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ABSTRACT

Using a DNS database (available to the NICFD research community) including homogeneous isotropic turbulence (HIT), mixing layers
and channel flows, the authors have developed a novel LES model for the Subgrid-Scale (SGS) turbulent Reynolds tensor based on
artificial neural networks (ANN) with optimized hyperparameters. Particular attention has been paid to ensure Galilean invariance
properties are satisfied by the ANN-based model. To accommodate the large size of the database (over 500 million samples), the
ANN is trained on a parallel CPU architecture. A priori performance reveals determination coefficients (r2-score) larger than 0.9 can
be achieved, yielding an accurate prediction of the SGS turbulent Reynolds tensor magnitude for flow conditions never met during
training. A posteriori validation is performed by implementing the model into AVBP, a LES solver developed at CERFACS [10]. The
computation of a dense gas mixing layer at a convective Mach number of 2.2 shows that the newly developed ANN-based model
provides levels of accuracy comparable with or even better than those provided by existing models (Implicit LES, Sigma model [13]).
To further assess the ANN-based model, a 3D ORC turbine configuration is computed and the numerical prediction is compared with
measurements gathered by Baumgartner, Otter and Wheeler [1] at Cambridge University and presented at NICFD 2020. Preliminary
results from this recently launched European PRACE project are presented.

Keywords: ORC, Large Eddy Simulation, SGS Modeling, Dense gas, Machine Learning

1 INTRODUCTION

Global warming due to the release of huge amounts of CO; in the atmosphere generated by the consumption of fossil fuel is now
considered as one of the most important threat to the stability of modern society. To reduce the production of CO;, renewable energies
are currently being developed at an accelerated pace. Among the possible technological solutions available, the Organic Rankine
Cycle has been proposed to harvest low to moderate temperature heat sources. ORC systems use, instead of water, organic fluids
displaying low boiling temperatures and large heat capacities. Among those fluids, some, when in their gaseous form and in specific
thermodynamic conditions, are called dense gases. Dense gases are characterized by a fundamental derivative I" lower than unity.
Following this definition, the speed of sound in these gases decreases with increasing density along isentropic lines. Numerous
phenomena occur in flows of dense gases that are related to their specific thermodynamic nature: lower speeds of sound are reached
and most importantly the strength of shockwaves is significantly reduced. This phenomenon, first evidenced numerically by Schnerr
and Leidner in 1996 [17] and again shown by Cinnella and Congedo in 2005 [2], is at the origin of a renewed interest for dense gases
in the context of ORC. In 2016, Dura Galiana et al. [4} 5] show that up to 2/3 of the losses in turbine expanders comes from viscous
effects in the wake. The trailing edge region where the wake starts is both the region of origin of shockwaves necessary for the flow to
adapt to the back pressure, and a region displaying a large turbulence activity because of the merging boundary layers coming from the
blade. A natural question in this context is that of the interaction between turbulence and thermodynamics in dense gas flows (more
specifically in turbine expanders) and its impact on SGS turbulence modeling.

To the best of the authors’ knowledge, this question has not yet been addressed and state of the art comparisons between CFD and
experiments either rely on Euler equations with a focus on compressibility-induced features [9]] or on Large Eddy simulations (LES)
using existing subgrid scales models developed in the context of perfect gas flows [11]. To better understand the behavior of
turbulence in dense gas flows, the authors have analyzed Direct Numerical Simulations (DNS) in academic configurations such as
Homogeneous Isotropic Turbulence, Mixing Layer and Channel Flow. Numerous physical phenomena specific to the dense nature of
the gas have been described such as the strongly modified statistics of shocklets in compressible turbulence, the decoupling of internal
and kinetic energy in the mixing layer which has also been observed in the channel flow and confirms independent findings from [18].
Among all results, the most striking one, observed by Vadrot during his PhD [19] is the strongly modified growth rate (multiplied by a
factor 2) of the dense gas mixing layer when compared to the perfect gas one.

The precise description of losses occurring in ORC turbines requires LES as a way to accurately capture turbulence in general and
more specifically features such as boundary layer transition, shockwave/boundary layer interaction and wake turbulence dynamics.
LES is now a proven approach in the understanding and fine tuning of complex systems in presence of turbulent phenomena. In this
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approach, the most energetic part of the turbulent spectrum is captured by the numerical solver and the remaining part has to be
modeled using so called "subgrid" models. Most models have been developed in the context of perfect gases and almost entirely focus
on the SubGrid-Scale Reynolds Stress Tensor (SGS RST).

Recent findings by the authors [8] show that (1) additional subgrid-scale terms should be considered in dense gases, (2) usual closure
models for the SGS RST lack precision when applied to turbulent dense gas flows. Developing turbulence models for dense gas flows
requires to take into account highly non-linear Equations of State (EoS) needed to accurately describe the dense gas thermodynamic
behavior. This significantly complexifies the usual modeling strategies and leads the authors to propose instead the use of Artificial
Neural Networks (ANN), since they are well adapted to the identification of correlations in a non-linear context. This paper presents
the development, validation and application of an ANN-based Large Eddy Simulation Subgrid-Scale Turbulence model for dense gas
flows. In Section 2, the methodology used for the development of the model is presented, with a focus on the Galilean invariance of
the training data and on the optimization of hyperparameters of the neural network. In section 3, a preliminary a posteriori validation
of the model is presented to demonstrate the influence of the ANN-based model on (i) the growth rate of a dense gas supersonic
mixing layer and (ii) the total pressure distributions experimentally measured in an annular stator configuration at Cambridge
University.

2 METHODOLOGY : Development of an ANN model for the subgrid-scale Reynolds Tensor in LES

. Inputs Artificial
Cons;rvanve verifying N Output:
_Var_lible_s_:_ — Galilean Network P | SGS terms [T :
. pli, pE invariance (ANN) :
: v
v. : S_A
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Figure 1: Schematic representation of the ANN training process

The general description of the ANN training process is illustrated in Figure [T} Starting from a DNS database of dense gas flows,
local data are spatially filtered at a wavelength lying within the inertial range of turbulence for each case considered. In practice, a
Gaussian filter is applied with a characteristic wavelength equal to roughly twenty times the initial DNS resolution. These filtered data
are composed of all conservative (9, pii;, pE) and thermodynamic fields (p,T") along with their gradients (g = g‘f‘] ﬁﬁ,%f’). ¢ denotes

the resolved large-scale component of a flow variable (¢). ¢ = 29 denotes the Favre averaged of a flow variable ¢ while (]3 denotes
computable variables that are computed from conservative filtered fields (see [8] for a more detailed description). Components of the
Turbulent Reynolds Tensor (t;; = p (i;u; — if;if;)) are also stored for later use during training.

Among all the potentially available data when running a LES, actual input data are selected using a sensitivity analysis later described in
this paper and preprocessed to satisfy Galilean invariance principles. Following usual practice, the database is then split into a training
and a testing part. The training section of the database is used first to fit the parameters of the ANN (i.e. the weights and biases of each
connection and neuron). The testing section is used next to assess the performance of the ANN and verify the absence of overfitting.
To perform this analysis, the ANN prediction is compared to the Reynolds Tensor components target values available in the database.

2.1 Description of the database

The methodology used in this study to develop a SGS model tailored for dense gas flows relies on Direct Numerical Simulations
(DNS) computed by the authors in the course of the last five years. Figure ?? illustrates the academic dense gas flow configurations
considered in this research project: Forced Homogeneous Isotropic Turbulence (Forced-HIT), Channel Flow and Mixing Layer. The
reader interested in the details of the comparison of these flows with their perfect gas counterparts is referred to [6} [7]] for the Forced-
HIT, [8]] for the channel and [20} 21]] for the mixing layer. The code AVBP, developed at CERFACS, has been used for the development
of the database and is also the code used to assess a-posteriori the properties of the developed SGS model. During the course of this
entire study, the 3rd order in space and time convective scheme TTGC is used [3].

2.2 Choice of the input variables

The choice has been made from the start to consider as input variables only local data taken at the same location where the ANN
is expected to predict the Reynolds Tensor components. This choice has been guided by CPU cost considerations in the context of
High Performance Computing of dense gas flows. Indeed, other types of non-local neural networks exist such as Convolutional Neural

[3%)
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Networks (non local in space) [16]] or networks using LSTM neurons (non local in time). These attractive types of neurons and neural
networks are however such that their cost for LES modeling over large discretization grids would eventually prevent their practical use.
Using therefore Gaussian-filtered local data only, the additional underlying principle guiding the choice of the ANN input variables
is the Galilean invariance principle. This principle is based on a set of invariance properties including translation and rotation of the
reference frame and uniform motion with respect to the reference frame. To make sure the ANN prediction satisfies the Galilean
invariance principle, the input data should themselves be unchanged when the frame of reference is translated or when one adds a
uniform translation motion to the database. Verifying the invariance with respect to the rotation of the frame of reference is more
complex. Indeed, except for the HIT, the DNS constituting the database display the bulk flow direction as preferred direction. In order
to verify the rotational invariance, each sample is randomly rotated before it is added to the database, with the distribution of rotation
angles around the original x, y and z axis as flat as possible and ranging from O to 27.

Actual input data used in this work have been initially chosen among all the data potentially available when running a LES. Based on
the a-priori performance analysis of the ANN-based SGS model, the following set of 15 inputs has been eventually retained: y™, p,
T, g = g—l’f;, §ij = % (g”i i+8& ji). Although strain rate tensor components §;; are strongly correlated with velocity gradients g;; and do
not improve the a-priori performance, it has been observed that they improve the consistency of a posteriori ANN-based SGS model
predictions.

2.3 Optimization of the hyperparameters

The type of ANN used in this work is a multi-layer perceptron (a fully connected class of feedforward ANN). The hyperparameters of
the ANN are of two main types. The first type is constitutive of the ANN in the sense that it also applies when the ANN is later used in
a posteriori validation. Those type-1 hyperparameters are:

e the number of hidden layers,
e the number of neurons in each hidden layer,

o the activation function of each neuron.
The second type of hyperparameters is intrinsically linked to the training of the ANN. Those type-2 hyperparameters are:

o the size of the batches used to train the ANN,
e the optimization algorithm used for back-propagation,
o the measure used to assess the accuracy of the ANN,

o the regularization parameters (L, regularization in this work) to balance the amplitude of weights over the whole network and
to avoid over-fitting.

The most popular methods used to tune an ANN are hyperparameter searches, which browse the hyperparameters space, testing a
large number of hyperparameters combinations, for an optimized amount of computational time, in order to identify the one providing
the best accuracy. The fundamental issue with these methods is the lack of information they provide about the sensitivity of the ANN
to the choice of its hyperparameters: they are often seen as black-box tools which only yield the most effective ANN, with no
information provided about the most influential hyperparameters or the most relevant range for each of them. Even though this
information is actually stored in the search results, it is rarely exploited.

In this work, in addition to hyperparameter searches, an Hilbert-Schmidt Independence Criterion (HSIC) analysis is performed
following the proposal made in [[14]. HSIC evaluates in a first step the probability distribution of hyperparameters among tested
combinations of hyperparameters randomly selected by the hyperparameters search method, denoted P(’hyperparameter’). In a
second step, HSIC computes the probability distribution for an ANN of being among the best decile networks (the 10% of the best
ANN), denoted P("hyperparameter’|Z), where Z is a random variable which is equal to one if the ANN is among the best decile. Two
types of results are eventually obtained: a classification of hyperparameters by rank of importance (Figure 2h)) and the optimal choice
for a given hyperparameter (Figure [2p)). In the given example, HSIC allows to identify the significant influence of the optimization
algorithm used for back-propagation and recommends the use of the ADAbelief method for optimal ANN performance.

2.4 Analysis of the training process

The training process uses the complete training database, combining HIT, channel and mixing layer data with preprocessing to enforce
Galilean invariance, over several epochs to optimize the weights and biases of the ANN until the optimization process converges and
the accuracy of the model reaches an asymptotic value. Figure[3|illustrates this process for the three off-diagonal terms of the Turbulent
Reynolds tensor (tyy, fy; and ;). One observes that for the testing database, values of the r?-score larger than 0.9 are reached after 20
to 30 epochs. To illustrate this level of correlation between the filtered DNS data and the ANN model, Figure [ shows a side-by-side
comparison of zy, for the mixing layer at M. = 2.2 from the filtered DNS (Fig.a)) and the ANN prediction (Fig. b)). M, = A g

c1+c

(98]
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Figure 2: a) Classification of HSIC and b) Probability density function among solver choices.

the convective Mach number (Au is the differential speed between upper and lower parts of domain and ¢ and ¢; are the corresponding
sound speeds). Note that the prediction is computed for a temporal solution which was not included in the training database. It can be
observed in Figure [] that the local nature of the ANN model does not preclude the accurate reproduction, both in size and amplitude,
of the fy, peak regions.
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Figure 3: Evolution of the r*—score computed for the three off-diagonal terms of the Turbulent Reynolds tensor over the
testing database as a function of the number of epochs.
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Figure 4: Comparison of t,, between the (a) true values and (b) the predicted ones.

3 RESULTS : Validation of the ANN-based turbulent closure model
3.1 Mixing layer at convective Mach number of 2.2

The ANN model tuned in the previous a priori analysis bas been implemented in the LES solver AVBP developed at CERFACS, as an
alternative to state-of-the-art SGS models available in this solver. The mixing layer case at M, = 2.2 is considered as a first validation
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test-case. Four different meshes are designed to assess the accuracy of the ANN-based model as a function of the grid resolution. For
this numerical experiment, the following spatial resolutions are considered : A/Apys =4, 8, 16 and 32. The first two resolutions are too
close to the DNS to be reachable by practical LES. The two coarsest are representative of LES designed to have the turbulent kinetic
energy spectrum cut in the inertial regime for large enough Reynolds numbers. Figure [Sh) compares the reference DNS temporal
evolution of the mixing layer thickness with the LES simulations using the grid A/Apys = 32 and (i) the ANN model, (ii) the Sigma
model and (iii) implicit LES. Because of the coarse grid resolution, the initial solution starts for all LES with a mixing layer thickness
larger than in the DNS. The evolution of the mixing layer thickness is initially very similar between implicit LES and the ANN model
but both strategies start to depart from each other after a non-dimensional time 7 larger than 4000 and eventually the ANN model
better recovers the growth rate of the DNS. The Sigma model at first predicts a larger mixing layer but quickly saturates and strongly
under-predicts the growth rate later in time. Note that the comparison of the growth rates is meaningful when each computation reaches
a linear regime, that is for 7 € [6000, 7000].

Figure[5b) directly compares the mixing layer growth rates reached in the self-similar regime by each model as a function of the space
resolution. It can be seen that for this M, = 2.2 dense gas mixing layer the ANN model consistently better predicts the mixing layer
thickness for all four spatial resolutions considered, with an error of 10% maximum with respect to the DNS.

— Tmplicit LES
. ANN
60 - - Sigma
—DNS 10 >
DNS
& Implicit LES|
8+ * % ANN H
'g D> Sigma
s 6f i
x
40 x ]
L ]
0 2 L L L L L L .
0 1000 2000 3000 4000 5000 6000 7000 4 8 12 16 20 24 28 2
= tAu/g A/ApNs
a) b)

Figure 5: a) Temporal evolution of the momentum thickness for a mixing layer at M. = 2.2. Comparison is made between
DNS and three LES at A/ Apns = 32. b) Comparison of growth rates for DNS and three LES as a function of the resolution

(A/Apns).

3.2 Annular stator case

In order to further assess the accuracy of the ANN-based model for flow configurations representative of industrial applications, it is
expected to be applied to the simulation of the annular stator case tested in Cambridge University[1] and presented at the last NICFD
conference[15]]. More precisely, a comparison is sought between available measurements and LES simulations performed using both
the novel model and a state-of-the-art algebraic model (WALE model [12]]). Figure [[a) displays the supersonic annular stator of
chord Icm which leads to Reynolds numbers (Re = 500000) that are tractable by LES (see Figure [6[b) for a typical LES flow field
visualization). Another interesting feature of this experiment is the relatively large amount of data available thanks to static wall
pressure measurements along the shroud and total pressure measurements in the wake. Those can be used to discriminate numerical
results obtained through different grid resolutions and turbulence models (see Figure[7). To properly investigate the effect of the ANN
model on the LES results, three different grid resolutions are considered: from a coarse grid with 46 million cells and a wall-law to a fine
grid with 450 million cells allowing a wall-resolved calculation. Computations are performed on each grid using the classical WALE
subgrid scale model or the novel ANN model. Figure |Z| presents preliminary results for the total pressure ratio in the wake obtained
with the WALE model and compared to experimental measurements. A more detailed comparison will be proposed and discussed at
the NICFD 2022 Conference.

4 CONCLUSIONS AND FUTURE WORKS

A new modeling strategy has been developed for the SGS turbulent Reynolds tensor using supervised machine learning tools. The
optimization and the training of an ANN using a rich database including several dense gas turbulent flow configurations enabled to

W
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Figure 6: a) Picture of the annular cascade[15] and b) Flow field visualization at the extrados of Q-criterion colored with
the Mach number (WL-400M case).
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Figure 7: Evolution of the total pressure ratio as a function of the pitch angle for three different meshes using an algebraic
subgrid model (Wale model [[12]]). Comparison with experimental measurements|[15)].

obtain an effective SGS model capable to provide reliable results for cases which were not encountered during the training phase. The
a posteriori validation has been initiated by performing LES of a dense gas mixing layer at M, = 2.2 using four grid sizes and three
turbulent closure strategies: the ANN model was found to better predict growth rates for all grid sizes. Further results regarding the
application of the ANN model in the context of an annular stator case are still being gathered and will be presented during the NICFD
conference.
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