriminate primary radiation from scatter assuming a smooth scatter

signal. Without scatter, the trace of the mask in the projections can be

removed by knowing its impact on each energy bin from calibration

measurements. With scatter, the mask is still visible in the projections

after correction. Using B-spline basis functions to model the scatter

signal, its B-spline parameters can be estimated by minimizing the traces

of the mask edges using the gradient at the edge locations. Accurate

scatter correction was observed, e.g., on real data of an anthropomorphic

phantom acquired on a test bench of the CEA-LETI in Grenoble (Figure

9.3).
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Figure 9.3: Top left: CT slice of the

RANDO phantom at bin 41.8 - 52.8 keV

of total map on the left against the es-

timated primary map on the right. Top

right: mean spectra of ROI (location on

CT slice). Bottom left and bottom right:

profiles at bin 41.8 - 52.8 keV and bin 85.8

- 96.8 keV respectively. The color code is

the same for all graphs: total map (blue),

reference primary map (orange) and esti-

mated primary map (green). Figure from

[339].

9.2.3 Spectral CT in the context of knee arthrosis

In the ANR project SALTO (2018-2021), the potential of a X-ray spectral CT

device, which was still at the stage of a prototype, was evaluated for the

early diagnosis of knee arthrosis. This disease is a serious public health

problem affecting a large percentage of the population and is expected to

increase over the next 10 years. Conventional imaging methods such as

radiography, X-ray CT or MRI have limitations in assessing the integrity of

bone and cartilage. Spectral CT should allow to obtain novel quantitative

information on the bone and cartilage tissues. SALTO has associated the

development of numerical simulation and data processing methods to

experimental acquisitions of normal and osteoarthritic knee specimens

on state-of-the-art systems (X-ray spectral CT Philips prototype in Lyon,

synchrotron CT at ESRF and HR-pQCT, a high-resolution CT system

at B3OA, Paris). Regarding data processing, a training knee data basis

was generated from monochromatic synchrotron CT images of knee

specimen considered as ground truth [340]. We evaluated material de-

composition methods based on deep learning neural networks, trained on

simulations, and tested both on simulations and experimental data [341].

New numerical methods were proposed for processing spectral data,

including material decomposition neural networks for the reconstruction
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of virtual mono-energy images, as well as denoising methods to improve

the quality of the reconstructed images [342–344]. The experimental

project allowed us, to evaluate the quality of the images provided by the

SP-CT prototype on X-ray spectral CT of the knee specimens showed the

interest of using mono-energetic virtual images at some optimal energy

for the detection of cartilage [345]. Furthermore, we demonstrated the

possibility to extract new information from these images such as the

quantification of 3D bone cysts and the 3D cartilage thickness [317].

9.3 Phase Contrast and Dark-Field Imaging

Since the seminal work of Rontgen in 1895, followed by the invention of

CT imaging by Hounsfield and Cormack, X-ray imaging is based on the

same phenomenon: the attenuation of X-ray photons by matter. Thanks to

the advent of third-generation synchrotron sources the wave properties

of X-ray could be measured indirectly. Those techniques sensitive to the

phase

Over the last three decades, X-ray Phase Contrast and Dark-field Imaging

(PCDI) have been proposed to overcome the limitations of conventional

absorption-based Imaging: their extremely high sensitivity (up to three

orders of magnitude higher than absorption-based imaging) and their

capability to obtain high-resolution images for a wide range of applica-

tion[346] including breast[347, 348], osteoarticular[349–351], brain [352–

355] and lung[356] imaging is reported in many studies. Synchrotron

Radiation is the gold standard for PCDI because of its high level of

beam coherence and photon intensity. However, access to synchrotrons

is restricted to a few groups in the world. In-vivo dynamic imaging

publications using PCDI are scarce and quasi-exclusively performed at

synchrotrons. With limitations, PCDI is also possible using laboratory

sources, at the cost of significantly longer acquisition time, which pre-

vents tomographic (3D) application in-vivo at micrometric resolution in

3D.

X-ray Phase Contrast (PC) and Darkfield Imaging (DI) have been demon-

strated to outperform conventional 3D imaging modalities based on

the sole attenuation [346]. The main aim of PCDI is to decompose the

light/matter interactions from a wave perspective. In more details thanks

to PCDI technique one can decompose in absorption, refraction (phase

contrast) and scattering (or multiple refraction) Figure 9.6 shows an

example of decomposition on a fantom.

9.3.1 Physical principles

Unfortunately due to the frequency of X-rays ( ≃ 10
18𝐻𝑧 ), the phase

aspects of X-rays cannot be sensed directly and undirect techniques have

to be used to estimate the phase shifts caused by the samples. Several

experimental set-ups

Briefly, Image contrast in PCDI arises from the deviation of X-rays passing

through materials with different electron densities [346]. Briefly, these

deviations are indicated respectively as a) refracted or b) scattered X-

rays depending on the number of traversed interfaces. The so-called
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Figure 9.4: Top: 3D rendering of a recon-

structed osteoarthritic sample . The black

arrows indicate visibly degraded lacu-

nae. The rounded shape of the lacunae is

also noticeable. The box is of size 122.88

𝜇m x 122.88 𝜇m x 122.88 𝜇m . Bottom:

Reconstructed slice of the osteoarthritic

sample. The pixel size is 60nm, and the

scale bar represents 10 𝜇m.

“refracted” X-rays deviate within micro- to milli-radians from the original

direction; PC refraction images map the distribution of the refraction

properties of the sample, defined by the real term of the refraction index.

Scattered X-rays deviate instead several dozen or hundreds of milliradians

from their original directions; PC images mapping the scattering are

indicated as “dark field” images; scattering arises from inhomogeneities

in the sample and/or the presence of many interfaces, due to local small

porosity (equivalent to, or smaller than the pixel).

9.3.2 Development of micro and nano Phase contrast
using free propagation techniques

The phase shift of the incoming X-ray beam induced by an object can be

up to three orders of magnitude higher than its attenuation, particularly

for soft tissues in the imaging energy range. Phase contrast can be, among

other existing techniques, achieved by letting a coherent X-ray beam

freely propagate after the sample. In this case, the obtained and recorded

signals can be modeled as Fresnel diffraction patterns. The challenge of

quantitative phase imaging is to retrieve, from these diffraction patterns,

both the attenuation and the phase information of the imaged object,

quantities that are non-linearly entangled in the recorded signal.

The PhD of Loriane Weber [357] financed by the LabEx Primes, was

focused on the developments and the applications of X-ray phase micro

and nano-CT using highly coherent sources such as synchrotron radiation.

She mainly worked on iterative tomographic reconstruction techniques

on bone material Figure 9.4.

Dr Weber investigated the reconstruction of seeded bone scaffolds using

multiple distance phase acquisitions. Phase retrieval is here performed

using the mixed approach, based on a linearization of the contrast

model, and followed by filtered- back projection. We implemented an

automatic version of the phase reconstruction process, to allow for the

reconstruction of large sets of samples. The method was applied to

bone scaffold data in order to study the influence of different bone cells

cultures on bone formation. Then, human bone samples were imaged

using phase nano-CT, and the potential of phase nano- imaging to analyze

the morphology of the lacuno-canalicular network was shown [358]. We

applied existing tools to further characterize the mineralization and the

collagen orientation of these samples.

Phase retrieval, however, is an ill-posed inverse problem. A general re-

construction method does not exist. Existing methods are either sensitive

to low frequency noise, or put stringent requirements on the imaged

object. Therefore, Weber et al. considered the joint inverse problem of

combining both phase retrieval and tomographic reconstruction [359].

They proposed an innovative algorithm for this problem, which combines

phase retrieval and tomographic reconstruction into a single iterative

regularized loop, where a linear phase contrast model is coupled with

an algebraic tomographic reconstruction algorithm. This algorithm is

applied to numerical simulated data.

In a later work, we proposed an extended Paganin method suited to

multi-distance propagation-based phase contrast CT. The method was
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compared theoretically and experimentally to the contrast transfer func-

tion (CTF) approach for homogeneous objects. The comparison was done

in the context of magnified phase nano-CT on the ID16a beamline at the

ESRF on bone samples data. Our results showed a gain in image quality

in terms of the signal-to-noise ratio and spatial resolution when using

four distances instead of one. The extended Paganin’s method followed

by an iterative refinement step provides the best reconstructions [360].

These images allowed to quantify in 3D the bone lacuna-canalicular

network (LCN). This involved the development of specific segmentation

and analysis methods to process the large datasets (32-52 GB) [361, 362]

(See chapter Bone Imaging and Associated Biomechanical Models).

9.3.3 Development of Modulation Based Imaging

Random phase modulation techniques were developed in 2012 [363, 364]

at synchrotrons, using the "speckle phenomenon" to create a random

intensity pattern which modifications upon introduction of the sample

would give its phase information. Beyond its simplicity of implementation,

Modulations-Based Imaging (MoBI) is a differential phase technique

contrary to free propagation. Moreover, it allows to give access to the

Dark-Field signal additionally to the phase and absorption.

Definition: Speckle

In optics, Speckles are random granular patterns that are produced

by a very coherent beam when deflected by an element with a rough

surface (such as sandpaper).

The experimental set-up of Modulations-Based Imaging (MoBI) is shown

in Figure 9.5.

Figure 9.5: Modulations-based imaging

set-up. The beam is modulated by a

randomly structured membrane before

reaching the sample. Then it propagates

to the detector distorted by the mem-

brane and the sample. Several images

can be acquired with various positions

of the membrane.

In MoBI, a structured membrane is introduced after the source (Figure

9.5), which modulates the incoming beam intensity. The distortion of this

pattern by refraction and scattering in the imaged object is a PCI modality

with the advantage over similar methods that it does not require precise

alignment. Further, it can be used with a conventional X-ray setup as well

as medical scanners, thus showing substantial promise for clinical use.

The experimental complexity of PCI is then transferred to the numerical
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processing of data. Through the processing of such images, not only the

absorption and phase can be retrieved, but also the scattering in two

perpendicular directions, known as DFI.

The LabEx Primes played an essential role in the development of MoBI

by financing this research with 3 internships, one PhD and experiments

at the European Synchrotron Radiation Facility.

9.3.4 Phase Retrieval

Through image analysis method, we can track the modulation distortions

caused by the refraction or the scattering of the sample directly in two

directions. Phase retrieval is therefore the key process in this technique.

A few algorithms are already available in the literature for tracking the

pattern movements between reference and sample images. A first set of

methods used an explicit tracking of the modulations by locally compar-

ing, pixel by pixel, the individual displacement of each modulation, using

cross-correlation maximization [363–365] or functional minimization

[366]. These algorithms are not limited by any specific hypothesis and can

be applied to a broad range of samples but are computationally expensive.

The second kind of algorithms employs, in contrast, an implicit tracking

where the method does not seek the modulations displacement locally but

rather assumes total photon flux conservation[367–372]. These methods

were developed in part thanks to the LabEx Primes. The starting point

of these algorithms is the transport of intensity equation (TIE) that can

be used in the Fresnel regime to describe the evolution of intensity due

to the insertion of a non-absorbing sample into the beam. This equation

can be written as:

𝐼𝑟(𝑥, 𝑦) − 𝐼𝑠(𝑥, 𝑦) ≈ ∇⊥ · [𝐼𝑟(𝑥, 𝑦)𝐷⊥(𝑥, 𝑦)]. (9.1)

The last major contribution to the domain was published by Magnin

et al. [373] and allows to retrieve the absorption, the refraction and the

scattering images on a conventional X-ray source. The

𝐼
(𝑘)
𝑟 (𝑥, 𝑦) = 1

𝐼𝑜𝑏 𝑗(𝑥, 𝑦)
𝐼
(𝑘)
𝑠 (𝑥, 𝑦) + 𝐷𝑥(𝑥, 𝑦)

𝜕𝐼(𝑘)𝑟 (𝑥, 𝑦)
𝜕𝑥

+ 𝐷𝑦(𝑥, 𝑦)
𝜕𝐼(𝑘)𝑟 (𝑥, 𝑦)

𝜕𝑦
− 𝑧2𝐷 𝑓 (𝑥, 𝑦)∇2

⊥[𝐼
(𝑘)
𝑟 (𝑥, 𝑦)],

(9.2)

Where, 𝐷⊥ = (𝐷𝑥 , 𝐷𝑦) is the transverse displacement field and ∇⊥ =

𝜕/𝜕𝑥+𝜕/𝜕𝑦 is the two dimensional transverse gradient operator. 𝐼𝑜𝑏 𝑗 is a

sink term introduced to compensate for attenuation that might comprise

also the interference fringes, if any. 𝑧2 is the sample-to-detector distance.

In order to retrieve the absorption, phase and dark-field signal, we must

solve a system with at least 4 membrane positions due to the 4 unknowns

(𝐼𝑜𝑏 𝑗 , 𝐷𝑥 , 𝐷𝑦 , 𝐷 𝑓 ). 𝑘 is the index of the couple acquisition:
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Figure 9.6: Attenuation (a), dark-field (b),

dx (c) and phase (d) images of a nylon

wire (left) and two bundles of carbon

fibers with different orientations. The

images are retrieved using the Low Co-

herence System [373] and 10 pairs of

reference and sample images at a sample-

detector distance of 3200 mm. Their re-

spective profiles along the blue line are

given below each image.

9.3.5 Transfer on laboratory set-ups

On conventional systems, because the speckle phenomenon is difficult to

obtain, we fabricate our own membranes with a high Z atomic element (3D

printed or using powders) to produce a random intensity modulation. In

order to obtain patterns with regular size modulations and high-intensity

variations, new membranes were created. This process was patented

during Helene Rougé-Labriet PhD thesis [374]. These membranes have

different absorption indices and grain sizes. To obtain these membranes,

a thin layer of powder is deposited on a self-adhesive surface, which is

glued to a thin PMMA plate. Different materials were used and tested

(Copper, Iron, TiC) with different granulometries (from 9 to 300 𝜇m).

More recently, in Laurene Quenot PhD & Clara Magnin PhDs, we looked

for the optimal geometry of the membrane. In [375] and in a publication

to come we indeed compared different geometry such as mesh, honey-

comb, spiral and random. The main results of this study is that random

geometries we used in the past with sandpaper is not optimal while a

quasi-periodic structure was.

Figure 9.6 shows the result extracted from [373]. These images were

obtained on a X-ray set-up manufactured by Xenocs (Grenoble, France)

with a low coherence source (X-ray focal spot of 50 𝜇m).
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9.4 Towards Spectral Multimodal X-ray Imaging

In 2021, the LabEx Primes funded Chris Ninham PhD. The goal of this PhD

fellowship is to investigate phase-contrast retrieval from spectral x-ray

images with MoBI. Conventional spectral x-ray imaging only considers

the attenuation and accounting for the phase requires to model the

complex refraction index. Currently, phase contrast images are retrieved

by solving a non-linear inverse problem under the assumption that the

ratio between the attenuation and the phase is constant or by using

several x-ray images acquired at different distances or with different

optical configurations. Both the attenuation and the phase depend on the

x-ray energy and this PhD assumes that x-ray spectral imaging would

provide several measures with a single irradiation to retrieve the phase.

So far we could model the inverse problem and identify adequate

acquisition parameters (size and voltage of the x-ray source, speckle

pattern, spectral and spatial resolution of the detector, etc.) and perform

proof of concepts experiments. More details will be described soon in

scientific articles in preparation.
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10.1 Introduction

Whether it be X-ray imaging, optical imaging, or magnetic resonance or

ultrasound imaging, all techniques used in medical imaging result from

an interaction between waves and matter. They distinguish themselves

from one another by the type (electromagnetic or acoustic) and frequency

domain of the waves employed. The exciting wave is characterized by one

or more frequencies, and the resulting wave from the material’s response

to this excitation is itself characterized by a frequency content. This

frequency-based decomposition may seem immaterial; indeed, it is rarely

naturally available and generally accessible only through a dedicated

technique that requires excitation and reception at multiple frequencies.

Spectral imaging refers to a technique in various imaging modalities,

including X-rays, MRI (Magnetic Resonance Imaging), optics, etc., where

not only the spatial distribution of a tissue’s response to an excitation

is captured but also the characterization of its frequency content at

each point in space. In the context of different imaging technologies,

this term takes on specific names such as "spectral imaging" for X-rays,

"spectroscopic imaging" for MRI, and "hyperspectral imaging" for optical

imaging. The goal is to provide a comprehensive understanding of the

material or biological sample being imaged by considering its spectral

characteristics, allowing for improved analysis and diagnostic capabilities.

Living matter is complex, composed of numerous molecules, various

contents and multiple compartments. This chapter describes the various

research efforts conducted within the labEx PRIMES framework and

for the main imaging modalities, illustrating methods for acquiring the

spectral dimension and the valuable information it offers. This exploration

aims to achieve a more comprehensive description of the complexity of

living tissues, thereby providing specific insights to enhance medical

diagnostics.

10.2 X-Ray Spectral Imaging

Spectral computed tomography (CT) imaging covers a unique generation

of CT systems based on a simple principle that makes use of energy-

dependent information. Over the past two decades this principle has been

expanded with the introduction of dual-energy CT systems. The first

generation of spectral CT devices opened up a new imaging approach in

the radiology community with their ability to overcome the limitations of
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tissue characterization encountered with conventional CT. But recently

this technology gives way to a ground-breaking photon-counting CT

technology based on a new chain of detection which holds great promise

for extending CT towards multi-energy CTimaging

Principles

Spectral Photon Counting Computed Tomography (SPCCT) is a new,

emerging technology in the field of spectral imaging [376]. It makes use

of energy-resolving detectors, called photon-counting detectors (PCDs),

recently integrated into clinical CT platform[377]. PCDs are made of

semi-conductive material which makes it possible to convert incoming

photons directly into electrical charges which migrate into a counting

(application-specific integrated circuit, ASIC). The ASIC shapes a voltage

pulse proportional to the incoming photon energy, and each photon can

be differentiated in amplitude according to its energy. The transmitted

spectrum can thus be characterized into multiple energy bins as defined

by their different energy levels. In comparison to dual-energy CT abilities,

SPCCT has the potential to provide more complete, accurate sampling of

the energy dependence found in the CT images. The second benefit will

be that additional materials can be added to the spectral decomposition

of the images based on their K-edge energies, i.e., the binding energy

between the K-shell and the nucleus. This can be understood as a third

unknown factor added to the equation by Alvarez and Macovsky [327]

𝜇(𝐸) = 𝛼𝑃 𝑓𝑃(𝐸) + 𝛼𝐶 𝑓𝐶(𝐸) + 𝛼material 𝑓material(𝐸)

where 𝛼𝑃 is the mass coefficient of photoelectric attenuation of the

material, 𝑓𝑃 = 1/𝐸3
with 𝐸 the photon energy, 𝛼𝐶 is the Compton mass

attenuation coefficient of the material , 𝑓𝐶 is the Klein-Nishina function,

𝑓material(𝐸) is a mathematical function that characterizes the photoelectric

effect of the K-edge material, and 𝛼material is the photoelectric absorption

coefficient of the material.

This approach, referred to as K-edge imaging, is a real breakthrough in

CT post-processing and comes with the promise of being available in

the next generation of clinical SPCCT systems. It mainly promises to

overcome the limitations of dual-energy CT technology, which cannot

specifically or quantitatively separate different materials in the same

voxel (or spatially co-registered), such as iodine and calcium.

Current Clinical Applications

SPCCT technology is known to have several benefits over current CT

systems that are equipped with energy-integrating detectors (EID-CT).

It increases spatial resolution by a factor of 4 with an achievable voxel

size of 0.15 to 0.25 mm
3

for all applications, including lung, ear, mus-

culoskeletal, peritoneal, coronary artery, and vessel imaging cite[378,

379]. It decreases the radiation dose by 30-50% while providing a similar

noise level to that of EID-CT images by suppressing electronic noise [378,

380–382]. It enhances tissue contrast for a similar energy beam to that

of EID-CT images due to the constant weighting of photons, leading to

greater weighting of the low-energy photons carrying the photoelectric
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effect, whereas EID-CT technology uses linear weighting [378]. SPCCT

also decreases beam-hardening-like artifacts and blooming artifacts due

to higher spatial resolution, despite an increase in CT attenuation of all

high-contrast tasks [378, 383]. It enables better energy sampling of the

transmitted spectrum than dual-energy CT technology, i.e., more than 2

energies, which enables a greater energy separation between high and

low energy photons [384]. As a result, SPCCT may improve the perfor-

mances of any type of virtual images, such as virtual monochromatic,

virtual non-contrast, Z-effective, electronic density, as well as any type

of material decomposition process like that of water or iodine imaging

[384, 385]. Altogether, these advantages hold great promise for changing

the current workflow of CT (Figure 10.1). More importantly, physicians

should understand that SPCCT offers all these advantages in just one

scan without increasing the dose, changing the technical parameters, or

requiring spectral mode prospectively. This key feature should provide

great leverage to help spread the use of SPCCT technology.

Figure 10.1: Illustration of clinical ex-

perience with numerous clinical applica-

tions using a whole-body clinical spectral

photon-counting CT prototype (Philips

Healthcare) on a research platform at the

University of Lyon.

Future Color K-edge Clinical Applications

The advantages mentioned above, while illustrating some basic but im-

portant advantages of SPCCT over conventional CT imaging, still do

not emphasize the most groundbreaking contribution of SPCCT: Color

K-edge imaging. Color K-edge imaging places the energy bin boundaries

in close proximity to the K-edge energies of elements, defined as the

binding energy between the inner electronic layer and the atom. This

means that the contrast agent can be identified specifically and quantita-

tively, allowing concomitant specific imaging of K-edge contrast agents
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like gold and gadolinium and their differentiation from surrounding

tissue and non-K-edge contrast agents such as iodine-based agents [377,

386, 387]. These images will then be offered to radiologists together with

the conventional HU-image. K-edge imaging is comparable with the

nuclear imaging twin modality of PET-CT where low-resolution func-

tional information on FDG uptake is superimposed on high-resolution

anatomical information, opening a completely new CT approach for

functional, molecular, or inflammation imaging and many other areas

requiring exploration. This new approach may be an advantage for new

exploration such as for performing a biphasic organ CT imaging by

providing simultaneously a specific enhancement after a consecutive

injection of iodine and gadolinium-based contrast agents[388], or for

performing a molecular CT imaging by monitoring the macrophage

burden within the high-risk atherosclerotic plaques [387]. Despite the

multiple pre-clinical studies taking advantage of Color K-edge imaging,

translation in humans still has to be developed.

The introduction of spectral photon-counting CT in the clinical field has

opened a new chapter for medical imaging. The incremental expectations

in term of improved image quality are already being demonstrated

for many applications including those most in need of better spatial

resolution and contrast, as well as reduced radiation dose. Altogether,

SPCCT is expected to provide significant benefits for disease diagnosis,

characterization and staging, and also to open to ground breaking

approaches that were not previously available in the field of CT.

10.3 Spectral imaging in the visible range

The impact of medical imaging is important for the early diagnostic

and for the intervention guidance on pathologies. Medical imaging

clinical standards (‘glsmri, nuclear medicine, CT. . . ) face limitations in

the operative room, due to technical, cost and regulatory constraints. In

recent decades, the paradigm of therapeutic interventions has evolved

significantly, moving from a linear approach (Decision-Action-Control)

to a continuous process of decision optimization based on the steady

acquisition and processing of multimodal information. The goal of intra-

operative imaging is to provide operating room actors with integrated

models for medical decision support that can be optimized in real-time

to prevent any obstruction in the course of the surgery. Decision-making

thus becomes a permanent feature at the center of the care process, before,

during, and after the therapeutic intervention. Ultrasound and optical

medical devices are relevant in this intraoperative context because they

are easy to handle, reliable, generally low-cost, and allow high acquisi-

tion rate. Optics also have the huge advantage of being a non-contact

imaging modality and to be close to the current practice in neurosurgery

(surgical microscopes is a clinical standard in surgery). However, the

diffusion of intraoperative optical devices is still limited because of a lack

of reliable intraoperative biomarkers. This impairs their clinical relevance

and their ability to correlate with gold-standard pre-operative imaging

(MRI, CT. . . ), which is mandatory to propose robust integrated models

for real-time medical decision support. Gliomas are the most frequent

tumors of the central nervous system. They are infiltrative tumors with a
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Figure 10.2: Identification of the position

of the motor cortex during neurosurgery

with optical video. The letters M indicate

motor areas and S indicate sensitivity ar-

eas (determined with gold standard elec-

trical stimulation). The added false color

scale indicates a proposed biomarker af-

ter appropriate thresholding and linked

to oxy- and deoxy-hemoglobin parame-

ters.

Figure 10.3: Intraoperative optical func-

tional brain maps (purple color scale)

superposed to fMRI preoperative func-

tional brain maps (blue color scale). A:

In the space of the surgical window, su-

perimposed on the RGB image. A: In

the MRI generated 3D head contour. The

black contour represents the extent of the

surgical window. The letter M indicates

the motor cortex area identified by EBS.

solid tumor compound and an infiltrative compound that is very difficult

to identify. Their treatment is mainly based on resection as complete as

possible. During surgery, the decision to continue or stop resection is

a tradeoff between the resection of a maximum of tumor cells and the

preservation of functional areas. The gold standard is still the anato-

mopathological analysis where a biopsy is removed from the brain to

identify the tissue nature (tumor / healthy). This procedure takes some

time and it is relevant for the surgical procedure to obtain faster informa-

tion on the biopsy. The intraoperative identification of brain functional

areas is tackled by considering the neurovascular coupling which induces

variations of local tissue perfusion and oximetry when brain cortical

areas are activated. The intraoperative identification of functional brain

areas is critical during intracerebral surgical procedures, in order to avoid

any postoperative patient deficits. Current clinical standards combine

preoperative fMRI and intraoperative electrical brain stimulation (EBS).

Hyperspectral optical imaging is used to measure the brain hemody-

namics triggered by physiological stimuli. Within the labEx PRIMES

[389] a fast real-time algorithm was developed and applied, yielding

motion-corrected RGB videos of brain during neurosurgery. We proposed

a quantification model [390] taking into account the brain heterogeneity

in the physical model of biomarkers then produced quantitative maps of

functionality biomarkers, see Figure 10.2. We also showed during these

works [391] the spatial and temporal correlation of this optical contrast

with current clinical standards which combine preoperative fMRI and

intraoperative electrical brain stimulation, see Figure 10.3. Concerning

tumor localization, the gold standard is still an anatomopathological

procedure and is thus time-consuming. An alternative approach could

be intraoperative 5-aminolevulinic acid (abbreviated as 5-ALA) Proto-

porphyrin IX (PpIX) fluorescence imaging but as carried out now, it still

lacks sensitivity. The works of Laure Alston showed that in vitro, ex vivo
and in vivo studies strongly hints that there exists two close emission

spectra of PpIX that are relevant; one peaking at 620 nm and the other at

634 nm [392]. We developed an intraoperative prototype validated by

the ANSM and led a clinical trial (NCT02473380) on 10 patients result-
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Figure 10.4: Intraoperative system de-

veloped and used in a clinical study on

10 patients; Data analysis of the results

with unsupervised classification in a t-

distributed stochastic neighbor embed-

ding (T-SNE) reduced space. K-means

classification with 4 clusters.

ing in the definition of new biomarkers of PpIX fluorescence emission.

These results [393], also explored using machine learning approaches

[394] suggest that these biomarkers could increase the sensitivity of the

5-ALA induced PpIX fluorescence technique in low-density margins

and improve the definition of the boundary between tumor margin and

healthy tissues in high and low-grade gliomas, see Figure 10.4. During

Arthur Gautheron PhD works funded by the labEx PRIMES, it was also

showed that sophisticated fluorescence excitation scheme and a priori-free

unmixing method can increase the specificity of this method to glioma

lesion boundary [395].

10.4 Light sheet fluorescence microscopy

Selective Plane Illumination Microscopy (SPIM) enables rapid three-

dimensional (3D) imaging of fluorescent samples across spatial coor-

dinates (𝑥, 𝑦, 𝑧), significantly reducing photobleaching effects. SPIM

captures two-dimensional (2D) slices (𝑥, 𝑦) by illuminating the sample

with a thin light sheet, while the third dimension 𝑧 is systematically

scanned [396]. The openSPIM initiative has further popularized SPIM by

introducing a variety of design modifications, expanding its applicability

[397, 398]. Consequently, SPIM has been employed in diverse studies,

ranging from the embryonic development of flies and zebrafish to the

intricate structures of rat brains and mouse cochleae [399], becoming a

cornerstone technique in real-time developmental biology [400].

SPIM harnesses the fluorescence emitted by labeled structures within a

specimen. When examining specimens with multiple labels, it becomes

crucial to differentiate between the fluorophores. This differentiation

often relies on optical filters selected to capture emission spectra at

their peak. While filter-based methods are straightforward and effective,

they have limitations; for instance, they cannot distinguish between

fluorophores with overlapping spectra, resulting in the loss of light

outside their pass band [401]. Few techniques have been developed

to capture the complete fluorescence spectrum of a sample, or the 4D

(𝑥, 𝑦, 𝑧,𝜆) hypercube, which could significantly enhance light collection

and fluorophore unmixing capabilities.

The pioneering hyperspectral SPIM technique utilized a pair of mir-

ror galvanometers to project an illuminated line onto a spectrometer’s
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Figure 10.5: Overview of the proposed

computational hyperspectral light-sheet

microscope. We consider the acquisition

of the hyperspectral section 𝑓 (𝑥, 𝑦,𝜆).
We use multiple illumination patterns

{𝑝𝑘 }1≤𝑘≤𝐾 that are modulated along the

𝑥-axis. The fluorescence light emitted

by the sample is focused onto the slit

of a spectrometer, to provide the raw

measurements {𝑚ℓ
𝑘
(𝑦,𝜆)}

1≤𝑘≤𝐾 . Then,

the hyperspectral section can be recon-

structed numerically from the raw mea-

surements.

entrance slit [402]. Sebastien Crombez’s doctoral research (2019-2022)

introduces an innovative approach to computational hyperspectral light-

sheet microscopy. This method channels the fluorescence signal from

the light sheet through a cylindrical lens directly into the spectrometer’s

slit, leveraging the full spectral resolution of the spectrometer without

the need for moving parts, unlike the approach in [402]. By employing

a series of spatially encoded light sheets, we can formulate an image

reconstruction problem to access the spatial dimension orthogonal to the

slit. This concept is encapsulated in Figure 10.5 and has been detailed in

[403, 404].

In traditional light-sheet microscopy, the light sheet is uniformly dis-

tributed across the (𝑥, 𝑦)-plane. Our approach, however, utilizes multiple

illumination patterns {𝑝𝑘}1≤𝑘≤𝐾 modulated along the 𝑥-axis. Each pat-

tern, when projected onto the sample, results in raw measurements

{𝑚𝑘(𝑦,𝜆)}1≤𝑘≤𝐾 that are modeled by the equation:

𝑚𝑘(𝑦,𝜆) =
∫

𝑝𝑘(𝑥) 𝑓 (𝑥, 𝑦,𝜆) 𝑑𝑥. (10.1)

Here, 𝑓 denotes the fluorescence hypercube of the imaged slice.

(c)(b)(a)

Figure 10.6: Hyperspectral imaging of a

two-color hydra specimen labeled with

Superfolder Green Fluorescent Protein -

GFP (𝜆 ex = 485 nm, 𝜆 em = 510 nm) and

DsRed2 (𝜆 ex = 561 nm, 𝜆 em = 587 nm).

(a) Image of the sample. We show the tail

of the hydra that was studied in the cyan

box. Scale bar 1 mm. (b) Hyperspectral

SPIM (green channel range: [493, 527]
nm; red channel range: [576, 601] nm).

Scale bar, 100 µm. (c) Spectra of one el-

ement of the shell of the hydra (zone 1)

and of one element of the inside of the

hydra (zone 2).

Subsequently, we reconstruct the hyperspectral slice from these raw

measurements. Assuming the availability of experimental measurements

for the light patterns, our reconstruction algorithm can successfully

retrieve the encoded spatial dimension. We validated our methodology

on a hydra specimen labeled with two distinct fluorophores. The complete

spectrum captured at each pixel slice enables the clear differentiation of

structures labeled with the two fluorophores, as illustrated in Figure 10.6.

The primary constraint of this method is the limited spatial resolution

along one axis.
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Figure 10.7: Illustration of the multispec-

tral photoacoustic imaging developed on

the PILoT platform [409].

10.5 Multi-spectral photoacoustic imaging

The photoacoustic (PA) effect was discovered in 1880 by Alexander

Graham Bell, who demonstrated the production of audible sounds by

periodically illuminating an object with sunlight [405]. Then, the constant

progress that accompanied the development of the laser made it possible

to use it as a stable pulsed excitation light source. The first application

of the PA effect was the detection of traces of gas in 1971 [406], rapidly

followed by establishing a theoretical basis for using the PA effect in solids

in 1976 [407]. In the 1990s, the use of the PA effect in diffuse media opened

the door to medical applications, and the uses of PA imaging multiplied.

Today, the PA effect is used in medical imaging from microscopic (∼µm)

to macroscopic (∼mm) scale. The photoacoustic (PA) effect (also known as

the optoacoustic or thermoacoustic effect) corresponds to the production

of acoustic waves by an object periodically illuminated by a light wave.

The acoustic signals received at the surface of the object or biological

tissues by an ultrasound (US) probe are then used to construct what is

known as a photoacoustic image of the object. A pulsed optical excitation

is required to illuminate the investigated medium to create this effect.

Indeed, the optical energy is locally absorbed by the optical absorbers

and converted into heat by the photo-thermal effect, which leads to

an instantaneous thermoelastic expansion. This sudden and periodic

increase in the absorbers causes an acoustic wave. However, the PA

effect requires a short-pulsed laser excitation source (<100 ns) so that the

expansion/refraction phenomenon can occur. Similarly, the optical energy

must be sufficient to create a detectable acoustic signal and can range,

depending on the application, from 0.1 mJ/pulse to 100 mJ/pulse while

complying with maximum permissible skin exposure safety standards.

Multi-spectral photoacoustic imaging involves exciting the medium with

different wavelengths. Biological tissues have an optical absorption that

depends on the wavelength of the light excitation [408]. Different pho-

toacoustic images of the same medium can then be used to differentiate

between different tissues. Certain major components of living tissue

exhibit significant optical absorption in the visible and near-infrared (IR)

range, making them the main absorbers of biological tissue. Of the main

constituents of biological tissue, haemoglobin has the highest optical

absorption in the visible and near-IR range. Moreover, its absorption

is strongly linked to its oxygenation level. Typically, it is possible to

distinguish between oxyhaemoglobin and deoxyhaemoglobin based on

their absorption spectra, which show different patterns, by imaging the

biological medium at several wavelengths.

From a signal processing point of view, multi-spectral acquisitions must

be processed to estimate the imaged media and/or their concentration.

To do so, the classical strategy often uses spectral unmixing, which is

based on spectral fitting of the acquired data on reference spectrums [410].
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Figure 10.8: Result maps (left) with or

(right) without dilution consideration

(the diluted blue cluster is represented in

cyan). From top to bottom: ground truth,

spectral-fitting [410], least-square [413],

intra-class correlation [414] and SSM-S.

The performances are highlighted by cal-

culating the percentage of well-classified

pixels (WCP).

Previous knowledge of the potential imaged medium is necessary for

such a strategy. However, in the various published methods of the

literature, the spatial information is never considered in the medium

extraction, which leads to noisy estimation, and the clustering of close

pixels can be affected by different media. For these reasons, a spatial and

spectral mean-shift (SSM-S) has been proposed to perform clustering or

medium concentration estimation using a spatio-spectral regularization

[411, 412]. The formalism is based on an iterative process on the variable

x𝑗 = {s𝑗; A𝑗} where s𝑗/A𝑗 is the position/spectrum of the j-th pixel. Then,

the iteration process is expressed as:

x[𝑡+1]
𝑡 =

∑𝑁
𝑗=1

𝑔𝑠(s[𝑡]𝑖 , s
[𝑡]
𝑗
).𝑔𝜆(A[𝑡]

𝑖
,A[𝑡]

𝑗
).x[𝑡]

𝑗∑𝑁
𝑗=1

𝑔𝑠(s[𝑡]𝑖 , s
[𝑡]
𝑗
).𝑔𝜆(A[𝑡]

𝑖
,A[𝑡]

𝑗
)

(10.2)

with 
𝑔𝑠(s[𝑡]𝑖 , s

[𝑡]
𝑗
) =

{
1 if

1

𝑅2

𝑠
(s𝑖 − s𝑗)𝑇(s𝑖 − s𝑗) ≤ 1

0 otherwise

𝑔𝜆(A[𝑡]
𝑖
,A[𝑡]

𝑗
) =

{
1 if

1

𝑅2

𝜆

| |A𝑖 − A𝑗 | |∞ ≤ 1

0 otherwise

(10.3)

where 𝑅𝑠 is a radial distance and 𝑅𝜆 the maximum accepted distance

between spectra. The equation (10.3) ensures that the distance between

pixel and spectra is conserved during the iterative process. Such process,

described in (10.2) is applied to all pixels x𝑖 of the image region 𝑋

until convergence of the procedure, i.e. stabilization of the featured

values throughout the process. Once obtained, pixels can be clustered

together [411]. Similar processing can also be extended in order to perform

concentration estimation [412].

Using the VevoLazr system, specific experiments have been conducted

in order to evaluate the clustering performance of the SSM-S method

to separate coloured medium with or without the consideration of its

dilution [412]. The results are shown in Figure 10.8. The proposed SSM-S

strategy outperforms the state-of-the-art technique without considering

a medium’s potential dilution.

The proposed SSM-S method improves then the discrimination of multi-

spectral photoacoustic datasets. It has been validated on diluted, mixed,

and media with particular light attenuation. Moreover, it was highlighted

that using the spatial features, in addition to the spectral one, improves
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the discrimination. Moreover, the method could be extended for 3D

multispectral imaging, although it is not yet fully conducted. However,

the SSM-S also has some limitations. First, the computation time is longer

than simple spectral fitting, where a single matrix inversion is conducted.

However, in the context of the clinical application of photoacoustic, the

standard extracted parameter is the saturation map (𝑆𝑂2) based on

oxygenated and deoxygenated blood. Also, the proposed SSM-S is not

specifically optimized for such an application, and current results did not

exhibit a specific improvement in 𝑆𝑂2 map calculation [415]. Last, with

the omnipotent presence of deep learning algorithms, the multispectral

photoacoustic imaging post-processing may also be revisited with a

specific network, as already proposed in [416].

10.6 Ultrasound Spectroscopy

Ultrasound imaging provides an anatomical image of tissues. This

grayscale imaging highlights changes in the mechanical properties of

tissues where ultrasound is reflected in the ultrasound probe by large

structures (organ edges, blood vessels). In areas where the grayscale is ho-

mogeneous (speckle), ultrasound is scattered by much smaller structures

(cells, muscle fibers...). In these areas, ultrasonic signals are associated

with the tissue microstructure they have passed through. The backscatter

coefficient (BSC) provides information about the tissue microstructure.

To estimate it, the spectra in areas of interest (ROI correspond typically to

10 to 15 wavelengths in both lateral and axial directions) of the measured

ultrasonic signals are compensated for tissue attenuation before being

normalized by the spectrum of ultrasonic signals from a reference (e.g., a

medium whose scatterer characteristics are known). Using an ultrasonic

probe with multiple transducers, the reference used is a known reference

phantom citeyao1990. In this case, the BSC is expressed as:

𝐵𝑆𝐶𝑠( 𝑓 ) = 𝐵𝑆𝐶𝑟𝑒 𝑓 ( 𝑓 )𝑒−4𝑧[𝛼𝑟𝑒 𝑓 −𝛼𝑠 ] |𝑆𝑠 |2��𝑆𝑟𝑒 𝑓 ��2 (10.4)

where 𝑧 is the depth, 𝐵𝑆𝐶𝑠 and 𝛼𝑠 are the backscatter and attenuation co-

efficients of the sample as a function of the frequency 𝑓 , respectively and

𝐵𝑆𝐶𝑟𝑒 𝑓 and 𝛼𝑟𝑒 𝑓 those from the reference phantom. 𝑆𝑠 and 𝑆𝑟𝑒 𝑓 denoted

the spectra from the sample and the reference phantom, respectively.

Ultrasound scatterer parameters can then be evaluated by comparing

the measured BSC with a theoretical BSC estimated using a theoretical

ultrasound scattering model.

The ultrasonic scattering structure(s) at the cellular level is(are) still not

identified (nucleus, cell or both). Indeed, it is generally difficult to correlate

the scatterer parameters to tissue structures from histology. Classically,

these models (e.g., the Gaussian model [417]) deal with identical ran-

domly and independently distributed scatterers, making them valid only

for diluted medium. A first hypothesis to explain these difficulties may

come from the fact that tissue may not be considered a diluted medium.

The Structure Factor Model is better adapted for dense media because it

also considers the scatterers’ interactions using a statistical mechanics

structure factor [418]. To gain insight into the cellular structure(s), that
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is(are) involved in ultrasonic scattering, ultrasound measurements were

realized on four cell lines in cell-pellet biophantoms and ex vivo tumors.

Ultrasonic scatterer parameters from four cell lines (4T1, JC, LMTK and

MAT) of cell-pellet biophantoms and tumors were evaluated using two

scattering models (Gaussian and structure factor models). The results of

this study highlight that nuclei appear to be the main structure involved

in ultrasonic scattering for all the studied tumors; that cells appear to

be the structure involved in ultrasonic scattering for LMTK and MAT

cell pellets; and that cells and nuclei appear to be the structures involved

in ultrasonic scattering for 4T1 and JC cell pellets [419]. Then, another

hypothesis to explain the difficulties in correlating scatterer parameters

and histological structures is that both cells and nuclei may be involved

in ultrasound scattering. We observed that ultrasound scatterer models

adapted for nuclei and cell scattering (concentric sphere model [420]

and structure factor model adapted for two scatterer types [419]) yield

a lower relative error on nucleus and cell radii and volume fractions

estimates than the structure factor model for 4T1, JC, LMTK and MAT

CP cell-pellet biophantoms [421].

Ultrasonic spectroscopy can be useful for clinical applications involving

changes in tissue microstructure [422]: in the presence of fat droplets in

the liver for non-alcoholic fatty liver disease patients [423], cell-death

changes during anti-cancer therapy [424], comparison between cancerous

and healthy tissues [425]. We were interested in cancer characterization.

Indeed, the grade of a tumor reflects the tumor’s aggressiveness and is

assigned based on various criteria, including the cell and the nucleus sizes.

The potential of ultrasound spectroscopy to discriminate chondrosarcoma

from osteosarcoma was evaluated on ex vivo tumors [426]. These models

present a lot of differences in terms of cellularity, cells and nuclei size

and extracellular matrix composition. The mean BSCs for each sample

showed different trends between chondrosarcomas and osteosarcomas.

Moreover, the two different osteosarcoma cells lines (MOS-J for OsS1 and

OsS2; K7M2 for OsS3 and OsS4) lead to highly contrasted BSCs (Figure

10.9(left)). The differences within the BSCs per ROI are translated into the

slope and intercept parameters (using a linear fit of the BSC as a function

of frequency) in the scatter plots shown in Figure 10.9 (right). A Wilcoxon

rank sum test conducted at a significance level of 5% reveals statistically

significant differences in the intercept values between chondrosarcomas

and osteosarcomas. Although only ultrasound spectroscopy results are

presented here, this study was realized using ultrasound and light

backscattering spectroscopy methods to evaluate the complementarity of

these two techniques. We were also interested in the evaluation of tumor

response to chemotherapy and ultrasound data were acquired and their

analysis is in progress.
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Figure 10.9: Left: Mean BSC b-spline fits

obtained with two probes (13-24 MHz

and 18-38 MHz) per tumor. Right: Inter-

cept versus slope (BSC linear model over

the 18-38 MHz frequency range) for each

ROI.

10.7 Magnetic Resonance Spectroscopic Imaging

In the field of magnetic resonance, in vivo Magnetic Resonance Spec-

troscopy (MRS) is a tool for non-invasive measurement of concentrations

of biochemical compounds (metabolites, lipids) and provides unique

and valuable information for the diagnosis and therapeutic follow-up of

a number of brain diseases (epilepsy, multiple sclerosis, stroke, cancer).

The combination of MRS and spatial encoding methods derived from

Magnetic Resonance Imaging (MRI) enables spectroscopic information to

be mapped non-invasively. Although magnetic resonance spectroscopic

imaging (MRSI appears far more interesting than single voxel acquisition

(Single Voxel spectroscopy), since it provides spectral information in

multiple regions within a single acquisition, it still is not widely adopted

in clinical routine. This is due to long acquisition times, low spatial reso-

lution and complex- the post-acquisition processing required to extract

reliable information. After nearly 30 years of development, spectroscopic

imaging techniques have been enriched by advances in MRI (parallel

imaging, echo planar and non cartesian sampling, compressive sensing)

to speed up acquisition[427].

Thus, MRSI signals consist of spatially distributed one-dimensional

spectra, acquired in a two-dimensional k-space (kx, ky). In MRSI, k-

space evolves over time with oscillatory functions and exponential decay,

reflecting molecular content. A two-dimensional Fourier transform spa-

tially localizes biochemical information, and a one-dimensional Fourier

transform along time yields magnetic resonance spectra. Time and k-

space domains are separable, with each (kx, ky) point having possibly a

bandlimited spectrum (this is the case for phosphorus 31P spectra for

example). In in vivo MRS, known molecular resonance frequencies and

the expected ’full width at half maximum’ (FWHM) of resonating peaks

could be considered a priori.

As part of Jabrane Karkouri’s thesis, methodological developments for

31P spectroscopic imaging were carried out in order to reduce acquisition

time. The acquisition method we’ve been working on involves non-

cartesian k-space sampling (spiral sampling) coupled with intelligent

sub-sampling of the time dimension, or subsampling of the magnetic

resonance signal - the NMR spectrum corresponding signal - exploiting

a priori knowledge of the signal’s a priori knowledge of the spectral

support sparsity and a least-squares estimation for signal reconstruction.

Indeed, sparse spectra support allows for faster and simpler signal
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Figure 10.10: The 31P spectra are de-

picted at the beginning (in blue) and

end (in dashed red) of the exercise for

both the conventional (full sampling) sce-

nario involving the gastrocnemius mus-

cle (b) and soleus muscle (c), as well as

the under-sampled scenario for the gas-

trocnemius muscle (d) and soleus mus-

cle (e). The regions of interest for spec-

troscopy voxel averaging are represented

in blue and orange on the anatomical im-

age (a). The highlighted voxels in blue

correspond to the soleus muscle, while

those in orange represent the gastrocne-

mius muscle. In (a), the anatomical im-

age and highlighted voxels were selected

from the zero-filled 16 x 16 Chemical

shift Imaging grid and averaged. No-

tably, in (d) and (e), where the spectra

were acquired from under-sampled Free

Induction Decay (FID) signal, they are

reconstructed solely within the prede-

fined spectral range (as determined by

the user special card on the scanner con-

sole). This reconstruction is due to the

fact that the spectra being derived from

under-sampled FID signal, is restricted

to the a priori known spectral range.

reconstruction, as demonstrated in [428] using the L2 norm for least

square (LS) overdetermined solutions. The LS solution is comparable

to the final step of the orthogonal matching pursuit algorithm. In a

noisy scenario, reconstruction error depends on time sample selection,

making optimal choices computationally challenging. The Sequential

Backward Selection (SBS) algorithm is introduced as a computationally

efficient method, iteratively minimizing Mean Squared Error by removing

samples up to the desired number. In [429] we used this sample selection

algorithm to undersample the spectrocopic dimension, and we designed

a method to design a new sampling strategy taking advantage of the

multidimensional characteristic of spiral MRSI. The proof-of-concept for

this technique was carried out in vivo at 3T on skeletal muscle (Jabrane

Karkouri’s thesis) 10.10, but suffers from the low signal-to-noise ratio of

the data acquired. An application at 7T (which would benefit from the

signal gain linked to the use of a more intense magnetic field) is planned

for the future.

Also, intrinsically spiral MRSI allows for a faster sampling of k-t space

compared to conventional double phase encoding MRSI. This approach

can be particularly beneficial in scenarios where a high signal-to-noise

ratio is present, such as when assessing contributions like lipid/water

content in muscle. Indeed, in muscle 1H MRS enables to identify and

quantify extracellular (EMCL) and intramyocellular lipids (IMCL). How-

ever, their spatial distribution assessment and quantification remains

challenging due to muscle fiber orientation and magnetic susceptibility

differences. It is especially difficult for Tibialis Anterior (TA), Gastrocne-

mius (GM), and Soleus muscles (SM). The characteristics of these muscles,

such as fiber type, shape, and orientation, influence IMCL visibility in

proton MRS spectra. High-resolution MRSI solution based on spiral

sampling to provide a rapid, reliable method for mapping IMCL/EMCL

apparent content has been explored. A spiral MRSI sequence was de-

veloped on a 3T clinical MRI system, and data were acquired using a
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Figure 10.11: Left:Apparent IMCL pre-

ponderance indicator map obtained from

spiral MRSI acquired on the calf muscle

of a volunteer. 4 ROI were drawn in mus-

cles of interest and for which spectra are

displayed (right, with a focus on the lipid

frequency regions, and curve of the cu-

mulative sum used to compute the IMCL

indicator is illustrated) , the map in the

middle is the Principal Diffusion Direc-

tion Map derived from a fast spin Echo

diffusion-weighted/tensor Imaging se-

quence.

dual resonance 1H/31P transmit/receive coil positioned under the right

calf of volunteers. Subsequent sequences included Fast (spin echo-echo-

planar-based) diffusion-weighted and T1 vibe Dixon sequences for fiber

orientation, high-resolution water, fat, and proton density Fat Fraction

(proton density fat fraction (PDFF)) images. Homemade processing tools

in Matlab were employed for MRSI data analysis. Automatic phasing

and frequency registration were achieved through Fourier transform

on the absolute value of the time domain signal and the cumulative

sum of amplitudes (CSA) within a defined area was utilized to ana-

lyze IMCL and EMCL content. An indicator of preponderance of IMCL

over the content IMCL+EMCL was then obtained, see 10.11 [430, 431].

This marker was then studied through simulations and acquisitions

on 24 healthy subject and compared to standard spectrum quantifica-

tion which is subject to multiple difficulties on MRSI data (baseline

variations, frequency and phase variations at each voxel). Simulation

results confirmed the proposed indicator’s ability to generate consistent

maps compared to its quantitative counterpart. Significant differences in

this indicator as well as for quantitative measurements were observed

between GM and SM muscles. A positive correlation existed between the

IMCL preponderance indicator and quantitative results. The proposed

indicator demonstrated lower coefficient of variation for reproducibility

and repeatability compared to quantitative measures.

10.8 Conclusion

The LabEx Primes has supported these works on spectral imaging, on

the main medical imaging modalities, by funding PhD theses, providing

access to imaging platforms (PILoT, Anican, CERMEP, etc.) and purchas-

ing equipment. In all these modalities, the spectral dimension is an asset

for characterizing different tissues, enhancing contrast and measurement

specificity. To improve these techniques and to facilitate their application

in vivo and subsequently in a clinical environment, one needs in-depth ex-

pertise in each of these modalities. The journey toward their development

and showcasing their enhanced utility compared to existing investiga-

tive tools is extensive. Some are still in the proof-of-principle stage,

demonstrated on phantoms, cell cultures, or preclinical, while others are

actively being employed in clinical settings with elevated expectations

and hopes. As these techniques mature, the prospect of conducting

integrated, multimodal, and multispectral analyses in both research and,

potentially, medical applications will become a tangible prospect. Indeed,

each modality contributes a distinct perspective, offering only a partial
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glimpse into the intricate complexity of living organisms. Nevertheless,

integrating or combining multi modalities spectral imaging presents

complex challenges, as it will face different scales, different underlying

physics, different biological phenomenon probed.
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11.1 Introduction

Personalized medicine requires the combination of multimodal imaging,

new information or signal acquisition strategies and image processing to

improve early diagnosis, tissue characterization, and provide quantitative

biomarkers for better therapeutic outcomes. PRIMES has developed

innovative imaging techniques based on or combining various physical

concepts to improve contrast, spatial, or temporal resolution (MRI, optical

imaging, X-ray phase CT, X-ray spectral CT, ultrasound). The methods

developed have significant applications in cardiac, brain, bone, and

cancer imaging. The challenges are to study morphology and physiology,

to follow static or dynamic mechanisms, to measure the macroscopic

or microscopic properties of tissues on different time scales. Achieving

this goal requires the synergy of several imaging modalities pushed to

their individual limits. The following sections are some examples of what

PRIMES has achieved in this area.

11.2 Biomechanical characterization of
viscoelastic properties using MRI

The development of a disease leads, among other things, to morpho-

logical and structural changes in the affected organs. The mechanical

properties of these tissues undergo changes that can be detected, en-

abling us to assess the state of the diseased organ. Historically, with

palpation, physicians made the first assessments of variations in the

rigidity or suppleness of certain organs, as in the case of breast cancer,

where the practitioner is able to find anomalies by exerting stress with

the fingers. Nowadays, the technique used as the reference examination

to assess the pathological state of a tissue is the biopsy. However, it

is highly invasive. The search for non-invasive methods is therefore a

topical issue, particularly with the help of medical imaging. In particular,

the mechanical properties of tissues can be quantified using an imaging

technique known as elastography. Here, we take a closer look at Magnetic

Resonance Elastography (MRE). MRE was first proposed by Lewa et
al. [432], [433] in the 1990s, and introduced clinically by a team at the

Mayo Clinic [434]. It is performed by generating a shear wave at a given

frequency that propagates through the tissue of interest with a certain

speed and attenuation that depend on the viscoelastic properties of the

medium. Since its introduction, MRE has been investigated to improve
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its performance and extend its clinical application [435], [436].

In this context, two PhD thesis carried out in the MAGICS team at

CREATIS as part of the LabEx Primes program have focused on the

methodological development of MRE. The main contributions are briefly

presented below.

11.2.1 MR Elastography: Optimal control for motion
encoding at short echo time and simultaneous
multi-frequency acquisitions

Magnetic Resonance Elastography (MRE) is used to characterize the

viscoelastic properties of biological tissues in vivo, based on information

about the propagation of an external mechanical wave through the tis-

sue being explored. Typically, a conventional MRE sequence encodes

motion through the application of motion-sensitizing gradients (MSGs),

which oscillate at the same frequency as the mechanical wave and are

placed between excitation and signal readout. However, the presence

of these gradients limits the use of the technique when characterizing

short T2 tissues. Indeed, their presence lengthens the minimum echo

time. In addition, this principle of motion encoding is limited when we

are interested in high-frequency excitations, due to the limitations of

the gradient amplitude rise time. In addition, the acquisition at multi-

ple frequencies, which are of great interest because they enable more

detailed mechanical characterization, is usually achieved by repeating

sequentially single-frequency acquisitions. As a result, the examination

time required becomes very long. In this context, the aim of our work was

to overcome these limitations by proposing innovative multi-frequency

acquisition and motion encoding strategies.

During the PhD thesis of P. Sango Solanas, a strategy for the simultaneous

encoding of high- and low-frequency movements has been proposed.

Using the odd harmonics of trapezoidal GSMs, it is possible to signifi-

cantly increase the frequency of the shear waves used in MRE without

increasing the load on the gradient system [437]. This strategy allows

for the simultaneous encoding of waves at multiple frequencies, this

latter enabling better tissue characterization. In addition, a sub-sampling

method that does not respect Shannon’s theorem is proposed, enabling

multiple frequency components to be encoded without requiring ad-

ditional examination time. Experiments carried out on phantoms to

compare conventional single-frequency MRE with the proposed simul-

taneous multi-frequency MRE method showed excellent agreement in

viscoelastic parameters.

Next, this work explored the application of optimal control (OC) theory

to MRE through the design of optimized radio frequency (RF) pulses

[438]. OC pulses are applied with a constant gradient and have the

dual role of motion encoding and spatial selectivity. As GSMs are no

longer required, signal readout can be performed immediately after the

pulse, and the echo time (TE) is greatly reduced. This strategy has been

exploited to prove its high potential and extend its fields of application.

An initial study demonstrated the use of OC pulses in a radial UTE

sequence (ultra short echo time) to encode motion in tissues with very

short T2. Experiments on phantoms and then on a bovine tendon sample
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showed that viscoelastic parameters can only be characterized with the

OC MRE strategy [439] (see Figure 11.1). Finally, a last study combined

the multifrequency aspect with the OC strategy. OC RF pulses were

adapted to simultaneous multi-frequency MRE and demonstrated its

ability to encode multiple frequency pairs in vitro [440]. A good match

was observed between the viscoelastic parameters obtained with the

proposed strategy and with the classical method.

Therefore, this work was an original methodological contribution to

the field of MRE, proposing a new OC-based strategy that enables the

mechanical properties of tissues with short T2s such as tendons to be

characterized for the first time.

Figure 11.1: Images of magnitude, phase

and shear storage modulus G’ obtained

at 600 Hz with the different sequences:

classical MRE with GSM (classical MEG

MRE), OC fast spin echo (OC RARE) and

ultra short echo time (OC UTE).

11.2.2 In vitro and ex vivo multi-frequency MRE for the
detection of cerebral fibrillar aggregates in
neuro-degenerative diseases

Among the many biological processes involved in dementia, fibrillar

aggregation of endogenous proteins with conformational defects is an

early feature of neuro-degenerative diseases. MRE has recently been

applied to neuro-degenerative diseases. Although mechanical changes

associated with these diseases have been detected, the mechanical ef-

fect of fibrils has not yet been isolated in clinical or preclinical studies.

Therefore, the aim of the work was to exploit the fractal properties of

fibrils to differentiate them from non-aggregated proteins. The power

law exponent, obtained by fitting multi-frequency MRE data acquired at

a macroscopic scale on phantom and on ex vivo rat brain, revealed the

presence of these microscopic fibrillar aggregates [441].

An MRE bench for imaging in vitro and ex vivo samples has been developed
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to carry out a series of multi-frequency MRE measurements (400 to

1200 Hz) on agarose samples containing two types of fibrils, 𝛼-Syn and

A𝛽, and a non-aggregated protein used as a control [442]. The same

device was used to characterize ex vivo rat brains injected with 𝛼-Syn in

the striatum using multi-frequency MRE (800 to 1200 Hz). For each rat,

the contralateral striatum was injected with saline and used as a control.

All MRE data were acquired on a 4.7 T preclinical MRI system using a

modified RARE sequence. After direct 3D inversion, the storage modulus,

phase angle and wave velocity were extracted from the elastograms. The

power-law exponent 𝛾 was obtained by fitting the multi-frequency data.

In inclusions containing fibrils, 𝛾 was significantly higher than in those

containing non-aggregated protein (see Figure 11.2). This result is all the

more interesting as single-frequency are little affected by the presence of

fibrils: multi-frequency MRE provides information on the tissue micro-

structure and makes it possible to characterize the fibrillar proteins,

however small they may be (a few 𝜇m).

In rat brains, storage and loss moduli were reduced at all frequencies

compared with the contralateral striatum. The 𝛾 and 𝜙 parameters, on the

other hand, failed to discriminate fibril injection from control injection.

Further experiments would be required to understand this lack of ex vivo
detection.

This work thus proposed an original methodological contribution to the

field of MRE, by isolating in vitro for the first time the biomechanical

effect of fibrillar structures involved in neurodegenerative diseases such

as Alzheimer’s and Parkinson’s.

Figure 11.2: Magnetic resonance elastog-

raphy: unwrapped phase and wave ve-

locity maps obtained at 400 and 1200 Hz

(motion-encoding direction orthogonal

to the slice). A𝛽, 𝛼-Syn and bovine serum

albumin inclusions and agarose regions

of interest are shown in green, red, blue

and black, respectively.

11.3 Radiomics : a bridge between medical
imaging and precision medicine

The need for personalizing the management of patients has been widely

reported [443], [444]. Advances in artificial intelligence applications, com-

bined with those in medical imaging, have led to the gradual conversion

of digital medical images into high-dimensional data appropriate for
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data mining and data science techniques [445]. Meanwhile, comput-

ing power and quantitative image analysis techniques have made vast

progress, the application of quantitative imaging techniques on medical

imaging gained exponential momentum [446]. Currently, radiomics and

deep learning are the most researched techniques on medical imaging.

This chapter is focused on the radiomic analysis. A brief description of

principle, workflow and clinical application examples derived from our

experience are provided. Briefly, radiomics refers to the use of compu-

tational approaches to extract large numbers of quantitative features

from a medical imaging modality, such as computed tomography (CT),

magnetic resonance imaging (MRI), and positron emission tomogra-

phy (PET), to develop predictive models ultimately aiming to enable

personalized clinical management [447]. The central aim of radiomic

is to uncover, at the macroscopic scale, the tumor characteristics at the

microscopic scales (genetic, molecular, cellular, histologic) [448]. The

necessary condition is that the image from which the radiomics features

are extracted must express the underlying pathological mechanisms.

Therefore, radiomic may provide great potential to capture important

phenotypic information, such as intra-tumor heterogeneity. In addition,

the non-invasive and three-dimensional characterization aspect of ra-

diomics analysis, the availability of vast amounts of medical images,

the longitudinal capabilities, and the cost-effectiveness of the method

make radiomics a suitable candidate to be incorporated into the body

of personalized medicine. The workflow of a radiomic analysis can be

summarized as consecutive steps divided into the main categories of

data collection, image segmentation, features extraction, development

of the signature, and evaluation of the performance. Radiomics can be

used for different clinical purpose. For diagnostic/screening purpose,

we have demonstrated, from two multicenter cohorts (one including

patients from Auvergne-Rhône-Alpes centralized by the Centre Leon

Berard for the development of the radiomics signature, and another

including patients from Ile de France centralized at CHU Cochin for

inference and validation purpose), that MRI radiomics could allow to

predict the malignancy of lipomatous soft tissue tumors [449](Figure

11.3), and help to reduce the use of biopsy in a screening context [450].

Figure 11.3: Malignant atypical lipoma-

tous tumors display visual differences

in shape comparison with lipoma. These

differences were quantified by shape ra-

diomics features (such as solidity, ex-

tent, and eccentricity). Tumor enhance-

ments display different texture which

can be recorded by the GLCM (Gray-

level co-occurrence matrix); quantified

using GLCM-based descriptors.
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In the prediction of medical treatment response, we have developed,

from pretherapeutic MRI, a radiomics signature able to predict the

pathologic response of neoadjuvant chemotherapy in osteosarcoma

(Figure 11.4). Three multicenter cohorts included nearly 200 patients (one

from Auvergne-Rhône-Alpes patients centralized by the Leon Bérard

center and two external validation cohorts (one including patients from

Pays de la Loire centralized by the CHU of Nantes and another including

patients from Ile de France centralized by CHU Cochin) were used

[451]).

Figure 11.4: Diagnostic performances in

the validation cohort of the radiomic sig-

nature built from pretherapeutic MRI

to predict the histological response of

neoadjuvant chemotherapy in Osteosar-

comas.

Some of our works have also suggested that the use of different sources

of radiomics such as multi-contrast MRI can help to increase model

performances. In breast cancer, we have showed that using MRI ra-

diomics derived from T1 perfusion-weighted, diffusion-weighted and

T2-weighted, it was possible to predict the response to triple negative

breast cancer neoadjuvant chemotherapy from pre therapeutic MRI with

better performances in comparison to radiomics extracted from a single

contrast images [452] (Figure 11.5). Similarly, we have demonstrated

that multicontrast MRI can also allow classifying between breast cancer

clinical molecular subtypes, particularly between ER/PR+ and HER2+

or TN and between histological subtype such as intraductal carcinoma

vs. intralobular carcinoma [453].

Figure 11.5: Diagnostic performances in

the validation set of the radiomic sig-

nature built from mutlicontrast prether-

apeutic MRI to predict the histological

response of neoadjuvant chemotherapy

in triple negative breast cancer. The best

performances were obtained when ra-

diomics extracted from diffusion-, T2-

and T1- weighted were integrated.

In addition to multi-contrast MRI that have demonstrated high interest,

we have also evaluated mutliomics approach as sources of data through

a radiogenomic study aiming to predict the response of immunotherapy

in non-small cell lung cancer. In this study, including patients from

NIVOBIO clinical trial (patients from Leon Berard and Georges-François

Leclerc comprehensive cancer centers), radiomics extracted from lung

CT, genomics, and hot/cold signature will be combined and evaluated.

We have shown that the combination or radiomics and genomics increase
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the prediction performance of radiomics used alone with an AUROC at

0.88 [454].

Such previous work open the way to the early prediction of radiation

response by imaging such non-invasive magnetic resonance imaging

methods. Recently, intravoxel incoherent motion (IVIM) has gained

interest in cancer imaging. IVIM carries both diffusion and perfusion

information, making it a promising tool to assess tumor response [455].

Obtaining new radiologic biomarkers of radiotherapy response could

lead to a more personalized and biology-guided radiation therapy.

11.4 Quantification of lung aeration with CT
scans

Acute respiratory distress syndrome (ARDS) is a severe impairment of

gas exchanges in the lungs, resulting in very high mortality (30 − 50%)

and requiring artificial ventilation with personalized settings to ensure

sufficient oxygenation while minimizing ventilation-induced lung in-

jury. Assessing the patient’s lung response to ventilation is crucial to

customize these settings. Computed tomography (CT) gives access to

local lung aeration via tissue density, and can be used to assess changes

in aeration induced by different ventilation conditions, provided that

lung segmentation and registration are performed in corresponding CT

scans. Unfortunately, these tasks are hampered by large opaque regions,

which are the radiological hallmark of the syndrome and locally blur the

contrasts between lungs and neighboring tissues. Consequently, virtually

no automatic methods capable of processing ARDS CT scans had been

published at the start of our project, and studies were based on manual

segmentation taking several hours per image pair [456].

Our first solutions were oriented towards studies on animal models

of ARDS, where a large number of scans per subject are available in-

cluding easier-to-segment images acquired at high pressure [457]. The

easiest image was segmented using a conventional method, and then

the segmentation mask thus obtained was deformed to fit the lungs in

the remaining images. Deformation was based on image registration

involving airway-tree segmentation, skeletonization, and matching [458,

459]. The combination of segmentation and registration was the corner-

stone of a method proposed for voxel-wise assessment of lung aeration

changes [460] in contrast with existing global or regional approaches.

We also applied this combination to assess ventilation indices in a co-

hort of human patients with a different pathology: chronic obstructive

pulmonary disease (COPD) [461]. Unfortunately, initial conventional

segmentation usually fails in humans with severe ARDS. Inspired by

the first publication reporting successful application of deep learning to

lung segmentation in animals with ARDS [462], we trained a 3D U-net

model to segment human lungs. The model achieved very good results

(inaccuracies of the order of experts’ inter- and intra-observer variabil-

ity), even in patients with very severe ARDS requiring extra-corporeal

membrane oxygenation (ECMO) [463]. Another U-net model was trained

to segment motion masks, which improved image registration at motion

discontinuities between the lungs and ribcage [464].

The number of ARDS cases strongly increased during the COVID-19
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pandemic. We developed a prototype software [465], which enabled clin-

icians to quantitatively characterize COVID-19 ARDS [466, 467], and is

now routinely used to choose one of the ventilator settings: tidal volume.

It is also used in various studies on animal models of ARDS [468–471].

11.5 Multiparametric multimodality imaging of
musculo-skeletal and myocardial muscle
damages

The multi-parametric imaging offered by the numerous MRI techniques

enables tissue characterization and quantitative assessment of tissue

integrity through its magnetic properties. However, the behavior of

imaging parameters or markers is not yet sufficiently mastered and un-

derstood across pathological situations. Therefore, collaborative efforts

among researchers in imaging (CREATIS lab), exercise physiology (Labo-

ratory of Sports Sciences, Lausanne and LIBM), and anesthesia-intensive

care in the Auvergne-Rhône-Alpes region focused, using MRI protocols

conducted at the University Hospital of Saint Etienne, on developing

and validating new imaging biomarkers. This is done to improve our

understanding of the behaviors of cardiac and skeletal muscles under

stress and to question conventional clinical practices. We have focused

on the impact of ultra-endurance on the body, particularly its effects on

muscular and cardiac levels. Indeed, during endurance trail races such

as the ’Tor des Géants,’ muscular and cardiac alterations, along with a

significant inflammatory response, occur under conditions of extreme

stress for the body. These conditions closely resemble those encountered

in critical situations in intensive care patients, poly-trauma cases, or after

a myocardial infarction.

11.5.1 Muscular and cardiac alterations during
ultra-endurance effort

A longitudinal investigation [472] was performed on athletes engaged

in the 2014 "Tor des Géants" Mountain Ultra-Marathon (MUM). Three

MRI sessions were conducted: one prior to the race, another immediately

upon completion (for finishers), and a third after a 48-hour recovery

period. Biological samples were collected at four designated time points,

with an additional sample obtained at the midpoint of the race. The study

utilized a 3D GRE (Gradient Echo) acquisition with a reconstruction

method to calculate PDFF (Proton Density Fat Fraction), 𝜒 (magnetic

susceptibility), and T2*-values. This method involved two main steps:

fat–water separation, yielding parametric T2* and PDFF-maps, and mag-

netic susceptibility quantification. T2 parametric maps were obtained

from meSE (multi echo Spin echo) sequences. Automatic segmentation

using external force–driven deformable registration [473] isolated the

quadriceps heads in T1-weighted images. Our main finding are that

the extensive biomechanical stress experienced during a 330-km MUM

significantly led to an evident inflammatory response, as reflected in

elevated T2 and T2* relaxation times in the quadriceps muscles of our

subjects. These changes are more likely related to water redistribution.
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The elevated T2*-values observed might be explained by increased per-

fusion and/or local fluctuations in oxymyoglobin and oxyhemoglobin

levels. This suggests an increase in oxygen suppliers and a decrease

in deoxymyoglobin. Conversely, the muscular metabolic and energy

storage indicators, represented by fat content (PDFF), remained relatively

constant, with a small decrease in PDFF despite the substantial energy

expenditure primarily relying on lipids. The magnetic susceptibility 𝜒
remained very stable, with only a minimal increase at arrival compared

to baseline. Nevertheless, we observed susceptibility variations in the

different muscle heads as reported by others. These differences can be

attributed to variations in muscle composition (slow-twitch oxidative

muscle fibers, capillary density, and myoglobin content). Thus quanti-

tative MRI can monitor, non invasively the effect of exercise challenges

and can quantify the effects of training strategies on specific individuals

while differentiating the involvement of the different muscle.

11.5.2 MR spectroscopy for skeletal muscle energy
metabolism

Compared to the MRI relaxometry techniques mentioned earlier, which

are sensitive to inflammatory processes, perfusion effects, and water

compartmentalizing in tissues, Magnetic Resonance Spectroscopy, ca-

pable of assessing concentrations of metabolites other than water in

tissues, provides more specific information. This technique effectively

complements MRI for studying muscle disorders, metabolic diseases, or

cardiovascular conditions. Specifically, 31P spectroscopy is a non-invasive

means to monitor energy metabolism and dynamic concentrations of

phosphorylated metabolites during or after exercise, offering insights

into the mitochondrial and oxidative capacity of skeletal muscles.

Assessment of energy metabolism through 31P spectroscopy can be

done through non-localized spectroscopy, single-voxel spectroscopy,

and Magnetic Resonance Spectroscopic Imaging (MRSI). In most cases,

non-localized 31P spectroscopy is commonly performed, preventing

the measurement of metabolic information from individual muscles.

Instead, an average result from the entire muscle is collected at once

using the surface coil employed for the experiment. The use of localized

31P spectroscopy would enable spatially resolved information and could

drive the development of new sequences incorporating the latest technical

advancements (see the Spectral Imaging chapter).

However, despite being explored for over 30 years in academic research,

31P spectroscopy is not yet employed in routine clinical practice. Therefore,

we have focused on addressing various obstacles to its integration into

routine clinical use. Indeed, developing and implementing a standardized

31P-MRS dynamic acquisition protocol for assessing skeletal muscle

energy metabolism and monitoring muscle fatigability in diverse patient

cohorts is technically challenging. It requires a high level of expertise, both

in conducting the acquisition and processing the data to ensure reliable

results. Thus we introduced an advanced quality control approach

specifically designed for data obtained through a dynamic 31P-MRS

protocol implemented on the 3 T MR scanner of the IRMAS platform

[474]. The objective was to offer decision support to operators, aiding in

data processing and ensuring reliable results based on objective criteria.
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Then we conducted an impact study demonstrating the approach’s

effectiveness in exploring clinical results from two patient populations

experiencing significant fatigue: COVID-19 and multiple sclerosis (MS).

The study [475] highlights the positive impact of an advanced quality

control pipeline on clinical populations, enhancing statistical power and

precision of results. The quality control approach enables the operator

to focus on problematic cases, improving data classification for nearly

50 % of subjects in the cohorts. Overall findings indicate altered muscle

metabolism in MS and COVID-19 patients compared to controls. Notably,

correcting metabolite amplitude by an individual T1 relaxation scale

factor significantly influences results, emphasizing the importance of

incorporating a resting TR measure into clinical protocols. This study

underscores the need for vigilance in the translation of methodological

protocols to clinical studies, from acquisition to quantification.

11.6 Micro-vascular and perfusion imaging

Vascular and capillary information can be obtained directly from ultra-

sound imaging and indirectly from MR imaging.

11.6.1 Ultrasound imaging microvasculature

Ultrasound Localization Microscopy (ULM) is a technique for obtaining

ultrasound images of vascular microstructure with micrometric resolu-

tion and centimeter depth [476]. This technique, based on the principle of

fluorescence photoactivation localization microscopy from optical imag-

ing [477], involves detecting ultrasound contrast agents (microbubbles) in

the bloodstream and their tracking during ultrasound imaging. To map

the vascular microstructure, several steps are required after ultrasound

acquisition: image beamforming, detection and isolation of microbubbles,

localization of their centers, and tracking of their displacements [478].

However, the high gain in spatial resolution of this technique comes at

the cost of a long acquisition time of the order of a few minutes (5-10

min). A long acquisition time is preferred because it allows a maxi-

mum number of microbubbles to travel through a maximum number

of vessels, a necessary condition for their detection [478]. To increase

the number of microbubbles detected and thus reconstruct a map of

micro-vascularization more quickly, we focused on the first stages of the

ULM chain: image formation and microbubble detection.

Adaptive ultrasound imaging algorithms can be used to obtain images

with higher resolution and/or to limit speckle (textured areas typical of

ultrasound images that correspond to the scattering of ultrasound by

structures smaller than the ultrasound wavelength) on images to increase

the visibility of microbubbles. The advantage of higher image resolution

is that it increases the number of individual microbubbles that can be

detected. We compared 3 adaptative beamformers, namely pDAS [479],

coherence factor [480] and iMAP [481] with the classical delay-and-sum
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Figure 11.6: Adaptive beamforming for

ULM on 3D rat kidney: DAS (a), pDAS

(b), coherence factor (c and d), iMAP

(e and f). Detection method on 2D rat

brains: intensity (g), decision theory with

Neyman-Pearson criterion (h).

beamformer (DAS) [482] in a study in collaboration with the LIB labora-

tory. These adaptive beamformers have the advantage of not being too

time-consuming, making them suitable for 3D ultrasound acquisitions.

These beamformers have been tested on 3D ultrasound acquisitions of rat

kidneys, and the coherence factor and iMAP beamformers allow more

microbubbles to be detected (Figure 11.6a-f).

The standard method for detecting micro-bubbles in ULM assumes that

contrast agents are the structures with the highest intensities on the

ultrasound images. However, the intensity of micro-bubbles may be

lower than that of residual tissue or even noise in some cases. Therefore,

a detector based on decision theory with the Neyman-Pearson criterion

was proposed to facilitate the detection of these micro-bubbles. This new

detection method was evaluated on simulated and 2D in vivo rat brain

and kidney data. It provides a more complete map of micro-vascular

structures for an equivalent acquisition time, with more spatially uniform

micro-bubble detection than conventional methods [483]. An example of

ULM images of rat brain with Neyman-Pearson intensity and detector is

shown in Figure 11.6g-h.

11.6.2 Myocardial perfusion quantification by MRI

Cardiovascular diseases and in particular coronary heart disease are

the main cause of death worldwide with 17.9 million deaths in 2012.

Cardiac MRI is a particularly interesting tool for understanding and

evaluating heart disease, including ischemic heart disease. Its diagnostic

contribution is often major and it provides information that is not

accessible by other imaging modalities. The work carried out focuses

more specifically on the so-called myocardium perfusion test, which

consists in studying the distribution of a contrast agent within the heart

muscle during its first passage. In clinical practice, this examination is

often limited to the clinician’s visual analysis, allowing him to identify

the culprit artery and deduce the impacted territory. However, this

technique is relative and does not quantify myocardial blood flow. In

recent years, an increasing number of techniques have emerged to enable

this quantification at all stages of processing, from acquisition to the

measurement itself. We first established a processing pipeline to combine

these approaches and evaluate them using a digital phantom and clinical

data [484]. We demonstrated that the Bayesian approach is able to quantify

myocardium perfusion and its superiority in evaluating the arrival time
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Figure 11.7: a): Peak perfusion image in

a patient with an inferior ischemic lesion.

Expert segmentation of normal (cyan

line) and abnormal (orange) region; b):

Myocardial Blood Flow (MBF) map and

its respective histogram (c). Overlay cyan

and orange colors corresponds to region

identified in a); d) Delay map calculated

using a bayesian approach. ©Adapted

from Daviller et al. Front Physiol. 2021

12;12:483714; e) Peak perfusion image in a

patient with an infero-lateral ischemic le-

sion. f-g): Extraction of myocardium vox-

els time intensity curves features (peak

value, time to peak and maximum slope).

The map on (f) represents the minimum

value of K required to include voxel in

the region. (c) Time intensity curves fea-

tures of each voxel displayed in the 3D

features space. Color map of the points is

identical to (f). The magenta curve in (g)

represents the region growing scheme

of the average time intensity curve fea-

tures evolution of the growing region as

a function of iterations. h) K-means and

STRG segmentations results. Endo and

epicardium borders are defined by the

red and green contours. The color map of

STRG mask indicates the threshold value

for which the voxel has been included

to the region. © Adapted from Comput

Biol Med. 2019 ;110:108-119.

of the indicator bolus compared to the Fermi model. In addition, the

Bayesian approach provides additional interesting information such as

the probability density function of the measurement and the uncertainty

of the residual function, which makes it possible to know the reliability

of the measurement carried out [485]. Finally, we proposed an algorithm

for segmentation of myocardial lesions, using the spatial and temporal

dimensions of perfusion data. This technique allows an objective and

precise segmentation of the hypo-perfused region allowing a myocardial

blood flow measurement to detect homogeneous Behavior or increase

in the contrast-to-noise ratio (Figure 11.7). In the cohort of 30 patients,

the variability of myocardial blood flow measurements performed on

voxels detected by this technique was significantly lower than that of

measurements performed on voxels in manually defined areas (mean

difference=0.14, 95 percent CI[0.07, 0.2]) and those performed on voxels

in areas defined using the bullseye method (mean difference=0.25, 95

percent CI[0.17, 0.36]).

11.7 Improve detection and following using
imaging in Alzheimer’s disease and
multiple sclerosis

11.7.1 Virtual histopathology of Alzheimer’s disease

Alzheimer’s disease is the most frequent dementia among the elderly, as it

affects more than 30 million people worldwide. Its pathological pathway

involves the aggregation of two abnormal proteins: amyloid-𝐵𝑒𝑡𝑎 into
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amyloid-𝐵𝑒𝑡𝑎 plaques and phosphorylated tau into neuro-fibrillary

tangles. Two hypotheses describe Alzheimer’s pathology: the amyloid

cascade and the metal dysregulation. Its diagnosis is difficult; a few in
vivo techniques but it is only confirmed at death, upon the analysis of

microscope slides: this is histology.

In this work, attempt was to go beyond the proof of concept of seeing the

amyloid plaques in X-ray Phase contrast imaging (PCI) (see chapter Novel

x-ray imaging). By comparing in 3D the morphology of different trans-

genic strains, and above all by exploring the source of the plaque signal

using PCI, it was demonstrated the role of metals in Alzheimer pathology.

This was achieved via an acquisition campaign on 3 light lines at the

SOLEIL synchrotron (Gif-sur-Yvette): PCI to measure signal intensity

within amyloid plaques, Fourier transform infrared spectroscopy (FTIR)

to measure their fibrillar content (ratio of sheets-𝐵𝑒𝑡𝑎 to helices-𝑎𝑙𝑝ℎ𝑎),

XRF to measure their metal content (Zn, Cu, Fe). The aim was to match

the biochemical (fibrils) and elemental (metals) composition of the sheets

to understand the biological substrate leading to a modification of the

refractive index that enables their detection in PCI [486, 487].

11.7.2 MRI contrast optimization by optimal control to
study demyelination/remyelination phases in MS
rat model

Multiple sclerosis (MS) is a persistent condition affecting the central

nervous system, characterized by a combination of inflammatory and

neurodegenerative processes. Repeated occurrences of demyelination

contribute to varying degrees of neuro-axonal degeneration. Currently,

clinical practice lacks sufficient biomarkers to effectively monitor the

inflammatory aspects of the disease. As a result, disease activity is often

assessed through MRI quantification, which includes measurements of

T1/T2 lesion load, the emergence of new T2 lesions, and the presence of

Gadolinium. However, conventional MRI metrics, such as lesion burden,

location, and type, have limited correlation with disability and offer little

long-term prognostic value. There are no established MRI biomarkers for

evaluating neurodegenerative processes in clinical practice, hindering

our ability to predict disease progression. Furthermore, the underlying

pathophysiological mechanisms of demyelination and remyelination,

which contribute to neuro-axonal degeneration, remain largely unknown.

The formation of focal demyelinated lesions and the failure of remyelina-

tion over time result in axonal injury and the loss of neurons. Also these

dynamic pathophysiological processes change as the disease progresses.

Encouraging myelin repair is crucial as it has the potential to restore

normal nerve conduction, facilitate functional recovery, and prevent

further axonal and neuronal degeneration. As a result, our research aims

to develop novel MRI biomarkers, novel tissue characterization, that can

track the changing dynamics of demyelination and remyelination in MS

patients throughout the disease’s progression. This should make easier

the evaluation of innovative, emerging remyelination therapies in clinical

settings.

A remarkable and interesting feature of MRI is its ability to produce

a wide variety of contrasts, in different anatomical regions, and based
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on intrinsic soft tissue properties, to distinguish inflammatory, injured,

healthy or necrotic tissues. Contrast in MRI relies mainly on the intrinsic

magnetic properties of tissues, characterized by relaxation times, and

involves either the adjustment of certain acquisition sequence parameters

of the MRI sequences (echo time 𝑇𝐸, repetition time 𝑇𝑅, flip angle etc.),

or by using magnetization preparation sequences placed in front of the

detection scheme. These are made up of a sequence of 𝐵1 RF pulses

and gradients that enable an interesting contrast-to-noise ratio (CNR)

to be achieved between targeted tissues. Bloch’s equations model the

macroscopic evolution of the acquired nuclear magnetic resonance (NMR)

signal and they take into account the static field 𝐵0 and its possible

inhomogeneities, the relaxation times 𝑇1 and 𝑇2 intrinsic to the tissues

studied, and the excitation radio-frequency field 𝐵1. This RF magnetic

field can be seen as a control on the dynamic of the net magnetization at

the origin of the NMR signal. Thus to control the evolution of the NMR

signal up to its acquisition, the optimal control theory could be applied to

Bloch’s equations and one can find different recent applications, some of

which are our contributions, such as robust excitation and refocusing,

and more recently for contrast optimization [488], [489], [490]. With this

methodology, one can calculate, with a certain degree of optimality, the

𝐵1 field optimizing the contrast between tissues with known relaxation

times. In addition, it is possible to calculate the optimal field with respect

to a model in which experimental variations are taken into account.

In Benoit Vernier’s PhD thesis, we investigated optimal control ap-

proaches to improve MRI contrast between two or three specific tar-

get tissues within a three-dimensional Magnetization-Prepared Rapid

Gradient-Echo (MP-RAGE) framework. The advantage of this approach

lies in the utilization of the GRAPE algorithm to fine-tune magnetization

preparation in a cyclic sequence without full recovery between cycles.

This computational method enables the optimization of magnetization

preparation involving any number of radio frequency pulses to enhance

contrast while ensuring the establishment of a steady state in the longi-

tudinal magnetization component. We demonstrated the advantages of

an optimized T2Prep-IR over a simple inversion for enhancing contrast

between white and gray matter [491]. The details of the generic numerical

framework are given in , where the versatility of the proposed method

is demonstrated through numerical and in vitro experiments. In vivo
experiments were performed on preclinical (11.7 T) and clinical scanner

(3 T).

More specifically, we studied in a multiple sclerosis animal model with fo-

cal lesion on the left corpus callosum (lysophosphatidylcholine-induced

demyelination - LPC), the behavior over time of a MRI contrast obtained

with an optimized magnetization preparation designed with optimal

control to obtain a hyperintensity signal from short T2 components

which are associated with myelin. An advanced image analysis pipeline

was developed to analyze this MRI contrast data and to compare it

with histological myelin assessment. In details, the MRI system used

was the 11.7 T horizontal MR system installed in 2020 on the PILoT

imaging platform. The imaging protocol included a T2-weighted axial

sequence employing a Rapid Acquisition with Relaxation Enhancement

(RARE) sequence. For the examination of short T2 components and

myeline signal enhancement, a specific sequence was employed known
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Figure 11.8: Image processing pipeline to

compare optimal control MPRAGE and

RARE modalities and perfom longitudi-

nal analysis

as Magnetization-Prepared RApid Gradient Echo (MPRAGE), with a

magnetization preparation optimized by optimal control ( 90-degree

pulse followed by an 8.5 ms delay, a 180-degree pulse followed by another

8.5 ms delay, a -90-degree pulse, and a subsequent delay of 646 ms). This

sequence resulted in an optimized T2 preparation-inversion recovery,

contributing to the enhancement of signal characteristics in the imaging

process. The image processing pipeline for data analysis (Figure 11.8)

involved several critical steps. Initially, preprocessing procedures were

applied, including N4 bias filter correction, longitudinal rigid registration

on a template rat, and standardization of intensities to establish a uniform

basis for subsequent analysis. Automatic segmentation of the corpus

callosum in in vivo images was performed using a deep learning network

(U-Net), with additional sub-segmentation achieved through tessellation,

enhancing anatomical delineation. To ensure longitudinal consistency,

normalization techniques were implemented, utilizing contralateral cor-

pus callosum sub-regions to account for temporal variations. Deformable

registration aligned histology images with MRI T2-weighted images,

facilitating accurate spatial correspondence.

Thus, in this study, longitudinal and automated segmentation of the

corpus callosum was conducted on a group consisting of 24 LPC-injected

rats and 5 healthy rats. In conclusion of the measurements performed,

no sustained remyelination was detected in the LPC model over the

period spanning from 20 to 200 days post-injection. The optimal control

sequence provides an intriguing avenue for signal intensity analysis. T2-

weighted imaging demonstrated a closer agreement with observations

from Sudan Black B staining than the optimal control sequence when

considering corpus callosum volume segmentation. Further refinement

of the sequence are needed, to keep the new obtained contrast and

improve the resolution of the images.
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11.8 Coupling MR and optics modalities

This research axis is motivated by the fact that optical components and

devices can provide new functionalities to Magnetic Resonance (MR) sys-

tems or complementary information during advanced imaging protocols.

This can be done either by using optical sensors within the magnet tunnel;

or by including specific optical instruments into multimodal imaging

sessions. Indeed, most optical fiber-based systems are fully compatible

with MR systems. Consequently, optical transducers or deported sensors

are susceptible to bring or extract signals to or from the tissue under

investigation, or one component of the MR instrumentation itself. Besides,

relatively high temporal or spatial resolution optical techniques can offer

valuable analysis parameters to give access to a more precise diagnosis

and biomarkers in diverse experimental situations, simultaneously or

not. In the LabEx PRIMES, this was investigated in particular in the

context of inflammatory bowel disease (IBD) that may lead into colorectal

cancer (CRC), this latter being a major public health issue. Currently,

conventional endoscopy is used to depict alterations of the intestinal walls

and biopsies are performed on suspicious lesions for further analysis

(histology). The recent imaging-based diagnosis technic helps to improve

patients following-up but also the growth mechanisms. This is potentially

the case of high spatial resolution Magnetic Resonance Imaging (MRI)

that can be achieved using endoluminal (EC) radiofrequency (RF) coils. In

this context, protocols that includes sequentially endoluminal MRI exam-

ination with conventional endoscopy, optical spectroscopy and confocal

endomicroscopy was evaluated in vivo on a mouse model of colitis dur-

ing longitudinal studies in order to characterization of colorectal tissue

lesions. A receive-only radiofrequency single-loop endoluminal coil was

designed and built for mice colon wall imaging. The prototype was first

characterized in vitro on synthetic and organic phantom. Signal-to-Noise

Ratio (SNR) profiles were compared with a quadrature volume birdcage

coil (QVBC). The SNR measured close to the coil was significantly higher

(10 times and up to 3 mm of the EC center) than the SNR measured with

the QVBC. The gain in SNR can be used to reduce the in-plane pixel size

up to 39 × 39𝜇m
2

(234 𝜇m slice thickness) without time penalty. Conse-

quently, the muscularis propria can be distinguished from the mucosae

complex on images acquired with the EC without exogenous contrast

agent (11.9) [492]. Beside, Magnetic resonance spectroscopy (MRS) was

achieved on colon-wall complex, lumen and visceral fat with voxel sizes

ranging from 0.125 𝜇L to 2 𝜇L while keeping acquisition times below

3 min. The acquired spectra show various biochemical contents such

as 𝛼- and 𝛽-methylene but also glycerol backbone and diacyl. Choline

was detected in tumoral regions. Visceral fat regions display a high lipid

content with no water, whereas colon-wall complex exhibits both high

lipid and high water contents. This was the first time that MRS using

an EC has been performed for in vivo characterization of small local

suspicious lesions in the colon walls and surrounding structures and

offering alternative solutions to biopsies [493].

Despite certain contraindications linked to the presence of prostheses,

pacemakers or recent surgical interventions, MRI presents an excellent

benefit/risk ratio. However, the development of MRI systems with ever

higher static magnetic fields leads to an increase in the effects of RF

electromagnetic fields on patients. These effects result in an increase in
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Figure 11.9: Colorectal tissue lesion char-

acterization through a protocol combin-

ing imaging and MRS with conventional

and confocal endoscopy. A protocol con-

ducted on a chemically induced colitis

model in mice. Detection sensitivity and

lesion characterization were improved

the specific absorption rate (SAR) which can be locally reinforced by the

introduction of conductive elements inside the transmitting coil. This

is particularly the case for miniature endoluminal sensors which alone

have the capacity to locally access the fine analysis of the digestive walls

as it was demonstrated in the previous paragraph.

However, the use of these endoluminal reception sensors entails risks

for the patient due to the local SAR induced by the RF electric field in

the presence of the cable connecting the coil to the imaging system and

which can lead to high local heating. In this context, the project had two

objectives:

(1) To carry out an electro-optical (EO) conversion at the MR coil to

overcome patient safety problems by replacing the galvanic connections

with optical connections; The design and building of an EO then OE

conversion chain to characterize all the elements of the conversion and

transmission chain and to analyze each element in term of losses. Thus,

the key performances to achieve a conversion without degrading the

quality of the MRI image were determined [494].

(2) To measure and compare SAR at 7 and 11.7 T in calibrated phantoms,

demonstrating the absence of disturbance introduced by the electric field

probes developed by the company KAPTEOSs as well as the interest of

local and vector measurements of the electric field compared to indirect

measurements based on the rise in temperature [495].

11.9 Conclusion

Whether directly or indirectly, the different imaging techniques make it

possible to probe tissues at different scales to better characterize their
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physiological state but also their physio-pathological evolution. Thus,

the (macro-)molecular, cellular or vascular composition are accessible

through one or the other of the methods developed and addressed in

this chapter. Progress in recent years has been significant and demon-

strates the need for methodological developments in signal measurement,

whether through the development of coils or the implementation of new

acquisition strategies which are always inseparable from image analysis

techniques for the benefit of progress in imaging of living.
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12.1 Introduction

Medical image analysis encompasses all the methods dedicated to ex-

tracting meaningful information from various types of medical images,

such as X-rays, CT scans, MRI, and US images. It plays a crucial role in

medical research and clinical practice. For example, it can be used for

disease detection and diagnosis, to detect specific patterns, abnormalities,

or markers. It is also used for example to automate the delineation of

the patient’s anatomical and pathological structure to determine the

optimal approach for surgery, radiation therapy, or other interventions.

Overall, medical image analysis enhances the accuracy, efficiency, and

effectiveness of healthcare by providing valuable insights from medical

images, aiding in diagnosis, treatment planning, and patient manage-

ment. For medical images, different tasks are traditionally tackled: •
image segmentation, the partitioning of medical images into meaningful

regions or structures, • image registration, that aims to align and spatially

match images for motion estimation or comparison, fusion and analysis

of the images, • image classification, to automatically classify and recog-

nize specific patterns or abnormalities in medical images, aiding in the

diagnosis and characterization of diseases, • image-based modeling and

simulation, the creation of synthetic images with given physiological

and acquisition parameters, to create infinite datasets with ground truth

data.

In the LabEx PRIMES, most of these tasks have been tackled as a result

of the large variety of organs and modalities of investigation. In this

chapter, the most important results reflecting the work developed since

the beginning of the project are presented. The first section is dedicated to

image segmentation and registration, including motion estimation. The

second section presents our image simulation results. The third section

is dedicated to the method developed for diagnosis of prognosis from

images. Finally, some clinical application use cases of medical image

analysis are presented in the last section.

12.2 Segmentation and Registration

Segmentation aims at delineating regions of interest (ROI) in the images,

while image registration seeks the geometric transformation between an
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image pair. These two tasks are related: given the positions of correspond-

ing ROIs in two images, one can estimate a geometric transformation

and if the geometric transformation between two images is known, the

segmentation of an image can be mapped onto the other one.

12.2.1 Segmentation

The so-called classical segmentation methods have sought to define

mathematically how to extract the structures of interest from the rest

of the image using different properties of the segmentation task. For

example, level set or active contour methods used the ROI/non-ROI

contrast or the fact that image and ROI contours often match. Clustering

methods are based on image statistical properties. Atlas-based methods

rely on the topological invariance between subjects of the structures

to be delineated. Machine learning tools have gradually been used in

medical image analysis to improve traditional segmentation methods

and deep learning based segmentation methods quickly caught up with,

and even surpassed, the performance of conventional methods. The

contributions of LabEx PRIMES in segmentation reflect the evolution of

the development of image analysis methods in the community.

Atlas-based segmentation Atlas-based segmentation is dedicated to

the segmentation of structures having the same relative position from one

subject to another such as cerebral structures in brain images or muscle

heads in limb images. An image with a ground truth segmentation

map, an atlas, is registered to the subject image. The estimated geometric

transform is then used to map the atlas segmentation on the subject image.

The use of multiple atlases [496] has naturally led to the incorporation of

machine learning techniques. In PRIMES several works are based on this

approach.

For example in [497], an atlas is defined as an image in which each pixel is

associated with a multi-class support vector machine (SVM). To segment

a subject, the atlas is registered on the subject images and the label of

a pixel is given by the output of the corresponding SVM for a local

feature vector as input. The SVM is trained by mimicking this process

on a dataset of images with ground truth segmentation. As a result, the

segmentation outperformed state-of-the-art multi-atlas segmentation

while requiring only one registration procedure.

The use of multi-atlas segmentation was also used for segmenting legs

with a few amount of annotated T1-weighted MRI. In [472], a first longi-

tudinal study of quadriceps features extracted from quantitative MRI is

performed and correlated to biological biomarkers. The automatic seg-

mentation of the quadriceps was performed using 6 atlases and produced

better results than state-of-the-art approaches. The final output segmen-

tation is obtained by weighting each pixel of the 6 output segmentations

according to the similarity between the atlas’s MRI and the MRI image

to segment. Such segmentation allows robust delineation of muscles and

enables their longitudinal study. It also generates accurate segmentations

of outliers (i.e. subjects whose morphology is slightly different from that

of other atlases) allowing fine-tuning of deep learning networks to better

segment the targeted outlier.
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Level Set / active shape models The segmentation of the myocardium

plays a crucial role in clinical practice by providing valuable information

for cardiac function assessment, ischemia detection, viability evaluation,

and intervention planning.

We presented in [498] a level-set based method that allows segmenting

the whole myocardium for the four main views used in clinical routine.

The heart boundaries are approximated by two hyperquadrics that are

then used as a shape prior for the evolving contour. Our method showed

good results when compared with expert segmentation on a database

composed of 80 images with clinical interest.

In [499], we described a motion prior energy that when minimized

imposes a level consistency to the level-set function. This energy is

added to a recently proposed framework for the segmentation and

tracking of the whole myocardium in multiple orientations. We have

also proposed to take advantage of the anatomical and image properties

of echocardiographic data to adjust the hyperparameters spatially to

make the method more robust. The algorithm was evaluated on a dataset

of 15 sequences (around 900 images) where the manual references of

two experts are available and compared favorably to state-of-the-art

methods.

A book on structure segmentation and cardiac motion estimation in

spatiotemporal image sequences was co-edited in 2015 in French (Hermes-

Lavoisier, [500]) and English (Hoboken (USA) - London (UK): Wiley-ISTE,

[501])

Deep Learning

Datasets One of the main keys in deep learning is the accessibility to

annotated datasets. Indeed, supervised deep learning methods are the

current state-of-the-art methods in most medical applications and the

quality of manual references has a direct impact on the accuracy and

generalization of AI methods. In this context, we have set up various

international challenges in which we have built databases that we have

made available to the community with high-quality expert annotations.

In [502], we introduced one of the largest publicly-available and fully-

annotated dataset for 2D echocardiographic assessment. The proposed

dataset consists of clinical exams from 500 patients, acquired at the

University Hospital of St-Etienne (France) and included in this study

within the regulation set by the local ethical committee of the hospital.

The acquisitions were optimized to perform left ventricle ejection fraction

measurements. To enforce clinical realism, neither prerequisite nor data

selection have been performed. Consequently, i) some cases were difficult

to trace; ii) the dataset involves a wide variability of acquisition settings;

iii) for some patients, parts of the wall were not visible in the images;

iv) for some cases, the probe orientation recommendation to acquire

a rigorous four-chambers view was simply impossible to follow and

a five-chambers view was acquired instead. This produced a highly

heterogeneous dataset, both in terms of image quality and pathological

cases, which is typical of daily clinical practice data. Manual annotations

of the left ventricle endocardium and epicardium as well as the left
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atrium were done by one cardiologist on the full dataset and from three

cardiologists on a fold of 50 patients. This fold was used to measure

both the inter- and intra-observer variability. By training on this dataset,

we were the first to demonstrate that the nn-UNet method can achieve

results comparable to intra-observer variability for the segmentation of

echocardiographic images.

In [503], we introduce the automatic cardiac diagnostic challenge (ACDC)

dataset, one of the largest publicly-available and fully-annotated dataset

for cardiac magnetic resonance imaging (CMRI) assessment. The dataset

contains data from 150 multi-equipments CMRI recordings with refer-

ence measurements and classification from two medical experts. The

overarching objective of this challenge/dataset was to measure how far

state-of-the-art deep learning methods can go at assessing CMRI, i.e.
segmenting the myocardium and the two ventricles as well as classifying

pathologies. Results show that state-of-the-art machine learning methods

can successfully classify patient data and get highly accurate segmenta-

tion results on the order of the expert inter-observer variability.

Using high level prior In PRIMES several works are based on the idea

of incorporating high-level prior knowledge into the training of deep

segmentation networks of non-pathological structures.

In [504] a patch-based segmentation network is augmented with a branch

that adds the location of the patch after affine registration to an atlas. In

[505, 506], some localization feature maps are learned and integrated

into a Unet segmentation network. In these works, it is assumed that the

(normal) brain structures to segment have an expected position in the

image and attempts to learn features based on this expected position. The

inter-subject variability of the brain structures makes this assumption

too restrictive.

In [507, 508], the prior that is enforced is invariant to any invertible

geometric transform of the image: only a limited number of structures

can be adjacent to a given region. For a given parcellation of the brain,

a matrix that indicates the permissible adjacency relationship between

structures can be computed. A differentiable adjacency function has been

proposed, positive only if any of the adjacency relationship in a given

image is violated. A U-net network can then be trained using classical

segmentation losses and the constraint that the adjacency function is

null. It is also noticed that, as the adjacency function does not require the

ground truth segmentation map of the image, semi-supervised training

can be used: segmentation losses are used when the ground truth is

available, the adjacency loss can be applied on a large non-annotated

dataset. As it removes inconsistencies in the segmentation, the effect of

this constrained learning is the most visible on the Hausdorff metric.

In [509], we developed a post-processing constrained variational auto-

encoder (constrained variational auto-encoder (cVAE)) that converts

invalid cardiac shapes into close but correct shapes. This is done by

replacing the latent vector of an invalid shape with a close but valid latent

vector. Comprehensive tests performed on the output of 18 segmentation

methods reveal that our method is effective on both short-axis views

from MRI as well as on long-axis views from US as can be seen in Fig.

12.1. Our method relies on a series of anatomical criteria (16 for short-axis
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Figure 12.1: Visualisation of the segmen-

tation results from the anatomical post-

processing method proposed in [509].

The raw images, manual segmentations

by an expert, predictions by automatic

methods and post-processed predictions

are displayed next to each other. The pre-

dictions, even by state-of-the-art segmen-

tation methods, contain multiple anatom-

ical inconsistencies (e.g. holes, discon-

nected components, etc.) that the post-

processing corrects using prior anatomi-

cal knowledge.

views and 12 for long-axis views) that we use both to detect abnormalities

and populate a cVAE latent space. One appealing feature of the proposed

framework is that anatomical criteria do not need to be differentiable

as they are not included in the loss. Furthermore, it has been shown

that the warping of the incorrect segmentation shapes did not change

significantly the overall geometrical metrics (Dice score coefficient and

Hausdorff distance) nor the clinical metrics (the right ventricle and left

ventricle ejection fraction). As such, according to the inter and intra-expert

variations reported in the literature, state-of-the-art methods for MRI

and US segmentation are within the inter-expert variation and, with our

method, are now guaranteed to produce results that follow anatomical

guidelines defined by the user.

In [510] we proposed a post-processing pipeline to enforce temporal

consistency in 2D+time echocardiography segmentation. The temporal

consistency is enforced as a constrained regularization on the curves

with respect to time of seven clinically relevant attributes that describe

2D long-axis cardiac shapes. We relied on these attributes to learn an

interpretable cardiac shape autoencoder, which is used in the post-

processing pipeline to correct the temporal inconsistencies left behind by

segmentation methods. We tested our post-processing on five state of

the art (SOTA) segmentation methods, both generic and specialized for

echocardiography segmentation, and showed systematic improvements

in segmentation accuracy metrics, i.e. Dice score coefficient and Hausdorff

distance, on top of the enforced temporal consistency. Another advantage

of our method is that it does not require 2D+time annotated data, since

our cardiac shape autoencoder is trained on 2D images. The temporal

consistency derives entirely from how we make use of the latent space’s

interpretability. Finally, from a clinical perspective, automatic tools are

currently mainly used to segment the end-diastole and end-systole

instants and to provide scalar clinical indices based on these, like the

ejection fraction. However, many other indices frequently used, like

velocities, strain, or strain rate, require temporally consistent data and

can serve to examine the whole cardiac cycle. Thus, temporally consistent

segmentation is a necessary step towards automatic image analysis tools

that can help to identify and characterize a wider range of cardiovascular

diseases.
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Learning the Regularization in a Variational Formulation Recently, hy-

brid variational and deep learning approaches have been studied to keep

explicit and explicable models while learning more complex data-driven

regularization terms. In [511], we proposed to tackle the problem of

disconnected segmentations of blood vessels by learning a regularization

term that enforces connectivity. This network, based on a 3D U-Net, was

trained to reconnect blood vessels from binary images with artificial

disconnections. Once trained, this network is plugged, as a regularization

term enforcing the connectivity prior, in a variational scheme to perform

blood vessel segmentation. Such a segmentation approach is of high

interest, first because it promotes the connectivity of blood vessels, which

is a property often lost with state-of-the-art segmentation methods, and

second because it does not require annotations on the dataset of interest.

The reconnection network is indeed learned on binary synthetic images

and can be then applied to any modality and vascular application.

Graph Neural Network Graphs are mathematical structures used to

model pairwise relations between objects. They are effective tools for

representing and processing data. Since 2009, artificial neural networks

have been adapted to graph representation and processing. This particular

class of neural networks is named: graph neural network (GNN). Now,

all kinds of layers can be used with graphs (i.e. graph convolutional

network (GCN), graph attention network (GAT),... ). In the context of

image processing, the image must be first transformed into a graph.

We developed a pipeline able to extract the cortical thickness of brain

regions from T1-weighted MRI and create a graph per image (Fig. 12.2).

The thickness of brain cortical regions is known to be affected by neu-

rodegenerative diseases such as multiple sclerosis (MS). Therefore, we

propose a GCN architecture able to classify healthy subjects from MS

patients and also to identify the clinical forms of MS patients (three forms

are studied: relapsing-remitting, primary-progressive, and secondary-

progressive) [512]. We carefully normalized the graphs from age and

gender and studied the impact of the number of cortical regions (us-

ing three different brain atlases) and of the complexity of the graph

(from complete graphs to simplicial complexes using different thresholds

on edges) on the classification performances (assessed using F1-score).

The results we obtained from the longitudinal study of 91 MS patients

scanned in 7 times on average (leading to 660 scans), highlight the better

performance of this GCN compared to state-of-the-art 3D convolutional

neural networks. These results open the way for clinical applications

such as disability correlation of MRI patients by using T1-weighted MRI

available in clinical routine.

12.2.2 Image Registration / Motion Estimation

Motion estimation for cardiac images Motion estimation is highly

useful in medical imaging. It can for example be used to compensate

motion artifacts that can occur during image acquisition due for example

to patient motion. It is essential in cardiac imaging as it allows for the

assessment of cardiac function, including measuring parameters such as

ejection fraction, wall motion abnormalities, and ventricular volumes. It
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Figure 12.2: Proposed pipeline for GCN

classification. The upper steps illustrate

the cortical gray matter regions segmen-

tation from T1w-MRI and cortical par-

cellation using three atlases, the region

feature extraction (thickness), and its vec-

tor values. The bottom steps describe the

graph construction followed by the GCN

classification network. Four threshold

levels are applied on graphs (0%, 60%,

70%, 80%), leading to four graphs per

atlas. In summary, twelve networks are

trained separately (3 atlases, 4 threshold

levels) on 660 scans.

also aids in the detection and quantification of myocardial diseases, for

example in the context of ischemia or scar tissue.

In [513], we developed a deep learning method for motion estimation

in echocardiography. Based on the observation that multi-scale analysis

has proven to be efficient for motion estimation in ultrasound, we first

added a contextual sub-network at each resolution level of the network.

In addition, the tracking of speckle patterns whose shapes can evolve

between two consecutive frames makes the motion estimation task

particularly difficult in ultrasound. For this reason, we decided to reinforce

the capacity of the network to extract relevant information by modifying

each estimator sub-network. These modifications correspond to skip

connections concatenated to the output of each convolutional layer. The

interest of these connections is twofold: i) since the pyramid, warping

and cost volume network (PWC-Net) architecture is deep, they limit the

phenomenon of vanishing gradient; ii) the inputs of each convolutional

layer are composed by the concatenation of the input and the outputs

of the previous layer, leading to richer information sources. We showed

that the combination of a customized version of PWC-Net with the

simulated synthetic dataset described in section 12.3 and a dedicated

data augmentation strategy outperforms the current state-of-the-art

methods, both for the tracking of endocardial borders and the estimation

of the global longitudinal strain index. The genericity of our approach

was also demonstrated from the first multi-center, multi-vendor and

multi-disease study.

Motion Compensation for neurosurgery In [389, 514], we proposed a

motion compensation method specially designed to estimate the motion

while satisfying the clinical constraints of the surgical room: our method

is real-time, robust to large camera motion and occlusions. At time 𝑡, our

transformation model is the composition of a homography𝑈(𝑡) (for the

camera motion) and brain motion 𝑇𝑑:

𝑇(𝑥, 𝑡) = 𝑈(𝑡)𝑇𝑑(𝑥, 𝑡). (12.1)
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where 𝑇𝑑 is decomposed in a linear basis estimated with a principal

component analysis (PCA) from the first few frame of the video:

𝑇𝑑(𝑥, 𝑡) = 𝑥 + 𝑇𝜇(𝑥) +
𝐾∑
𝑘=1

𝜆𝑘(𝑡)𝑝𝑘(𝑥). (12.2)

Only the 11 parameters of the homography and the 𝐾 = 5 𝜆𝑘 values

need to be estimated for each frame instead of thousands or hundreds

of thousands of parameters typically used to parameterize deformation

fields. The estimation is efficiently done by computing a single singular

value decomposition (SVD) using an original extension of the direct

linear transform algorithm [515, 516]. The use of iterated re-weighted

least squares allows us to robustly estimate the motion parameters. This

method, specifically dedicated to motion compensation in the context of

brain neurosurgery meets all the constraints for use in a surgical room. It

was developed in the context of a larger project within the LabEx PRIMES

investigating the detection of functional brain areas with optical imaging

(see section 10.3). As such it was concretely used in numerous following

works [517–519].

12.3 Simulation

The generation of realistic synthetic medical images provides a valuable

resource for developing, testing and validating new algorithms, tech-

niques, and technologies. Synthetic images can be used for example to

assess the performance and accuracy of imaging systems, to optimize

image analysis or reconstruction algorithms or to train neural networks.

In this case, as these images are often generated from the ground truth,

supervised learning can be used.

In [513] a solely image-based pipeline was designed to generate realistic

2D synthetic echocardiographic sequences. This allowed to simulate many

cases from B-mode template cine loops on which myocardial contours

were manually annotated to generate synthetic motion fields. Global

deformation ranges obtained with our simulation method match those of

real sequences; however, at a finer local scale, disparities can occur. The

developed simulation pipeline was employed as a generator for synthetic

ultrasound sequences, serving the purpose of data augmentation in deep

learning solutions specifically designed for myocardial motion estimation.

The generated synthetic dataset consists of 2D apical four chamber view

sequences for 100 virtual patients with or without reverberation artifacts

and with the corresponding myocardial displacement fields. For open

science purposes, the full dataset can be directly accessed at http:

//humanheart-project.creatis.insa-lyon.fr/medicaid.html.

The same pipeline was extended in [520] for the generation of clinical-like

ultrasound color Doppler sequences. The proposed pipeline combines

state-of-the-art solutions in the fields of computational fluid dynamics

and computational ultrasound imaging. The computational fluid dynam-

ics (CFD) model determines the reference value of the blood flow. The

ultrasound simulator, in conjunction with scatterer strategies, ensures

realistic speckle patterns and Doppler estimates. We evaluated the gener-

icity of our pipeline in four different scenarios. In particular, we showed

http://humanheart-project.creatis.insa-lyon.fr/medicaid.html
http://humanheart-project.creatis.insa-lyon.fr/medicaid.html
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Figure 12.3: Simulation chain developed

in [521] for generating concentration im-

ages in perfusion MRI. The rectangles

represent the modeled sources of vari-

ability, and the ellipses the various ob-

jects derived from them.

that our pipeline allows the integration of flow acceleration and wall

clutter noise. This led to side effects and made Doppler estimation chal-

lenging, as in real cases. The pipeline was used to generate an open-access

dataset of 20 synthetic sequences available at the following link: http:

//humanheart-project.creatis.insa-lyon.fr/duplex.html

In [521], we created a simulator for digital phantoms in dynamic suscep-

tibility contrast magnetic resonance imaging (DSC-MRI) to evaluate the

precision of perfusion analysis software. This simulator, accessible online

via the Virtual Imaging Platform at www.creatis.insa-lyon.fr/vip,

generates – as illustrated in Fig. 12.3 – realistic brain and lesion shapes

by simulating the impulse response function (IRF) image, representing

tissue temporal responses; the arterial input function (AIF), modeling

contrast agent concentration in arterial blood; and the contrast-agent

concentration image, simulating the convolved effect of AIF and IRF. This

comprehensive approach allows for a thorough evaluation of DSC-MRI

analysis algorithms.

Initially used as a ground truth generator for evaluating the robustness

of deconvolution algorithms, the simulator is later extended in [522]

to address the clinical problem of acute ischemic stroke management.

The innovation lies in improving stroke prediction performance using

synthetic perfusion MRI produced by the physiologically relevant simu-

lator. Additionally, this second study employs deep learning techniques.

Unlike other studies using training datasets based on patient cohorts, this

work demonstrates the potential to train on the perfusion MRI data of a

single patient in acute stroke to predict the final infarct. This approach,

distinct from using synthetic data for perfusion parameter learning, in-

volves working directly on raw (non-deconvolved) data without the need

for perfusion parameters. The synthetic data simulated from raw MRI

perfusion data serves as a unique form of data augmentation, showcasing

its potential benefits for personalized ischemic lesion prediction.

Moreover, as demonstrated in [523], simulations that account for vascular

tree information yield the best classification performances on tested

patients. This highlights the significance of considering vascular tree

details in the simulation process, leading to improved predictive accuracy

for final lesion outcomes in stroke patients.

Still in the context of ischemic lesions, but this time for myocardial infarc-

http://humanheart-project.creatis.insa-lyon.fr/duplex.html
http://humanheart-project.creatis.insa-lyon.fr/duplex.html
www.creatis.insa-lyon.fr/vip
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tion, we developed an original methodology to perform population-wise

personalization of simulations [524] (while personalization is generally

done for a given individual’s data). This strategy is particularly relevant

in case the simulations involve randomness in the model’s rules (in our

application case, a geometrical model of myocardial infarct may consist

of a collection of a random amount of connected spheres of random

diameter and somehow random location). It notably involves matching

the distributions of real and synthetic cases, and optimization with a

gradient-free method (the covariance matrix adaptation evolution strat-

egy (CMA-ES) algorithm), as an analytical formulation of the models is

complex or even impossible.

12.4 Diagnostic and Prognosis

12.4.1 Anomaly detection

Advances in machine learning have led to very promising results for the

advanced processing and modeling of multimodality medical imaging.

The vast majority of architectures for medical image analysis are based

on supervised methods requiring the collection of large datasets of anno-

tated examples. Building such annotated datasets is hardly achievable,

especially for some specific tasks, including the detection of small and

subtle lesions, which are sometimes impossible to visually detect and

thus manually outline. This is the case for various brain pathologies

including microbleeds, epilepsy or multiple sclerosis lesions as well as

Parkinson’s disease. One alternative to bypass this obstacle is to treat

the lesion localization task as an outlier detection problem in an unsu-

pervised (also called self-supervised) context. It consists in learning a

model of representation of normality from the healthy data only, and

then to consider as anomalies (outliers) the test samples that deviate too

much from normality. We proposed an original analysis framework in

this research domain based on one-class support vector machine (OC-

SVM) with applications to epileptogenic lesion detection in MRI [525].

The proposed model consists in learning the support of the normative

distribution based on a density support estimation algorithm, namely the

one-class SVM algorithm. This model was trained in a voxel-wise basis

using features extracted from MRI scans of healthy control subjects. This

voxelwise analysis allowed both handling the high dimensional nature

of neuroimaging data as well as providing an accurate localization of the

epileptogenic zone. This model served to ground methodological contri-

butions in outlier detection algorithms accounting for the specificities

of neuroimaging data. To handle the presence of noise in the training

data, we proposed a reformulation of the support vector data description

(SVDD) algorithm by considering an ℓ0 cost instead of the original Hinge

loss [526]. To help with score interpretation, we proposed to convert the

outputs of the SVDD algorithm into well calibrated probabilities [527].

Building on the seminal work in [525], we then proposed to replace

the manually engineered features with a deep latent representation

learned by an autoencoder-like architecture. More specifically, we trained

a Siamese autoencoder to reconstruct input paired patches extracted

from coregistered normal subjects and used the latent vector as a feature
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Figure 12.4: UAD pipeline proposed in

[530] and consisting of 3 steps : 1) latent

representation learning on patches ex-

tracted from the whole control database

2)tuning of one OC-SVM model per voxel

based on latent representations 𝑧 ex-

tracted at the voxel’s location on the

whole control database 3) inference on

the whole brain using previously tuned

OC-SVMs.

vector to train the uniclass density estimation support, as a second step

[528]. This approach resembles a recently proposed deep unsupervized

anomaly detection (UAD) model type which also trains autoencoder-

type models on normal population but performs the detection step by

computing the error between the original data and the pseudo-normal

data reconstructed by the autoencoder. Such models assume that the AE

trained on normal data only will not be able to reconstruct anomalies

contained in the patient images. Recent studies have highlighted the limi-

tations of these approaches for the detection of very subtle abnormalities,

such as those encountered in many brain pathologies (microhemorrhages,

epilepsy, multiple sclerosis, Parkinson’s disease. . . ). The alternative ap-

proach that we propose focuses on performing the detection step in

the latent space by coupling the learned representation to a uniclass

classifier, e.g. OC-SVM. The relevance of this approach has been recently

demonstrated for the challenging detection task of subtle epileptogenic

lesions in MRI T1 and FLAIR images. Our model indeed detected 65%

of lesions that were not visually detected (MRI negative exams) by ex-

pert neurologists [528]. We also achieved encouraging performance for

the same detection task on T1 and PET data with 71% sensitivity [529].

We recently built on the limits of our model and proposed original

methodological contributions to design patient-specific models, relaxing

the strong constraint to accurately coregister all control subjects and

patients and compare its performance with state-of-the-art UAD models

on the open WMH dataset [530]. In a similar smell, we also performed

UAD of FDG PET lesion based on generative modeling with GANs of

pseudo-normal FDG maps [531].
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Figure 12.5: Gradient attribution maps

for a healthy vs pathological classifica-

tion for a naive classifier and a classi-

fier trained with our constraint [532]. In

red, voxels that drive the decision to-

ward the class "pathology", in blue, vox-

els that drive the decision toward the

class "healthy". The two images on the

left are from the tumor experiment, on

the right they are from the multiple scle-

rosis experiment. With our constraint,

the decision is more driven by the lesion.

Tumors Multiple sclerosis

Naive Ours Naive Ours

12.4.2 Weakly Supervised Segmentation / Interpretable
Deep Learning

Deep learning has enabled a fantastic leap forward in medical image

analysis. However, the performance of deep neural networks is offset by

a lack of interpretability of their output. Interpretability is of particular

importance in a critical field like healthcare: practitioners need to have

confidence in the network’s decision and ideally understand how the

decision was reached. Unfortunately, the decision may be made for the

wrong reasons as it can be driven by a bias in the learning database

rather than relevant radiological features. We can partially lift the veil on

the workings of a network by calculating, during inference, attribution

maps [533] indicating the importance of each voxel in the decision. These

maps can be used to check that the decision corresponds to clinical a

priori. For example, we would like a classification network for healthy

vs. pathological images to be based on the presence of lesions. In [534],

we propose to use tissue probability maps instead of the raw images

and show that MS lesions are more visible on attribution maps. This

approach is limited by the quality of the probability maps. In [532],

we proposed to constrain the learning of classification such that the

attribution maps of healthy subjects are entirely negative, i.e. each voxel

directs the decision towards the healthy class. Figure 12.5 shows that this

constraint, learned on images of healthy subjects only, reveals lesions

on images of pathological subject. This enables us to segment them in a

weakly supervised way: only the image label (healthy or pathological)

is known during training. The results of this method outperform the

state of the art on interpretable classification and weakly supervised

segmentation.

12.4.3 Representation learning

Representing population data is interesting for several reasons. In some

applications, labels are not available or may not be trusted by clinicians

(e.g. in the case of diseases that are hard to categorize, such as heart failure

with preserved ejection fraction), and in such case statistical analyses need

to represent the whole population data without using labels, namely in an

unsupervised manner. Besides, medical images or descriptors extracted

from these images are high-dimensional objects, and estimating an

intermediate simplified representation of these data may help to remove

irrelevant factors of variation and reduce the computational load for

the subsequent application of other algorithms, e.g. for diagnosis or

prognosis. Representation learning encompasses a family of methods
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that estimate a simplified latent representation, of reduced dimensionality,

into which samples (a sample is often one subject or one acquisition within

the population) are organized according to their respective similarities

and differences (defined by specific distances between samples). In the

context of several medical imaging applications, we first used this family

of methods to estimate a relevant latent space onto which performing

statistics to characterize the studied population, and plug-in clustering

algorithms for phenotyping and risk stratification.

We first focused on manifold learning, which delivers a latent space with

dimensions of decreasing importance and associated to specific statistical

distances. Within the context of the LabEx PRIMES, we exploited variants

of these techniques to handle multi-modal data, either to reach a single

latent space associated to different input descriptors (also called manifold

fusion [535] [536]), or different latent spaces whose correspondences are

controlled (also called manifold alignment [537].

We also relied on (variational) auto-encoders to correct anatomically

implausible cardiac segmentations [538]. Additional constraints can be

added to order specific latent dimensions according to given variables of

interest, which we exploited to reach temporally-consistent segmentations

along the cardiac cycle [510], as described more in detail in Sec.12.2.1.

To be more computationally robust and efficient, we are currently devel-

oping better data fusion schemes that gradually incorporate the different

descriptors or acquisitions and therefore progressively refine the latent

representation. We considered a known hierarchy in the data types using

manifold learning [536] or a generalization through probabilistic models

(Gaussian processes latent variable models, work in progress), and even

attempted to automatically learn the optimal hierarchy in the data types

using reinforcement learning [539].

Ongoing work is on the addition of specific constraints to estimate more

application-relevant latent spaces, better schemes for multi-modal data

fusion, and their extension to longitudinal studies.

12.4.4 Parameter Estimation

Magnetic Resonance Spectroscopy Signal Analysis with Deep Neural
Network

MRS provides distinctive non-invasive methods, such as mono-voxel

spectrum or MRSI, for assessing the concentration of various metabo-

lites within the human body (see Chapter 10). Recent technological

advancements have pushed MRS towards closer integration into clinical

applications. Numerous studies have demonstrated its value as a supple-

mentary tool to MRI within the same imaging system. This integration

offers additional insights into biochemical content, enhancing diagnostic

capabilities across various pathologies ([540]). However, despite the

progress made in the acquisition of the signal, the implementation of

classic signal analysis techniques (pre-processing, reconstruction, for-

matting and quantification) to estimate the metabolite concentration that

we seek, often requires an expertise that limits the application of this

technique in a clinical context. Deep learning methods are thought to

be able to overcome this obstacle, to enable robust and fully automatic
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data analysis with the least possible signal analysis expertise for the

clinician user. In [541], we proposed, for the first time in the commu-

nity, a novel approach to metabolite quantification in MRSI using deep

learning. A regression framework, leveraging CNN, was introduced

to achieve precise estimation of spectral parameters. The model learns

spectral features from a comprehensive simulated dataset, encompass-

ing diverse variations in human brain spectra and SNR. Experimental

results highlighted the accuracy of the proposed method compared to

the current standard quantification method QUEST [542] , showcasing

its effectiveness in determining the concentration of 20 metabolites and

the macromolecule.

We also propose employing a U-Net architecture to address significant

signal artifacts encountered in in vivo MRS [543]. This approach relies on a

synthetic MRS signal generation framework. Successful implementation

of supervised deep learning hinges on having a substantial training

dataset with known ground truth. However, creating such a dataset for in
vivo MRS signals is impractical due to the high cost of acquiring data from

human subjects, and ground truth artifact-free spectra for in vivo signals

are not readily available. This limitation prompted the establishment

of a synthetic data generation framework. The resulting dataset, if it

accurately replicates the distribution of realistic in vivo signals, offers the

advantage of being generated at no cost and on a large scale. In addition to

the usual combination of metabolite and macromolecule signals (PRESS

signals, TE=30ms, simulated using GAMMA [544] / GAVA [545]), along

with additional Gaussian noise, various artifacts are introduced. All these

diverse signal components are parameterized and varied extensively

during the training process. This artifact removal procedure should

be useful either for prior standard quantification algorithm or to ease

machine learning quantification task. An intense lipid component was

supposed to be an artifact coming from subcutaneous lipids and so our

procedure could integrate in the future a spatial knowledge or knowledge

from other MRI modalities (e.g. diffusion MRI) to handle tumor cases.

Personalized modeling of cardiac dynamics and mechanical
characterization of the myocardium.

Bio-physical models can bring complementary information on the func-

tional determinants of an organ. Thanks to previously acquired imaging

data they can be individualized to the patient leading to patient-specific

parameters potentially characterizing disease state and progression. In

[546], we developed an individualized modeling approach for the left

heart, integrating clinical imaging data for the characterization and lon-

gitudinal follow-up of injured myocardium. This approach proceeds in 2

phases based on anatomical and functional cardiac MRI data. 1) Suspect

myocardial areas are detected on the basis of deformation parameters.

The partitioning thus obtained is a pre-conditioning for the next step,

2) the parameters of a behavioral law of a cardiac biomechanical model

are identified from the pressure-volume profile and the deformations

derived from the imaging. The approach has been implemented on 21

cases from the MARVEL clinical database (NCT03064503, PI: P. Croisille)

and has led to the estimation of a range of myocardial stiffness and con-

tractility parameters that can be compared with the few similar studies
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in the literature. It is currently being tested on other MRI databases

on myocardial ischemia, in order to assess the contribution of these

parameters to disease progression.

12.4.5 Study of new transformation representations

Differential geometry and major physics problems are still largely ex-

pressed in terms of the operators of classical vector calculus and matrices.

New mathematical tools have been developed, notably based on Clifford

algebras, producing highly efficient representations of groups of trans-

formations such as the rotation group. In [547], a new representation of

n-dimensional Poincaré groups via dual hyperquaternions is developed,

with hyperquaternions defined as a tensor product of quaternion alge-

bras endowed with an associative outer product. This formalism leads

to a uniquely defined product and simple expressions of the Poincaré

generators, with immediate physical meaning, revealing the algebraic

structure independently of matrices or operators. An algebraic formu-

lation of the 4D Poincaré group, consisting of space-time rotations and

translations, is introduced, together with a numerical application. Finally,

the hyperquaternionic representation is compared with that of quantum

mechanics. Potential applications include mobile reference frames and

computer graphics. Following on from this work, we are investigating

the use of these new representations for signal and image processing

operators.

12.5 An Example of Translational Study:
Quantification of arterial wall kinematics
in carotid ultrasound images

Thickening of the intima-media complex (IMC) in the carotid artery wall

is a marker of atherosclerosis and many methods have been developed

to automate the measurement of intima-media thickness (IMT) via IMC

segmentation in ultrasound (US) images [548]. Nevertheless, the onset of

the disease occurs before the thickening, and early detection likely might

be based on changes in bio-mechanical properties of the arterial wall,

which requires estimating the two-dimensional (2D) motion of the tissue

to infer deformation parameters such as radial compression, longitudinal

shear and elongation.

Segmentation of the intima-media complex We have developed a

method that segments the intima-media complex (IMC) by an original

approach based on dynamic programming and a bank of filters matching

the expected shape of radial intensity profiles [549, 550]. The strongest

response corresponds to filter locations on a line midway between the

IMC contours, with a filter size locally equal to intima-media thickness

(IMT), and the dynamic programming scheme is used to ensure conti-

nuity and smoothness of the extracted contours. The method proved

to be the most accurate among state-of-the-art techniques compared on

a large open-access database (CUBS1, 2176 images) [551]. Although its

errors were smaller than the inter- and intra-observer variabilities of
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reference annotations, there is still room for improvement in assessing

the IMC radial compression based on IMT values estimated in an image

sequence. Therefore, we have developed a new dual-resolution segmen-

tation method based on deep learning: it uses the U-net architecture

with one model trained to coarsely localize the IMC center-line and

a second model trained to precisely identify the IMC contours in the

vicinity of this line [552]. It outperformed the methods compared on

CUBS1 database, as well as the methods participating in a comparison

on another open-access database (CUBS2, 500 images) [553].

Estimation of the parietal tissue motion While IMC compression may

be estimated by accurately segmenting the carotid wall on a sequence of

images, estimating other components of tissue deformation requires a

different approach. We were among the first teams to propose a method

capable of reliably estimating the longitudinal motion of the carotid

wall in clinical US image sequences [554]. Unlike other approaches, our

method uses a Kalman filter to keep track of the changes in appearance

of the speckle pattern of interest. Longitudinal displacement curves

thus obtained were used to classify 113 patients into at risk and healthy
groups with promising sensitivity and specificity exceeding 70% [555].

By applying our approach on several points selected along the IMC, we

were the first to show and quantify longitudinal cyclic elongation of the

artery [556]. A limitation of this approach is the need to manually select

speckle patterns perceptible all throughout the sequence. To overcome

this limitation, we have developed a fully automatic method combining

two tasks: 1) fast detection and matching of salient-point clouds in each

image pair, 2) selection of reliable pairs of matched points by means of

the RANdom SAmple Consensus (RANSAC) algorithm and a physically

plausible deformation model [557]. Although less precise than point

tracking, this approach has several advantages: it is fully automatic,

more robust, and simultaneously estimates all the components of tissue

deformation. In parallel, we were working on identifying biomechanical

model parameters from tissue samples in US images [558], as well as on

specific US-image forming techniques, which ease motion tracking as

compared with clinically available sequences [559]. Our segmentation

and motion tracking methods are being made publicly available in the

CAROLAB software [560].

12.6 Conclusion

Through its research and development efforts, LabEx PRIMES has ad-

vanced the understanding and application of various techniques and

algorithms in medical image analysis. Cutting-edge methods in image

segmentation, feature extraction, diagnosis, prognosis and image regis-

tration were developed, enabling more accurate and efficient processing

of medical images. Likewise to the evolution of the field, the works in

the LabEx PRIMES have leveraged the power of artificial intelligence

and machine learning techniques to enhance medical image analysis.

Physically meaningful and highly realistic simulators have also been

developed to generate synthetic data to help evaluate algorithms or train

deep models on large annotated datasets. To this very purpose, large
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datasets of real images have also been set up to train robust models.

These real datasets are one of the outcomes of the collaboration between

physicians and scientists. The unique collaboration between scientists

and medical experts in PRIMES enabled to understand clinical needs and

the resulting image analysis challenge. This has led to the development

of tailored solutions ultimately benefiting patient care and diagnosis.
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13.1 Introduction

Imaging techniques are at the heart of advances in the medical field,

with various objectives: studying/understanding diseases, diagnosis,

curation. A wide variety of instruments (modalities) - X-ray CT, PET,

MRI, Ultrasound (US), Fluorescence, Microscopy - are dedicated to the

observation of anatomical and/or physiological phenomenons of the

human body, from nanoscopic to macroscopic scale, in a non (or at least

as weak as possible) intrusive way. Most of these techniques perform

indirect observations, that is to say that the targeted information is

not directly acquired by the imaging system. The observation task is a

complex process involving a "transformation" of a physical phenomenon,

stimulated by the imaging system - or an external - source, into another

that can be recorded by dedicated sensors and converted into exploitable

data. For example, in ultrasound imaging, the stimulation source takes

the form of ultrasonic waves emitted by a probe, that will be reflected

and transformed by the sample according to its elastic properties (the

targeted information). The echo of these waves are then recorded by the

ultrasonic probe and converted into an electrical signal whose properties

are related to the characteristics of the source and the sample at several

locations. Nowadays, the recorded signal is sampled and digitized to

allow computer processing. If this digital signal is spatially dependent,

it takes the form of an image. In every imaging technique, the data

formation process can be mathematically described, which allows to

build a reconstruction procedure, leading to a computer algorithm, to

retrieve the initial targeted information, most of the time in the form of a

multi-dimensional image of the targeted physical quantity, for example

the attenuation coefficient map in X-ray CT or the fluorophore emission

activity map in fluorescence imaging. This reconstruction step is often
followed by an image analysis task (see Chapter Image Analysis).

The problem consisting, in a large sense, in retrieving a targeted informa-

tion from a set of indirect observations, is called an inverse problem. This

concept is very widespread in all fields linked to observation, outside

the bio-medical field: astrophysics, geology (sismology), biology. The

research field of inverse problems modelization and resolution is a "cross-

road" between mathematics, physics, computational science, and has

benefited, since the 90s, from the advances in signal and image processing

and numerical optimization (compressed sensing, deep learning), and

computational capabilities (high-performance computing using GPU,

distributed computing).
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New imaging techniques still emerge, involving more sophisticated

acquisition processes, and leading the reconstruction tasks to treat multi-

dimensional (up to 3D) and heterogeneous data (spatio-temporal, spatio-

spectral, joint processing of combined modalities). The new challenges

rising from this increase of complexity is the key action of "image re-

constructors" involved in the LabEx PRIMES. In this chapter, we present

heterogeneous results obtained in different modalities, highlighting their

specificities, showing the richness of approaches and applications, in the

field of image reconstruction dedicated to medical imaging. We show

how deep learning has become established in recent years in image

reconstruction, for example using it to learn more efficient models, with

a better reconstruction quality, and how researches involved in the LabEx

PRIMES are at the forefront of this breakthrough.

13.2 General formalism of inverse problems

13.2.1 Notations

In each imaging reconstruction problem, we consider the quantities

of interest, typically the data and the reconstructed information, as

multidimensional signals. The multiple dimensions of these signals can

be of heterogeneous nature: spatial (2D, 3D), temporal, spectral.

Moreover, these signals are discretized due to the digitalization process

of the recording devices (cameras, sensors, etc.), that leads to a numerical

data processing, and thus a discrete representation and restitution of the

targeted information.

Discrete quantities are identified by a lowercase bold letter, e.g. 𝒙.

Uppercase letters, e.g. M, represents mathematical transformations from

a discrete multidimensional space to another.

13.2.2 Data formation model

Whatever the imaging modality, the data formation process can be

formulated as follows:

𝒅 = M(𝜽) (𝒙) + 𝜼 . (13.1)

𝒅 stands for the data, 𝒙 the targeted information. M(𝜽)
constitutes the

numerically implementable model that allows to calculate (an approxi-

mation of) 𝒅 from 𝒙. This model often depends on a set of calibration

parameters 𝜽 (e.g. angles of view in tomography, spectral ranges, learned

network parameters, etc.). In the following, we simplify the notation of

M(𝜽)
by M. 𝜼 is the noise signal that represents random uncertainties of

the measurement process (e.g. electronic noise in digital sensors), and

modeling errors.
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13.2.3 General formulation of the reconstruction problem

The reconstruction problem aims at finding a solution 𝒙+ to equation (13.1).

If the model M is invertible and M−1
can be implemented, a natural

solution is to apply:

𝒙+ = M−1 (𝒅) (13.2)

Most of the time, particularly for advanced imaging modalities, the model

M is not invertible. In the context of inverse problems methodology, a

more general way to formulate the resolution of (13.1) writes:

𝒙+ = arg min

𝒙∈Ω
C(M(𝒙), 𝒅) + 𝜇R (𝒙) (13.3)

The problem hence consists of estimating the optimal signal 𝒙+ that

"explains" the dataset 𝒅, considering the model Mparameterized by the

set 𝜽. C(M(𝒙), 𝒅) is the data-fidelity term, that penalizes the deviation

of the model M(𝒙), depending on the current estimate 𝒙, from the data

𝒅. This term is often based on statistical considerations on the noise 𝜼,

that can be mathematically formulated in the Bayesian framework. For

example, under assumption of a Gaussian distribution, the data-fidelity

formulation leads to a weighted least-squares criterion. A specificity of

inverse problems is to allow the injection of a priori knowledge in the

resolution process, that takes the form of domain constraints (𝒙 ∈ Ω) or

penalties, so-called regularization (R), that will prevent the solution to fall

into undesirable minima (e.g. noise overfitting). Classical regularization

terms favor smoothness by penalizing the ℓ2-norm of the solution or

its gradient, while more sophisticated ones lead to piecewise smooth

solutions (edge-preserving with mixed ℓ2-ℓ1-norms of the gradient). With

the rise of compressed sensing theory, very popular and now widespread

priors are based on sparsity enforcement in different spaces: ℓ1-norm

of the image or of its coefficients in a wavelet domain, Total Variation.

Injecting regularization terms in the inverse problem criterion lead the

solution to a physically relevant image validating a trade-off between

the data-fidelity and prior information, that is tuned by weighting the

regularizers with a set of hyperparameters 𝜇.

13.2.4 Resolution

Most of the time, the resolution of the inverse problem (13.3) cannot

be obtained analytically, and must be treated by numerical optimiza-

tion. Such resolution methods consists in iterative algorithms mostly

based on gradient descent strategies. The optimization process can differ

depending on the differentiability of the criterion, leading to so-called

"smooth" (conjugated gradients, second-order methods such as quasi-

Newton algorithms) and "non-smooth" (proximal algorithms, method

of multipliers) optimization algorithms. The latter are based on the

assumption that the criterion is convex, with a unique global minimum,

which is sometimes not the case particularly when non-linear problems

are treated, and then can lead to fall into local minima. To overcome this

issue, one can turn to non-convex optimization algorithms (stochastic
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gradient descent, simulated annealing, greedy algorithm) but at the cost

of increased computational burden.

13.2.5 Deep learning based reconstruction

Deep learning brings a new paradigm in the context of inverse problems

for image reconstruction. The basic idea is that DL can substitute to

model-based iterative methods by directly learning the "reconstructor"

given a pair of data and ground truth images. However, such datasets -

particularly ground truths - are not easily buildable in practice to ensure

its applicability to real data in all its generality and specificity, i.e. to

avoid overfitting of the learning dataset. Thus, researches in this domain

mostly turn into another approach consisting in making model-based

and learning methods complementary. Here is a non-exhaustive list of

possible strategies:

▶ learn a reconstructor enforced by physics-based knowledge of the

problem ;

▶ keep the model-based iterative framework and plug a specifically

built learned prior ;

▶ learn more accurate models or some calibration parameters ;

▶ learn adapted optimization strategies ;

▶ etc.

With this kind of approaches, deep learning is used on specific steps

of the inverse problem to leverage inconsistencies of the model-based

methods, and appears to be very powerful in this context.
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13.3 Compton Camera

13.3.1 Introduction and related work

Compton cameras represent a remarkable advancement in the field of

medical imaging and gamma-ray detection. Named after the American

physicist Arthur H. Compton, who made groundbreaking contributions

to our understanding of photon interactions with matter, these inno-

vative devices have revolutionized our ability to capture and visualize

gamma-ray emissions in astrophysics and homeland security. Recent

progress made in detector technologies renewed the interest for this

imaging modality and motivated number of teams to develop proto-

types for different applications. Some of them can be seen in figure 13.1.

Foreseen medical applications are on-line monitoring in proton therapy

[561], imaging in radionuclide [562] or alpha-therapy [563], multi-modal

imaging [564],[565]. First medical acquisitions on humans were made

recently [566].

Figure 13.1: Examples of Compton

camera prototypes, developed for as-

trophysics, nuclear decommissioning,

homeland security and medical appli-

cations.

Image reconstruction is key for the implementation of Compton cameras

in medical imaging applications. Since the first algebraic algorithms

developed in early 70’s, followed by analytical and statistical algorithms in

the late 90’s, significant progress has been made on modeling the physical

phenomena occurring during acquisition, on regularization techniques

and on mathematical derivation of new reconstruction formulas. As a

result of the Compton angle formula shown in figure 13.1, formula that

relates measured energies to the scattering angle 𝜃𝐶 , the projections are

integrals on conical surfaces. The forward problem is described by a

conical Radon transform. A large effort was put on the inversion of this

transform for different camera geometries [567, 568]. In practice, iterative

algorithms are however currently the most effective ones as they better

account for low statistics, acquisition uncertainties and geometry. The

main challenges they face are appropriate modelling, regularization and

computing time reduction strategies.
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13.3.2 LabEx contributions

Our first contribution concerns the applicability of the Compton camera

in prompt-𝛾 imaging [569]. The MEGAlib software originally developed

for astrophysics was used both for Monte Carlo data simulation and for

iterative image reconstruction [570]. This pioneering study was done

in collaboration with A. Zoglauer from the Space Sciences Laboratory

at Berkeley, USA. We then realized that mathematical models for three

dimensional reconstruction were little investigated in the literature. To

remedy this situation, we developed new models and a new analytical

reconstruction formula for cameras composed of planar detectors. The

first paper we published on this topic [571], associated to breakthrough

contributions on Compton scattering tomography [572], have triggered

the development of a new branch of the theory of integral operators,

aiming to invert various kinds of conical Radon transforms. Inversion of

Radon transforms defined on manifolds is nowadays an active research

topic on which several conferences, special sessions and workshops have

been organized. Our contribution was an inversion formula that allows

to exploit projections with arbitrary cone axis direction:

𝑓 (v) = 2𝜋

∫ 𝜋

0

∫ ∞

0

(∫ ∞

−∞
�P𝜏,𝛿 𝑓 (𝜎)𝐽0(2𝜋𝑧𝜏𝜎)|𝜎 |3𝑒2𝑖𝜋𝜎v.d2𝑑𝜎

)
𝑑𝜏𝑑𝛿,

where the image of the source, 𝑓 , is reconstructed slice by slice by

backprojecting on conical surfaces the projections P filtered by the ramp

and the Bessel functions 𝐽0. Extensions of this work were published in

[573],[574]. Although these methods allow to reconstruct a volume in

a few seconds, the quality of the images in realistic conditions is not

compatible with medical applications. We thus preferred to focus on

iterative methods that include a more precise modelling of the physical

and statistical properties of the data.

The discrete formulation of the Compton image reconstruction problem

is based on the assumption that the data follows a Poisson distribution.

Maximum likelihood (ML) and Maximum A Posteriori (MAP), formula-

tions then link the data to the volume to reconstruct, with eventually

some a priori information. Among the iterative reconstruction methods,

the most widespread is list-mode Maximum Likelihood Expectation Max-

imization (MLEM)[575]. We investigated direct problem modelling [576]

and the numerical implementation of the conical surface model [577–579].

A novel MAP-type algorithm with Total Variation (TV) regularization for

Poisson distributed data was published in [580]. Regularization allows to

largely improve the quality of the images when the number of acquired

events is low. A comparative study of analytical and iterative methods

was carried in [581], and showcases some advantages of the Compton

camera compared to the Anger SPECT camera for limited angle studies

(see figure 13.2). In spite of a sensitivity that is one or two orders of

magnitude superior compared to Anger cameras, Compton camera might

offer only mild gain in image quality at equivalent dose. Yet, at similar

reduced covering angle, Compton camera images exhibit inferior limited

angle artefacts. All image reconstructions were done in 3D with the

home-made software CoReSi, implemented in C++.

Compton cameras are subject to various detector-specific effects, such as

energy, spatial and angular resolution limitations. Image reconstruction
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Figure 13.2: Performances of a Comp-

ton camera compared to a limited-angle

Anger camera on ideal data as function

of the number of detected events [581].

algorithms workaround these limitations to improve the reconstructed

image’s quality. Moreover, a precise model of the physics is of utmost

importance in order to obtain qualitative images ([582], [25]). These

studies on Doppler broadening and spectral reconstruction are relevant

for nuclear medical applications where radionuclides emitting 𝛾 photons

with multiple wavelengths could thus be employed, in a spectral range

where the detectors are subject to important Doppler broadening. Despite

the performances demonstrated by these methods on simulated data, the

low resolutions currently allowed by the detectors and the low number

of acquired events still hamper image quality in real experiments. Post-

processing of the resulting images to discard the blur induced by the

point spread function (PSF) of the imaging system is therefore necessary.

A first attempt was done in the thesis of Y. Feng [583]. We show that, in

conjunction with TV regularization, resolution recovery allows to reduce

the elongation artefact typical to Compon imaging wth a single detector

(see figure 13.3). Images are thus more precise and offer more quantitative

information.
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Figure 13.3: MLEM reconstruction with-

out regularization compared to TV-MAP-

EM with resolution recovery for a source

orthogonal to the detector. The effect of

the PSF is very important in this direc-

tion and takes the form of an elongation

of the source [583].

Deep learning could pave the way towards more powerful image post-

processing paradigms, more general than the current iterative methods

but still adapted to small datasets. One example is resolution recovery by

spatially variant and image-dependent PSFs [580, 584]. However, atten-

tion should be paid to the fact that Compton camera image reconstruction

is intrinsically three-dimensional. This imposes some limitations on the

type of deep-learning methods that can be applied.
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13.4 Ultrasons

13.4.1 Introduction and related work

Ultrasound echography allows to non-invasively image human tissues

or organs, and can be used for the assessment of many body parts, such

as the heart, the vascular system, the skin, the liver, the thyroid, etc.

Ultrasonic acquisitions can be used in two ways: either to image the

anatomy of organs, or to characterize their function by evaluating, for

example, their motion (Doppler modes) or their mechanical properties

(elastography).

In ultrasound imaging, the reconstruction process is usually called beam-

forming. The standard reconstruction/beamforming algorithm described

in the literature and widely used in available commercial scanners, called

the DAS (Delay And Sum), is a fast, closed-form reconstruction algo-

rithm that computes an image by simply summing the delayed and

weighted version of the acquired raw radio frequency (RF) signals. In

order to improve image quality, adaptive methods such as minimum

variance have been proposed [585–587]. These methods are described

as adaptive, in the sense that the weights applied before summation are

made signal-dependent. While they indeed yield contrast and resolution

enhancement, they are however severely limited by their computational

complexity, which hampers any real-time application.

In conventional ultrasound (also coined focused imaging), the image is

built line-by-line by insonifying multiple sectors of the entire field of

view using sequential narrow beams, which yields frame rates on the

order of 30 to 100 images/second. In cardiac imaging, such frame rates

are not high enough for applications such as stress echocardiography,

all-four-chamber strain imaging, electromechanical wave imaging and

myocardial shear wave imaging. While multiline imaging strategies has

been described to alleviate this problem [588], another venue based on

wide beam imaging is still more promising. Such approach indeed allows

imaging the entire field of view with the emission/reception of a single

plane wave (PW) or diverging wave (DW), offering the perspective of

ultrafast imaging, i.e. frame rates as high as several thousands of images

per second [589]. However, in PW or DW imaging, the acoustic energy of

unfocused beams is spread onto a wider area, resulting in a deterioration

of the quality of reconstructed images if no additional processing is per-

formed. To address this problem, coherent compounding of unfocused

beams has been proposed [590]. This technique consists in transmitting

multiple consecutive beams at different angles and then coherently sum-

ming the received signals to improve contrast and resolution. Therefore,

a trade-off needs to be made between image quality and frame rate since

compounding of more beams produces images of higher quality but

decreases the frame rate.

It is only recently that the beamforming/reconstruction step has been

formulated as an inverse problem in the form of eq. 13.3. This was ini-

tiated in the field of compressed sensing (CS), where several authors

expressed the measurement operator corresponding to ultrasound image

formation (i.e. the forward problem) [591–595]. In such a framework,

the DAS is simply a particular solution to the associated inverse prob-

lem where the amplitude term linked to propagation and the impulse
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response of the ultrasound emission/reception system are neglected

[591, 592]. CS-based reconstruction of ultrasound images has generated

a vast literature, which would require an entire book to cover. Although

impressive results have been achieved in terms of image quality and

sampling rate reduction (see e.g. [596–598]), this approach has not led to

routine applications, as solving the associated inverse problem relies on

computationally-intensive iterative algorithms, which, as with adaptive

methods, precludes any real-time application.

Deep learning was introduced even more recently in the field of ul-

trasound image reconstruction [599], but it immediately sparked the

production of a substantial literature. This rapid development can be

explained by the fact that, unlike the aforementioned methods, deep

learning-based reconstruction can achieve high image quality while

offering reduced computation times, since it is based on elementary

operations that are easily and transparently implemented on GPU ar-

chitectures. The expressivity of deep learning techniques has made it

possible to tackle many forms of the reconstruction problem, such as

reconstruction from focused, PW or DW imaging, while possibly taking

into account the sparsity of the acquired data. Most architectures are

based on convolutional neural networks (CNNs) (and in particular the

ubiquitous U-Net), but several authors have also implemented generative

adversarial networks (GANs), cycle GANs or fully-connected networks

(FCNs).

13.4.2 LabEx contributions

We were one of the first teams to propose a CS reconstruction approach

for ultrasound imaging in [596, 600]. The originality of this work relies

on the fact that its addresses the reconstruction of raw RF signals and

proposes to use a wave atoms frame to sparsely representing the oscilla-

tory patterns of these RF data. In particular, it was shown that the wave

atoms representation improves the reconstruction error obtained at 90%

subsampling by 12 dB and 4 dB compared to the wavelet and Fourier

bases, respectively. The CS approach has been extended to the recon-

struction of 3D ultrasound images in [597], where we have demonstrated

that a specific line wise sampling associated to a representation built

using dictionary learning outperforms conventional, deterministic, bases

(Fourier and discrete cosine) for the reconstruction of ex-vivo data for

subsampling rates as high as 80%. We have then proposed to develop

a CS method for functional imaging, i.e. accelerating duplex Doppler

imaging. We have first shown [601] that randomly interleaving Doppler

and imaging emissions, and using a sparse representation in the Fourier

domain, allows outperforming conventional interpolation schemes with

subsampling rates as high as 60%. We then developed an even more

efficient approach by designing a reconstruction scheme based on a block

sparse Bayesian learning algorithm [598].

In the field of the reconstruction from wide beam acquisitions, our

contributions concern Fourier-based beamforming techniques. As an

alternative to previous works described for PW imaging [589, 602], we

have proposed an approach based on the Fourier slice theorem (as in

computed tomography) to reconstruct the image spectrum [603]. The

experiments have shown that the proposed method yields better results
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in terms of spatial resolution and contrast, when compared to the other

Fourier-based methods. A further contribution consisted in extending

the Fourier-based techniques to the reconstruction of sectorial images

using DW [604]. This approach relies on the design of an explicit trans-

formation, based on the derivation of an isomorphism in terms of travel

time between a planar system based on PW and a sectorial one based

on DW. The third contribution tackles the image quality/frame rate

trade-off linked to the compounding of PW or DW acquisitions and

propose to solve this dilemma by using simultaneous coded emission of

PWs [605]. The obtained in silico and in vitro results outperforms the

conventional compounding in terms of image quality while yielding a

drastic increase of the frame rate. In addition, we made a global contribu-

tion to the reconstruction theme among the ultrasound community by

organizing the Plane-wave Imaging Challenge in Medical UltraSound

(PICMUS) in 2016 as part of the IEEE International Ultrasonics Sympo-

sium [606]. The database resulting from this challenge is now a reference

in the community for testing and validating plane-wave reconstruction

algorithms
*
.

Our most recent contributions concern image reconstruction based on

deep learning, a field in which we produced one of the first published

works [599]. The objective of the developed approaches is again to allevi-

ate the image quality/frame rate trade-off linked to the compounding

and allow ultrafast imaging. The targeted application is cardiac imag-

ing since ultrafast acquisitions could allow the monitoring of highly

transient biological phenomena, such as remotely induced shear waves

and electromechanical waves, which are associated to high propagation

speed in myocardium (1 to 10 m/s). In this context, we have developed

a specific CNN allowing to cope with the specificities induced by the

sectorial geometry associated to cardiac DW imaging, i.e. an inception

model composed of the concatenation of multi-scale convolutional ker-

nels [607, 608]. The obtained results indicates that the proposed method

produces high-quality images using only 3 DW, yielding an image quality

equivalent to that obtained with the standard compounding of 31 DWs

and outperforming more conventional CNN architectures in terms of

complexity, inference time and image quality (see figure 13.4).

Figure 13.4: Reconstruction of the cardiac

structures using standard compounding

of 3 DW, the CNN described in [608]

using 3 DW and the reference image ob-

tained with the standard compounding

of 31 DW.

13.5 Single-Pixel Image reconstruction

Single-pixel imaging is an extreme configuration of computational optics,

where a single point detector is used to recover an image. Since the

seminal work by Duarte and coworkers [609], single-pixel imaging has

*
Google Scholar: 199 citations - Web of Science: 154 citations
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been successfully applied to fluorescence microscopy, hyperspectral

imaging, and short-wave infrared imaging.

Forward problem We model the raw measurement as mixed Poisson-

Gaussian noise [610]

m𝛼
+ ∼ 𝑔P(𝛼𝑺𝑯+ 𝒇 ) +N(𝜇dark1, 𝜎2

dark
𝑰) (13.4a)

m𝛼
− ∼ 𝑔P(𝛼𝑺𝑯− 𝒇 ) +N(𝜇dark1, 𝜎2

dark
𝑰) (13.4b)

where 𝒇 represents the image to be retrieved, PandNare the Poisson and

Gaussian distributions, 𝑺 ∈ ℝ𝑀×𝑁
is a down-sampling matrix (where

𝑀 ≤ 𝑁), 𝑯+,− ∈ ℝ𝑁×𝑁
are the (full) measurement matrices, 𝑔 is a

constant that represents the overall system gain (in counts/electron), 𝛼
is the intensity (in photons) of the image, 𝜇dark is the dark current (in

counts), and 𝜎dark is the dark noise (in counts). We further hypothesize

that 𝑔, 𝜇dark and 𝜎dark are scalars independent of the image intensity

𝛼, which can be estimated by calibration. We choose the measurement

matrices such that 𝑯+ − 𝑯− = 𝑯 is a Hadamard matrix.

Rather than working on the raw measurements directly, they are first

combined and normalized

m𝛼 = (m𝛼
+ − m𝛼

−)/(𝛼𝑔). (13.5)

As the problem now reads 𝔼 (m𝛼) = 𝑨𝒇 , where 𝑨 = 𝑺𝑯 is a subsampled

Hadamard matrix, we will benefit from fast forward and inverse trans-

forms. This will reduce the computational burden of the reconstruction

algorithm at the cost of a loss of information that we empirically observed

to be limited.

Inverse problem We consider the reconstruction problem as the maxi-

mum a posteriori estimation

argmax

𝒇
log 𝑝(𝒎𝛼 | 𝒇 ) + log 𝑝( 𝒇 ) (13.6)

where the probability density function 𝑝(𝒎 | 𝒇 ) can be approached using

the noise model given in 13.4 while 𝑝( 𝒇 ) is unknown.

The problem of 13.6 can be solved by considering an expectation-

maximisation algorithm. In [611], following the algorithm unfolding

approach, we have come up with an iterative algorithm whose iterations

are seen as the different layers of a neural network. While some of the

parameters of the layer are fixed, others are adjusted during the train-

ing phase. The resulting algorithm, which we call EM-Net, takes the

following form:

𝒓 𝑘 = 𝒎𝛼 − 𝑨𝒇 𝑘 , (13.7a)

𝒇 𝑘 = 𝑯−1𝑪 𝑘Diag
(

𝝈𝑘
𝝈𝑘 + 𝒗𝑘

)
𝒓 𝑘 (13.7b)

𝒇 𝑘+1
= G𝜽𝑘 ( 𝒇 𝑘 + 𝒇 𝑘), (13.7c)

where the matrices 𝑪 𝑘 computed before the learning phase, the measure-

ments variances 𝒗𝑘 are estimated at each iteration, while the variances
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Figure 13.5: Axial (left) and transaxial

(right) slices of a sponge sample acquired

on a micro CT table top scanner without

(top) and with (bottow) automated ge-

ometric calibration using DCCs. Figure

adapted from [620].

𝝈𝑘 are learnt jointly with the parameter 𝜽𝑘 .

13.6 Data consistency conditions

13.6.1 Introduction and related work

Data consistency conditions (DCCs) are mathematical equations charac-

terizing the range of a linear operator. In CT, they are used to describe

the redundancies which are expected in the acquired x-ray projections

to comply with the model used for tomographic reconstruction. If the

DCCs are not verified, a physical effect is not modelled adequately and

the DCCs can be used before reconstruction to correct the projections or

reconstruction parameters and improve the CT image quality. Among

other applications, DCCs have been used for geometric calibration [612,

613], beam hardening correction [614, 615], scatter estimation [616] and

motion detection [617, 618].

Each scanner geometry yields a different linear operator and DCCs have

been derived for most of them. The 2D parallel geometry is related to

the 2D Radon transform and complete (necessary and sufficient) DCCs

are known as Helgason-Ludwig conditions. The LabEx PRIMES has

investigated DCCs in collaboration with the TIMC laboratory.

13.6.2 LabEx contributions

Two source positions are always on a line and one can derive a set of

fan-beam DCCs from two cone-beam projections, whatever the source

trajectory. We have shown that other DCCs for a pair of cone-beam

conditions based on the Grangeat DCCs [613] can be derived throm these

fan-beam DCCs [619]. These pairwise DCCs have been used for several

applications.

In [620], we used pairwise DCCs to calibrate automatically a cone-beam

CT scanner. Seven geometric parameters were automatically estimated

prior to reconstruction by optimizing the values that minimized the

pairwise inconsistencies. The results demonstrated accurate calibration

on both simulated and real data, as can be seen in Figure 13.5 on cone-

beam projections acquired on PRIMES’ table top scanner for education

[621].

This work has motivated a continuation on breathing motion detection

in helical CT, i.e., the geometry of most diagnostic CT scanners. In this

geometry, the x-ray detector only images a small volume of the patient

and a large CT image is reconstructed by combining the x-ray rotation

along a circle by a translation of the patient in a direction orthogonal to

the source trajectory plane. In this work, we have derived when pairwise

DCCs may be computed and how to use these DCCs to detect breathing

motion [622, 623].

More recently, we have investigated the spectral calibration of a dual-

energy CT scanner [624]. Spectral calibration is required for material

decomposition and this decomposition may be realized prior to im-

age reconstruction. In this work, the spectral model was described by
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a polynomial which directly converts dual-energy measurements into

decomposed material thicknesses. The polynomial coefficients are au-

tomatically estimated using pairwise DCCs, thus avoiding calibration

measurements.

13.7 Proton computed tomography

13.7.1 Introduction and related work

Proton therapy is the use of ions for external radiotherapy (instead of

X-rays in conventional external radiotherapy). The advantage of protons

is their limited range since they lose energy continuously while traversing

matter until stopping at a characteristic location, the Bragg peak. Accurate

planning of proton therapy is crucial to position the Bragg peak in the

target. The relative stopping power (RSP) of the patient tissues is the

main quantity of interest for proton therapy planning. In clinical practice,

the RSP is approximately derived from x-ray CT images.

The development of proton therapy has triggered a renewed interest in

proton CT which had been proposed at the same time as x-ray CT [625].

Proton imaging uses protons with sufficient energy to go through the

patient. The energy loss, derived from knowledge of the energy before the

patient and measurement of the residual energy after the patient, can be

used to derive the water equivalent path length (WEPL), i.e. the thickness

of water which would have caused the same energy loss. The WEPL is

also the integral of the RSP along the proton path. One can therefore

reconstruct the RSP map by measuring the energy lost by protons, hence

the motivation for developing proton CT.

In addition to having a proton beam with sufficient energy, the main

challenge of proton CT is that protons are charged particles which are

continuously deflected along the proton path due to multiple Coulomb

scattering in the patient tissues. These random deflections cause a degra-

dation of the spatial resolution in comparison to conventional x-ray CT.

Modern proton CT scanners measure the position and the direction of

each proton before and after the scanned object in a list mode fashion

to estimate their most likely path (MLP) [626] and maximize the spatial

resolution.

With such scanners, ion CT reconstruction is the process of computing the

RSP map from the WEPL and MLP of each proton. Until 2012, the problem

had been addressed either by iterative reconstruction algorithms which

discretize the proton paths to yied a linear inverse problems accounting

for the curved path of each proton, or by approximating the curved proton

path by straight lines in filtered backprojection (FBP) algorithms.

13.7.2 LabEx contributions

The first PRIMES work was the development of a filtered-backprojection

algorithm using curved MLP [627–630]. The algorithm uses an inter-

mediate binning, denominated distance-driven binning, because a set of

projections is binned for every beam direction, each one for a differ-

ent distance from the source. A conventional FBP algorithm is then
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used except for a modified backprojection which uses the projection

corresponding to the source-voxel distance. The algorithm improves the

spatial resolution with respect to state-of-the-art FBP along straight lines

13.6. The algorithm was later compared to an iterative one [631] and

yielded similar image quality. Alternatively, [632] proposed an oblique

ramp filter to directly apply the ramp filter of FBP in image space which

yielded a slightly better spatial resolution than other algorithms [633].

Deconvolution approaches have also been explored to further improve

spatial resolution [634].

Figure 13.6: Central slice of the pro-

ton CT image of a resolution phantom

obtained with distance-driven binning

(right) and zooms on the central (left, top

line) and peripheric (left, bottom line)

inserts indicated with red squared boxes.

The first column of zoomed images were

obtained with distance-driven binning

and the second and third columns were

obtained with the standard Feldkamp-

Davis-Kress (FDK) algorithm [1] using

sinograms binned assuming straight line

paths according to the position of pro-

tons at 90 cm (entrance of the phantom)

and 110 cm (exit of the phantom) from the

source, respectively. Figure from [628].

Distance−driven
binning

3 mm

Binning
@ 90 cm

Binning
@ 110 cm

3 cm

The spatial resolution of proton CT images will mainly depend on the

accuracy of the MLP estimates. The initial works assumed that the protons

traversed water only for estimating the MLP. We have evaluated the

effect of this approximation when the traversed object is heterogeneous

[635, 636] and found that the effect is minimal and can be accepted. We

have also proposed an energy-adaptive version of the MLP estimation

[637], i.e. the use of the energy knowledge of the proton before and after

the patient to better estimate the MLP.

The FBP algorithm along MLP has been adapted to other approaches

to proton CT imaging: attenuation [638], which uses the proton fluence

before and after the object as x-ray CT, and scattering [639, 640], which

uses the average change of direction while traversing the object. Similar

resolution improvements were observed with distance-driven binning in

comparison to straight line approximation.

All these works were mainly based on Monte Carlo simulations which has

a central role in the development of proton imaging [641]. We have used it

to demonstrate the clinical benefit for proton therapy planning [642–644].

Our on-going collaboration with the Ludwig Maximilian university, in

Munich, has also demonstrated its relevance on real data acquired by a

prototype scanner developed by a North-American collaboration [645,

646]. The best setup and technology for a clinical scanner has yet to be

developed. We have quantified the spatial resolution attainable with

several scanner technologies [647–649]. In collaboration with a group in

Vienna (Austria), we have also investigated a new approach to measure

the energy loss indirectly with the time-of-flight of protons after [650,

651] or through [652] the object.
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13.8 Digital holographic microscopy

13.8.1 Introduction and related work
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Figure 13.7: Principle of digital holog-

raphy. Illustration on polystyrene beads

DH acquisitions and reconstruction by

simple backpropagation.

Digital holography (DH) is an imaging technique that allows to observe

microscopic objects located at different distances from the sensor. Hence

it is almost 3D, in contrast to conventional microscopy that is only able to

produce a crisp 2D image of the objects at the focal plane of the objective.

Moreover, the latter only provides an absorption information (attenuation

of light intensity by the sample), while DH also gives access to the phase-

shift component. In other words, DH allows the observation of both

absorbing and partially or fully transparent samples in 3D, classifying it

in the family of phase imaging methods [653]. An important property

of DH is that it often does not require any labelling of the sample (i.e.,
chemical processing to increase the absorption of objects of interest).

Applications of this technique lay in many fields of research that go from

physics (fluid mechanics, materials) to biology (cells, bacteria, viruses).

The principle of DH is schematically depicted in Fig. 13.7. It was first

proposed by Gabor in 1948 (Nobel Prize in 1971) [654], from which various

techniques and setups have emerged: X-ray microscopy [655], in-line

and off-axis DH microscopy, ptychography [656], diffractive tomography

[657]. We focus here on the in-line DH configuration that corresponds

to Fig. 13.7, which can be implemented through different types of setup:

lensfree [658] or mounted on classical microscopes [659]. It consists

in interferometric measurements, under coherent or partially coherent

illumination, of the light diffracted by the sample. The sensor, located

at a given defocused distance, records the intensity of the diffracted

wave that has freely propagated after passing through the sample. The

measurement is called a hologram. It encodes both the absorbing and

phase-shift components of the equivalent transmittance planes where

objects of interest are located. These transmittance maps are related to the

optical path length difference from the immersion medium 𝑛0 induced by

the sample, and constitute the targeted information that can be retrieved

after a numerical reconstruction process.

In-line DH reconstruction suffers from the lack of phase information

in the recorded intensity hologram. Thus a classical backpropagation
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(numerical reversing of light illumination) will lead to strong artifacts.

To overcome this issue, advanced reconstruction algorithms consist in

estimating the missing phase in the data, that is why they are called

phase retrieval techniques. Such methods were introduced in the 1970s

and 1980s with the algorithm first proposed by Gerchberg and Saxton

[660] and extended by Fienup [661, 662], both based on alternating

propagations and backpropagations between the object and sensor planes,

and the application of prior constraints on the object plane. This class

of alternating projections methods is still widely used today, with

improvements to enforce a priori knowledge (support of the objects,

admissible values domain, sparsity constraints) [663–665].

Inverse problems approaches take a different point of view from phase

retrieval techniques: rather than recovering the phase on the sensor plane

(which does not completely solve the sample reconstruction problem),

they focus on the reconstruction of the complex-valued transmittance in

the object plane. Because of measurement noise and hologram truncation

at the borders of the sensor, backpropagating the complex amplitude

in the sensor plane does not lead to perfect sample reconstruction, i.e.,
restoring the sensor phase and reconstructing the complex wave in the

sample plane are not strictly equivalent problems.

13.8.2 LabEx contributions

Figure 13.8: Model-based reconstruction

in DH. a) Reconstruction using numer-

ical super-resolution [666]. b) Joint esti-

mation of an interferent background and

sample reconstruction [667]. c) Joint opti-

cal aberrations correction and sample re-

construction [668]. d) Unsupervised reg-

ularized reconstruction in tomographic

diffractive microscopy [669].

(a) DH reconstruction using numerical super-resolution 
[Fournier et al., 2017] 

(b) Joint estimation of an interferent background and sample reconstruction in DH [Berdeu et al., 20

(c) Joint optical aberrations correction and sample reconstruction in DH
[Brault et al., 2021] 

(d) Unsupervised regullarized reconstruction in tomographic diffractive microscopy 
[Denneulin et al., 2022]

Rytov (L=600) GP (L=600) GP (L=20) EP+l1 (L=20) TV (L=20)

Our contribution in this domain lies in proposing advanced reconstruc-

tion techniques following an inverse problems methodology (model-

based iterative reconstruction methods), allowing to better exploit data

information and inject relevant prior information. Inverse approaches

rely on a direct model of image formation. Compared to the state-of-the-

art reconstruction methods, we considered more accurate propagation

models and complicated instrumental and experimental effects (digital

aperture, field truncation, partial coherence, optical aberrations, etc.).

Our works are mainly dedicated to applications in biomedical imaging:

bacteria characterization, detection and classification, viral infection

studies, etc.
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Our expertise in this field was initiated by approaches based on the

estimation of morphological and quantitative parameters (position, size,

refractive index) of droplets in a 3D scene from hologram measurements

[670, 671]. The concept of compressive sensing led to the emergence

of new types of regularizers enforcing sparsity in several domains

(spatial, gradient, wavelet) that have been successfully adapted to DH

reconstruction [672]. In this work, the targeted information is modeled as

a stack of 2D transmittance maps. From this work, we have proposed a

variety of studies and methods exploiting this inverse problem framework

[659] (see Fig. 13.8).

In [666], we have developed a method allowing to perform a numer-

ical super-resolution using a stack of sub-pixel shifted holograms of

the same sample. Our algorithm jointly performs the registration and

reconstruction steps (see Fig. 13.8(a)). In [673], we have proposed a

proximal approach, inspired by the Alternating Direction Method of

Multipliers (ADMM), to solve the reconstruction problem considering

an accurate non-linear hologram formation model, and regularized by

several physically-grounded constraints such as bounds on transmittance

values, maximum/minimum phase, spatial smoothness or the absence of

any object in parts of the field of view, from which a dedicated proximal

operator has been developed (see Fig. 13.8(b)).

In [674], we have successfully combined a model-fitting approach with a

regularized inversion to jointly reconstruct parameterized objects (beads)

and a complex-valued pixelized transmittance map. In [675], the joint

reconstruction of a sample with calibration beads is used as an autofocus

process (automatic estimation of the defocus distance of the hologram)

to increase the reconstruction quality thanks to a better localisation of

the objects of interest. Inverse problems based methods have proven to

be powerful for auto-calibration tasks, a critical step in the reconstruction

process that we have developed in different settings, for example for

color holographic microscopy [676], background estimation [667], or

very recently optical aberrations correction [668] (see Fig. 13.8(c)).

We have also extended the 2D DH technique to the 3D reconstruction

in tomographic diffractive microscopy. In this context, [669, 677] have

proposed an unsupervised regularized reconstruction method that is

based on the minimization of the Generalized Stein’s Unbiased Risk

Estimator (GSURE), that allows to automatically tune the regularization

weights (see Fig. 13.8(d)).

Our future works will still deal with the exploitation of the inverse

problem framework for DH reconstruction in different contexts: auto-

calibration, better quantitative estimations, self-supervised methods,

multi-dimensional and multi-variate data processing etc. A key point

in the future will be to combine our methods to deep learning based

approaches.

13.9 Conclusion

The contributions presented all along this chapter highlight how the

LabEx PRIMES has permitted rich advances in the field of image recon-

struction for medical and biomedical imaging. The proposed methods
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and algorithms developed on a wide variety of imaging modalities have

benefited each other, thanks to the synergy brought by the LabEx, driven

by current issues and challenges brought by imaging as a tool for the

exploration, diagnosis and therapy in medical research. As a result, our

works are positioned at the forefront of advances in the domain of inverse

problems, and prove that there is still a room for improvements.
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14.1 Definitions

As presented in [678], reproducibility can be seen as a spectrum of

concerns that starts at a minimum standard of "same data+same meth-

ods=same results" to "new data and/or new methods in an independent

study=same findings". These two sides of the spectrum correspond to

the terms reproducibility and replicability introduced in computational

science by [679] and later refined by [680]:

▶ Reproducibility: Authors provide all the necessary data and the

computer codes to run the analysis again, re-creating the results.

▶ Replicability: A study that arrives at the same scientific findings as

another study, collecting new data (possibly with different methods)

and completing new analyses.

The definitions introduced by the Association for Computing Machinery

(ACM)
*

are slightly different
†
, but also integrate terminology for physical

measurements:

▶ Repeatability
The measurement can be obtained with stated precision by the same

team using the same measurement procedure, the same measuring

system, under the same operating conditions, in the same location

on multiple trials. For computational experiments, this means that

a researcher can reliably repeat her own computation.

▶ Reproducibility
The measurement can be obtained with stated precision by a

different team using the same measurement procedure, the same

measuring system, under the same operating conditions, in the

same or a different location on multiple trials. For computational

experiments, this means that an independent group can obtain the

same result using the author’s own artifacts.

▶ Replicability
The measurement can be obtained with stated precision by a

different team, a different measuring system, in a different location

on multiple trials. For computational experiments, this means that

an independent group can obtain the same result using artifacts

which they develop completely independently.

Beyond these broad definitions, the term "reproducibility" can be re-

garded differently depending on the research discipline and activity. V

Stodden[681] identified three categories :

* https://www.acm.org/publications/policies/artifact-review-badging
†

ACM has recently harmonized its terminology and definitions with those used in the

broader scientific research community

https://www.acm.org/publications/policies/artifact-review-badging
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▶ Computational reproducibility

▶ Empirical reproducibility

▶ Statistical reproducibility

The activities within PRIMES are mostly related to the first two categories,

that will be presented below.

14.1.1 Computational reproducibility

14.1.2 Introduction and related work

As shown in Figure 14.1 adapted from the Turing Way Community
‡
,

computational reproducibility means "obtaining the same results when

using the same analysis software applied to the same input data". This

can be generalized to replicable results when "the same analysis software

is applied to different data" and to robust results when "obtaining the

same results with different software analysis on the same data". The

ultimate goal is to obtain the same scientific conclusions when using

different software analysis on different data.

Figure 14.1: Reproducibility matrix.

Computational reproducibility, i.e., obtaining the same results when the

same analysis software is applied to the same input data, may seem

straightforward. However, even if we provide all the necessary data and

the computer codes to run the analysis again, there are a number of issues

that may prevent other researchers from re-creating our original results.

[682] illustrates them with examples explaining how to make a scientific

code re-runnable (R1), repeatable (R2), reproducible (R3), reusable (R4),

and replicable (R5).

To begin with, the code itself may not be deterministic. Stochastic models,

for example, make use of random variables which introduce variabil-

ity and uncertainty into the results. These models are very useful for

simulating systems that are difficult to model in a deterministic man-

ner. Many optimization problems also use random processes leading

to possibly different results. In these cases, it is therefore not possible

to reach perfect bitwise reproducibility, but we should at least aim at

defining the acceptable uncertainty intervals for considering the result

reproducible.

When the code is deterministic, there are other factors that may prevent

reproducible results. The execution of a scientific code is dependent on a

computational environment comprising an operating system, a compiler,

an interpreter or set of libraries. There are a number of different solutions

to help improving the reproducibility in such cases. First, it is useful to

review the numerical stability of the application [683]. Second, beyond

the application itself, there exist different approaches to mitigate the

extent of environment-introduced variability. They often rely on package

‡ https://github.com/the-turing-way/the-turing-way

https://github.com/the-turing-way/the-turing-way
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managers (such as as Conda
§
), on containerization (most of the time

using Docker or Singularity), or on tools such as Guix [684]. We should

note however that, in the long term, software and infrastructures cannot

be frozen. Variability sources need therefore to be taken into account,

evaluated and addressed accordingly.

Some of the best practices to handle our software as a research instrument

are provided by [685]: "The first and foremost strategy available to

maximize the transparency of research methods is openly sharing the

code with the minimal restrictions possible. Complementarily, version

control systems, such as Git, are the most basic and effective tool to track

how software is developed, and to collaboratively produce code. Beyond

open-sourcing the code, software tools implement further transparency

strategies by thoroughly documenting their tools and by supporting

implementations with scientific publications."

14.1.3 LabEx contributions

Our actions concentrated on the evaluation of the reproducibility of

results at the computational environment level, including the code itself

and different versions of the same code. The ReproVIP ANR project [ANR-

21-CE45-0024-01]
¶

in particular focused on evaluating and improving

the computational reproducibility of scientific results obtained with

the Virtual Imaging Platform (VIP) in the field of medical imaging.

ReproVIP aimed at providing an integrated, end to end solution, enabling

researchers to launch reproducible executions in a transparent manner.

[686] evaluated the reproducibility of tumor segmentation outcomes

produced with a deep segmentation model when MRI images are pre-

processed with two different versions of the same pre-processing pipeline.

Results showed an important variation of segmentation outcomes be-

tween the two versions. Even though on average Dice coefficients were

high, values could go down to 0.59. Figure 14.2 shows an example of the

differences in outputs when running two different versions of the Brain

Tumor Segmentation (BraTS) pipeline on the same input, in this case the

UPENN-GMB-00019 subject from the publicly available dataset used in

the article (the multiparametric magnetic resonance imaging (mpMRI)

scans for de novo Glioblastoma (GBM) patients from the University of

Pennsylvania Health System (UPENN-GBM) [687]).

Figure 14.2: Differences in outputs

when running two different versions of

the Brain Tumor Segmentation (BraTS)

pipeline on the same input [686]

[688] studied the reproducibility of neuroimaging analyses across oper-

ating systems and identified some of the causes of non-reproducibility

§ https://conda.io/projects/conda/en/latest/user-guide/tasks/
manage-environments.html

¶
https://anr.fr/Projet-ANR-21-CE45-0024

https://vip.creatis.insa-lyon.fr/home.html

https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
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using library and system call interception. The authors found that some of

the mathematical functions were based on single-precision floating-point

arithmetic whose implementations in operating systems continued to

evolve, leading to numerical differences in computational results.

In the last few years, the main approach to avoid software variability in

such cases has been to containerize software using Docker or Singularity.

However, software containers do not control for hardware heterogeneity.

[689] studied the effect of hardware variability on linear registration re-

sults produced by the Oxford Centre for Functional Magnetic Resonance

Imaging of the Brain Software Library (FSL) Oxford Centre for Functional

Magnetic Resonance Imaging of the Brain Linear Image Registration Tool

(FLIRT) application packaged with Docker and Guix. Results showed that

hardware, software, and numerical variability lead to perturbations of

similar magnitudes (although uncorrelated) suggesting that these three

types of variability act as independent sources of numerical noise with

similar magnitude. The effect of hardware perturbations on linear regis-

tration remained moderate, but might impact downstream analyses when

linear registration is used as initialization step for other operations.

14.1.4 Experimental reproducibility

When we turn to the notion of reproducibility in experimental fields

(imaging data acquisition in our case), we can give reproducibility a

slightly different meaning as described above. One definition could be:

Repeating the same measurement on a consistent sample, aiming to

obtain measurements that are as close as possible, regardless of the exper-

imental conditions. Then the conditions need to be specifically defined

and will be a set of factors, such as the operator, location, equipment

as well as and the operating system of the computer systems (if experi-

mental data are processed to extract meaningful information), among

others. The objective is to achieve consistency in measurements despite

variations in these factors, ensuring the reliability and reproducibility of

the measurement process. In the following, we showcase the efforts made

in MRI to enhance the trustworthiness of measurements, employing

approaches that contribute to the reproducibility of results.

Reproducibility in morphologic measurement

In collaboration with Voxcan (Animal Medical Imaging Services, Marcy

L’étoile, France), MRI and micro-computed tomography arthrography

(µCTA) protocols have been developed to measure cartilage thickness in

non-human primate (NHP) models of osteoarthritis [690] . MRI offers

clear advantages in terms of exquisite contrast, spatial resolution, 3D

anatomical images and non invasive morphometric evaluation. µCTA

allows for even greater spatial resolution, facilitating assessment of both

cartilage and bone. However, knee cartilage imaging necessitates the

injection of a contrast agent beforehand. This injection procedure may

potentially cause damage to the cartilage or introduce bias in determining

cartilage thickness in the acquired images. Therefore, this aspect needs

careful consideration, particularly in an in vivo context. The use of

non-human primate (NHP) models for osteoarthritis (OA) represents

a valuable approach, as NHPs closely mimic the complex conditions

of human OA, unlike small animal models. However, the challenge
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is to measure very thin cartilage thicknesses in NHP compared with

those observed in humans, and to ensure that the measurements are

reproducible so as to detect pathology-related changes over time. Thus the

study demonstrated the reproducibility of the MRI and µCTA acquisition

protocol and image processing. To do so, the right knee having received

an injection of contrast agent for µCTA, the reproducibility of the mean

thicknesses was assessed at different time points on each primate using

Bland-Altman analyses comparing the obtained values for the left knee

at different time points through MRI. For MRI measurements, key factors

in facilitating reproducibility came from the use of homemade receiver

coil and of susceptibility-matching foam for precise knee positioning.

Finally, both MRI and µCTA were found to be valuable imaging tool for

assessing the morphology of cartilage in NHP models, offering insights

applicable to studies on osteoarthritis.

The case of quantitative MRI

During the years of the PRIMES labEx, MRI research has focused on the

development of quantitative methods. Indeed, the MRI signal is sensitive

to numerous bio/physico-chemical and physiological phenomena, and

the move from simple "sensitivity" to one or more parameters specific to

the (biological) sample studied by means of images is the major challenge

that research is setting itself in the development of "quantitative MRI".

This quantitative objective is naturally accompanied by a quest for

objectivity and standardization of experimental or clinical practices. With

this in mind, reproducibility, is an obvious challenge. Moreover, the notion

of reproducibility appears at different levels of the development phases,

according to the increasing complexity of the sources of "variability" in

the results. Indeed, to qualify an MRI method as quantitative, several

criteria must be verified during its development. First of all, at the time

the technique is developed, the accuracy of the measurement must

be characterized. This is done by assessing the reproducibility of the

measurement under a number of conditions. The confidence interval here

needs also to be characterized, that is performing repeated measurement

under the same conditions. Of course, bias assessment, i.e. determining

whether systematic errors occur (through testing on a calibrated phantom)

as well as demonstration of measure linearity need also to be addressed.

Then the validation of the technique need to be conducted rigorously with

structured reports and should ensured a smooth transition from phantom

to patient assessments and here again, should verified reproducibility

under varied conditions. Finally the clinical validation is an important

step requiring tests on a minimum set of patients ( >35), including two

measurements per patient (so called repeatability measurement). Ideally

the conducted tests should be done across multiple centers to ensure

broader applicability. Also tested on machines from different vendors

for comprehensive validation constitute a great challenge. These last

steps are highly demanding and encompass a long-term process, if the

selected method is considered to have a future by MRI manufacturers.

Also the setting up of quality assurance measures and adherence to

standardized procedures are essential for minimizing uncertainty and

improving reproducibility in this validation step. Standardized methods

help ensure that measurements are made consistently across different

operators and laboratories, contributing to greater reproducibility.

In the specific context of quantitative MRI (qMRI), the ultimate output
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is not directly derived from the raw measurements of the MRI scanner.

Instead, it is obtained after undergoing processing and estimation steps

that may introduce sources of variability. Thus a proficient understanding

of the acquisition process is essential for the effective implementation

of the quantitative method and correctly handle the quantification step

(see Fig 14.3 ); ideally acquisition and quantification should work in

synergy.

Figure 14.3: Visual summary depict-

ing the complexity inherent in quanti-

tative MRI research, encompassing the

entire process from acquisition protocol

to parameter estimation—an intricacy

that must be considered in qMRI repro-

ducibility studies

In order to obtain "experimental reproducibility", the method should

be "robust" to various conditions of the signals/images to process. That

is why different challenges are now developed to assess and compare

the different developed quantitative methods. For example, in the "MRS

fittting challenge" organized by the MRS study group of International

Society for Magnetic Resonance in Medicine (ISMRM) and to which

one team of the labEx PRIMES participate, significant differences in

accuracy and precision between the results were obtained by the different

methods/packages [691]. It is also important to establish the experimen-

tal conditions under which the results generated can be reproduced.

Determining these conditions, which can be verified through quality

control, is a key step in conducting reproducibility studies and bringing

a given imaging technique from an academic development context to

clinical use. As part of A. Naegel’s phD thesis [474], quality control was

proposed for dynamic 31P NMR spectroscopy (see Tissue Characteriza-

tion Chapter). In the context of 31P phosphorus MRS acquired during

an exercise protocol, it is necessary to check that all MRS acquisitions,

consisting of a series of spectra acquired, are acquired under good condi-

tions (checking that the phosphocreatine dynamics follow the expected

time evolution and are not tainted by error due to too a late cessation

of exercise or patient movement) in order to extract key information on

energy metabolism and mitochondrial capacities. The effect of quality

control has a direct impact on the reproducibility and reliability of the

results obtained in a patient cohort study [475]. Next, Jiqing Huang’s

PhD research conducted within the labEx PRIMES framework illustrates

development of a quantitative MRI method. Indeed, one of the focus

was on the investigation of quantitative diffusion MRI for evaluating its

potential in assessing liver fibrosis in chronic liver diseases. The initial

phase involved the development of techniques for estimating diffusion

parameters, necessitating a comparison of various fitting methods such

as Nonlinear Least Squares (NLS), Segmented-NLS, and Bayesian ap-

proaches. To compare and validate these methods, bias and variance
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in the estimated parameters were evaluated using Monte Carlo simula-

tions under different signal-to-noise ratio conditions. Subsequently, the

methods were applied to actual acquired data, where a gold standard

was unavailable, but measurements of biomarkers on liver biopsies were

accessible for reference [692].

14.2 Reproducibility event organized by
PRIMES

The PRIMES LabEx organized a scientific event around the concept of

reproducibility in Lyon: https://reprod-primes.sciencesconf.org/.

It addressed the reproducibility of a scientific result in the broad sense: ex-

perimental reproducibility of a measurement (influence of the acquisition

chain, instrumentation, choice of parameters), numerical reproducibility

(processing chain) in the AI context, reproducibility of a simulation; as

well as everything concerning the statistical analysis that is implemented,

the questioning of the sources of uncertainty and error.

14.3 Conclusions and discussions

Reproducibility is important/essential for many aspects, but it is no proof

of good research, nor should it be considered as a goal in itself. With the

rise of numerous ’computational’ techniques, where parameter inference

and classification are conducted through computer calculations, the issue

of reproducibility in measurements or estimates arises, akin to challenges

faced in experimental sciences. Definitions of reproducibility may vary

across communities, but the pursuit of reliable and ’valid’ results based

on objective and documented criteria is a shared goal. Methodological

advancements often halt at the proof-of-concept stage, lacking systematic

confrontation with the reproducibility phase, which remains a crucial

step in the maturation of an imaging technique to gain recognition for its

impact in clinical routine.

https://reprod-primes.sciencesconf.org/
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