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1. Introduction
Bone mechanobiology is known to be based on fluid flow 
within its multi-scale porous network. The development 
of  pressure gradient within bone porosity promotes 
interstitial fluid flow. A fluid-flow induced shear stress 
is then transduced by the cells into mechanobiological 
mediators of  bone modeling or remodeling. The osteo-
cytes, which play a major role in bone mechanobiology, 
are particularly subjected to this mechanotransducive 
mechanism. Osteocytes are closely trapped within 
bone mineralized matrix inside the interconnected 
lacunocanalicular network (LCN). But due to its sub-
micrometric nature, understanding how fluids circulate 
within this LCN is a real challenge. LCN fluid flow is 
mainly evaluated using computational modelling.
Fluid flow through porous media is generally mod-
elled using the Darcy’s law. In this law, the ability of  
a fluid to circulate within a porous material is related 
to its viscosity and to the intrinsic permeability of  the 
medium. In current computational models of  LCN 
fluid flow, the determination of  these two parameters 
can be questioned. This is mainly due to the difficulty 
to characterize both the fluid and the porous network 
at the submicrometric scale.
Recently, the LCN from 27 human femoral diaphyses 
were observed through Synchrotron Radiation Phase 
nano-Computed Tomography (Gauthier et al., 2023). 

Such data set allows to characterize the lacunar and 
canalicular morphology over large volumes of  interest 
(up to 107 µm3). In the present study, this data set was 
used to estimate the intrinsic permeability of  human 
canalicular network.

2. Methods
In the current study, cortical bones samples were 
harvested from human femoral diaphyses (12 females 
(50 – 95 y.o.) and 9 males (66 – 89 y.o)). The samples 
have been scanned on line ID16B at the European 
Synchrotron Radiation Facility (Grenoble, France). 
Volumes of  256x256x205 µm3 were reconstructed. 
The lacunae and canaliculi were segmented accord-
ing to a previous published protocol (Yu et al., 2021). 
The canalicular network was converted into a net-
work topology defined by links (canaliculi) connected 
at nodes (canalicular ramifications) (Weinkamer 
et al., 2019). A watershed algorithm was applied 
based on the 3D distance map of  the canalicular 
volume, to create a tessellation in which each unit 
contains one canalicula.
The intrinsic permeability of  each canalicula was then 
calculated as (Lemaire et al., 2012):

 Eq.1
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where ηf  (%) is the local volume fraction of  the can-
alicula in its unit cell, δ (m) is the canalicula averaged 
diameter, and θ is the canalicula tortuosity (geodesic 
length / straight length). Additionally, the density of  
canaliculi was calculated as the number of  links (can-
aliculi) divided by the bone volume.

3. Results and discussion
The results showed a large heterogeneity in terms of  
canalicular intrinsic permeability within bone structure 
(Figure 1). The values obtained for the permeability in 
one sample ranged from 10-14 to 10-21 m². Qualitatively, 
the canalicular permeability seems higher close to the 
vascular canal and to the osteocytic lacunae. Such het-
erogenous distribution will have an influence on fluid 
velocity and pressure developed within the canalicular 
network during loading. It is hence relevant to consider 
it in further computational model of  LCN fluid flow.

Figure 1. Permeability distribution in an osteon. Lacunae 
are in black.

For each sample, a permeability distribution was 
obtained over the total number of  canaliculi. The 
three quartiles of  this distribution, averaged over the 
whole population are provided in Table 1.

Table 1. Averaged permeability quartiles over the whole 
population and canalicular density.

Parameters Q1
(SD)

Q2
(SD)

Q3 
(SD)

𝜅 (10-18 m²) 3.5
(1.7)

13.3
(6.0)

46.1
(16.8)

Density of canaliculi (106 mm-3) 7.3 ± 3.3

The permeability values are in accordance with what 
can be estimated with analytical methods (Lemaire 
et al., 2012). But the estimated value of  bone LCN 
permeability is generally lower (< 10-18 m²) (Benalla 

et al., 2014). This may be due to the fact that in the 
current study, the presence of  a pericellular matrix 
within the canaliculi was not considered. This matrix 
decreases the permeability of  the canaliculi. It is hence 
important to state that the current study is limited to a 
morphological-based LCN permeability.
It was measured that the permeability median (Q2) is 
significantly correlated to the donors’ age (rpearson = -0.64, 
p-value = 0.001). This means that it is more difficult to 
promote fluid flow within the LCN from older donors. 
This result is mostly due to an increasing tortuosity 
and decreasing canalicular volume fraction with age 
as validated by Pearson’s correlation analyses (p-value 
= 0.006 and 0.001 for tortuosity and volume fraction 
respectively).
This decrease in LCN permeability is in accordance 
with a less active bone remodeling with age. Evaluating 
the ability to promote fluid flow within the LCN with 
different permeabilities distribution might be of  great 
interest to better understand the relation with remod-
eling and LCN fluid flow.

4. Conclusions
One major insight provided by the current study is the 
large heterogeneous distribution of  canalicular intrinsic 
permeability within bone structure. Furthermore, per-
meability has been shown to decrease with age. This 
provides new avenues of  research concerning the under-
standing of  bone remodelling mechanotransduction 
through the embedded osteocytic network according 
to patient specificities.
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