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ABSTRACT

Continual learning typically relies on storing real data, which
is impractical in privacy-sensitive settings. Generative re-
play with diffusion models offers a high-fidelity alternative.
However, in online continual learning (OCL), these models
struggle with catastrophic forgetting and incur high compu-
tational costs from frequent updates and sampling. Existing
distillation methods reduce generation steps but rely on a
fixed teacher model, limiting their effectiveness as data distri-
butions evolve. To address these, we introduce Multi-Mode
Adaptive Generative Distillation (MAGD), which incorpo-
rates two innovative techniques: Noisy Intermediate Genera-
tive Distillation (NIGD) and SNR-Guided Generative Distil-
lation (SGGD). NIGD leverages intermediate noisy images,
created during the reverse process rather than by adding noise
post-generation, to enhance knowledge transfer. SGGD uses
a signal-to-noise ratio (SNR) based threshold to optimize
the sampling of time steps, reducing unnecessary generation.
Guided by an Exponential Moving Average (EMA) teacher,
MAGD effectively mitigates catastrophic forgetting as it
adapts to new data streams. Experiments on Fashion-MNIST,
CIFAR-10, and CIFAR-100 show that MAGD reduces gen-
eration overhead by up to 25% relative to standard generative
distillation and 92% compared to DDGR-1000, while main-
taining generating quality. Furthermore, in class-conditioned
diffusion models, MAGD outperforms memory-based meth-
ods in terms of classification accuracy.

Index Terms— Continual Learning, Online Learning,
Diffusion Model

1. INTRODUCTION

Continual learning focuses on developing models that adapt
to an evolving data stream without forgetting previously ac-
quired knowledge[l]. A common strategy to manage this
catastrophic forgetting is replay-based learning, where the
model rehearses old examples as it encounters new ones. In
principle, storing past data [2} 3] can effectively mitigate for-
getting. However, such an approach faces privacy restrictions
and storage limitations in real-world domains like healthcare,

finance, and robotics. As an alternative, generative replay
synthesizes representative samples from earlier distributions
[4} 15]], thus removing the need for retaining raw data and
satisfying strict data-protection requirements.

Diffusion models have recently emerged as powerful
generators for high-resolution, photorealistic images [6l [7]],
surpassing earlier generative paradigms in many settings.
When applied to class-incremental learning [8, (9, [10], dif-
fusion models can effectively recreate data from previously
learned classes. However, these techniques typically presume
well-defined tasks: each time a new task appears, the model
generates replay samples for that specific task. This rigid
structure overlooks two major challenges in online continual
learning (OCL), where data arrive as a continuous, unordered
stream without clear task boundaries. First, diffusion models
generally rely on iterative denoising processes, sometimes
requiring hundreds or thousands of steps per sample. In an
online continual learning (OCL) setting, where replay could
be triggered by each data batch, this expense rapidly becomes
prohibitive. Second, the diffusion model can suffer catas-
trophic forgetting if they cannot revisit earlier distributions.
The problem is exacerbated by the absence of explicit task
labels or boundaries, forcing the model to update continually
without full knowledge of when or how the data distribution
might shift.

To reduce the computational cost in the generation of dif-
fusion models, several distillation-based approaches aim to
decrease the number of generation steps[L1, 12} [13]. These
methods transfer knowledge from a pretrained teacher model
to a diffusion model with fewer steps, effectively lowering
computation for offline generative tasks. However, these ap-
proaches presume a fixed teacher and continuous access to
original data. These assumptions are impractical in Online
Continual Learning (OCL), where the teacher must adapt to
new distributions without revisiting older data.

Building on the need to address both the computational
overhead of diffusion-based generative replay and the con-
straints of Online Continual Learning (OCL), we pose a key
question: How can we effectively distill knowledge into a
continually evolving diffusion model while avoiding the stor-



age of past data and prohibitive generation costs? To tackle
this challenge, we introduce Online Multi-Mode Adaptive
Generative Distillation (MAGD), a framework specifically
designed to support the continual training of diffusion mod-
els under online continual learning conditions. Our main
contributions are as follows

e We introduce a novel strategy, Noisy Intermediate
Generative Distillation (NIGD), to distill knowledge
using intermediate noisy images directly generated
from the reverse process (not obtained by adding noise
to the final image), thereby reducing redundant compu-
tation compared to full denoising steps.

* We propose SNR-Guided Generative Distillation
(SGGD), which uses an SNR-based threshold to dy-
namically select among current data, generated sam-
ples, or Gaussian noise, minimizing the frequency of
full generation cycles and cutting computational costs.

* Empirical evaluations on Fashion-MNIST, CIFAR-10,
and CIFAR-100 show that MAGD reduces overall gen-
eration steps (e.g., 10 for Fashion-MNIST, 25 for CI-
FAR) while preserving or even improving performance.
Notably, it achieves a 25% reduction in computation
compared to standard distillation and a 92% saving over
methods using 1000-step denoising (DDGR-1000), all
while producing higher-quality generated samples and
strong classification performance.

2. RELATED WORK

Online Continual Learning (OCL): OCL handles data arriv-
ing in sequential, small batches, often without access to previ-
ous batches, introducing challenges such as new classes (On-
line Class Incremental, OCI) or variations like background
shifts (Online Domain Incremental, ODI) [14, |15, 2, [16].
Traditional methods, using exemplars and contrastive learn-
ing loss, often struggle with privacy and storage limitations.
To address these issues, researchers have utilized Generative
Adversarial Networks (GANSs) [17] and Variational Autoen-
coders (VAEs) [[18]] to synthesize past data, avoiding storage
of actual data but facing challenges in maintaining image
quality. Our approach leverages diffusion models to dis-
till knowledge from generated noisy images, enhancing the
sustainability of high-quality data generation. This method
improves computational and memory efficiency in OCL, en-
suring adaptability and robustness across varying conditions.

Diffusion Models in Continual Learning: diffusion
models are renowned for their strong performance in various
benchmarks [7]], but they require substantial computational
resources. Techniques such as DDIM [[19], progressive distil-
lation [11], and consistency models [[12]] have been developed
to reduce these demands. Our research employs DDIM for its

efficient conversion of noise to data, which is advantageous
for continual learning applications. In continual learning,
recent approaches [20, 21 8] have used diffusion models to
replace traditional replay buffers. For example, SDDR [10]
uses a pretrained Stable Diffusion model as a static buffer, and
DGR-distill[21] employs generative distillation for noise pre-
diction instead of synthesized images. While these methods
are innovative, they often overlook class balance and detailed
knowledge from the teacher model’s reverse diffusion pro-
cess. Diffclass[9] provides optimal results by using separate
models for each task, but this reduces efficiency. Addition-
ally, current methods do not fully tackle the complexities of
online continual learning, a critical area for practical applica-
tion.

3. METHODOLOGY

3.1. Problem formulation

In our study, we explore online continual learning where
a model learns from a data stream, presenting each batch
only once. We define a data stream at time step k as
B* = {(xi,y:)},, with each pair (z;,y;) representing
an input data point and its label, and IV}, represents the batch
size. The noise prediction model is denoted by €y. We define
the online continual learning algorithm A as follows:

Ak : (ng—l,Bk) — (Egk) @))

At each training step k, the model €41 receives a small batch
B* and updates its parameters accordingly, resulting in the
new model egx.

3.2. Generative replay and Generative distillation

We consider both Generative Replay (DGR) and Genera-
tive Distillation (DGR-distill) [21] as our baselines, which
are among the most commonly used strategies applying
generative models to continual learning algorithms. Be-
fore training on a new batch B¥, they first use the previous
noise prediction model €ygx—1 to generate a memory batch
X,. We then add noise ¢, corresponding to the diffusion
step ¢, to obtain the noisy images X,. The two meth-
ods differ only in the target used for the distillation loss.
In DGR, it uses the known added noise as the prediction
target : Lpgr = MSE(e, egx (X, t.)). However, in
DGR-distill, it uses the previous model’s output as target
: LGR-distin = MSE(egr—1(X;, 1), €gr (X, 1))

3.3. Noisy Intermediate Generative Distillation (NIGD)

To efficiently generate images, we utilize a DDIM sched-
uler [19], which operates over a selected subset of steps
{m,72,...,7s} from the total number of steps 7', thereby
reducing the number of necessary steps to S. As discussed
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Fig. 1. Illustration of Our Method. The yellow region represents SGGD, the blue region denotes NIGD, and the red region
corresponds to training on the current batch B¥. €1 is our EMA-teacher, and g« is our current model.

DDIM denoising process consisting of S steps

- add noise for step 7;
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Fig. 2. An illustration of the DDIM denoising process with
S steps shows two approaches: using S — ¢ steps to directly
generate x.,, or first generating the original images g, fol-
lowed by adding noise to produce the noisy image ., at step
Ti-

in Sec. 3.2} current continual learning methods that apply
diffusion models use either DGR or DGR-distill. Both ap-
proaches initially generate the original images x( using the
full .S steps, then add noise to produce &, at specified time
steps 7;, as illustrated in Fig.[2] However, if we utilize only
&, for distillation during the generation process, the diffu-
sion model can directly generate noisy images at time step
denoted by x,,. These noisy images can also be useful for
distillation as they require only S — ¢ generation steps. We
then compute the differences between them and explain their
utility for distillation.
The reverse process in DDIM is described by:

z;

i

_ iy —/1=8r  co(®r ) =
= VO * - \/0771:11 =+ V1= aTiee(xTH—l) 2

From this, the generated image x( is obtained after S
steps. The noisy images ., are derived from x as follows:

7, = \/An @0+ /(1 — ar, e 3)

We can then derive the difference between &, and x, as
shown in Fig. [2}

1

i""i — &Ly, = Z(Tjﬁ@((ﬂ-,—j)) 4)

Jj=i
1—a,, 1—a,,
J— A i1 7j 5
TP = \Q 1(\/ G, \/ ar, ) &)

From Eq. @), the difference between the noisy image &,
(derived by adding noise to xy) and the directly generated
noisy image x,, is determined by the generation steps from
T; to 71. Based on our experience, ther residual component is
relatively weaker compared to the noisy image x,.

In our continual learning setup, we use the previously
trained model, €yx—1, as the teacher model to update the new
model eyr by distilling knowledge for each 7;. We require:

€9k(mTi—1|mTiaTi) = eakfl(mﬂ—J:cTuTi) (6)
During the generation process, the model generates x,
without accessing &, yet &, is essential for distilling local-
ized information from the previous model. In a S-step DDIM
generation, both the directly generated noisy image ., and
the noisy image &,, created by adding noise to x( are crucial
for distillation. The former retains localized details, while the
latter preserves global information. This study suggests two
methods of obtaining a noised image, for any given diffusion
step, ; as shown in Fig. 2}

1. Two-Stage Approach: Generate x using S steps, then
add noise for step 7; to get Z,.



2. Direct Approach: Directly generate x., using S — i
steps.

In practice, we distill knowledge from both the interme-
diate noisy images and the two-stage noisy images produced
during the inverse process.

3.4. SNR-Guided Generative Distillation (SGGD)

Research by [22]] identifies two functional phases of diffu-
sion models: initial denoising of corrupted images for re-
fining final samples when ¢ is small, and generating images
from noise when ¢ is large, demonstrating strong generaliza-
tion across datasets like CIFAR-10 and CelebA in early diffu-
sion stages (¢/T < 0.1).

In continual learning, using solely generated images for
training leads to image quality degradation [} 4, [8]. We pro-
pose leveraging early-stage denoising capabilities of diffusion
models for direct knowledge distillation from current train-
ing data, offering improved image clarity, knowledge preser-
vation, and reduced computational costs by bypassing initial
image generation.

To find the turning point ¢. of the time step before which
current training data can be effectively used, we calculate the
Signal-to-Noise Ratio (SNR) along with the time step. This
measurement assesses the relative amplitude of the added
noise compared to the original image. We use the same
formula as in [22]:

dtw%
SNR(wo.1) = § @)

_dt

We set log(SNR) = 3 as a threshold, as it maintains fa-
vorable FID scores. For Fashion-MNIST and CIFAR-10, the
identified time steps, t;,, are 50 and 35, respectively. As
log(SNR) drops to -9, we reach a point where the model’s
input approximates Gaussian noise, marking the ¢4, thresh-
olds at 878 and 848 for the respective datasets.

In our workflow, images for distillation are selected
based on the training step ¢,: 1. If ¢, < %;,,, use images
from the current batch. 2. If ¢, > 5,45, use images gen-
erated from Gaussian noise. 3.Otherwise, generate noisy
images from the previous model.

We adaptively adjust #;4,, and tp;4, using a moving av-
erage formula, minimizing manual tuning and reducing the
need for generated images by about 20% without affecting
performance.

3.5. EMA in Online Continual Learning

In an Online Continual Learning scenario, where no clear task
boundaries exist as in classic class-incremental learning, we
must update our teacher model €p,,, dynamically. We use
the Exponential Moving Average (EMA) method [23} [24] to
achieve this:

ok = (1- )\)69571 + Aégk (8)

Here, €yr represents our current model, updated with the
latest batch k. We set the update rate A to 0.01, allowing
the teacher model to slowly assimilate new knowledge while
ensuring stability over time.

3.6. Workflow and overall objective

Our method’s workflow is illustrated in Fig.[I] At the train-
ing step k, we first initialize the current model €yx using the
parameters from the previous model €yx—1. We then update
€gr by processing the current batch B* and distilling knowl-
edge from the EMA-based teacher €1 Because the previ-

ous batch B*~1 is not retained, it is unavailable for training at
this step. The current batch B k comprises images (X.), labels
(Yo).

The process starts by randomly selecting time steps ¢,
and generating Gaussian noise €,. According to the resam-
pling guidelines in SNR-Guided Generative Distillation
(SGGD) Sec. we categorize t, into three types: tc,, for
replaying current images ¢, , tgq. for replaying Gaussian
noise xy,,,, and t4. for replaying generated noisy images.
For instances categorized under ?,4., we employ Noisy Inter-
mediate Generative Distillation (NIGD) to produce half of
the images as directly noisy images x,, and the other half
as two-stage noisy images @ .. By combining all types of
noisy images for replay, we can construct our noisy memory
batch as X,.. The replay loss is then calculated based on these
categorizations.

Lrepay = MSE(ege (Xr, t,), €1 (Xp, 1)) (9)

Next, we sample time steps t. and noise €.. We then pass
the current noisy training data (X, €.) through our current
model to obtain:

‘Ccurrent = MSE(GO’C (Xcatc)y 6c) (10)
Finally, the overall objective is formulated as:
»Ctotal = a»ccurrent + (1 - a)‘creplay (11)

where « is a hyperparameter controls the balance between
the current loss and the replay loss. After updating our cur-
rent model €4x, we then use Eq. (8) to update our EMA-based
teacher.

4. EXPERIMENTS AND RESULTS

In this paper, we evaluate our method using three popu-
lar datasets for online continual learning: Fashion-MNIST,
CIFAR-10, and CIFAR-100. For each dataset, we train our



model offline on half of the classes as the initial task, estab-
lishing a well-trained baseline. The remaining dataset is then
introduced in an online stream.

4.1. Evaluation metrics and Methods

We use the Fréchet Inception Distance (FID) to assess image
quality against a test set from previously encountered tasks
and the Kullback-Leibler Divergence (KLD) to evaluate the
class distribution balance in generated images. Final classi-
fication accuracy (Acc) measures the performance of class-
conditioned diffusion models. We explore both unconditional
and class-conditioned diffusion models, referencing [6} 25].
For the unconditional model, we compare our approach with
deep generative methods like DGR, DGR with distillation
[21], and DDGR [8]], and the memory-based method ER [14]].
Comparisons include Fine-tuning (F.T.) as a lower bound and
Joint-training (J.T.) as an upper bound, along with DDGR-
1000 for its high computational performance.

For the class-conditioned model, we assess classification
accuracy against memory-free methods like BIR[26] and
PASS[27], and the memory-based method PCRI2S].

Fashion-MNIST employs a small UNet for 10 DDIM
steps, while CIFAR-10 and CIFAR-100 use a medium-sized
UNet for 25 steps. Both ER and PCR utilize a memory buffer
of 1000. All diffusion models implement EMA.

4.2. Overall results

We present results for both unconditional and class-conditioned
diffusion models across Tab. [I] and Tab. 2] summarized as
mean and standard deviation over five random runs.

Unconditional Diffusion Model Results:In Tab. [I} Our
method outperforms DGR-distill, showing improvements of
4.5 t0 5.0 in FID scores and superior KLD performance, with
a 25% reduction in computational costs. For Fashion-MNIST,
it matches DDGR-1000’s performance with just 10 genera-
tion steps and only 25 steps for CIFAR-10, reducing compu-
tational demand by 92% compared to DDGR-1000.

Class-Conditioned Diffusion Model Results: In Tab.
when examining the class-conditioned diffusion model, our
method does not just compete on FID scores but also demon-
strates a clear advantage in classification accuracy. It con-
sistently surpasses the performance of basic DGR-distill and
closely approaches, and in some metrics exceeds, that of
DDGR-1000. Remarkably, our approach outperforms the
memory-based method PCR, even with a significantly larger
memory buffer.

5. ABLATION STUDY

Our method incorporates two innovative components: NIGD
and SGGD. SGGD utilizes three types of replay images:
Gaussian noise, current images, and generative images.

Table 1. Results Presented as Mean and Standard Deviation
Over 5 Random Runs, with unconditional diffusion model.

Fashion-MNIST CIFAR-10

FID] KLD| Time| | FIDJ] KLDJ Time|
ET. 955+ 102 475+181 x0.15 | 735458 3.83%£1.15 x0.08
DDGR-1000 | 192425 009+001 x20.5 |37.8+34 0.15+002 x875
JT. 147415 007+001 x0.15 |273£21 0.11+001  x0.08
ER 259+39  03810.15 x0.15 | 505+59 035+£0.13  x0.08
DGR 90.5+105 1154023 x091 |753+66 155+058 x0.95
DGR-distill | 248434 0.17+008 08hxl | 463+60 028+0.14 1.5hx1
Ours 203+£22 0.10+£004 =075 |413+46 017+009 x0.72

Table 2. Results Presented as Mean and Standard Devia-
tion Over 5 Random Runs, with class-conditioned diffusion
model.

CIFAR-10 CIFAR-100

FID} Acct Time] FID} Acct Time)
FT. 58.5+7.8 11.2+02 x0.07 652 +89 45+03 % 0.07
DDGR-1000 | 31.5+1.6 457+12 x921 358+23 288+09 %921
J.T. 263+1.8 735+05 x0.07 305422 67.4+03 x0.07
ER 425451 318+25 x0.07 52.6+54  189+3.1 x0.07
DGR-distill | 39.3+4.2 388438 1.7hx 1 |445+45 243+24 17hx1
BIR - 30.5+37 - - 163 +38 -
PASS 378 +£25 20.5 +£2.7
PCR - 405+32 - - 257422 -
Ours 347+£35 421+21 x0.71 382+37 275+£13 x0.71

NIGD employs two methods to generate noisy images from
the diffusion model: a two-stage approach and a direct ap-
proach. We use the DGR-distill backbone with unconditional
diffusion models and apply 10 generation steps for Fashion-
MNIST. Our results demonstrate that both SGGD and NIGD
enhance the quality of the generated images while reducing
computational costs.

Table 3. Ablation Study on Fashion-MNIST

FID] KLDJ Time]
w. Generative (two-stage) | 24.8 3.4 0.17 £0.08 0.8h x 1
w. Current 569 +3.8 0.33+0.12 x0.25
w. Gaussian 354+26 0.76+0.09 x0.25
w. SGGD 22.443.8  0.15£0.08 x0.85
w. Generative (direct) 23.8+5.8 0.15+0.09 x0.63
w. NIGD 21.5+2.7 0.13+£0.05 x0.83
Ours 20.1£2.2 0.10£0.03 x0.75

6. CONCLUSION

We introduced the Multi-Mode Adaptive Generative Distil-
lation (MAGD) approach to mitigate catastrophic forgetting
and reduce computational costs in online continuous training
of diffusion models. By integrating NIGD, SGGD, and EMA,
our method maintains high-quality image generation while re-
ducing computational expenses by up to 25% compared to ba-
sic DGR-distill and 92% compared to DDGR-1000. In class-
conditioned models, MAGD significantly outperforms basic
DGR-distill and surpasses memory-based methods in terms
of classification accuracy, demonstrating its potential as a vi-
able alternative to traditional memory buffers.
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