
HAL Id: hal-04928609
https://hal.science/hal-04928609v1

Submitted on 4 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

AndroWatts: Unpacking the Power Consumption of
Mobile Device’s Components

Édouard Guégain, Rémy Raes, Noé Chachignot, Clément Quinton, Romain
Rouvoy

To cite this version:
Édouard Guégain, Rémy Raes, Noé Chachignot, Clément Quinton, Romain Rouvoy. AndroWatts:
Unpacking the Power Consumption of Mobile Device’s Components. MOBILESoft’25 - 12th In-
ternational Conference on Mobile Software Engineering and Systems, Apr 2025, Ottawa, Canada.
�hal-04928609�

https://hal.science/hal-04928609v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

AndroWatts: Unpacking the Power Consumption
of Mobile Device’s Components

Édouard GUÉGAIN
GREENSPECTOR

eguegain@greenspector.com

Rémy RAES
Inria, Univ. Lille, CNRS,

UMR 9189 CRIStAL
remy.raes@inria.fr

Noé CHACHIGNOT
Inria, Univ. Lille, CNRS,

UMR 9189 CRIStAL
noe.chachignot@inria.fr

Clément QUINTON
Univ. Lille, CNRS, Inria,

UMR 9189 CRIStAL
clement.quinton@univ-lille.fr

Romain ROUVOY
Univ. Lille, CNRS, Inria,

UMR 9189 CRIStAL
romain.rouvoy@univ-lille.fr

Abstract—Power efficiency is crucial for mobile devices, where
software inefficiencies can rapidly drain battery life and reduce
device longevity. To help developers diagnose inefficiency issues
and optimize power use, this paper introduces a novel methodol-
ogy for estimating power consumption at a hardware component
level in mobile devices. Unlike existing approaches that rely on
coarse-grained battery discharge measurements, our approach
consists of modeling per-component power usage as an inverse
problem, utilizing linear statistical models and system metrics to
estimate the contributions of individual components.

In this paper, we model the total power usage using system
metrics, we evaluate the accuracy of per-component power
estimations, and we investigate the impact of dataset size on
the model’s performance. Our empirical evaluation shows that
linear models achieve high predictive accuracy, with R-squared
values exceeding 0.90 for total power usage, and robust corre-
lations are observed between predicted and ground-truth power
consumption for key components such as the CPU and GPU. We
also observe that the amount of measures required to build such
a model is of the order of magnitude of the hundred rather than
the thousand.

Index Terms—Android, component, power, model, battery

I. INTRODUCTION

In recent years, there has been a growing interest in under-
standing and optimizing the power consumption of software,
particularly in mobile devices [1], [2]. The rapid proliferation
of mobile technology and its dependence on finite battery
resources have increased the importance of power-efficient
design in software development. Users expect longer battery
life, and developers strive to meet this expectation without
compromising performance. Consequently, accurately measur-
ing and analyzing the power usage of software has become a
crucial research area.

A widely adopted method to estimate the power consump-
tion of a specific software component is to monitor the
variation in battery discharges over time while the software
runs [3]–[5]. Battery-level information is usually accessible
via software interfaces (API) that provide a measure of the
software’s total power consumption. However, this method
lacks the precision to attribute power usage to individual
hardware components. As a result, developers struggle to

identify the root causes of power inefficiencies, eliminating
their ability to take targeted corrective actions.

To address this limitation, there is a pressing need for tools
capable of modeling the power usage of individual device
components. Such models would deliver a more granular
analysis of power usage, empowering developers to pinpoint
and mitigate power inefficiencies more effectively. This pa-
per explores how system-level metrics, such as system state
indicators, can be leveraged to model a device’s total power
consumption. By building statistical models that estimate the
power contributions of individual hardware components based
on these metrics, we aim to lay the foundation for more
detailed and actionable power consumption analyses. Such a
contribution would help developers locate the root cause of
the problem more precisely. In particular, this paper addresses
the following research questions:

RQ 1: Can system-level metrics be used to model the total
power usage of a device? The proposed approach uses the
coefficients of linear statistical models to estimate the power
usage per component. However, these coefficients are only
relevant if the model provides qualitative predictions of the
overall power usage, making such predictions a necessary
precursor to detailed per-component analysis.

RQ 2: How accurate are per-component power usage esti-
mations? Since per-component power usage data are derived
from modeled data, they inherently carry some degree of
inaccuracy. To ensure practical relevance for developers, this
inaccuracy must remain within acceptable limits.

RQ 3: How does the size of the training dataset impact
the accuracy of global and detailed power usage estimations?
While larger training datasets are expected to improve the
accuracy of both global and detailed power usage estimates,
collecting this data is resource-intensive. Additionally, power
models for one device may not generalize to others, empha-
sizing the need to identify the minimal amount of measures
required to reach an acceptable level of accuracy.

To answer these research questions, we make the following
contributions:

- We examine the possibility of estimating the power drawn

https://orcid.org/0000-0002-3335-5495
https://orcid.org/0000-0002-8239-7683
https://orcid.org/0009-0000-7388-3308
https://orcid.org/0000-0003-3203-6107
https://orcid.org/0000-0003-1771-8791

from a device at the battery level, based on a set of
metrics representing the state of a device, thus creating a
power model.

- We attempt to estimate the power draw of a set of
components of a device based on such a model.

- We investigate the effect of reducing the number of
measures on the quality of results.

- We share an open-source Android application to artifi-
cially put different components of a device under load,
an open-source analysis tool to extract metrics from
an Android system trace, and a dataset of measures
performed with this application and analyzed with this
tool1.

The remainder of the paper is as follows. Section II dis-
cusses the related work. Section III introduces the method-
ology used to gather the dataset studied in this paper. Then,
Section IV, Section V, and Section VI explore this dataset to
answer the research questions. Section VII discusses the limits
of our approach and potential future work.

II. RELATED WORK

The challenge of software power efficiency has seen sig-
nificant growth in recent years, driven by the pressing envi-
ronmental crisis, the growing tension on the power grid, and
rising public interest in sustainable solutions.

A. Mobile Software Power Efficiency
In particular, the power consumption of mobile software has

become a critical research area, as excessive power consump-
tion directly impacts end-users by draining batteries, short-
ening their lifespan over time, and reducing device usability.
Thus, over-consumption can lead to increased environmental
waste, as users are more likely to replace hardware more
frequently. This creates a compelling incentive for developers
to understand and minimize the power usage of their software.

Improving software power efficiency can be achieved by
adopting new practices and habits as part of the development
processes [6]. Those new routines include:

- Understanding the requirements and goals of the software
before the development phase. This involves anticipat-
ing optimal software development options [7], [8] and
carefully selecting power-efficient third-party libraries, as
their power consumption can vary significantly, based on
their design [9].

- Testing with environmental impact in mind, on a broader
variety of devices to reduce the risk of software obsoles-
cence [10] and identify abnormal consumption patterns
during execution.

- Monitoring post-release applications to detect perfor-
mance variations across environments and address dis-
parities.

However, these power optimizations may conflict with other
objectives of the application, such as maintaining perfor-
mance [11], [12] and security [13], making power efficiency
a secondary priority in some cases.

1Complementary material:https://zenodo.org/records/14314943

Evaluating the relevance of a power modeling solution
requires knowledge of the device’s actual power consumption,
which serves as the ground truth for validating power model
estimations. However, while hardware performance counters
are exposed by traditional computer processors [14], they are
not included in smartphones’ System-on-Chip (SoC). Thus, the
power usage of mobile devices is often assessed at the battery
level, either by integrating a power meter between the battery
and the device, or by relying on programmatically available
battery charge indicators [15]. However, physical measurement
of smartphone power consumption is often impractical due
to the increasing trend of non-dismountable design, such as
batteries being glued to the casing. Therefore, the overall
battery charge is largely used to assess or predict the power
efficiency of software, such as mobile applications [16], code
snippets [17]–[20], or software design decisions [7], [8],
[11], [21]. However, such a metric encompasses the whole
power usage of the device and offers only a coarse-grained
granularity.

To tackle this limitation, since 2021, some Android devices
have been equipped with a per-component power meter, the
On-Device Power Rails Monitor (ODPM). These power meters
are hardware probes placed downstream of the battery, directly
before the component. ODPM can monitor the power usage
of each of the twelve power rails of the device, with each
rail powering one or many components. Available power rails
include, for instance, each group of CPU cores, the network
components, or the screen. The limitations of this tool are
twofold. First, it is only available on a subset of devices.2

Second, while the metrics are available programmatically from
the device, their polling rate is very low, with an update
every 30 seconds and an obfuscation is applied to them for
security purposes. High polling rates are available when the
monitoring is performed through Android Studio, adb,3 or
through a system trace, thus limiting measurements to a test
environment and making it mandatory to use external tools to
analyze the results. Monitoring directly on end-user devices
is therefore not practical. Such limitations affect the usability
and scalability of ODPM for experiments and lead developers
to continue only using the battery data.

However, if the objective is to get a precise consumption
per component, adopting ODPM would still be preferable over
physical tools.

B. Power Modeling

For mobile devices, the power consumption of a device
can be estimated using system metrics such as CPU usage
or screen activity [22]. Information such as application logs
can also be used to estimate the consumption of specific
view components [23]. However, such approaches lack the
granularity needed to provide per-component power usage
estimations.

2Devices of Pixel brand, Pixel 6, and subsequent Pixel devices running
Android 10 (API level 29) and higher. New hardware may be released in the
future, including by other brands.

3https://developer.android.com/tools/adb

https://zenodo.org/records/14314943
https://developer.android.com/tools/adb

Metrics Description Unit Proxy of Correlation to proxy

Discharge_rate Average battery discharge rate µW - -
24 Power Rails ODPM metrics for the 24 traced component µW - -

RedLvl Average level of red on the screen during the test [0-255] Display 0.16
GreenLvl Average level of green on the screen during the test [0-255] Display 0.29
BlueLvl Average level of blue on the screen during the test [0-255] Display 0.54
Brightness Brightness of the screen [1-100] Display 0.63
CPU_LITTLE_FREQ Average frequency for the little CPU group KHz CPU little 0.92
CPU_MID_FREQ Average frequency for the medium CPU group KHz CPU mid 0.64
CPU_BIG_FREQ Average frequency for the big CPU group KHz CPU big 0.93
GPU0_FREQ Average frequency for the GPU0 KHz GPU 0.96
GPU1_FREQ Average frequency for the GPU1 KHz GPU 0.99
GPU_MEM GPU memory usage Bytes GPU 0.47
Wi-Fi_data Total of data emitted and received Bytes Wi-Fi antenna 0.65

TABLE I: The monitored metrics and their Pearson Correlation Coefficient to the component they represent (All correlations
are significant, p < 0.01).

Schuler and Kotsis [1] conducted a review of 134 studies
on mobile software power consumption published between
2011 and 2021. Their analysis revealed that 80% of these
studies relied on a model-based approach, which assumes a
correlation between certain variables and the device’s power
usage. These variables often include metrics from various
components, such as the CPU, Display, Wi-Fi, or Cellular
modules, and support the definition of the power model.
While system metrics are gathered, power data is usually
retrieved through battery consumption measurements or via
an external tool like the Monsoon Power Monitor [24]. Using
these metrics and corresponding power traces, the models are
trained to estimate the power consumption share attributable to
specific components. However, these strategies present notable
limitations:

• The need to model certain components separately due to
strong correlations in their power consumption. Ignoring
these correlations can result in overestimations.

• The lack of per-component ground-truth measurements,
making it difficult to validate the accuracy of the models.

Contrary to such approaches, this paper does not attempt
to model the power usage of a specific component. Instead,
it adopts a holistic approach, imputing the battery discharge
speed to multiple components by simultaneously modeling
their respective weight. Furthermore, this paper leverages a
ground truth of per-component power usage to validate the
accuracy of its prediction, ensuring a more reliable assessment
of the model’s performance.

Beyond mobile devices, understanding the power usage of
software has in particular been studied for imputing power
usage to software. Such models attempt to impute a measured
or modeled power usage between software components, e.g.,
between processes running on a processor [25], [26], or
between features of a software [27].

III. EXPERIMENTAL SETUP

This paper aims to develop a power model for a specific
mobile device. To achieve this, we designed a comprehensive
experimental setup that generates a dataset of measurements

used to train the model. The application4 used in this setup
can stimulate various device features by adjusting parameters,
such as the red, green, and blue levels of the screen, the CPU
and GPU loads, the brightness of the screen, and the network
activity. Stimulating the available range of loads for each
component ensures that random scenarios cover a range of
workloads as least as large as a real-world usage. In addition,
this paper delves into the power consumption of the device in
a given workload state, rather than the power consumption of
a specific software component running on that device.

Measurements are collected from a structured usage sce-
nario designed to simulate typical device activity. The steps
of this scenario are as follows:

1) A random usage profile is generated;
2) The usage profile starts;
3) The system trace record starts;
4) The usage profile runs for 30 seconds;
5) The system trace stops;
6) A screenshot of the usage profile is performed;
7) The usage profile stops.
After each test scenario, data is extracted from the device,

including the system trace, the screen brightness, and a screen-
shot to read the average colors displayed on the screen. The
system trace is analyzed using the PerfettoTraceScript
tool,5 which aggregates the time series data generated by
Android’s tracing tool into single values for each monitored
metric. Each random scenario is executed only once, as
accuracy is expected to emerge from the amount of sampled
scenarios rather than from the accuracy of a given scenario.
To ensure the reliability of measurements, each test runs for a
duration of 30 seconds. However, the first 1.5 seconds of each
trace are discarded to compensate for initialization delays and
ensure all metrics are fully recorded. The metrics selected for
monitoring are designed to act as proxies for various device
components, as detailed in Table I, ensuring a comprehensive
representation of the device’s behavior. While all test scenarios
are executed with a fixed duration, data analysis focuses on

4https://gitlab.com/greenspector/android-component-stimulator
5https://github.com/Zetos11/PerfettoTraceScript

https://gitlab.com/greenspector/android-component-stimulator
https://github.com/Zetos11/PerfettoTraceScript

instantaneous values rather than cumulative ones. For example,
average discharge speed is used instead of total discharge, and
average network speed is used instead of total network data.
This approach minimizes the impact of duration variability
in the current experiment and facilitates comparability with
future studies.

Our empirical experiments were conducted on a Pixel 8
device with build model G9BQD, equipped with a 4575mAh,
4.4V battery, 128GB of storage, a 6.2” 1080x2400 display,
8GB of RAM, and a Google Tensor G3 Nona-core CPU.
This CPU is composed of 3 groups of core: The“little” group
consisting of 4 cores running at 1.7Ghz, the “middle” group
of 4 cores at 2.4Ghz, and the “big” group of 1 core at
2.91Ghz. The device runs Android 15 and includes the ODPM
component, providing a ground truth for per-component power
usage. To ensure precise control and monitoring, the device is
operated via ADB over Wi-Fi, enabling accurate tracking of
battery discharge during each test.

IV. MODELING DEVICE POWER USAGE

The experimental setup described in the previous section
enables the creation of a dataset that captures a device’s state,
such as CPU usage and screen brightness, alongside its power
consumption measured through the battery discharge rate. To
address the first research question, this section investigates
whether the device’s overall power consumption can be es-
timated based on its state alone. Notably, this analysis does
not leverage the power usage data for individual components
collected during the experiment. In the remainder of this
paper, all discussed correlations are calculated using Pearson
correlation coefficient, unless specified otherwise.

A. Dataset description

The experimental setup enabled the measurement of 1, 000
random power usage scenarios. The metrics collected during
these scenarios are detailed in Table II. Due to inconsistencies
in the system tracing tool, some data points were missing—
i.e., the frequency of the middle CPU group (15% of cases)
and the network usage (12% of cases). To address these gaps
and minimize their impact on the overall modeling, missing
values were imputed using the mean of their respective data
series.

The collected data reveals significant variation across dif-
ferent metrics. For example, screen brightness varied by a
factor of 100, the frequency of the medium CPU showed a
factor of 150, and the battery discharge speed varies by a
factor of 7.1. Such variations indicate that the test scenarios
effectively stimulated a wide range of power usage levels on
the device. Notably, the battery discharge speed within the
dataset exhibited a coefficient of variation of 33.9%.

However, not all metrics contribute to battery discharge
speed equally. For instance, CPU-related metrics, particularly
CPU_LITTLE_FREQ, demonstrated the strongest relationship
with battery discharge speed (0.74), followed by the GPU
metrics (0.57 and 0.53). In contrast, metrics representing
the state of the screen showed a much weaker effect. The

average color of the screen is not significantly correlated to
the battery discharge speed (0.06, 0.03, and 0.05 for the levels
of red, green, and blue respectively, p > 0.05). The screen
brightness is weakly yet significantly correlated to the battery
discharge speed (0.09). This indicates that variations in screen
brightness have a comparatively minor impact on battery
discharge speed when compared to changes in CPU or GPU
frequency. Nonetheless, despite potentially weak correlations
to the battery discharge speed, such metrics have stronger
correlations to the components they respectively represent. For
instance, the brightness of display is correlated to the power
usage of the display (0.63).

B. Modeling the battery discharge speed

To predict the battery discharge speed based on the device’s
state, we compare a set of statistical learning models. The
assessed models include Ordinary Least Squares (Linear Re-
gression), Ridge, Lasso, Elastic Net, Decision Tree, Random
Forest, Gradient Boosting, and K Neighbors Regressor. All
models were trained using 70% of the dataset for training and
30% for testing. Each of these models was trained with optimal
hyper-parameters identified from a grid search.6 The absolute
error percentage of each model is reported in Figure 1.

The four linear modeling approaches (LinearRegression,
Ridge, Lasso, and Elastic Net) resulted in a very similar
performance, achieving an R-squared value of 0.91, indicating
that 92% of the variation in the battery discharge speed can be
explained by the selected metrics. These models also demon-
strated an average absolute error ranging of 8.09%. Outside
of linear models, the Random Forest and Gradient Boosting
methods performed slightly better, achieving R-squared values
of 0.93. These models also had lower average absolute error
rates of 6.90% and 6.70%, respectively.

In contrast, the K Neighbors Regressor was less accurate,
with an R-squared value of 0.48 and an average absolute error
of 17, 21%. However, this error rate remains acceptable, as the
coefficient of variation for the target metric is 33.9%. Thus,
even the K Neighbors Regressor substantially outperforms
random chance.

RQ 1: The results of this study show that non-power
metrics can be effectively leveraged to model a device’s
total power usage. The linear statistical models demon-
strated high predictive performance, achieving strong R-
squared values and low average absolute errors relative
to the coefficient of variation in battery discharge speed.
Non-linear methods, such as Random Forest and Gradient
Boosting, offered marginally better predictive accuracy
and lower error rates. These findings indicate that the
proposed approach produces robust predictions of total
power usage, meeting the prerequisite for using lin-
ear model coefficients to estimate per-component power
contributions. Consequently, this study demonstrates that

6The exact parameters are listed in the complementary material.

Metric mean std min 25,00 % 50,00 % 75,00 % max Max/min ratio

Discharge_rate 3,60E+06 1,22E+06 1,35E+06 2,74E+06 3,31E+06 4,23E+06 9,63E+06 7,1
RedLvl 122,55 67,25 6,00 67,00 122,00 180,00 241,00 40,2
GreenLvl 122,32 67,64 6,00 64,00 119,00 181,25 241,00 40,2
BlueLvl 124,55 68,17 6,00 66,75 123,00 184,00 241,00 40,2
Brightness 49,13 28,99 1,00 25,00 48,00 74,25 100,00 100
CPU_LITTLE_FREQ 1,23E+06 4,29E+05 7,13E+05 9,45E+05 1,05E+06 1,33E+06 2,49E+06 3,5
CPU_MID_FREQ 1,57E+06 8,22E+05 4,42E+04 8,35E+05 1,49E+06 2,09E+06 6,66E+06 150,7
CPU_BIG_FREQ 1,30E+06 3,76E+05 5,15E+05 1,13E+06 1,15E+06 1,29E+06 2,87E+06 5,6
GPU0_FREQ 5,95E+05 1,79E+05 6,38E+04 5,88E+05 6,21E+05 6,67E+05 8,86E+05 13,9
GPU1_FREQ 5,14E+05 1,78E+05 5,18E+04 4,78E+05 5,30E+05 5,67E+05 8,71E+05 16,8
GPU_MEM 4,97E+08 3,69E+07 3,62E+08 4,72E+08 4,98E+08 5,22E+08 6,13E+08 1,7
Wi-Fi_data 3,76E+06 2,82E+06 7,10E+05 2,18E+06 2,88E+06 4,44E+06 1,76E+07 24,8

TABLE II: The metrics collected with the experimental setup.

Model MSE R2 Min Error (%) Q1 (%) Median (%) Q3 (%) Max Error (%) Average Error (%)

Linear Regression 1,28E+11 0,91 0,01 2,92 6,83 11,11 39,69 8,09
Ridge 1,28E+11 0,91 0,01 2,92 6,83 11,11 39,69 8,09
Lasso 1,28E+11 0,91 0,01 2,92 6,83 11,11 39,69 8,09
Elastic Net 1,28E+11 0,91 0,01 2,92 6,83 11,11 39,69 8,09
Decision Tree 2,25E+11 0,84 0,06 3,49 7,71 12,26 51,74 9,35
Random Forest 1,03E+11 0,93 0,03 2,74 5,57 10,31 30,28 6,90
Gradient Boosting 9,61E+10 0,93 0,04 2,82 5,78 9,55 28,52 6,70
KNeighborsRegressor 7,14E+11 0,48 < 0.01 7,10 13,56 23,01 79,27 17,21

TABLE III: The performance of the assessed modeling approaches.

Fig. 1: Error rate of the assessed models.

non-power metrics are a viable and effective means for
modeling device power consumption.

V. MODELING PER-COMPONENT POWER CONSUMPTION

In linear statistical models, the relationship between a de-
pendent variable (target) and independent variables (features)
is represented as a linear combination of the features, weighted
by corresponding coefficients. Specifically, the model assumes
that the target variable Y can be expressed as shown in
Equation 1, where β0 is the intercept, β1, β2, . . . , βn are the
coefficients associated with the features X1, X2, . . . , Xn, and
ϵ is the error term, accounting for the variability not explained
by the linear relationship.

Y = β0 + β1X1 + β2X2 + . . .+ βnXn + ϵ (1)

Given that this model is designed to predict the power drawn
by a device, and that the features of this model quantify
the activity levels of specific components, then the power
drawn by a given component C can be estimated using
Equation 2. Here, EC represents the estimated power draw of
the component, while β1X1 through βmXm represent a subset
of metrics and their respective coefficients that encompass the
state of that specific component.

EC = β1Xa + β2Xb + . . .+ βpXm (2)

In the context of modeling power usage in mobile devices,
the features X1 through Xn in Equation 1 represent metrics
capturing the device’s state, and their respective coefficients β1

through βn are determined during model training. For instance,
in Equation 2, if C represents the display of the device, the
features X1 through Xm would include metrics serving as a
proxy for the screen, such as its brightness.

Fig. 2: Measured power draw per component.

Following this formula, this study investigates whether the
coefficients of such a model can be used to approximate the
power drawn by each component when the device is in a given
state.

share(EC) =
β1Xa + β2Xb + . . .+ βpXm

Y
(3)

While such per-component power usage estimations can be
validated against the ground truth provided by ODPM, there
are some notable limitations when aligning ODPM rails with
the estimated and actual battery discharge rates. In particular,
the sum of all ODPM rails does not precisely match the actual
battery discharge rate. However, as shown in Figure 3, the two
metrics exhibit strong correlation (0.97, p < 0.01). The sum of
power rails is consistently lower than the battery discharge rate
by an average factor of 0.73, potentially due to inefficiencies
in power conversion from the battery to the rails, or to the
existence of components draining power with no associated
rail.

This factor can be considered when validating the accuracy
of per-component estimations. However, it may differ across
devices with ODPM and is unknown for devices without
ODPM. To tackle the potential variation between the measured
battery discharged rate, the estimated battery discharge rate,
and the sum of measured power rails, the power usage of a
given component is quantified as a share of the total estimated
power usage of the device, rather than an absolute power usage
expressed in Watts. Such a value can then be compared to the
share of the assessed component group over the sum of all
rails.

Equation 3 quantifies the accuracy of the estimation for a
component C, denoted as share(EC). In this equation, the
estimated power usage of EC is quantified with β1Xa through
βpXm, while share(EC) is calculated as the ratio of this
estimated power usage to the predicted total power draw, Y .

A. Ground truth analysis

Among the available power rails, only a subset of them
exhibits substantial variation along the test scenarios. The
most variable components include the CPU groups (Little,
Mid, and Big) and the display. Components such as memory,
GPU, Wi-Fi antenna, and “infrastructure” rails show more
limited variations while remaining rails (e.g., camera, TPU,
cellular antenna) show little to no variations as they were
not stimulated during the measure campaign. As a result,
the power model does not include features representing these
components.

However, the power drawn from certain power rails is
strongly correlated using Pearson correlation coefficient. For
example:

• The GPU and GPU3D rails are perfectly correlated (coef-
ficient = 1, p < 0.01).

• The Memory and Memory.1 rails are strongly corre-
lated (0.9, p < 0.01) and also show high correlations
with the infrastructure rail (0.89, p < 0.01).

• CPU_MID and CPU_LITTLE rails are also correlated
(0.79, p < 0.01), with additional correlations to the
Memory.1 rail (respectively 0.81 and 0.69, p < 0.01).

• The infrastructure rail is correlated with
CPU_BIG (0.79, p < 0.01).

Rail group Average share (%) Average share (%) Average error (%) Average error (%) CV (%) Correlation
(measured) (estimated) (relative) (Absolute) (ground truth) (Spearman’s ρ)

Display 11,17 7,54 -20,48 29,29 61,48 0,94
CPU & Memory 57,55 57,22 0,83 7,00 16,19 0,96
Wi-Fi 8,92 0,00 -100,00 100,00 31,23 -
GPU 9,24 7,11 -16,44 24,85 34,36 0,92

TABLE IV: Accuracy of per-component predictions (all correlations are significant, p < 0, 01).

0 1 2 3 4 5 6 7 8
Battery discharge speed (Ws) 1e6

0

1

2

3

4

5

6

7

8

Su
m

 o
f O

DP
M

 ra
ils

 (
W

s)

1e6

Fig. 3: Correlation between the sum of ODPM rails and the
measured battery discharge

Such intricate correlations affect the ability of the model
to differentiate the exact power usage for components, like
the GPU and GPU3D, as well as the CPU groups (Big, Mid,
and Little), the memory, and the infrastructure. Furthermore,
the dataset lacks metrics related to memory usage, which
could serve as proxies for the memory rail. Consequently,
the granularity offered by the power rails may not be fully
replicated.

Thus, in the remainder of this paper, the GPU and GPU3D
are aggregated into a single indicator: ”GPU2/3D”. Similarly,
the CPU big, CPU mid, CPU little, the memory, and the
infrastructure are aggregated into a single indicator named
”CPU & Memory”. As the rails associated with the display
and the Wi-Fi antenna do not show such correlations with
others, they are therefore estimated independently.

B. Power rail prediction

In Section IV, all the linear models showed similar per-
formance. However, the approach introduced with Equation 2
introduces specific constraints. As this equation models the
power usage of a given component with a subset of metrics and
coefficients of the model, negative coefficients may cause the

equations to quantify the power usage of a given component
as negative. As the components of the smartphone used in
the experimental setup are not expected to produce power, the
model is forced to use positive coefficients. This causes a slight
regression in the overall performance of the model, with a R2

of 0.87 instead of 0.91 and a median error of 7.52% instead
of 6.83%

Applying Equation 2 to the best-performing linear model
identified in Section IV, using the collected metrics presented
in Table I, yields the results presented in Table IV. In that
specific table, to compare the predicted and measured share
of power, the correlations are computed using Spearman’s ρ,
in order to compare the order of predictions. In particular:

• The estimated power usage share for the display achieves
an absolute error of 29%, while the ground truth for this
rail exhibits a coefficient of variation of 61%.

• For the CPU and Memory group, the estimated power
usage share has an absolute error of 7%, with a group
ground coefficient of variation of 16%.

• The GPU2/3D group achieves an estimated power usage
accuracy of 25%, compared to a coefficient of variation
of 34% in the ground truth.

Overall, the model tends to underestimate the power usage
of all such rail groups and even fails to predict the power
usage of the Wi-Fi rail. The coefficient for the corresponding
feature is 0, resulting in predictions of 0 power usage for this
rail. Similarly, the GPU0_FREQ has a weight of 0 due its
redundancy with GPU1_FREQ. All other features have non-
zero coefficients. Their exact values are listed in Figure 5.

One can observe that the amount of transmitted data and
the power usage of the Wi-Fi rail are positively and sig-
nificantly correlated (0.65, p < 0.01), and the rail’s power
usage is strongly correlated with the device’s overall discharge
speed. However, the power rail of the Wi-Fi antenna is not
significantly correlated to the battery discharge speed (-0.06,
p > 0.01). Such a behavior is likely due to an interaction with
the CPU activity. Indeed, the power rails of the CPU big and
the Wi-Fi antenna are negatively correlated (-0.09, p < 0.01).
Increased CPU usage may throttle the device, reducing the
frequency or amount of network requests. This interaction
leads the model to attempt to assign a negative coefficient
to the transmitted data metric.

Due to, first, the difference between the battery discharge
speed and the sum of available power rail, second, the error
rate of the modeled battery discharge speed, and third, the error
rate of per-component predictions, quantifying converted the
estimated power shares to an absolute power usage expressed

(a) Predicted vs. measured share of the display power usage. (b) Predicted vs. measured share of the CPU & Memory power usage.

(c) Predicted vs. measured share of the Wi-Fi antenna power usage. (d) Predicted vs. measured share of the GPU2/3D power usage.

Fig. 4: Comparison of Predicted vs. measured share of power usage for the assessed components groups.

in Watts may not be relevant. Nonetheless, the strong corre-
lations between the estimated and measured power usage of
the assessed groups of components can be used to compare
different captured states of the devices. For instance, such
an approach can be leveraged to compare the power profile
of different applications, or different versions of a given
application, with a per-component granularity. Reconciling the
significant variations in units and power consumption across
components would be infeasible without linear modeling. For
instance, optimization scenarios that reduce power usage of
the CPU_big while increasing power consumption of the
CPU_mid and CPU_little, while also affecting the power
usage of a component from another group, would require
balancing trade-offs. This approach allows for normalizing
such variations and can thus be used to explain differences
in battery discharge speed with greater granularity.

RQ 2: Linear model coefficients enable the estimation of
power usage for individual components of a device, pro-
viding strong correlations with the actual power usage of
their respective power rails. While the Wi-Fi rail remains
an exception due to complex metric interactions, this
method achieves a granularity that outperforms battery
speed alone, thus allowing the investigation of the root
cause of a variation in discharge speed.

VI. DATASET REDUCTION

The trained model demonstrates high precision when ap-
plied to the dataset developed in this experiment. However,
this dataset consists of 1, 000 measurements of random usage
scenarios. Although each scenario runs for only 30 seconds,
there is additional time required for test instrumentation,
system trace saving, and trace extraction to the instrumentation
terminal. This results in an average runtime of 96 seconds per

Fig. 5: Weights of the normalized features.

Fig. 6: The evolution of R2 according to the size of the dataset.

test, and a total runtime of approximately 26.7 hours for the
full dataset. Battery limitations add further constraints, as the
device needs to recharge every 100 to 150 tests. Additionally,
the system traces associated with these tests amount to 256
Gigabytes of data, which require approximately three hours
to parse. Given these overheads, replicating this experimental
setup for modeling each new device may be inefficient. This
section thus explores the impact of dataset size on model
precision, in order to identify whether a smaller dataset can
maintain comparable performance.

To assess the influence of dataset size, ten subsets of the
original dataset were defined, with sizes ranging from 50 to

1000 tests. For each subset, (i) a linear model using Elastic
Net regularization was trained, (ii) optimal parameters were
identified via grid search for every sample size, (iii) 20% of
each subset was reserved for testing, and (iv) the reported
value is the average of 10 trainings with different random
sampled measures. The model accuracies for each sample size
are presented in Table V.

We observe that a dataset of 100 measurements or less
achieves an R2 below 0.82. However, from a sample size
of 200 onward, R2 stabilizes at approximately 0.88, with
median errors ranging between 6.72 and 7.52. Thus, 200
measures may be the minimum amount to reach a plateau
in the capacity of the model to explain the battery discharge
speed based on the metrics collected in the experimental setup.
Nonetheless, correlations between estimated per-component
power usage and their respective rail groups keep increasing
to 300 measures, before stabilizing between 0.90 and 0.94 for
the Display and CPU & Memory groups. From 500 measures
onward, the weight of the transmitted data reaches 0, and the
power usage of the Wi-Fi antenna cannot be estimated.

These findings suggest that the number of measurements
required for comparable accuracy and stability can be reduced
by up to 50%, significantly decreasing the time and storage
demands for future experiments. A baseline of 500 measure-
ments appears sufficient for the specific experimental setup
in this study, but it may not generalize to other setups where
additional variability dimensions, such as TPU or GPS activity,
are explored. Thus, while 500 measurements provide a solid
starting point, incremental increases should be employed to
ensure accuracy plateaus are empirically validated.

RQ 3: The model’s precision and the quality of pre-
dictions and coefficients quickly converge to a plateau,
indicating that additional measurements beyond a certain
point do not substantially enhance model performance.
While the specific number of measurements needed to
reach this plateau may vary with device characteristics
and the components analyzed, a baseline of approxi-
mately 400 measurements offers an effective starting
point for further experimentation.

VII. DISCUSSION

This paper introduces an approach to designing a power
model for mobile devices, enabling power usage estimation
with per-component granularity. While the results validate the
approach, both the experimental setup and statistical model-
ing introduce some limitations. This section examines these
limitations and discusses directions for future work.

a) Scope of the experimental setup: The validation in
this study is limited in scope, as not all device components
were assessed. Additional components, such as the GPS, AI
accelerator, camera, and other sensors were not stimulated
during the experiments, and their power usage was excluded
from the model. The studied components were selected based
on the availability of data, the ability of developers to affect

Battery discharge speed predictions Correlations to measured power usage (Spearman’s ρ)
Sample size MSE R2 Median error (%) Display CPU & Memory Wi-Fi GPU2/3D

50 2,81E+11 0,72 8,91 0,80 0,83 0,63 0,63
100 2,17E+11 0,82 6,53 0,79 0,89 0,53 0,81
200 1,66E+11 0,88 6,72 0,88 0,88 0,03 0,84
300 1,62E+11 0,88 7,52 0,90 0,92 0,48 0,92
400 1,88E+11 0,88 7,46 0,89 0,93 0,35 0,89
500 1,63E+11 0,90 7,19 0,91 0,93 - 0,92
600 1,56E+11 0,89 7,04 0,92 0,94 - 0,93
700 1,72E+11 0,89 6,82 0,92 0,94 - 0,93
800 1,64E+11 0,88 7,42 0,93 0,93 - 0,93
900 1,63E+11 0,89 6,84 0,93 0,94 - 0,93

1000 1,74E+11 0,89 6,81 0,92 0,93 - 0,93

TABLE V: Comparison of sample size of the dataset.

their power consumption, and the fact that such components
are always under some workload when the device is running.

Furthermore, only a subset of available metrics was studied
to estimate the global and per-component power draw of the
device. These metrics were selected as straightforward proxies
to estimate the power draw of the chosen components. For
instance, the color of the screen is included as it was observed
to impact power consumption [28], while the memory usage
was excluded as it tends to reduce the accuracy of the
model. However, taking into consideration other metrics could
potentially enhance the model’s accuracy. For instance, device
temperature or its variation during a test (both of which are
available in the system trace) could contribute to more precise
predictions of battery discharge speed. As such metrics are
also available with per-component granularity, they may also
improve per-component power usage modeling. However, the
temperature of the device may also carry information across
test scenarios, making it unsuitable for the current experi-
mental design. Allowing the device to cool down between
scenarios might mitigate this issue, but would significantly
increase the experiment duration.

As described in IV, the system trace data is incomplete
for 13% of measures. The system trace format used in this
study, introduced with Android 10, is based on the Perfetto
format. It remains unclear whether these data holes stem from
the on-device tracing tool or from the analysis tools provided
by Perfetto. However, the Perfetto project is very active, and
ongoing improvements may enhance the quality of system
traces. Such improvements would, in turn, improve the quality
of the metrics retrieved in this experiment.

b) Limitations of per-component predictions: As ob-
served in Section V, the total power measured across all
device power rails does not match the battery discharge speed,
differing by an average ratio of 0.73 in this experimental setup.
To the best of our knowledge, there is no empirical evidence
to confirm whether this ratio is consistent across devices.

For devices not equipped with ODPM (the primary target of
this research), this ratio will be unknown. Thus, converting a
component’s predicted share of battery discharge speed into an
absolute power usage value introduces significant uncertainty.
Indeed, the accuracy of such estimates is already constrained
by the model’s predictive quality and the precision of its

coefficients. Adding a potentially incorrect rails-to-battery
ratio to the equation would further reduce the reliability of per-
components power predictions. Nonetheless, expressing per-
component power usage as a relative share of the total esti-
mated power usage remains valuable. This approach facilitates
performance comparisons from multiple system traces, such as
evaluating different versions of a given application to assess
optimizations, while normalizing metrics expressed in different
units and monitoring different hardware components.

c) Transferability: The power model developed in this
study is device-specific and cannot be directly transferred to
other devices, as differences in hardware configurations, power
profiles, and component architectures influence both global
and per-component power predictions. For example, the tested
device is equipped with nine CPU cores divided into three
clusters, each with different maximum frequencies. A different
device might have a distinct number of cores, organized into
different clusters, operating at different frequencies. Thus,
the coefficients identified for the tested device may not be
transferable to a different device. While the model itself lacks
transferability, the methodology introduced in this paper—
i.e., creating and measuring random configurations of load to
model per-component power usage—can be adapted to other
devices. This includes other smartphones, tablets, computers,
or servers. In particular, this approach could be applied to
iOS devices, whose power efficiency remains rarely studied
due to the closed ecosystem [1]. For devices with similar
architectures, such as two smartphones of the same generation,
transfer learning could enable partial reuse of the model [29],
thus reducing the number of measurements required to achieve
the accuracy plateau.

VIII. CONCLUSION

This paper explores the potential of leveraging device met-
rics to model its power consumption at the battery level and to
estimate per-component power usage, based on the coefficients
of such a power model. While the exact power usage of each
component cannot be accurately estimated as absolute values,
the proposed model provides reliable relative estimates. These
relative power usage metrics allow developers to assess power
usage variations between different usage scenarios, enabling
them to validate optimizations and identify regressions with

per-component granularity. Additionally, such a power model
can be built using a limited dataset of randomly generated
usage scenarios to stimulate the components of the assessed
device.

ACKNOWLEDGMENT

This work is partially funded by the European Union’s
Horizon 2020 research and innovation program (grant agree-
ment no. GreenDIGIT 101131207) and by the “FEDMA-
LIN” Inria and Groupe La Poste partnership. Additionally,
this work also received partial support from the French
government through the Agence Nationale de la Recherche
(ANR) under the France 2030 program, including partial
funding from the CARECLOUD (ANR-23-PECL-0003)
and DISTILLER (ANR-21-CE25-0022), and BPIFRANCE
France 2030 CISORANGE grants.

REFERENCES

[1] A. Schuler and G. Kotsis, “A systematic review on techniques and ap-
proaches to estimate mobile software energy consumption,” Sustainable
Computing: Informatics and Systems, vol. 41, p. 100919, 2024.

[2] D. Li, S. Hao, J. Gui, and W. G. Halfond, “An empirical study
of the energy consumption of android applications,” in 2014 IEEE
International Conference on Software Maintenance and Evolution, 2014,
pp. 121–130.

[3] P. K. D. Pramanik, N. Sinhababu, B. Mukherjee, S. Padmanaban,
A. Maity, B. K. Upadhyaya, J. B. Holm-Nielsen, and P. Choudhury,
“Power consumption analysis, measurement, management, and issues:
A state-of-the-art review of smartphone battery and energy usage,” IEEE
Access, vol. 7, pp. 182 113–182 172, 2019.

[4] J. L. D. Neto, S.-Y. Yu, D. F. Macedo, J. M. S. Nogueira, R. Langar, and
S. Secci, “Uloof: A user level online offloading framework for mobile
edge computing,” IEEE Transactions on Mobile Computing, vol. 17,
no. 11, pp. 2660–2674, 2018.

[5] L. Corral, A. B. Georgiev, A. Sillitti, and G. Succi, “A method for
characterizing energy consumption in android smartphones,” in 2013 2nd
International Workshop on Green and Sustainable Software (GREENS),
2013, pp. 38–45.

[6] E. Guégain, “Assessing the environmental impact of mobile appli-
cations: a measure framework toward devgreenops,” in Proceedings
of the IEEE/ACM 11th International Conference on Mobile Software
Engineering and Systems, 2024, pp. 88–91.

[7] R. Horn, A. Lahnaoui, E. Reinoso, S. Peng, V. Isakov, T. Islam, and
I. Malavolta, “Native vs web apps: Comparing the energy consumption
and performance of android apps and their web counterparts,” in
2023 IEEE/ACM 10th International Conference on Mobile Software
Engineering and Systems (MOBILESoft), 2023, pp. 44–54.

[8] V. Frattaroli, O. Le Goaer, and O. Philippot, “Ecological impact of
native versus cross-platform mobile apps: a preliminary study,” in
2023 38th IEEE/ACM International Conference on Automated Software
Engineering Workshops (ASEW). IEEE, 2023, pp. 3–8.

[9] X. Zhan, T. Liu, L. Fan, L. Li, S. Chen, X. Luo, and Y. Liu, “Research
on third-party libraries in android apps: A taxonomy and systematic
literature review,” IEEE Transactions on Software Engineering, vol. 48,
no. 10, pp. 4181–4213, 2022.

[10] L. Mosesso, N. Maudet, E. Nano, T. Thibault, and A. Tabard, “Ob-
solescence paths: Living with aging devices,” in 2023 International
Conference on ICT for Sustainability (ICT4S), 2023, pp. 13–23.

[11] A. Bogdan and I. Malavolta, “An empirical study on the impact of css
prefixes on the energy consumption and performance of mobile web
apps,” in Proceedings of the IEEE/ACM 11th International Conference
on Mobile Software Engineering and Systems, ser. MOBILESoft ’24.
New York, NY, USA: Association for Computing Machinery, 2024, p.
12–21. [Online]. Available: https://doi.org/10.1145/3647632.3647989

[12] W. Oliveira, R. Oliveira, and F. Castor, “A study on the energy con-
sumption of android app development approaches,” in 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR),
2017, pp. 42–52.

[13] J. Ferreira, B. Santos, W. Oliveira, N. Antunes, B. Cabral, and J. P.
Fernandes, “On security and energy efficiency in android smartphones,”
in 2023 IEEE/ACM 10th International Conference on Mobile Software
Engineering and Systems (MOBILESoft), 2023, pp. 87–95.

[14] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le,
“Rapl: memory power estimation and capping,” in Proceedings of the
16th ACM/IEEE International Symposium on Low Power Electronics
and Design, ser. ISLPED ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 189–194. [Online]. Available:
https://doi.org/10.1145/1840845.1840883

[15] B. Dornauer and M. Felderer, “Energy-saving strategies for mobile web
apps and their measurement: Results from a decade of research,” in
2023 IEEE/ACM 10th International Conference on Mobile Software
Engineering and Systems (MOBILESoft). IEEE, 2023, pp. 75–86.

[16] É. Guégain, T. Simon, A. Rahier, and R. Rouvoy, “Managing uncer-
tainties in ict services life cycle assessment using fuzzy logic,” in
International Conference on ICT for Sustainability (ICT4S). IEEE,
2024.

[17] O. Le Goaer and J. Hertout, “Ecocode: A sonarqube plugin to remove
energy smells from android projects,” in Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineer-
ing, 2022, pp. 1–4.

[18] H. Anwar, D. Pfahl, and S. N. Srirama, “Evaluating the impact of code
smell refactoring on the energy consumption of android applications,”
in 2019 45th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA). IEEE, 2019, pp. 82–86.

[19] S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Estimating mobile
application energy consumption using program analysis,” in 2013 35th
international conference on software engineering (ICSE). IEEE, 2013,
pp. 92–101.

[20] D. Li, S. Hao, W. G. Halfond, and R. Govindan, “Calculating source
line level energy information for android applications,” in Proceedings
of the 2013 International Symposium on Software Testing and Analysis,
2013, pp. 78–89.

[21] V. M. F. Jacques, N. Alizadeh, and F. Castor, “A study on the battery
usage of deep learning frameworks on ios devices,” in Proceedings
of the IEEE/ACM 11th International Conference on Mobile Software
Engineering and Systems, ser. MOBILESoft ’24. New York, NY,
USA: Association for Computing Machinery, 2024, p. 1–11. [Online].
Available: https://doi.org/10.1145/3647632.3647990

[22] L. Zhang, B. Tiwana, R. P. Dick, Z. Qian, Z. M. Mao, Z. Wang,
and L. Yang, “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in 2010
IEEE/ACM/IFIP International Conference on Hardware/Software Code-
sign and System Synthesis (CODES+ISSS), 2010, pp. 105–114.

[23] H. Furusho, K. Hisazumi, T. Kamiyama, H. Inamura, T. Nakanishi, and
A. Fukuda, “Poster: an energy profiler for android applications used in
the real world,” in Proceedings of the 10th International Conference
on Mobile Systems, Applications, and Services, ser. MobiSys ’12.
New York, NY, USA: Association for Computing Machinery, 2012, p.
517–518. [Online]. Available: https://doi.org/10.1145/2307636.2307712

[24] D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and
A. De Lucia, “Software-based energy profiling of android apps: Simple,
efficient and reliable?” in 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2017, pp.
103–114.

[25] G. Fieni, D. R. Acero, P. Rust, and R. Rouvoy, “PowerAPI: A Python
framework for building software-defined power meters,” Journal of
Open Source Software, vol. 9, no. 98, p. 6670, Jun. 2024. [Online].
Available: https://hal.science/hal-04601379

[26] “Scaphandre on github,” https://github.com/hubblo-org/Scaphandre, ac-
cessed: 2024-12-08.

[27] É. Guégain, C. Quinton, and R. Rouvoy, “On reducing the energy
consumption of software product lines,” in Proceedings of the 25th ACM
International Systems and Software Product Line Conference-Volume A,
2021, pp. 89–99.

[28] “Should you switch your wallpaper to affect less the
battery life of your smartphone?” https://greenspector.com/en/
should-you-switch-your-wallpaper-to-affect-less-the-battery-life-of-your-smartphone/,
accessed: 2024-12-08.

[29] D. Obst, B. Ghattas, S. Claudel, J. Cugliari, Y. Goude, and G. Op-
penheim, “Improved linear regression prediction by transfer learning,”
Computational Statistics & Data Analysis, vol. 174, p. 107499, 2022.

https://doi.org/10.1145/3647632.3647989
https://doi.org/10.1145/1840845.1840883
https://doi.org/10.1145/3647632.3647990
https://doi.org/10.1145/2307636.2307712
https://hal.science/hal-04601379
https://github.com/hubblo-org/Scaphandre
https://greenspector.com/en/should-you-switch-your-wallpaper-to-affect-less-the-battery-life-of-your-smartphone/
https://greenspector.com/en/should-you-switch-your-wallpaper-to-affect-less-the-battery-life-of-your-smartphone/

	Introduction
	Related Work
	Mobile Software Power Efficiency
	Power Modeling

	Experimental Setup
	Modeling Device Power Usage
	Dataset description
	Modeling the battery discharge speed

	Modeling per-component power consumption
	Ground truth analysis
	Power rail prediction

	Dataset Reduction
	Discussion
	Conclusion
	References

