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Willems’ Lemma Reformulations: Which Operators preserve LTI
System Behavior?

Alexandre Faye-Bédrin1, Stanislav Aranovskiy1, Paul Chauchat2, and Romain Bourdais1

Abstract— In the behavioral approach, dynamical systems
are abstracted as sets of trajectories. This approach gave
birth to Willems’ Fundamental Lemma, which has sparked
significant interest in recent years. Indeed, the Lemma has
uses in data-driven control: it provides a simple data-driven
representation of any LTI system based on a single input-output
record. Reformulations of the Lemma have been proposed in the
literature, for instance, using frequency-domain data, each time
with a new and specific proof. In this note, we show that all
reformulations are necessarily based on linear shift-invariant
transformations, which have the fundamental property that
they preserve the trajectory space of all LTI systems.

I. INTRODUCTION

The behavioral approach to system theory [1] defines a
dynamical system as a set of trajectories called behavior.
This abstract perspective allows to separate the representation
of systems (e.g., input-output transfer function, state-space
representation, convolution) from the study of their funda-
mental properties (e.g., linearity, complexity, dissipativity).
Extensive literature revolves around linear time-invariant
(LTI) systems, which are defined as shift-invariant subspaces,
as detailed in Section II-A.

A result from the behavioral approach has recently gained
interest: the Fundamental Lemma [2] (which we recall in
Theorem 1 in Section II-B) allows for the behavior (set of
possible trajectories) of any controllable LTI system to be
described solely with raw records of input-output trajectories
organized in a Hankel matrix. This simple and powerful data-
driven representation is at the core of a model-free predictive
control method [3], referred to as DeePC (Data-EnablEd
Predictive Control). Alternative formulations of the Lemma
have been developed in the literature, using transformations
of input-output sequences instead of raw data. Authors in [4]
propose two formulations: in the first one, the data matrix
is based on cross-correlation of input-output signals, and the
second one uses cross-spectrum (i.e., the Fourier transform
of cross-correlation). In [5], [6], the authors propose a for-
mulation where the data matrix contains frequency-domain
data. In both cases, authors prove the correctness of their
formulations by applying a similar procedure as for the
multiple dataset case [7]. The similarity in the proofs is a
crucial observation, as it suggests a fundamental property
of the data transformations: they preserve the data structure
induced by system dynamics.
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This note aims to generalize the aforementioned refor-
mulations: what common kind of data transformation are
they based on? To this objective, we address the following
question: what is the set of transformations that preserve
the trajectory space of any LTI system? Characterizing these
transformations will clarify the relationship between the
Lemma and its reformulations. To this end, we state in
Theorem 2 of this note that the set of data transformations
that preserve the behavior of all LTI systems is the set
of linear shift-invariant (LSI) operators. We also show the
connection with the Fourier transform.

The paper has the following structure. First, Section II
presents some preliminaries. Next, we show our main results
in Section III and study its connection to a family of
operators related to the Fourier transform in Section IV. A
perspective on continuous-time LTI systems is then presented
in Section V, and some applications of our results are given
in Section VI, which include the three reformulations of the
Fundamental Lemma (with frequency domain data, cross-
correlation, and cross-spectrum). Finally, the conclusion is
in Section VII.

Notation

• The operator col (·) stacks up its vector arguments.
• A set of numbers excluding 0 is denoted with (·)∗, e.g.
N∗ = N \ {0} and C∗ = C \ {0}.

• The space of sequences (discrete-time signals) on time
axis Z with values in Rq is denoted (Rq)

Z
= {Z →

Rq}. For q = 1, we write RZ or CZ.
• The set of discrete-time LTI systems of order n with
m inputs and q −m outputs is Bq,n

m . When the input-
output partition is not specified, we write Bq,n, and
Bq,n
m ⊆ Bq,n. When not relevant to the discussion, n

is not specified, e.g., Bq or Bq
m.

• For a sequence s with s(t) ∈ Rq or s(t) ∈ C and a ≤ b
we use the following notation for a stacked window:

s[a,b] = col (s(a), s(a+ 1), . . . s(b)) .

• For a finite sequence {s(t)}Tt=1 with s(t) ∈ Rq , we
denote the Hankel matrix HL(s) ∈ RqL×(T−L+1) as

HL(s) =
[
s[1,L] s[2,L+1] . . . s[T−L+1,T ]

]
.

• The range space of a matrix or linear operator A is
denoted im(A), and its null space is ker(A).

• Application of operator A to s is denoted A[s], or As
when there is no ambiguity.

• The shift operator σ is defined, with any sequence s:

∀t, σ[s](t) = s(t+ 1)



II. PRELIMINARIES

A. LTI systems in the behavioral framework

In the behavioral framework (see, e.g., [1]), a discrete-
time LTI system (or behavior) B ∈ Bq is a shift-invariant
subspace of the space of signals (Rq)

Z. In other words, it is
a space of trajectories with values in Rq , with the property
that w ∈ B ⇐⇒ σw ∈ B, where w ∈ B means that w is a
trajectory of B. Such a system B can be described with the
so-called kernel representation

B =
{
w ∈ (Rq)

Z | R(σ)w = 0
}
= ker(R(σ))

where R(ξ) is a matrix polynomial with indeterminate ξ. An
LTI system with input-output partitioning B ∈ Bq

m can also
be described as

B =
{
u ∈ (Rm)

Z
, y ∈ (Rq−m)

Z | Ry(σ)y = Ru(σ)u
}
.

The restricted behavior B|L of a system B ∈ Bq is defined
as the set of trajectories with length L of B

B|L =
{
w[1,L] | w ∈ B

}
or with an input-output partition

B|L =

{[
u[1,L]

y[1,L]

]
| (u, y) ∈ B

}
.

B. Willems’ Fundamental Lemma

We recall Willems’ Fundamental Lemma extended for
multiple datasets [7], which mobilizes the idea of collective
persistence of excitation.

Definition 1: A collection of sequences s = {si =
{sk(t)}Tk

t=1}Nk=1 with sk(t) ∈ Rq is said to be collectively
persistently exciting of order M if

rank
([
HM (s1) HM (s2) . . . HM (sN )

])
= qM.

We then write s ∈ CPE(M).
Let B ∈ Bq,n

m a controllable1 LTI system of order n.

Let
(
uD =

{
{uD

k (t)}Tk
t=1

}N

k=1
, yD =

{
{yDk (t)}Tk

t=1

}N

k=1

)
be a collection of finite-length input-output sequences of B.

Theorem 1 ([7]): If uD ∈ CPE(L+ n) then

B|L = im

[
HL(u

D
1 ) . . . HL(u

D
N )

HL(y
D
1 ) . . . HL(y

D
N )

]
. (1)

Remark 1: Theorem 1 has been extended to the case of
uncontrollable systems and under looser conditions [8]. It
would be straightforward to connect this extended theorem
to our results, however the more complicated formulation
would hinder clarity while not adding significant value. The
same can be said for other kinds of data matrices or different
definitions of PE, such as in [9].

III. OPERATORS AND LTI SYSTEMS

In this section, we state our main result: the character-
ization of operators that preserve the behavior of all LTI
systems.

1Controllability has a specific definition in the behavioral framework [1],
that it is equivalent to the usual definition for state-space systems.

A. Characterization of behavior-preserving operators

Let A ⊆ {RZ → RZ} be the set of linear shift-invariant
(LSI) operators on real-valued sequences. For A ∈ A, the
linearity implies that for any sequences x, y ∈ RZ and any
scalars a, b ∈ R we have

A(ax+ by) = aA(x) + bA(y),

and the shift-invariance implies that A commutes with the
shift operator, i.e. for any x ∈ domA

A[σx] = σ[Ax].

Our main result is the following theorem, where we
highlight a fundamental property of LTI systems.

Theorem 2: A is the set of operators that preserve the
behavior of all LTI systems:

A = {A|∀q ∈ N∗,∀B ∈ Bq, w ∈ B ⇒ Aw ∈ B}

where Aw is the component-wise application of A to w.
Proof: First, we show that all operators in A preserve

all LTI behaviors. Take w ∈ B:

R(σ)[Aw] = A[R(σ)w] = 0 ⇒ Aw ∈ B

due to linearity and shift-invariance of A.
Now, we prove that all LTI behavior-preserving operators

belong to A. To this end, we show that any operator A such
that

∀q ∈ N∗, ∀B ∈ Bq, (w ∈ B ⇒ Aw ∈ B) (2)

is both (a) linear and (b) shift-invariant, and thus A ∈ A.
(a) Linearity: If A is not linear, then there exist constants

(a, b) ∈ R and sequences (ū1, ū2) ∈ RZ such that

A[aū1 + bū2] ̸= aAū1 + bAū2.

With such a and b, let B ∈ B3
2 defined by y = au1+bu2.

Then, with u1 = ū1 and u2 = ū2,

(Au,Ay) ̸= (Au, aAu1 + bAu2) i.e. (Au,Ay) ̸∈ B

contradicting (2), so A must be linear.
(b) Shift-invariance: If A is not shift-invariant, then there

exists a sequence ȳ ∈ RZ such that

A[σȳ] ̸= σ[Aȳ].

Let B ∈ B2
1, defined by σy = u. Then, with u = σȳ, we

get y = ȳ and

(Au,Ay) ̸= (σAy,Ay) i.e. (Au,Ay) ̸∈ B

contradicting (2), so A must be shift-invariant.

Theorem 2 gives the whole set of operators that preserve
the trajectory space of all LTI systems. It is tempting to
conclude that the three reformulations of Willems’ lemma
cited in Section I (using cross-correlation, cross-spectrum,
and frequency-domain data) must be based on LSI operators.
However, these reformulations are about restricted behaviors:
we still need to clarify the link between restricted and
unrestricted behaviors.



B. Operators that preserve restricted behaviors

We introduce a new set of operators that, when applied
to trajectories of any given LTI system, yield restricted
trajectories of the same system. We then look at the relation-
ship between these new operators and behavior-preserving
operators. Let L ∈ N∗, we denote A|L ⊆

{
RZ → RL

}
the

set of operators defined such that, if Ā ∈ A|L, for all q ∈ N∗

and any LTI system B ∈ Bq

w ∈ B ⇒ Āw =

Ā[w](1)
...

Ā[w](L)

 ∈ B|L.

Now we formulate the question: what is the link between
A|L and A? The answer is given in the following theorem.

Theorem 3: The set of operators A|L that preserve re-
stricted behaviors is equivalent to the set of LSI operators A
in the sense that

A|L =
{
(s 7→ A[s][1,L]) |A ∈ A

}
. (3)

Proof: First, it is obvious that if we take A ∈ A

w ∈ B ⇒ A[w][1,L] ∈ B|L

which implies the right inclusion ⊇ in (3). We will show that
each Ā ∈ A|L has a corresponding extension A ∈ A. Take
Ā ∈ A|L. Due to the properties of Ā and B, we have

w ∈ B ⇒ ∀t ∈ Z, σtw ∈ B ⇒ ∀t ∈ Z, Ā[σtw] ∈ B|L.

Now define the operator A : RZ → RZ as

∀t ∈ Z,∀s ∈ RZ, A[s](t) = Ā[σt−1s](1).

By this definition, A is shift-invariant, and it is easy to check
that

∀s ∈ RZ, Ā[s] = A[s][1,L].

Finally, we prove that A must be linear: to this end, we show
that Ā is linear. Let B ∈ B3

2, defined by y = au1 + bu2. If
Ā is not linear, then there exists constants (a, b) ∈ R and
sequences (ū1, ū2) ∈ RZ such that

Ā[aū1 + bū2] ̸= aĀū1 + bĀū2.

With such a and b, let B ∈ B3
2 defined by y = au1 + bu2.

Then, if we take u1 = ū1 and u2 = ū2[
Āu
Āy

]
̸=

[
Āu

aĀu1 + bĀu2

]
i.e.

[
Āu
Āy

]
̸∈ B|L

contradicting A ∈ A|L with A|L defined in (3), so Ā must
be linear. It follows that A is also linear, so we have A ∈ A.
Hence, we have the left inclusion ⊆ in (3).

Theorem 3 makes clear that for each reformulation of the
Fundamental Lemma cited in Section I, there are correspond-
ing LSI operators. This means that there is no need for
a separate, specific theoretical study of each reformulation
because they are natural declinations of Theorem 1 that arise
from the fundamental properties of LSI operators.

IV. GEOMETRIC SEQUENCES AND THE FUNDAMENTAL
LEMMA

In this section, we introduce a set of LSI operators that
are closely related to the Fourier transform, and we show
how they interact with the Fundamental Lemma.

Let us introduce a family of linear forms Gz ⊆ {CZ → C}
that maps trajectories to complex numbers, with the special
property that any G ∈ Gz satisfies

∀s ∈ CZ, G[σs] = zGs.

where z ∈ C∗. Note that this is a partial characterization of
the Z-transform, which is defined as

∀s ∈ CZ,Z[s](z) =
∑
k∈Z

z−ks(k).

By definition, we have (s 7→ Z[s](z)) ∈ Gz . Then, an
example of such a linear form is the discrete-time Fourier
transform discussed in Section VI-B.

Let G ∈ Gz and z̄ ∈ CZ a geometric sequence of common
ratio z (i.e. σz̄ = zz̄). Consider the operators

R : s 7→ ℜ(z̄Gs) and I : s 7→ ℑ(z̄Gs)

where ℜ and ℑ denote, respectively, the real and imaginary
parts of their argument. Note that G applies to w element-
wise, hence Gw ∈ Cq , and we read z̄Gw as such: at any time
t, the k-th component of (z̄Gw)(t) equals the k-component
of z̄(t)Gw.

Lemma 1: The operators R and I are linear and shift-
invariant.

Proof: Take s ∈ CZ, then for the real part

σ [ℜ (z̄Gs)] = ℜ (σ[z̄Gs]) = ℜ (zz̄Gs) = ℜ (z̄G[σs])

and the same holds for the imaginary part ℑ(z̄Gs). Hence
the operators R and I belong to A.

Let N scalars {zk ∈ C∗}Nk=1, their corresponding linear
forms {Gk ∈ Gzk}Nk=1 and geometric sequences {z̄k ∈
CZ : z̄k(t) = zt−1

k }Nk=1. Let
(
u = {uk}Nk=1, y = {yk}Nk=1

)
be a collection of N input-output sequences of a controllable
system B ∈ Bq,n

m , i.e., for any k, uk ∈ (Rm)
Z. We denote

for a sequence sk ∈ (Rr)
Z (standing for uk or yk)

ξsk = z̄kGksk ∈ (Cr)
Z

and

HL(s) =
[
ξs1,[1,L] · · · ξsN,[1,L]

]
∈ CrL×N .

The following theorem is a consequence of Theorem 1.
Theorem 4: Suppose that

rank
[
ℜ(HL+n(u)) ℑ(HL+n(u))

]
= (L+ n)m (4)

then
B|L = im

[
ℜ(HL(u)) ℑ(HL(u))
ℜ(HL(y)) ℑ(HL(y))

]
. (5)

Proof: Condition (4) implies that {ℜ(ξuk,[1,L+n])}
N
k=1∪

{ℑ(ξuk,[1,L+n])}
N
k=1 ∈ CPE(L+ n), see Definition 1. Then

according to Theorem 1

B|L = im

[
A1u · · · ANu
A1y · · · ANy

]
(6)



where Ak is defined, with s standing for u or y, as

Aks =
[
ℜ
(
HL

(
ξsk,[1,L+n]

))
ℑ
(
HL

(
ξsk,[1,L+n]

))]
.

Then, note that for all k and any sequence s ∈ (Rr)
Z:

HL

(
ξsk,[1,T ]

)
=


ξsk(1) zkξ

s
k(1) · · · zT−L

k ξsk(1)

ξsk(2) zkξ
s
k(2) · · · zT−L

k ξsk(2)
...

...
. . .

...

ξsk(L) zkξ
s
k(L) · · · zT−L

k ξsk(L)



=


ξsk(1)
ξsk(2)
...

ξsk(L)

 [
1 zk · · · zT−L

k

]

and so

im
[
ℜ
(
HL

(
ξsk,[1,T ]

))
ℑ
(
HL

(
ξsk,[1,T ]

))]
= im

[
ℜ
(
ξsk,[1,L]

)
ℑ
(
ξsk,[1,L]

)]
.

Hence, (6) is equivalent to (5).

V. CONTINUOUS TIME LTI SYSTEMS

A. In the behavioral framework

Up to this point, we have focused exclusively on discrete-
time (DT) LTI systems, but it is possible to transpose some
results to the continuous-time (CT) setup. We write B̄q ⊆
(Rq)R the set of q-variate differential CT LTI systems. In
the behavioral framework, such a system B ∈ B̄q can be
described with a kernel representation (see [10])

B =

{
w ∈ (Rq)R|R

(
d

dt

)
w = 0

}
where R is, as in the DT case, a matrix polynomial. It is
worth mentioning that other, larger classes of CT LTI systems
exist, such as systems with delays [11] or leveraging the idea
of distributional behavior [12]. For the sake of conciseness,
we only consider differential CT systems, but we infer that
our approach would yield analogous results.

Compared to the DT setup, the signal space changes from
(Rq)

Z to (Rq)R (the time axis becomes the set of real
numbers), and the shift operator σ is substituted with the
time derivative d

dt . We elude on the precise definition of
CT signals: we only assume they are compatible with the
operations we use, so our propositions are not impacted.
Depending on the context, signals may be considered as
(infinitely) differentiable functions with respect to time, but
they can also be defined as distributions (to allow for dis-
continuities), or (locally) square integrable functions. Some
discussion can be found in [12] and references therein.

There exist versions of the Fundamental Lemma for CT
systems [13], [14], but a detailed discussion on the differ-
ences between the DT and the several CT cases is out of
scope for this paper.

B. Behavior-preserving operators, complex exponentials

We can draw similar results to those of Theorem 2 and
Lemma 1 in the CT setup.

For the first result, we introduce the CT equivalent of DT
LSI operators. Let Ā ⊆ {RR → RR} be the set of linear
operators such that any A ∈ Ā satisfies

∀s ∈ RR,∀τ ∈ R, A[στs] = στ [As]

where σ denotes, with an abuse of notation, the delay
operator in the CT setup:

∀s ∈ RR,∀(τ, t) ∈ R, στ [s](t) = s(t+ τ).

For any signal s ∈ RR that is differentiable with respect to
time, the definition of A implies that it commutes with d

dt :

A

[
d

dt
s

]
= A

[
lim
t→0

σt − 1

t
s

]
=

d

dt
[As]. (7)

Conversely, if A commutes with d
dt , then it is time-invariant.

Theorem 5: The set Ā is the set of operators that preserve
the behavior of all CT LTI systems:

Ā =
{
A|∀q ∈ N∗,∀B ∈ B̄q, w ∈ B ⇒ Aw ∈ B

}
.

For the second result, we introduce the CT equivalent of
Gz . Let z ∈ C∗ and let Ḡz ⊆ {CR → C} the set of linear
forms such that any G ∈ Ḡz satisfies

∀s ∈ CR, G

[
d

dt
s

]
= zGs.

Lemma 2: Let B a CT LTI system and A ∈ Ḡz . Let z̄ ∈
CR satisfying the differential equation d

dt z̄ = zz̄. Then

w ∈ B ⇒

{
ℜ(z̄Aw) ∈ B
ℑ(z̄Aw) ∈ B

.

Proof: The proofs of Theorem 5 and Lemma 2 follow
the exact same structure as the proof of Theorem 2 and
Lemma 1, where the shift operator σ is substituted with the
time derivative d

dt .

VI. APPLICATION EXAMPLES

A. Convolution and cross-correlation

Convolution f ∗ g between scalar-valued signals (f, g) ∈
RZ is defined as

f ∗ g =

∞∑
k=−∞

f(−k)σkg.

For any given f ∈ RZ, (s 7→ f ∗ s) is linear and shift-
invariant. Take any sequence f ∈ RZ (e.g., a trajectory of an
arbitrary non-linear system), then Theorem 2 implies that if
w is a trajectory of any LTI system B, f∗w is also a trajectory
of B. Note that any LSI operator can be represented as a
convolution, for instance with A ∈ A:

∀s ∈ RZ, A[s] =
∑
k∈Z

A[δ](−k) σks = A[δ] ∗ s

where δ(k) = 0 for all k except δ(0) = 1 and A[δ](−k) is
the value of A[δ] at the time instance −k.



Remark 2: Operators in A inherit all the properties of
convolutions: A is closed under composition (∀A,B ∈
A, AB ∈ A) and linear combination (∀A,B ∈ A,∀a, b ∈
R, aA + bB ∈ A), and it contains the identity and zero
elements. Finally, all operators in A commute: we have for
any pair of operators A,B ∈ A and any sequence s ∈ RZ

ABs = A[δ] ∗B[δ] ∗ s = B[δ] ∗A[δ] ∗ s = BAs.
Cross-correlation between two signals is similar to convo-

lution: for (f, g) ∈ RZ it is defined as

f ⋆ g =

∞∑
k=−∞

f(k)σkg.

Again, given f ∈ RZ, (s 7→ f⋆s) is linear and shift-invariant.
In the first reformulation given in [4], the input-output signals
are correlated with the system inputs. Then, the correlations
are used in place of raw data in the mosaic-Hankel matrices
of Theorem 1.

B. Discrete-time Fourier transform

The Fourier transform of a sequence s ∈ CZ at frequency
ω is defined as

F(ω)[s] =

+∞∑
k=−∞

s(k)e−jωk

where j is the imaginary unit, then we note that

F(ω)[σs] = ejωF(ω)[s] ⇒ F(ω) ∈ Gejω .

Using Theorem 4 with z = ejω, we recover the result of
authors in [5], [6]. Note that we express the persistence of
excitation condition (4) by separating the real and imaginary
part of HL+n(u), while authors in [5] equivalently use the
complex values and their complex conjugates.

Successive application of cross-correlation and Fourier
transform yields a formulation with cross-spectrums, similar
to the one exposed in [4]. The difference is that the original
publication considers complex-valued trajectories, while we
only allow for real-valued signals. As noted in Remark 2, the
order of transformations does not matter for the theoretical
result, so the most practical one should be used in real
applications.

C. Dynamic extension of a data matrix

We can draw inspiration from Dynamic Regressor Exten-
sion used in parameter estimation schemes (as in the first
steps in [15]). Define N operators {Fk ∈ A|Tk

}Nk=1, for
example based on first-order filters as

Fk[s] =

(
1

σ − λk
s

)
[1,Tk]

for any sequence s ∈ RZ and 0 < λk < 1. We write the
dynamic extension of a Hankel matrix based on these filters

HF
L (s) =

[
HL

(
s[1,T ]

)
HL (F1[s]) . . . HL (FN [s])

]
for s ∈ RZ. Then, substituting s for input-output data (u, y)
of a system B ∈ Bq,n

m , we can use Theorem 1: if

rankHF
L+n(u) = (L+ n)m

then

B|L = im

[
HF

L (u)
HF

L (y)

]
.

D. The case of affine systems

An affine time-invariant system of order n with q variables
can be defined, with the state-space formalism, as

B =

{
(u, y)|∃x,

{
σx = Fx+Bu+ e

y = Cx+Du+ r

}
(8)

where (like in LTI systems) x ∈ (Rn)
Z is the state, u ∈

(Rm)
Z the input and y ∈ (Rq−m)

Z the output. F , B, C, D
are matrices of suitable dimensions, and e, r are constant
vectors.

The system (8) is not an LTI, and the previous results do
not apply directly. However, it is possible to define an LTI
embedding for it, allowing for Willems’ lemma adaptation,
e.g., as it was done in [16] and [17], [18] with applications in
the non-linear system control. In what follows, we show that
if an LTI embedding can be defined for a (affine) dynamical
system, then it is possible to use LSI data transformations
on this embedding. However, because of the constraints
that map the embedding back to the original system, such
LSI transformations may produce trajectories that do not
correspond to the original dynamical system, and thus, extra
constraints should be imposed.

An LTI embedding for (8) is defined as an LTI system B̄
with an extended input ū{

σx = Fx+ B̄ū

y = Cx+ D̄ū

where

ū =

[
u
1

]
, B̄ =

[
B e

]
, D̄ =

[
D r

]
. (9)

We can rewrite this LTI system B̄ ∈ Bq+1
m+1 as

B̄ = {(ū, y)|Ru(σ)ū = Ry(σ)y}

so the original affine system B is an affine subspace of B̄:

B =

{
(u, y)|(ū, y) ∈ B̄, ū =

[
u
1

]}
.

Take an operator A ∈ A, using Theorem 2 we have that

(ū, y) ∈ B̄ ⇒ (Aū,Ay) ∈ B̄

so the only missing condition for A to satisfy

(u, y) ∈ B ⇒ (Au,Ay) ∈ B

is that the affine constraint is still satisfied:[
Au
1

]
= Aū =

[
Au
A1

]
.



E. Continuous-time linear sampling functional

Authors in [19] propose a “linear sampling functional”: a
CT signal w is then “sampled” as w̄(t) =

∫
w(τ + t)g(τ)dτ

where g is a user-defined function or distribution. Ordinary
sampling is recovered when g is the Dirac distribution.
This sampling method is motivated by the easy computation
of time derivatives: dw̄

dt (t) = −
∫
w(τ + t) dgdτ (τ)dτ . From

our standpoint, this is equivalent to using an LTI operator
(convolution with τ 7→ g(−τ)) before sampling.

VII. CONCLUSION

We have shown that the set of transformations that pre-
serve the behavior of all DT LTI systems is the set of
LSI operators A. We demonstrated how a family of linear
forms, including the Fourier transform, is related to these
LSI operators. Finally, we showed that the three reformula-
tions of the Fundamental Lemma (using correlation, cross-
spectrum, and frequency domain data) naturally arise from
the fundamental properties of LSI operators, eliminating the
need for a specific deep theoretical analysis. Besides, we
introduced a family of transformations Ā in CT that also
preserves behaviors, opening new directions for research.
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