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CEA Saclay l’Orme des Merisiers, 91191, Gif-sur-Yvette, France7

2London Mathematical Laboratory, 8 Margravine Gardens, London, W6 8RH, UK8
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The El Niño-Southern Oscillation (ENSO) significantly impacts global weather, with strong El21

Niño events often linked to prolonged dry conditions in Southeast Asia. While some high-impact22

El Niño events have coincided with prolonged dry conditions, leading to droughts, the underlying23

causal mechanisms remain complex and inconsistent. In this study, we develop a minimal, data-24

driven model to quantify the conditions under which ENSO events amplify prolonged dry conditions25

risk in Southeast Asia. Unlike correlation-based approaches, our model identifies thresholds in sea26

surface temperatures and atmospheric patterns that increase the probability of prolonged dry condi-27

tions, highlighting both seasonal timing and intensity as critical factors. Our results show that when28

ENSO-induced anomalies exceed specific temperature and atmospheric thresholds, prolonged dry29

conditions probability rises significantly, aligning with observed historical droughts. Additionally,30

the model reveals periods where this link weakens due to competing regional climate factors, suggest-31

ing that certain conditions mitigate the typical ENSO-prolonged dry conditions connection. These32

findings provide a more nuanced understanding of ENSO-driven prolonged dry conditions variabil-33

ity, offering a probabilistic predictive framework with potential applications in climate adaptation,34

agricultural planning, and regional resource management.35

I. INTRODUCTION36

El Niño-Southern Oscillation (ENSO) is a naturally occurring climate phenomenon that affects weather patterns37

and precipitation across the globe [1]. ENSO is characterized by the cyclic warming and cooling of the tropical Pacific38

Ocean, which can lead to a wide range of impacts on global climate. El Niño (i.e. the positive phase of ENSO) which39

occurs when the sea surface temperature in the central and eastern Pacific is warmer than normal, is one of the most40

documented phases of ENSO [2].41
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Southeast Asia (Fig. 1) is particularly vulnerable to the impact of El Niño events [3–6]. Some El Niño events42

(e.g., 1982-83 and 1997-98) have been known to cause prolonged dry conditions over this region leading to severe43

consequences for agriculture, water resources, and public health [7, 8]. In addition, global warming seems to exacerbate44

the anomalously warm surface air temperatures recorded during El Niño events, and it is debated whether it may45

change the frequency of El Niño events themselves [9, 10]. As a consequence, the frequency of prolonged dry conditions46

in Southeast Asia may also increase [11], potentially putting under more stress the region’s ecological and societal47

systems. The IPCC states (see [12] WG1 Page 1597) that there is medium confidence that an increasing frequency48

of extreme (also referred to as strong) El Niño events will lead to an increasing frequency of prolonged dry periods in49

Southeast Asia.50

El Niño events are considered strong (i.e., extreme) if the Niño3.4 index, depicted in Fig. 1a, exceeds the value51

of 1.5◦. However, not all strong El Niño events are associated with prolonged dry conditions in Southeast Asia. In52

particular, the non-systematic relationship between strong El Niño and prolonged dry conditions represents a key53

open challenge in the literature, for which no mathematical model nor exhaustive explanation exists.54

In this study, we propose a new model that uncovers a possible dynamical link between dry conditions in Southeast55

Asia and ENSO dynamics. To construct the new model, we first analyzed historical data of El Niño events and56

total column water vapor (that is highly correlated to total precipitation [13] while being more reliably represented in57

climate reanalysis data) patterns over Southeast Asia, using tools from dynamical systems theory and extreme value58

theory. Such techniques have been successfully used to characterize the dynamics of various complex systems, like a59

turbulent flow [14, 15], slow and laboratory earthquakes [16, 17], or the jet stream [18, 19], and they have been further60

developed to account for the spatial dimension [20], and better understand predictability [21].61

This analysis allowed us to better understand the El Niño–precipitation system’s long-term behavior and revealed62

some key dynamical properties, including the complexity and persistence of certain atmospheric configurations.63

Based on these results, we introduced a new mathematical model that links dry and wet conditions in Southeast64

Asia with ENSO dynamics. The mathematical model couples the Jin-Timmermann equations describing ENSO65

dynamics [22, 23], defined in (1), with a stochastic Langevin model mimicking the wet-dry bi-stable dynamics, defined66

in (2b). The resulting stochastic system is described by four variables x, y, z and u. The first three belong to the67

Jin-Timmermann model and are non-dimensional versions of the ENSO strength, the Western Pacific temperature,68

and the oceanic circulation strength, respectively. The last variable, u, captures the wet-dry dynamics, and it is forced69

by the chaotic ENSO dynamics through the temperature anomaly over the Western Pacific (i.e., variable y in (1))70

via (2b). For more details on the model, the interested reader may refer to Methods. Qualitatively, our model is in71

agreement with observations, and reveals a causal link between strong El Niño events and prolonged dry conditions72

over Southeast Asia, that matches its observed non-systematic nature. The new model enhances our understanding73

of the complex interaction between El Niño and prolonged dry conditions in Southeast Asia by identifying specific74

thresholds that elevate the risk of prolonged dry conditions. These insights contribute to refining probabilistic models,75

offering a stronger basis for assessing prolonged dry conditions likelihood in response to El Niño events, and better76

prepare for possible droughts.77

II. ANALYSIS OF CLIMATE DATA78

To investigate the dynamics of prolonged dry conditions in relation to ENSO, we use three datasets.79

The first is the daily mean total column water vapour (TCWV) and the daily total precipitation (TP) over the80

tropical Indo-Pacific region [90°E–120°W,10°S–20°N] from the ERA5 reanalysis data over the period 1940-2022 [24].81

TCWV is a key component of the water cycle in tropical regions [25], and contains information on both atmospheric82

dynamics and thermodynamics, including convection. In addition, it is closely connected to TP in the region as83

discussed in Supplementary Section 2. Despite TP being more directly linked to dry conditions, it presents some84

limitations if used as an observable when performing analysis based on dynamical systems approaches. Firstly,85
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reanalysis datasets have limitations in accurately capturing precipitation due to data assimilation constraints. These86

constraints arise from the inherent challenges in integrating diverse observational data sources, which can lead to biases87

and inaccuracies in precipitation estimates [26]. Secondly, TP is a non-smooth field, thus providing an extremely noisy88

dynamics in terms of phase-space reconstruction and dynamical systems analysis. Hence, TCWV is preferred for all89

the subsequent analyses relevant to dynamical systems presented in the rest of this paper.90

The second dataset used is the monthly NOAA/ERSSTv5 Niño3.4 index, defined by Huang et al. [27], retrieved91

from the Royal Netherlands Meteorological Institute (KNMI) Climate Explorer.92

Finally, the third dataset is the 3-month Standardized Precipitation Index (SPI-3) data derived from ERA5. This93

is used to describe dry conditions in Southeast Asia [28]. The yellow line in Fig. 2a represents the spatial average of94

SPI-3 over the land area within the Southeast Asia region (brown bounding box in Fig. 2c).9596

By comparing the SPI-3 and Niño3.4 indices in Fig. 1a), we observe that, consistent with previous studies, El Niño97

events are generally associated with drier-than-usual conditions in Southeast Asia [29]. However, this relationship98

is not systematic, as only a few strong El Niño events correspond with severe or prolonged dry conditions in the99

region. This drives us to further analyze the distinct dynamical characteristics of El Niño events through the lens of100

dynamical system theory.101

For this purpose, we use two key dynamical indices: local dimension (d) and persistence (θ−1), introduced in [30],102

detailed in [31] and described in detail in the Supplementary Information Section 1. Local dimension d quantifies the103

complexity of patterns in the variable of interest (TCWV in our case). In particular, it measures the number of active104

pattern components acting on a given field on a specific day, i.e., larger d suggests more active processes. Persistence105

θ−1 (in days), instead, measures how long a particular spatial pattern persists before transitioning to a different one.106

Results are shown in Fig. 1. In particular, Fig. 1a) displays the time series of the local dimension d (middle panel),107

and persistence θ−1 (bottom panel) for daily TCWV maps. While d and θ−1 time series mostly oscillate within a108

relatively narrow range, three time intervals (highlighted in darker grey) in 1982-83, 1997-98, and 2015-2016 show109

particularly low dimensions and high persistence. These correspond to three of the strongest El Niño events ever110

recorded in the past century. For d and θ−1, we also display the 365-day moving average as a solid black line, where111

the peaks associated with strong El Niño events are more clearly visible.112

When looking at the dimension-persistence diagram (Fig. 1b) as a function of the values of Niño3.4 index (colorscale),113

we observe a cluster of strong El Niño events showing high persistence of TCWV and low dimensions. To further114

explore the differences in dynamical properties between various El Niño events, we divide all days within the El115

Niño phase (represented by the shaded area in Fig. 1a) according to observed persistence. Specifically, we plot the116

composite anomalies for TCWV of the most persistent El Niño days (those in the upper quartile of persistence values)117

and the least persistent El Niño days (those in the lower quartile of persistence values) in Fig. 1c,d, respectively. The118

most persistent El Niño days display drier conditions than the least persistent El Niño days over Southeast Asia,119

as depicted in the composite anomalies maps (obtained by subtracting the daily seasonal cycle of each variable at120

each grid point). We present the composite anomaly maps of TP for the same two sets of days in Supplementary121

Fig. S2, with a very similar spatial configuration observed. The high correlation between TCWV and TP is further122

illustrated in Supplementary Fig. S1. In Supplementary Fig. S3, we additionally show the same results as Fig. 2, but123

using TP as observable. Despite some differences in the values of the dynamical indices and composite anomalies,124

the overall results are consistent with those obtained using TCWV. Fig. 1 highlights a nonlinear relationship between125

strong El Niño events and prolonged dry conditions. Notably, persistent TCWV configurations lead to more intense126

dry conditions over Southeast Asia, while less persistent patterns produce weaker anomalies. This analysis indicates127

that the data support the presence of an underlying, relatively low-dimensional attractor, structured into two basins128

of attraction. The dominant basin corresponds to wet conditions, while the less frequently visited basin represents129

prolonged dry conditions, characterized by a lower-dimensional, more persistent structure. We use this insight to130

develop the simplest model that replicates this behavior.131
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FIG. 1. Dynamical analysis of the total column water vapour (TCWV) field from ERA5 data. a) Time series of
the spatially averaged 3-month Standardized Precipitation Index (SPI-3) (yellow) over Southeast Asia land (1959–2022) and
the Niño3.4 index (black) (row 1), local dimension d (row 2), and persistence θ−1 (row 3). The 365-day moving averages for
both dynamical indices are displayed as solid black lines. El Niño events are shown with light grey shading, while the strongest
ones (1982-83, 1997-98, and 2015-2016) are highlighted in dark grey. b) Scatter plot of local dimension versus persistence, with
each dot colored by the monthly values of the Niño3.4 index and sized by its absolute value. c) and d) show composite TCWV
anomaly maps for persistent and non-persistent El Niño days, using the two thresholds from panel b). The brown bounding
box [90°E–140°E, 10°S–20°N] represents the region used for computing the standardized anomaly shown in Fig. 2.



5

III. MODEL132

To model the data, we follow the approach in [32] and construct the low-dimensional projection of the attractor.133

This low-dimensional projection is useful for capturing the essential dynamics of the climate system by reducing134

the complexity of the dataset while preserving key patterns of variability. First, we calculate the spatial average135

of TCWV anomalies over Southeast Asia within the bounding box shown in Fig. 1 [90°E–140°E, 10°S–20°N] and136

compute the average sea-surface temperature anomaly over the western equatorial Pacific [135°E–155°W, 5°S–5°N],137

as per Timmermann et al. [33]. We then detrend both time series and normalize by their standard deviations,138

yielding standardized daily anomalies of TCWV (t) and SST (t). A cubic polynomial is used for detrending to capture139

nonlinear trends, accommodating gradual changes or inflection points in the data. This allows us to isolate the140

underlying variability, focusing on the relationship between El Niño events and dry conditions.141

We construct a 3-dimensional space with TCWV (t), the Niño3.4 index ENSO(t), and SST (t), applying a moving142

average filter with a one year window to remove seasonal and sub-seasonal signals, following [34, 35]. The results143

are shown in Fig. 2a and the reconstructed attractor using the time series of TP (t) is presented in Supplementary144

Fig. S4. A visual inspection of the reconstructed phase space reveals the presence of an attractor, indicating that145

water vapor dynamics in the tropical Indo-Pacific follows two states, representing two basins of attraction: i) a wet146

state, associated with a chaotic attractor (green states in Fig. 2a), and ii) a comparatively rare dry state (brown states147

in Fig. 2a). The fraction of very dry states (TCW< −2σTCW, where σ is the standard deviation of TCW) over total148

number of states is 0.03.149

We leverage this insight to create a first-order reduced model of precipitation over Southeast Asia, capturing the150

dynamics of dry and wet states through a stochastic model in a double-well potential modulated by ENSO dynamics.151

In the absence of El Niño, the potential is asymmetric, with the dry state less likely than the wet state, reflecting152

observations from Fig. 2a. During El Niño, the probability of the dry state increases, influenced by the duration of153

the El Niño phase. The system dynamics are described by the Jin-Timmermann model [23, 33]. The proposed model154

includes a dynamical driver triggering non-systematically dry conditions, namely the ENSO dynamics, that in turn155

interacts with and influences TCWV dynamics and precipitation patterns in Southeast Asia. While many models of156

ENSO dynamics exist, the Jin-Timmermann model [22, 23] is widely used in climate science as a first approximation157

of the chaotic dynamics of ENSO. The model considers the interactions between the ocean and the atmosphere, and158

includes various feedback mechanisms that influence the evolution of ENSO. It reads:159

ẋ = ρδ(x2 − ax) + x(x+ y + c− c tanh(x+ z)) + σxηt,

ẏ = −ρδ(ay + x2)

ż = δ(k − z − x

2
), (1)

where ηt ∼ N(0, 1), δ = 0.225423, ρ = 0.3224, c = 2.3952, k = 0.4032, a = 7.3939, σx = 0.01, κ = 0.85. The variables160

x, y < 0 and z are rendered dimensionless equivalent of the Western to Eastern pacific temperature difference, i.e.161

a proxy for ENSO strength (x), the Western pacific temperature (y) and the oceanic circulation strength (z). As162

clear from above, the model is stochastic in nature, which means that it incorporates random processes to simulate163

the inherent variability of ENSO given by the oceanic eddies. In the phase-space of this reduced order model strong164

El Niño events can be identified by x > −1 as suggested in [23]. Given the model for ENSO we need to reduce165

the dynamics of TCWV in Southeast Asia. In order to do so, we exploit the simplest model featuring a gradient166

dynamics in a double well potential for the variable u. In our study, the two states of u in the potential represent167

the precipitation anomalies over Southeast Asia, with one state (u positive) corresponding to typical precipitation168

patterns associated with convection and another state (u negative) representing drier conditions than average. The169

potential depends on y that mimics the temperature anomaly over the Western Pacific: when y, that is negatively170

defined, approaches zero, we get suppression of convection, when y is negative convection can be triggered. This171

feature captures the bimodal distribution of precipitation patterns over Southeast Asia and allows us to simulate the172
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transitions between the two states in response to ENSO variability. We describe a perturbed double-well potential173

dynamics for the model of the dry-wet state switching as174

u̇ = −∂Vy(u)

∂u
+ σuξt, with (2a)

Vy(u) = −1

2
u2 +

1

4
u4 − ϵ(y + κ)u, (2b)

and where ξt ∼ N(0, 1), and y is the temperature of the Western Pacific governed by the Jin-Timmermann model175

described above. We have ϵ (strength of effects from ENSO dynamics), and σu (strength of external noise) as control176

parameters. It is important to underline that the presence of a linear term in the potential function determines an177

asymmetry of the two states and the sign of the corresponding coefficient is usually inspected as a potential source178

of a tipping point (leading to a saddle-node bifurcation). In our model, the sign and the value is related to the179

dynamic variable y, thus directly pointing out the role of the Western pacific temperature in leading El Niño events.180

By performing linear stability analysis to our 4-dimensional model in absence of noise (σx = σu = 0) three different181

fixed points can be depicted, only dependent on the forcing ϵ and the parameter κ.182

This approach is similar to the standard stochastic resonance model [36], but with a linear term added to account183

for transitions between asymmetric states with varying probabilities and residence times. However, its core mechanism184

is fundamentally different. The key innovation lies in the fact that drought occurrence is now governed by stochastic-185

chaotic interactions rather than stochastic-periodic ones.186

IV. RESULTS187

The attractor generated by the model in (1), with parameters detailed in the methods section, is shown in Fig. 2b.188

The model captures convection dynamics, showing that wet states recur more frequently due to spontaneous convection189

in tropical systems. Strong El Niño events (x > −1; see [23]) may trigger prolonged dry periods, occasionally lasting190

longer than the El Niño event itself. The fraction of very dry states(u< −0.5) over total number of states in the191

model is 0.02, comparable with that of the real data.192

This behavior corresponds to a model limit cycle, a periodic orbit in the state space to which nearby trajectories193

converge to, either leading into an El Niño phase or allowing exit from it. In the first scenario, the stochastic potential194

well remains unaffected, and the system continues oscillating between wet and dry states. In the second, the dry state195

persists continuously, precluding a return to wet conditions. This explains the model’s ability to capture prolonged196

dry spells.197

For a quantitative comparison, we apply persistence and dimensional analyses to the model outputs (Fig. 2b). The198

behavior of the model in d-θ space resembles that of observed data, where low dimensionality and high persistence199

correspond to strong El Niño events. The more distinct separation of blue and red points in Fig. 2c,d compared to200

Fig. 1b reflects the model’s overall reduced complexity, indicated by a lower average and maximum instantaneous201

dimension. Nonetheless, the key features of the d-θ space—specifically, the shape of the point cloud in the diagram202

and the association of low-dimensional, highly persistent states with positive ENSO index values that exhibit greater203

persistence at similar d levels—are accurately captured by the model.204205

To better understand how the proposed stochastic model behaves, we perform a number of runs for different model206

parameters, focusing in particular on σx, ϵ, and σu. The parameter σx controls the noise of the ENSO dynamics in207

the Jin-Timmerman model, while ϵ and σu represent the modulation strength of ENSO and external noise on the208

dry-wet state dynamics described by the double-well potential ((2)), respectively.209

Fig. 3 shows two runs of our stochastic model for σx = 0 (no noise in the ENSO dynamics) in red, and for σx = 0.1210

(noise in the ENSO dynamics) in blue. The other two parameters related to the dry-wet state dynamics are instead211

fixed: ϵ = 2 and σu = 0.3. Fig. 3a shows the ENSO part of the model with a projection of the phase portrait on212
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FIG. 2. Comparison of reanalysis data and model outputs embedded in a three-dimensional space. (a) Attractor
derived from embedding observed TCWV (t), Niño3.4 index ENSO(t), and Western Equatorial Pacific SST (t). (b) Attractor
generated by the model using Eq. 1 and parameters specified in the Materials and Methods. (c) Dimension-persistence diagram
for the model run, with each state colored by their corresponding ENSO(t) value. (d) Empirical probability density function
of persistence for El Niño (ENSO(t) > 0) and La Niña (ENSO(t) < 0) phases.

x, y, z, while Fig. 3b shows the dynamics of precipitation anomalies u vs time t. The cyan-colored dots represent213

states with precipitation anomalies u < −1 – i.e., dry conditions.214

In order to better understand the proposed stochastic model, we explore its parametric space by performing 100215

realizations of the model, each consisting of 106 iterations with dt = 10−4. The fraction of time spent in wet states216

(Figs. 4a,b) increases with increasing σu and/or ϵ, and saturates at around a 60–70% occurrence of the wet state.217

Instead, the average number of transitions (Fig. 4c) and the standard deviation of the number of transitions (Fig. 4d)218

depend solely on σu. Finally, the average residence time (or time cluster size) in the wet or dry states decrease when219

increasing σu > 0.5 (Fig. 4e,f), i.e. for large values of σu the dynamics is driven by noise and jump rapidly from wet220

to dry states and viceversa.221

DISCUSSION222

The residence time in each state of our model decreases with increasing σu. These results allow drawing some223

parallels with the results expected with climate change where we would expect that the large availability of moisture224

and heat will increase the convective potential (here mimicked by increase of σu) and this will cause a larger variability225
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of precipitation in the region, coherently with what reported in IPCC AR6 [37]. The role of El Niño is less trivial: If226

climate change increases the coupling between atmospheric and oceanic variables (indicated by a higher ϵ), this would227

introduce a dynamic competition between two opposing effects: on the one hand, the increased coupling could amplify228

feedback mechanisms within the coupled system, intensifying both dry and wet extremes depending on the phase of229

phenomena such as ENSO (El Niño-Southern Oscillation); on the other hand, the warming atmosphere, capable230

of holding more moisture, would generally drive the climate toward a wetter state with more frequent and intense231

precipitation events. This competition implies that while an overall wetter climate may be expected, regions may still232

experience heightened variability, with the possibility of both intensified droughts and rainfall extremes arising from233

the enhanced coupling. This is also coherent with the results reported for the region in the IPCC AR6 report [37], and234

it is captured by our model thanks to the role of the asymmetric double-well potential in modifying the nature of the235

fixed points of the Jin-Timmermann model. Indeed, (1) in absence of noise (σu = 0) admits an unstable saddle point236

(u⋆) depending on the Western Pacific temperature (y), which in turn depends on El Niño phase (x). By looking at the237

mathematical solutions of the model, we find that the dry state (u < −1) is not approached, unless the noise term in238

the ENSO dynamics (σx) is turned on. In that case, the deterministic dynamics, comprising the limit cycle dynamics239

characterizing an El Niño event and an unstable saddle point (x = 0), is stochastically driven by the precipitation to240

induce bifurcations between wet and dry states, favoring the wet ones. This means that if there are no fluctuations on241

a smaller scale than ENSO, which we model here with noise, the dynamics of El Niño phase (x) alone, which influences242

that of the Western Pacific temperature (y), cannot generate wet-dry transitions. Furthermore, with external noise243

on the dry-wet state (σu) different from noise on ENSO (σx), the dynamics dynamics of u is more stable if σu is small.244

Therefore, ENSO phase changes (x) alone cannot induce the switch between the wet and dry states. The interaction245246

between strong El Niño events and prolonged dry conditions over Southeast Asia is a complex phenomenon resulting247

from a combination of atmospheric and oceanic processes. Our study demonstrates that this link can be effectively248

modeled using a low-dimensional system of equations featuring a rare basin of attraction, mimicking prolonged dry249

conditions over Southeast Asia. This basin is statistically more likely to be reached during the strongest El Niño250

events,251

The stochasticity of the prolonged dry events also presents challenges for predicting their occurrence and intensity,252

making it difficult to develop effective adaptation strategies. Moreover, our model suggests that changing control253

climatic parameters can lead to a switch to dry conditions becoming more frequent than wet ones. Although we254

do not investigate here whether this results in a hysteresis loop or irreversible changes, the behaviour is nonetheless255

reminiscent of a climate tipping (see, Ref. [38] for an example of a tipping point related to ENSO). The information256

derived from our model suggests that early-warning systems should place particular focus on skill in predicting the257

possibility of prolonged dry states. In summary, our study provides insights into the link between strong El Niño258259

events and prolonged dry conditions over Southeast Asia, highlighting the complex yet statistically predictable nature260

of these events. The latter is dictated by the effect of perturbations of both stochastic and deterministic, albeit261

chaotic, origin to the dynamics that determines the wet or dry state of the region under study. By continuing to262

investigate the underlying processes and developing accurate probabilistic prediction models, we can better prepare263

for and mitigate the impacts of future El Niño events on the region.264

CONCLUSIONS265

Our study reveals a complex and stochastic relationship between strong El Niño events and prolonged dry conditions266

in Southeast Asia. Through a novel mathematical model that couples ENSO dynamics with a bi-stable stochastic267

system, we show how strong El Niño phases can lead to extended periods of dryness. The model’s ability to replicate268

the observed persistence of these conditions highlights the importance of stochastic interactions in climate dynamics269

and reinforces the challenge of predicting individual dry events. Importantly, this work suggests that climate change270

may intensify these stochastic dry events, underscoring the need for robust early-warning systems tailored to anticipate271
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FIG. 3. Two runs of the stochastic model illustrating the impact of noise in ENSO dynamics. The red curve
represents the model run with σx = 0 (no noise in ENSO dynamics), while the blue curve corresponds to σx = 0.1 (with noise
in ENSO dynamics). For both runs, the parameters related to the dry-wet state dynamics are fixed at ϵ = 2 and σu = 0.3.
Panel (a) displays the ENSO component of the model with a projection of the phase portrait on x, y, z coordinates. Panel
(b) shows the evolution of precipitation anomalies u over time t, with cyan-colored dots indicating states where precipitation
anomalies u < −1, corresponding to dry conditions.

prolonged dry spells. Future studies could build on these findings to further explore potential climate tipping points,272

improving predictive accuracy and resilience planning for regions facing similar climatic hazards. In this study, we273

propose a minimal model that provides a novel perspective on the relationship between prolonged dry spells and274

El Niño events. While multiple models could potentially capture this link, our model has the distinct advantage275

of minimalism, capitalizing on the inherent chaotic dynamics of El Niño. This approach shifts the paradigm from276

traditional models—often probabilistic or driven by stochastic resonance—toward a new class where transitions are277

governed by chaos. By embracing this chaotic framework, we offer an alternative, more mechanistic explanation for278

the co-occurrence of strong ENSO events and prolonged dry conditions, rooted in the intrinsic dynamics of the climate279

system rather than random chance.280
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FIG. 4. Phase diagram of the model for σu ∈ (0, 0.8), ϵ ∈ (0.1, 0.9). Fraction of time spent in the wet a) or dry b) states.
Average c) and Standard deviation d) of the number of transitions. Average cluster length (in days) in the wet e) and dry f)
states.

Appendix A: Understanding Dimension and Persistence in Geophysical Systems281

In this section of the supplementary material, we expand on the concepts of dimension and persistence used in the282

main text to characterize the behavior of complex, high-dimensional systems such as climate phenomena influenced by283

El Niño events. These concepts come from dynamical systems theory and extreme value theory (EVT) and are tools284

for analyzing geophysical data, even when the available data series are short or incomplete. When studying a system285

with a complex attractor, as often encountered in climate science, it is useful to characterize the attractor’s geometry286

using state-dependent indicators that can be easily computed from finite-size observations. In this supplementary287

material, we provide additional information on the local dimensions d and the local persistence θ used in the article.288

A full description of these metrics can be found in [31].289

1. Dimension and Persistence in Complex Systems290

The local dimension, denoted by dµ(x), measures how densely populated the phase space is near a given state x.291

In simpler terms, it reflects the variety of possible configurations that the system can occupy around a specific point.292

Formally, it’s defined as:293

dµ(x) = lim
r→0

logµ(B(x, r))

log r
, (A1)

where B(x, r) represents a ball of radius r centered at x, and µ(B(x, r)) is the measure (or ”density”) of states within294

this ball.295

However, in practical applications, we can only approximate this measure due to the finite length of real-world296



11

data. Therefore, we use an ”effective” or pre-asymptotic version, defined as:297

dµ,r(x) =
logµ(B(x, r))

log r
, (A2)

which converges to the system’s information dimension D1 as r approaches zero. For most geophysical systems, which298

have multifractal structures, the local dimension varies across different regions of the attractor, providing a spectrum299

of dimensions rather than a single value. The local dimension dµ,r(x) tells us about the recurrence properties of the300

system, or how frequently the system revisits states near x. Lower values of dµ,r suggest that the system tends to301

return more often to regions around x, indicating a dense region of the attractor. Conversely, higher values indicate302

sparser regions, which are less frequently revisited.303

This property is particularly helpful in climate research, where scientists are often interested in the recurrence of304

specific patterns, such as the development of dry conditions in response to El Niño events. By calculating the local305

dimension, researchers can identify which atmospheric configurations are more persistent and which are rare, helping306

to predict the likelihood of extreme conditions.307

While local dimension inform on the density of states near a given point, persistence is a measure of how long the308

system remains in a particular state before transitioning to another. In our study, persistence is particularly relevant309

for understanding prolonged dry conditions, as it quantifies the duration of these states.310

Persistence is estimated through a quantity known as the extremal index θ indicates how clustered extreme events311

are. If θ is low, extreme events like dry periods are likely to cluster together, resulting in longer durations for these312

conditions. Persistence is therefore complementary to local dimension: while local dimension captures the recurrence313

and density, persistence captures the timescales associated with these states.314

In combination, dimension and persistence offer a powerful framework for studying climate dynamics, especially315

when faced with partial or finite data. The two measures are connected through large deviations theory, which316

describes how much the observed values of dµ,r(x) deviate from the typical information dimensionD1. These deviations317

provide additional information into the variability and stability of the system.318

For example, in the context of El Niño, regions of the phase space with low dµ,r(x) and high persistence may319

correspond to stable dry conditions. The variability observed around these regions is described by a large deviations320

principle, which quantifies the probability of seeing atypical behaviors (e.g., unusually long dry periods) in these321

otherwise stable states.322

In real-world applications, observations from geophysical systems are often partial. For instance, when measuring323

atmospheric conditions, only a subset of variables or locations can be recorded. This partial observation can be324

represented by an observable function f : M → Rk, where M is the phase space, and Rk is the space of observed325

variables.326

The observable f essentially projects the full dynamics onto a reduced space, capturing a subset of the system’s327

behavior. For such projections, the local dimension dµf
(f(x)) is given by:328

dµf
(f(x)) = min(k, dµ(x)), (A3)

where k is the dimension of the observed space. This result implies that if the observed dimension k is smaller than329

the local dimension dµ(x), some structural information about the attractor is lost. Conversely, if k is large enough,330

the local dimension of the attractor is preserved in the projection.331

This approach allows scientists to study complex systems using simplified representations, while retaining important332

characteristics of the full system’s behavior.333
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Appendix B: Justification of observable selection334

In our study, we aim to use one variable to describe the wet/dry state of Southeast Asia that has a significant335

modulation on regional prolonged dry conditions. The most straightforward variable to consider is total precipitation;336

however, it has a very sparse field with high gradients. These characteristics make it unsuitable for methods based on337

analogues (i.e., maps that have similar configuration), as it is difficult to find true analogues in such sparse fields. To338

this end, we selected total column water vapor (TCWV) as the observable for analysis in the main text. TCWV is a339

crucial variable that characterizes atmospheric moisture content and is closely related to precipitation, as accumulated340

water vapor increases the potential for precipitation, particularly in tropical regions [39]. To further demonstrate the341

correlation between TCWV and TP and validate the choice of using TCWV as the observable, we plotted the time342

series of the average TCWV and TP over Southeast Asia [90°E–140°E, 10°S–20°N] (Fig. 5). As expected, they exhibited343

a high Pearson correlation (0.76 for both the 30-day moving average and the 365-day moving average).344

In Figure 8, we present the results obtained from the same analysis as in Figure 1, but using TP as the observable345

instead of TCWV. TP exhibit much higher local dimension d and lower persistence θ−1 than TCWV, suggesting346

more complicated and less predictable dynamics. Interestingly, despite TP being considered unsuitable for computing347

dynamical indices, we can still observe an increase in persistence during the strongest El Niño events. The composite348

anomaly maps of the most persistent fields also show drier conditions over Southeast Asia compared to the least349

persistent states.350

Appendix C: Appendix Figures351

FIG. 5. Time series of spatially averaged TCWV and TP over Southeast Asia. The thin line represents the 30-day
moving average, while the thick line shows the 365-day moving average.
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FIG. 6. Dynamical analysis for the total column water vapour (TCWV) field from ERA5 data. (a) and (b)
correspond to (c) and (d) in Figure 1, but present the composite anomaly of TP instead of TCWV.
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FIG. 7. Dynamical analysis for the total precipitation (TP) field from ERA5 data. As in Figure 1, but using TP as
observable.
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FIG. 8. Attractor obtained embedding real data in a three dimensional space. As in Figure 2, but using the time
series of TP instead of TCWV to reconstruct the attractor.
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Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (Cambridge University Press, Cambridge, United384

Kingdom and New York, NY, USA, 2021) in press.385

[13] C. J. Muller, L. E. Back, P. A. O’Gorman, and K. A. Emanuel, A model for the relationship between tropical precipitation386

and column water vapor, Geophysical Research Letters 36 (2009).387

[14] D. Faranda, G. Messori, and S. Vannitsem, Attractor dimension of time-averaged climate observables: insights from a388

low-order ocean-atmosphere model, Tellus A: Dynamic Meteorology and Oceanography 71, 1 (2019).389

[15] T. Alberti, F. Daviaud, R. V. Donner, B. Dubrulle, D. Faranda, and V. Lucarini, Chameleon attractors in turbulent flows,390

Chaos, Solitons & Fractals 168, 113195 (2023).391

[16] A. Gualandi, J.-P. Avouac, S. Michel, and D. Faranda, The predictable chaos of slow earthquakes, Science advances 6,392

eaaz5548 (2020).393

[17] A. Gualandi, D. Faranda, C. Marone, M. Cocco, and G. Mengaldo, Deterministic and stochastic chaos characterize labo-394

ratory earthquakes, Earth and Planetary Science Letters 604, 117995 (2023).395

[18] D. Faranda, Y. Sato, G. Messori, N. R. Moloney, and P. Yiou, Minimal dynamical systems model of the northern hemisphere396

jet stream via embedding of climate data, Earth System Dynamics 10, 555 (2019).397

https://doi.org/10.1017/9781009157896
https://doi.org/10.1017/9781009157896
https://doi.org/10.1017/9781009157896


17

[19] G. Messori, N. Harnik, E. Madonna, O. Lachmy, and D. Faranda, A dynamical systems characterisation of atmospheric398

jet regimes, Earth System Dynamics Discussions 2020, 1 (2020).399

[20] C. Dong, G. Messori, D. Faranda, A. Gualandi, V. Lucarini, and G. Mengaldo, Spatial indices reveal scale-dependent400

atmospheric dynamics, arXiv preprint arXiv:2412.10069 (2024).401

[21] C. Dong, D. Faranda, A. Gualandi, V. Lucarini, and G. Mengaldo, Revisiting the predictability of dynamical systems: a402

new local data-driven approach, arXiv preprint arXiv:2409.14865 (2024).403

[22] J. Guckenheimer, A. Timmermann, H. Dijkstra, and A. Roberts, (Un)predictability of strong El Niño events, Dynamics404

and Statistics of the Climate System 2, dzx004 (2017).405

[23] D. Lucente, C. Herbert, and F. Bouchet, Committor Functions for Climate Phenomena at the Predictability Margin: The406

Example of El Niño–Southern Oscillation in the Jin and Timmermann Model, Journal of the Atmospheric Sciences 79,407

2387 (2022).408
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