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Abstract

We consider a cell population structured by a positive real number x ∈ R+, which represents the
number of P-glycoproteins carried by the cell. Those proteins combine two interesting properties:
they are involved in the resistance of cancer cells to chemotherapy drugs, and the cells proceed to
frequent transfers of those proteins. In this article, we introduce a kinetic model to describe the
dynamics of the cell population. We then consider an asymptotic limit of this equation: if transfers
are frequent, the population can be described through a system of two coupled ordinary differential
equations. Finally, we show that the solutions of the kinetic model converge to a unique steady-state
in large times. The main idea of this manuscript is to combine Wasserstein distance estimates on
the kinetic operator to more classical estimates on the macroscopic quantities.

Keywords: structured population, transfer operator, asymptotic analysis, macroscopic limit, Wasserstein
estimates, mathematical ecology.
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1 Introduction

In this study, we are interested a population of cells structured by a trait x ∈ R+, which measures the
quantity of P-glycoprotein (P-gp) carried by the cell. The P-gp are membrane proteins that play an
important role in tumors. Cells transfer their P-gp to one another [23, 30, 31], and experiments show
that those transfers have a significant effect on the number of P-gp that the cells carry. These features
motivate the modelling of both the birth-death and transfer processes. The mathematical estimates
and metrics adapted to the birth-death operator and to the transfer operator are of a different nature,
and the challenge of this study is to combine those two types of approaches. Note that the transfer
phenomenon that we model and analyse in this manuscript are related to other biological, physical and
economical phenomena, and we believe that the new mathematical methods that we introduce here will
also be useful in other contexts.

In [22], a model was proposed to model the transfer of P-gp in a cell population. The authors study
the dynamics of the population, under the following assumption on the nature of transfers: if two cells
carrying originally x1, x2 ∈ R+ P-gp interact, they end up with respectively x′1 = x1 + f(x2 − x1)
and x′2 = x2 − f(x2 − x1) P-gp, where f ∈ (0, 1) is a parameter of the model. After the derivation of
this transfer operator, the authors show the existence of solutions for the model (where only transfers
are present), and prove that all solutions converge to a Dirac mass (in other words, all the individuals
ultimately carry the same number of P-gp). The transfer operator that we consider in this study is an
extension of their work, when we assume that the cells do not exchange any information: the number of
P-gp a cell sends to its transfer partner only depends on the number of P-gp it originally carries. This
assumption has a direct impact on the dynamics of the population: a population where all cells carry
the same number of P-gp would be quickly destabilized (in an exchange between two cells containing
an equal number of P-gp, it is likely that one cell will send more of its P-gp than the other). This new
transfer kernel assumption makes the analysis of the dynamics of the solution more delicate: the methods
developed in [22] cannot be extended to our problem.
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To analyse the dynamics of the population, we will take advantage of an entropy functional introduced
by Tanaka in 1978 for the Boltzmann equation [34]. This functional describes a contracting effect of the
equation’s flow, and allows the author to describe the long-time dynamics of solutions. In [10], this idea
was extended to inelastic Boltzmann equations. We show (see Section 3.1 and Section 6.2) that estimates
similar to the estimates developed in [34, 10] can be obtained for the transfer operator appearing in (7). In
the case of the W2−Wasserstein distance, the operator decreases strictly the distance between solutions,
while for theW1−Wasserstein distance, the operator cannot increase the distance between solutions (but
it is not a strict contraction). The methods employed in our study are indeed related to another set of
distances between probability measures, based on the Fourier transform. Those methods were introduced
in [8, 9], and we refer to [14] for a review of the relations of those metrics to Wasserstein distances. Those
Fourier-based arguments have proven useful to study the properties of the Boltzmann equation in the
Maxwellian case, and they could probably also be used to study the dynamics of (7). The Fourier-
based distance was used to study a range of models from econometrics [6] and opinion formation theory.
In [3], an large class of transfer operators similar to the one we describe here was introduced. Using
probability methods and Fourier-based distances, the authors were able to prove that those operators
(and in particular the transfer operator we consider in the present study) imply a contraction.

This article is structured as follows: in Section 2, we build the model (see (7)) from biological
considerations. We detail in particular the derivation of the transfer operator. Then, in Section 2.3, we
state the two main results of this study: an asymptotic limit of the kinetic model when the frequency
of transfers is high, and the long time convergence of the solutions of the kinetic model to a unique
equilibrium. In section 3, we prove the first result of our study, namely Theorem 2.2. The proof is
based on the contraction property of the transfer operator for the W2−Wasserstein distance. Section 4
is devoted to the second important result of this study, that is Theorem 2.3. The proof of this second
result is based on the W1−Wasserstein distance. Finally, in the Appendix (see Section 6), we recall the
definition of Wasserstein distances and some properties of those metric that we will use throughout this
study. We also show how the the W2−Wasserstein distance contraction implied by the transfer operator
can be used to study the long-time dynamics of the population when the other terms in the model have
a simple structure.

2 Model and main results

We assume that all the cells are genetically identical: the trait x, corresponding to the quantity of
P-gp on the membrane of the cell, is not transmitted from a mother cell to the daughter cells (no
heritability of the trait). We can then assume that the traits of new born cells are drawn from a given
distribution independent from the trait of the parent (we discuss possible generalizations of this model in
the discussion, see Section 5). We assume that the trait of an individual has an effect on its reproduction
rate. This is indeed the case when some chemotherapy drugs are present in the environment of the
cells: the P-gp pump cytotoxic drugs out of the cells [32]. The P-gp thus play an important role in the
emergence of chemotherapy resistance in tumor cell populations, and in certain conditions the cancer
carrying a large number of P-gp can duplicate despite the presence of cytotoxic drugs.

2.1 Derivation of the transfer operator

To model transfers of P-gp, we assume that when two cells (the cell 1 and the cell 2) interact, no
information is exchanged: the cell 1 does not know how many P-gp the cell 2 carries. The number of
P-gp the cell 1 sends to the cell 2 thus only depends on its own number of P-gp. If we denote by xi (resp
x′i) the number of P-gp the cell i contains before (resp. after) the transfer, and Xi the number of P-gp
the cell i sends to the other cell, we have the relation:

x′1 = x1 −X1 +X2. (1) {xX}{xX}

We have assumed that the number of pumps the cell 1 sends to the cell 2 only depends on x1, so that
the law of X1 only depends on x1. To simplify notations, we describe the law of X1 by a density of
probability x 7→ B(x, x1) that only depends on x1. Note that we allow the law of X1 to be a measure
with singular parts, even though we denote B(x, x1) as if if were a function throughout this manuscript.
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To be consistent biologically, a cell cannot give a negative number of pumps, or more pumps that it
originally had, that is

∀x1 ∈ R+, supp B(·, x1) ⊂ [0, x1]. (2) {condbio1}{condbio1}

Thanks to (1), we can relate the law of x′1, that we denote by K(·, x1, x2), to the laws of X1 and X2:∫ x

0

K(y, x1, x2) dy = P (x′1 ≤ x|x1, x2) =
∫ x1

0

(∫ x−x1+w

0

B(z, x2)dz
)

B(w, x1)dw,

that is, thanks to a derivation in x

K(x, x1, x2) =

∫ x1

0

B(x− x1 + w, x2)B(w, x1) dw.

We can check that supp K(·, x1, x2) ⊂ [0, x1 + x2], and∫ x1+x2

0
K(x, x1, x2)dx =

∫ x1

0
B(w, x1)

∫ x1+x2

0
B(x− x1 + w, x2) dx dw

=
∫ x1

0
B(w, x1)

∫ (x1−w)+x2

x1−w B(x− x1 + w, x2) dx dw = 1.

We further assume that the law of the number of P-gp the cell 1 (resp. 2) sends to the cell 2 (resp. 1)
is proportional to the number of P-gp it originally contained, that is, for y ∈ [0, x],

B(y, x) = 1

x
B
(y
x

)
, B ∈ P([0, 1]) ∩ C0([0, 1]). (3) {Ass-B}{Ass-B}

Note that in this study, we assume that B ∈ P([0, 1]) ∩ C0([0, 1]) is a probability density, and we may
extend it into B ∈ P([0, 1]) with B(x) = 0 for x > 1. K is then given by

K(x, x1, x2) =
1

x1x2

∫ x1

0

B

(
w

x1

)
B

(
x− x1 + w

x2

)
dw. (4) {def:K1}{def:K1}

Since B ∈ P([0, 1])∩C0([0, 1]), this formula defines K(x1, x2) as a continuous probability distribution as
soon as x1 > 0 and x2 > 0. In this manuscript, we will consider solutions of the model that do not have
mass in the singleton {0}, to avoid the technical difficulty of defining K for x1 = 0 and/or x2 = 0 (it
should then be defined as a measure even if B is a continuous function). We refer to [24] for an analysis
of the transfer operator in full generality. For x1, x2 > 0, a convenient way to write the operator K is as
follows:

K(x, x1, x2) =
1

x1x2

∫ x2

0

∫ x1

0

δx=x1−y1+y2B

(
y1
x1

)
B

(
y2
x2

)
dy1 dy2. (5) {def:K2}{def:K2}

2.2 Derivation of the model

As mentioned previously, we consider a population of cells that is well-mixed and where all the cells are
genetically identical. Cells can however differ by the number x of P-gp they carry (the phenotype x is
plastic). The population is thus structured by the trait x ∈ R+, and we denote by n = n(t, x) the density
of the population at time t ≥ 0 along the trait x ∈ R+.

We assume that the P-gp are only produced at birth, in a quantity that is drawn from a given
distribution nb ∈ P([0, 1]). We assume that there is no heritability of this trait (the Heritability Index is
0), this distribution is then independent from the trait of the parent. We assume however that the birth
rate of a cell depends on its trait x: as described in the introduction, the P-gp are membrane proteins
that pump chemotactic drugs out of the cell. If some drugs are present in the cell culture, the fitness of
an individual depends on the number of pumps it carries. We assume that the fitness of an individual
is given by r + α(x), where α ∈ W 1,∞(R+). The rate of births of individuals with trait x ∈ R+ in the
population is then(∫ ∞

0

(r + α(y))n(t, y) dy

)
nb(x) =

(
r +

∫ ∞

0

α(y)
n(t, y)

N(t)
dy

)
N(t)nb(x),

where

N(t) :=

∫ ∞

0

n(t, z) dz. (6) {def:N}{def:N}
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We assume that the death rate βN(t) of individual cells does not depend on their trait x ∈ R+ and is
proportional to the total population size N(t). This assumption leads to the classical logistic regulation
model, with the following rate of deaths of individuals with trait x ∈ R+ :

−βN(t)n(t, x).

During its lifetime, each cell will proceed to transfers at a rate γ > 0 independent of the size of the
population (we assume that finding transfer partners is not a limiting factor). Moreover, we assume that
the traits have no influence on the selection of the transfer partner, which is chosen uniformly among
the population. Considering the transfer operator described in Section 2.1, the effect of the transfers can
then be represented as follows:

γ

(
1

N(t)

∫ ∞

0

∫ ∞

0

K(·, x1, x2)n(t, x1)n(t, x2) dx1 dx2 − n(t, ·)
)
.

Bringing all those terms together, we obtain the following model:

∂tn(t, x) =

(
r +

∫ ∞

0

α(y)
n(t, y)

N(t)
dy

)
N(t)nb(x)− βN(t)n(t, x)

+ γ

(
1

N(t)

∫ ∞

0

∫ ∞

0

K(x, x1, x2)n(t, x1)n(t, x2) dx1 dx2 − n(t, x)

)
, (7) {eq:model-rep}{eq:model-rep}

where r, β, γ > 0, α ∈W 1,∞(R+), K is defined by (5), and the population size N(t) is given by (6).

In this study, we have chosen to focus our attention on the dynamics of solutions, rather than their
existence and uniqueness. We will therefore assume that B is continuous, and state the results for any
solution that is C1 in time and L1 in x. The last term of (7) is then well defined and these are solution
if they satisfy (7) holds as an pointwise equality between continuous functions. We believe the results
we develop here can be extended to more general cases,where B is a probability measure.

If supp B ⊂ [δ, 1] for some δ > 0 and if nb is smooth, it should be possible to show the existence and
uniqueness of solutions of (7) following the proof of Lemma 3.1 from [6]. The general case where B is a
probability measure is considered in upcoming [24], as we will discuss in Section 5.

2.3 Main results

We will analyse the dynamics of solutions of (7) under the following assumption:
Assumption 1: Let β > 0 and M > 0. We consider:

� B ∈ P([0, 1]) ∩ C0([0, 1]) and K as in (5).

� α ∈W 1,∞(R+) and nb ∈ P2(R+) ∩ C0(R+) with
∫∞
0
xnb(x) dx < M .

� For Z > 0, we assume that there is a unique ūZ ∈ P2(R+) ∩ L1(R+) satisfying

ūZ(x) =

∫ ∞

0

∫ ∞

0

K(x, x1, x2)ūZ(x1)ūZ(x2) dx1 dx2, x ∈ R+, (8) {eq:micro-equi}{eq:micro-equi}

such that
∫∞
0
x ūZ(x) dx = Z.

We develop in the proposition below an argument indicating the existence and uniqueness of the distri-
bution ūZ for any B ∈ P([0, 1]) ∩ C0([0, 1]). To do so, however, we apply the transfer operator T (see
(17)) to measures. It is not obvious to extend the definition of T to measures and it is beyond the scope
of this manuscript: it is an interesting argument, but it is technical and more remote from biological
considerations, which is why we chose to do so in a different manuscript, see [24]. We provide below a
heuristic result, that should become rigorous with a proper definition of the transfer operator acting on
measures.

Proposition 2.1 (Heuristic proof only). Let T defined by (17), with B ∈ P([0, 1]) ∩ C0([0, 1]), and
Z ∈ R+. There exists a unique probability measure ūZ ∈ P2(R+) ∩ L1(R+) such that

T (ūZ) = ūZ and

∫ ∞

0

xūZ(x) dx = Z.
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Moreover there exists C > 0 such that for any Z1, Z2 ≥ 0,

W2(ūZ1 , ūZ2) ≤ C|Z1 − Z2|, (9) {eq:differents-bar-u0}{eq:differents-bar-u0}

and W2(ūZ1 , δ0) ≤ C|Z1|.

An explicit expression for ūZ is known for ūZ in a few particular cases only, see [4]. We will see that
despite the non-explicit nature of the steady-states of the transfer operator T , a rigorous macroscopic
asymptotic limit of the model (7) can be built. Note also that a numerical approach could be used to
compute approximations of the profiles ūZ .

In the theorem below, we provide an asymptotic limit of the model (7): we show that when γ > 0 is
large, the macroscopic quantities N(t) (defined by (6) and

Z(t, x) =

∫ ∞

0

n(t, x)

N(t)
dx, (10) {def:Z}{def:Z}

are close to solutions of the following ordinary differential equation:{
N̄ ′(t) =

(
r +

∫∞
0
α(x)ūZ̄(t)(x) dx− βN̄(t)

)
N̄(t),

Z̄ ′(t) =
(
r +

∫∞
0
α(x)ūZ̄(t)(x) dx

) (∫∞
0
xnb(x) dx− Z̄(t)

)
,

(11) {eq:EDO}{eq:EDO}

where ūZ is the unique solution of (8) such that
∫∞
0
xūZ(x) dx = Z. The theorem below also shows that

the distribution of x 7→ n(t, x) is well approximated by n(t, x) ∼ N̄(t)ūZ̄(t) when γ > 0 is large.

Theorem 2.2. Let β,M,B,K, α, nb and ūZ (for Z ≥ 0) satisfying Assumption 1. We assume that the
initial population n0 ∈ C0(R+) satisfies

∫
x2n0(x) dx < M , and define t 7→ (N̄(t), Z̄(t)) ∈ (R+)

2 as the
solution of (11), with

(
N̄(0), Z̄(0)

)
=

(∫ ∞

0

n0(x) dx,

∫ ∞

0

xn0(x)∫∞
0
n0(x) dx

dx

)
.

There are C > 0 and ζ > 0 such that if γ > 0 is large enough and if n = n(t, x) ∈ C1(R+, L
1(R+))

is a solution of (7) with initial value n0, then,

∀t ≥ 0, W2

(
n(t, ·)
N(t)

, uZ̄(t)

)
≤ C

√
γ
+ Ce−ζγt,

∣∣N(t)− N̄(t)
∣∣+ ∣∣Z(t)− Z̄(t)

∣∣ ≤ C

γζ
, (12) {eq:distance-W2}{eq:distance-W2}

where N(t) =
∫∞
0
n(t, x) dx, Z(t, x) =

∫∞
0

n(t,x)
N(t) dx, and ūZ̄(t) is defined by (8).

The proof of this theorem is given in Section 3.3. Theorem 2.2 shows that the dynamics of solutions
of (7) can be described by the system of two coupled ordinary differential equations (11), provided
γ > 0 is large. One consequence is that the two first moments of the population, that is N(t) and
Z(t), are sufficient to describe its distribution when γ > 0 is large, which is an interesting property of
the population. Indeed, we observe in (11) that the growth rate of the population only depends on the
population size and the mean number of PgP, while the dynamics of the mean number of PgP, that is
Z(t) can be approximated by a closed relaxation differential equation.

In Theorem 2.2, we show that the population, for γ > 0 and t > 0 large, is close to ū∫ ∞
0
nb(x) dx.

However, it does not show the convergence of the population to a steady-state when t→ ∞, when γ > 0
is large but fixed. Obtain such a convergence would complete the analysis of the dynamics of the model.
A strong asymptotic theory for such models could unlock of models related to (7) (see [18]) and allow us
to use these as building blocks for complex biological models. We have not succeeded to DEVELOP the
approach introduced in Theorem 2.2, based on a meso-macro decomposition and on the W2 distance,
to prove the long time convergence of solutions. We show below that it is possible to use a different
idea, based on the Wasserstein distance W1, to prove this convergence. We believe however that this W1

approach is less flexible. It however shows how Wasserstein approaches can be used to obtain long time
convergence of solutions in non-linear biological models:
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Theorem 2.3. Let β,M,B,K, α, nb and uZ (for Z ≥ 0) satisfying Assumption 1. Let γ > 0 and

κ := r + min
x∈R+

α(x)− 3M∥α′∥L∞(R+) > 0,

If n = n(t, x) ∈ C1(R+, L
1(R+)) is a solution of (7) such that

∫
xn(0, x) dx < M , then it converges to

a limit N̄ n̄, with N̄ > 0 and n̄ ∈ P2(R+), as t→ ∞ for the weak-* topology of measures over R+. More
precisely, there exists a constant C > 0 such that

∀t ≥ 0, W1

(
n(t, ·)
N(t)

, n̄

)
≤ Ce−κt,

∣∣N(t)− N̄
∣∣ ≤ Ce

−min
(
κ, βN̄

4

)
t
,

where N(t) =
∫∞
0
n(t, x) dx.

Remark 2.4. Note that the limit N̄ n̄ of the solution n is actually a steady-solution of (7), but since it
could be measure-valued, we do not define it as such here. The argument (52) in the proof of this Theorem
actually shows that this limit is unique and independent from the solution n and its initial condition.

This theorem is proven in Section 4. This proof relies on the convergence of the renormalized function

t 7→ n(t,·)∫ ∞
0
n(t,x) dx

for the Wasserstein distance W1. This convergence can then be used to prove the

convergence of N(t). The method employed in the proof is more specific to (7) than Theorem 2.2: it
relies on the fact that the distribution of nb(·) is not affected by the solution, and on the fact that the
transfer operator is a contraction (although not a strict contraction, as it is with W2) for the transfer
operator.

2.4 Equations satisfied by moments of n

For t ≥ 0, we define N(t), by (6), Z(t) by (10) and Z(t), ñ(t, x) by

ñ(t, x) :=
n(t, x)

N(t)
. (13) {def:tilden}{def:tilden}

We can integrate the equation (7) to get the following equation on N :

d

dt
N(t) =

(
r +

∫ ∞

0

α(x)ñ(t, x) dx− βN(t)

)
N(t). (14) {eq:N2}{eq:N2}

We derive next an equation on ñ:

∂tñ(t, x) =
1

N(t)
∂tn(t, x)−

n(t, x)

N(t)2
N ′(t)

=

(
r +

∫ ∞

0

α(y)ñ(t, y) dy

)
(nb(x)− ñ(t, x))

+ γ

[∫ ∞

0

∫ ∞

0

K(x, x1, x2)ñ(t, x1)ñ(t, x2) dx1 dx2 − ñ(t, x)

]
. (15) {eq:model-tilde-n}{eq:model-tilde-n}

We notice next that Z(t) =
∫∞
0
xñ(t, x) dx and (15) then implies

d

dt
Z(t) =

∫ ∞

0

x∂tñ(t, x) dx =

(
r +

∫ ∞

0

α(x)ñ(t, x) dx

)
(Zb − Z(t)), (16)

where Zb :=
∫∞
0
xnb(x) dx.

3 A macroscopic limit for the model (7)

The estimates we derive on the transfer operator (Section 4.1) and on the pure transfer model (Section 4.2)
have been considered for related models in e.g. [6] and [3], using different methods: Fourier transform
techniques or probabilistic tools. We have chosen to derive all the necessary estimates required to prove
Theorem 2.2 using Wasserstein distance methods.
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3.1 The W2−distance contraction implied by the transfer operator

Let T : P2(R+) → P2(R+) the transfer operator: for u ∈ P2(R+),

T (u)(x) =

∫ ∞

0

∫ ∞

0

K(x, x1, x2)u(x1)u(x2) dx1 dx2, (17) {def:exchange-operator}{def:exchange-operator}

where K is defined by (5). To understand the effect of T , we will use the following technical lemma:

Lemma 3.1. Let x1, x2, x
′
1, x

′
2 ∈ R∗

+, and K as in (5). We define λ1, λ2 ∈ [0, 1] as

λ1 :=

∫ 1

0

xB(x) dx, λ2 :=

∫ 1

0

x2B(x) dx. (18) {def:lambdai}{def:lambdai}

We have

W 2
2

(
K(·, x1, x2),K(·, x′1, x′2)

)
≤ (1 + λ2 − 2λ1)(x1 − x′1)

2 + λ2(x2 − x′2)
2

+ 2(1− λ1)λ1(x1 − x′1)(x2 − x′2). (19) {eq:KW2}{eq:KW2}

Proof of Lemma 3.1. To estimate the Wasserstein distance W 2
2

(
K(·, x1, x2),K(·, x′1, x′2)

)
, we will use

the Kantorovich dual formula. We consider (φ,ψ) ∈ Φ2 (see (57)), and estimate

I =

∫ ∞

0

φ(x)K(x, x1, x2) dx+

∫ ∞

0

ψ(X)K(X,x′1, x
′
2) dX

=

∫ ∞

0

φ(x)

∫ x2

0

∫ x1

0

δx=x1−y1+y2
1

x1x2
B

(
y1
x1

)
B

(
y2
x2

)
dy1 dy2 dx

+

∫ ∞

0

ψ(X)

∫ x2

0

∫ x1

0

δX=x′
1−y′1+y′2

1

x′1x
′
2

B

(
y′1
x′1

)
B

(
y′2
x′2

)
dy′1 dy

′
2 dX

=

∫ x2

0

∫ x1

0

φ(x1 − y1 + y2)
1

x1x2
B

(
y1
x1

)
B

(
y2
x2

)
dy1 dy2

+

∫ x2

0

∫ x1

0

ψ(x′1 − y′1 + y′2)
1

x′1x
′
2

B

(
y′1
x′1

)
B

(
y′2
x′2

)
dy′1 dy

′
2,

and then, thanks to the changes of variable ỹi =
yi
xi

and ỹ′i =
y′i
xi

for i = 1, 2, we get

I =

∫ 1

0

∫ 1

0

φ(x1 − x1y1 + x2y2)B (y1)B (y2) dy1 dy2

+

∫ 1

0

∫ 1

0

ψ(x′1 − x′1y
′
1 + x′2y

′
2)B (y′1)B (y′2) dy

′
1 dy

′
2

=

∫ 1

0

∫ 1

0

(φ(x1 − x1y1 + x2y2) + ψ(x′1 − x′1y1 + x′2y2))B (y1)B (y2) dy1 dy2. (20)

Since (φ,ψ) ∈ Φ2 (see (57)), we have

I ≤
∫ 1

0

∫ 1

0

|(x1 − x1y1 + x2y2)− (x′1 − x′1y1 + x′2y2)|
2
B (y1)B (y2) dy1 dy2

=

∫ 1

0

∫ 1

0

|(x1 − x′1)(1− y1) + (x2 − x′2)y2|
2
B (y1)B (y2) dy1 dy2

=

∫ 1

0

∫ 1

0

(
(x1 − x′1)

2(1− y1)
2 + (x2 − x′2)

2y22 + 2(x1 − x′1)(x2 − x′2)(1− y1)y2

)
B (y1)B (y2) dy1 dy2

= (x1 − x′1)
2

∫ 1

0

(1− y1)
2B (y1) dy1 + (x2 − x′2)

2

∫ 1

0

y22B (y2) dy2

+2(x1 − x′1)(x2 − x′2)

(∫ 1

0

(1− y1)B (y1) dy1

)(∫ 1

0

y2B (y2) dy2

)
,
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and then, with the notations (18),

I ≤ (x1 − x′1)
2(1 + λ2 − 2λ1) + (x2 − x′2)

2λ2 + 2(x1 − x′1)(x2 − x′2)(1− λ1)λ1.

Since this is true for any (φ,ψ) ∈ Φ2 (see (57)), we can use this estimate and (56) to show that

W 2
2

(
K(·, x1, x2),K(·, x′1, x′2)

)
= max

(φ,ψ)∈Φ2

I

≤ (1 + λ2 − 2λ1)(x1 − x′1)
2 + λ2(x2 − x′2)

2 + 2(1− λ1)λ1(x1 − x′1)(x2 − x′2).

We can now prove the following result, which provides an explicit estimate of the W2−Wasserstein
distance contraction implied by the transfer operator T :

Proposition 3.2. Let T defined by (17), with B ∈ P([0, 1])∩C0([0, 1]). Then, for any u1, u2 ∈ P2(R+)
we have

W2(T (u1), T (u2)) ≤
3

2
W2 (u1, u2) . (21) {eq:estW2generale}{eq:estW2generale}

Moreover, if ∫ ∞

0

xu1(x) dx =

∫ ∞

0

xu2(x) dx, (22) {eq:1ermoment}{eq:1ermoment}

we have

W2(T (u1), T (u2)) ≤
(
1 + 2

∫ 1

0

x(x− 1)B(x) dx

) 1
2

W2 (u1, u2) , (23) {eq:estK1}{eq:estK1}

Moreover, (
1 + 2

∫ 1

0

x(x− 1)B(x) dx

) 1
2

< 1.

Proof of Proposition 3.2. We want to estimate theW2 distance between T (u1) and T (u2) thanks to (56).
We consider (φ,ψ) ∈ Φ2, and estimate

I :=

∫ ∞

0

φ(x)T (u1)(x) dx+

∫ ∞

0

ψ(X)T (u2)(X) dX

=

∫ ∞

0

φ(x)

∫ ∞

0

∫ ∞

0

K(x, x1, x2)u1(x1)u1(x2) dx1 dx2 dx

+

∫ ∞

0

ψ(X)

∫ ∞

0

∫ ∞

0

K(X,x′1, x
′
2)u2(x

′
1)u2(x

′
2) dx

′
1 dx

′
2 dX

=

∫ ∞

0

∫ ∞

0

(∫ ∞

0

φ(x)K(x, x1, x2) dx

)
u1(x1)u1(x2) dx1 dx2

+

∫ ∞

0

∫ ∞

0

(∫ ∞

0

ψ(X)K(X,x′1, x
′
2) dX

)
u2(x

′
1)u2(x

′
2) dx

′
1 dx

′
2

Since u1, u2 ∈ P2(R+), we have
∫∞
0
u1(x)dx =

∫∞
0
u2(x)dx = 1 and then

I =

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

(∫ ∞

0

φ(x)K(x, x1, x2) dx+

∫ ∞

0

ψ(X)K(X,x′1, x
′
2) dX

)
u1(x1)u1(x2)u2(x

′
1)u2(x

′
2) dx1 dx2 dx

′
1 dx

′
2

Let now π ∈ Π(u1, u2) (see (55)). The above equality can be rewritten as follow

I =

∫
R2

+

∫
R2

+

(∫ ∞

0

φ(x)K(x, x1, x2) dx+

∫ ∞

0

ψ(X)K(X,x′1, x
′
2) dX

)
dπ(x1, x

′
1) dπ(x2, x

′
2)

≤
∫
R2

+

∫
R2

+

W 2
2 (K(·, x1, x2),K(·, x′1, x′2)) dπ(x1, x′1) dπ(x2, x′2), (24) {est:L}{est:L}
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where we have used the fact that (φ,ψ) ∈ Φ2 as in formula (56). We now use the result of Lemma 3.1
(and the notaions λ1, λ2 introduced in that lemma) to obtain

I ≤
∫
R2

+

∫
R2

+

(
(1 + λ2 − 2λ1)(x1 − x′1)

2 + λ2(x2 − x′2)
2 + 2(1− λ1)λ1(x1 − x′1)(x2 − x′2)

)
dπ(x1, x

′
1) dπ(x2, x

′
2)

≤ (1 + λ2 − 2λ1)

∫
R2

+

(∫
R2

+

(x1 − x′1)
2 dπ(x1, x

′
1)

)
dπ(x2, x

′
2)

+ λ2

∫
R2

+

(∫
R2

+

(x2 − x′2)
2 dπ(x2, x

′
2)

)
dπ(x1, x

′
1)

+ 2(1− λ1)λ1

(∫
R2

+

(x1 − x′1) dπ(x1, x
′
1)

)(∫
R2

+

(x2 − x′2) dπ(x2, x
′
2)

)
. (25) {eq:differents-bar-u1}{eq:differents-bar-u1}

If the equality (22) holds,∫
R2

+

(x− x′) dπ(x, x′) =

∫ ∞

0

xu1(x) dx−
∫ ∞

0

xu2(x) dx = 0, (26) {eq:differents-bar-u2}{eq:differents-bar-u2}

and then, since this estimate holds for any (φ,ψ) ∈ Φ2 and the right hand side is independent from
(φ,ψ), we can use the Kantorovich dual formula (56) to obtain

W 2
2 (T (u1), T (u2)) ≤ (1 + 2λ2 − 2λ1)

∫
R2

+

(x1 − x′1)
2 dπ(x1, x

′
1).

Since this inequality holds for any π ∈ Π(u1, u2) (with the notation Π introduced in (55)), we can take
the minimum over such π, and get

W 2
2 (T (u1), T (u2)) ≤ (1 + 2λ2 − 2λ1)W

2
2 (u1, u2)

=

(
1 + 2

∫ 1

0

x(x− 1)B(x) dx

)
W 2

2 (u1, u2) .

Moreover,
(
1 + 2

∫ 1

0
x(x− 1)B(x) dx

) 1
2

< 1, since B is a continuous function and a probability distribu-

tion, and thus 1 + 2
∫ 1

0
x(x− 1)B(x) dx < 1 + 2

∫ 1

0
1
4B(x) dx = 1.

If the equality (22) does not hold, we can estimate the two last terms of (9) with a Cauchy-Schwarz
inequality to show

I ≤ ((1 + λ2 − 2λ1) + λ2 + 2(1− λ1)λ1)

∫
R2

+

(x1 − x′1)
2 dπ(x1, x

′
1) ≤W 2

2 (u1, u2),

where we have used (1 + λ2 − 2λ1) + λ2 = 1 + 2
∫ 1

0
x(x − 1)B(x) dx ≤ 1 and 2(1 − λ1)λ1 ≤ 1/2. This

estimate proves (21) when we consider the maximum of I over (φ,ψ) ∈ Φ2.

3.2 Fixed points of the transfer operator: Heuristic proof of Proposition 2.1

In this section, we will apply the transfer operator T to probability measures. We have not extended the
operator T to measures and our arguments in this section are thus not rigorous. We refer to [24] for an
extension of T that would make the present argument rigorous.

Note that
{
u ∈ P2(R+);

∫∞
0
xu(x) dx = Z

}
is a closed subset of P2(R+) for W2 and thus({

u ∈ P2(R+);

∫ ∞

0

xu(x) dx = Z

}
,W2

)
(27) {eq:setT}{eq:setT}
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is a complete metric space (see e.g. [36]). For any u ∈ P2(R+),
∫∞
0
T (u) dx = 1 and T (u) ≥ 0, that is

T (u) is a probability measure. Moreover,∫ ∞

0

x2T (u)(x) dx =

∫ ∞

0

∫ ∞

0

(∫ ∞

0

x2K(x, x1, x2) dx

)
u(x1)u(x2) dx1 dx2

=

∫ ∞

0

∫ ∞

0

(∫ x2

0

∫ x1

0

(x1 − y1 + y2)
2
B

(
y1
x1

)
B

(
y2
x2

)
dy1
x1

dy2
x2

)
u(x1)u(x2) dx1 dx2

=

∫ ∞

0

∫ ∞

0

(
x21(1 + λ2 − 2λ1) + x22λ2 + 2x1x2

(
λ1 − λ21

))
u(x1)u(x2) dx1 dx2

=

(∫ ∞

0

x2u(x) dx

)
(1 + 2λ2 − 2λ1) + 2Z2

(
λ1 − λ21

)
<∞.

We can thus define T as an operator mapping P2(R+) into itself. Moreover,∫ ∞

0

xT (u)(x) dx =

∫ ∞

0

∫ ∞

0

(∫ ∞

0

xK(x, x1, x2) dx

)
u(x1)u(x2) dx1 dx2

=

∫ ∞

0

∫ ∞

0

(∫ x2

0

∫ x1

0

(x1 − y1 + y2)B

(
y1
x1

)
B

(
y2
x2

)
dy1
x1

dy2
x2

)
u(x1)u(x2) dx1 dx2

=

∫ ∞

0

∫ ∞

0

(x1 − x1λ1 + x2λ1)u(x1)u(x2) dx1 dx2 =

∫ ∞

0

xu(x) dx = Z,

for any u ∈
{
u ∈ P2(R+);

∫∞
0
xu(x) dx = Z

}
. The application T therefore maps the set defined by (27)

into itself. Finally, thanks to Proposition 3.2, the application is a strict contraction on this set for the
distance W2. We can apply the Banach fixed point Theorem to show the existence of a unique measure
ū ∈

{
u ∈ P2(R+);

∫∞
0
xu(x) dx = Z

}
such that ū = T (ū).

To prove (9), we can reproduce the proof of Proposition 3.2 until (25) with u1 := ūZ1 and u2 := ūZ2 .
Here, (26) becomes∫

R2

(x− x′) dπ(x, x′) =

∫ ∞

0

xu1(x) dx−
∫ ∞

0

xu2(x) dx = Z1 − Z2,

and then, since this estimate holds for any (φ,ψ) ∈ Φ2, thanks to the Kantorovich dual formula (56),

W 2
2 (T (ūZ1

), T (ūZ2
)) ≤ (1 + 2λ2 − 2λ1)

∫
R2

(x1 − x′1)
2 dπ(x1, x

′
1) + 2(1− λ1)λ1|Z1 − Z2|2.

Since this inequality holds for any π ∈ Π(ūZ1
, ūZ2

) (with the notation of (55)), we can take the minimum
over such π, and get

W 2
2 (T (ūZ1

), T (ūZ2
)) ≤ (1 + 2λ2 − 2λ1)W

2
2 (ūZ1

, ūZ2
) + 2(1− λ1)λ1|Z1 − Z2|2.

Since T (u1) = u1 = ūZ1 and T (u2) = u2 = ūZ2 , this estimate implies

W 2
2 (ūZ1

, ūZ2
) ≤ (1− λ1)λ1

λ1 − λ2
|Z1 − Z2|2,

and notice that B ∈ C0([0, 1]) implies λ1 − λ2 ̸= 0, and thus (1−λ1)λ1

λ1−λ2
< ∞. Finally, we notice that

T (δ0) = δ0, and then W2(ūZ1
, δ0) ≤ C|Z|.

3.3 Macroscopic limit: Proof of Theorem 2.2

Step 1: Preliminaries
We recall the definition (6) of N(t), (10) of Z(t) and (13) of ñ(t, x), as well as the equations (14),

(16) and (15) they satisfy. Thanks to (14),

∀t ≥ 0, 0 < min

(
N(0),

r

β

)
≤ N(t) ≤ max

(
N(0),

r + ∥α∥L∞(R+)

β

)
, ∥N ′(t)∥L∞(R+) ≤ C, (28) {eq:NLinfty}{eq:NLinfty}
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where the constant C > 0 is independent of γ > 0. Moreover, (15) and a Duhamel formula can be used
to show

ñ(t, x) = ñ(0, x)e−(γ+r)t−
∫ t
0

∫ ∞
0
α(y)ñ(σ,y) dy dσ

+

∫ t

0

e−(γ+r)(t−s)−
∫ t
s

∫ ∞
0
α(y)ñ(σ,y) dy dσ

[(
r +

∫ ∞

0

α(y)ñ(s, y) dy

)
nb(x) + γT (ñ(s, ·))

]
ds, (29) {eq:tildenduhamel}{eq:tildenduhamel}

where we have use the notation T introduced in (17). Since α ≥ 0 and thanks to (16), we have

∀t ≥ 0, 0 < min(Z(0), Zb) ≤ Z(t) ≤ max

(∫ ∞

0

x
n(0, x)

N(0)
dx, Zb

)
, ∥Z ′(t)∥L∞(R+) ≤ C, (30) {eq:ZLinfty}{eq:ZLinfty}

where the constant C > 0 is independent of γ > 0.

Step 2: Estimates on W2

(
ñ(t, ·), ūZ(t)

)
Since ūZ(t) is a fixed point of T (see Proposition 2.1), it satisfies

0 = −
(
γ + r +

∫ ∞

0

α(y)ñ(σ, y) dy dσ

)
ūZ(t) +

(
r +

∫ ∞

0

α(y)ñ(σ, y) dy dσ

)
ūZ(t) + γT (ūZ(t)),

for t ≥ 0 and σ ∈ [0, t]. Then, for any t ≥ 0, ūZ(t) satisfies a relation similar to (29):

ūZ(t)(x) = ūZ(t)(x)e
−(γ+r)t−

∫ t
0

∫ ∞
0
α(y)ñ(σ,y) dy dσ

+

∫ t

0

e−(γ+r)(t−s)−
∫ t
s

∫ ∞
0
α(y)ñ(σ,y) dy dσ

[(
r +

∫ ∞

0

α(y)ñ(s, y) dy dσ

)
ūZ(t) + γT (ūZ(t))(x)

]
ds.

We consider (φ,ψ) ∈ Φ2, and estimate

I :=

∫ ∞

0

φ(x)ñ(t, x) dx+

∫ ∞

0

ψ(X)ūZ(t)(X) dX.

I = e−(γ+r)t−
∫ t
0

∫ ∞
0
α(y)ñ(σ,y) dy dσ

(∫ ∞

0

φ(x)ñ(0, x) dx+

∫ ∞

0

ψ(X)ūZ(t)(X) dX

)
+

∫ t

0

e−(γ+r)(t−s)−
∫ t
s

∫ ∞
0
α(y)ñ(σ,y) dy dσ

(
r +

∫ ∞

0

α(y)ñ(s, y) dy

)
(∫ ∞

0

φ(x)nb(x) dx+

∫ ∞

0

ψ(X)ūZ(t)(X)

)
ds

+ γ

∫ t

0

e−(γ+r)(t−s)−
∫ t
s

∫ ∞
0
α(y)ñ(σ,y) dy dσ

(∫ ∞

0

ψ(X)T (ñ(s, ·)) +
∫ ∞

0

φ(x)T (ūZ(t))(X) dX

)
ds.

We can now use the Kantorovich formula (56) to get:

I ≤ e−(γ+r)t−
∫ t
0

∫ ∞
0
α(y)ñ(σ,y) dy dσW 2

2

(
ñ(0, ·), ūZ(t)

)
+

∫ t

0

e−(γ+r)(t−s)−
∫ t
s

∫ ∞
0
α(y)ñ(σ,y) dy dσ

(
r +

∫ ∞

0

α(y)ñ(s, y) dy

)
W 2

2

(
nb, ūZ(t)

)
ds

+γ

∫ t

0

e−(γ+r)(t−s)−
∫ t
s

∫ ∞
0
α(y)ñ(σ,y) dy dσW 2

2

(
T (ñ(s, ·)), T (ūZ(t))

)
ds. (31)

We notice that

W2(ñ(0, ·), ūZ(t)) ≤W2(ñ(0, ·), δ0)+W2(δ0, ūZ(t)) ≤ C, W2(nb, ūZ(t)) ≤W2(nb, δ0)+W2(δ0, ūZ(t)) ≤ C,

since W2(δ0, f) =
∫
R+
x2f(x) dx and ñ(0, ·), nb and ūZ(t) have uniformly bounded second moments (see

(9) and the uniform bound (30) on Z(t)). Furthermore,

W2

(
T (ñ(s, ·)), T (ūZ(t))

)
≤W2

(
T (ñ(s, ·)), T (ūZ(s))

)
+W2

(
T (ūZ(s)), T (ūZ(t))

)
≤ (1 + 2λ2 − 2λ1)W2

(
ñ(s, ·), ūZ(s)

)
+

3

2
W2

(
ūZ(s), ūZ(t)

)
,
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thanks to Proposition 3.2. (30) provides a uniform bound on Z ′(s), which combined to Proposition 2.1
implies

W2

(
T (ñ(s, ·)), T (ūZ(t))

)
≤ (1 + 2λ2 − 2λ1)

1/2W2

(
ñ(s, ·), ūZ(s)

)
+ C|s− t|.

These inequalities can be used to estimate (31) further:

I ≤ Ce−γt + C

∫ t

0

e−(γ+r)(t−s) dσ

+ γ

∫ t

0

e−(γ+r)(t−s)
(
(1 + 2λ2 − 2λ1)

1/2W2

(
ñ(s, ·), ūZ(s)

)
+ C|t− s|

)2
ds

≤ Ce−γt + C

∫ t

0

e−(γ+r)(t−s) dσ

+ γ

∫ t

0

e−(γ+r)(t−s)(1 + λ2 − λ1)W
2
2

(
ñ(s, ·), ūZ(s)

)
+ C|t− s|2 ds,

where we have used a Young inequality, that is (a + b)2 ≤ (1 + 2ε)a2 + (1 + 2/2ε)b2 and notice that

0 < (1+2λ2−2λ1)+1
2 = (1 + λ2 − λ1) < 1. Thanks to a change of variable, γ

∫ t
0
e−(γ+r)(t−s)|t − s|2 ds ≤

1
γ2

∫∞
0
e−(γs)(γs)2 d(γs) ≤ C

γ2 , and then, for t ≥ 0,

I ≤ Ce−γt +
C

γ
+ γ(1 + λ2 − λ1)

∫ t

0

e−γ(t−s)W 2
2

(
ñ(s, ·), ūZ(s)

)
ds+

C

γ2
.

Thanks to the Wasserstein duality formula (56),

W 2
2

(
ñ(t, ·), ūZ(t)

)
= sup

(φ,ψ)∈Φ2

∫ ∞

0

φ(x)ñ(t, x) dx+

∫ ∞

0

ψ(X)ūZ(t)(X) dX = sup
(φ,ψ)∈Φ2

I,

and then

W 2
2

(
ñ(t, ·), ūZ(t)

)
≤ Ce−γt +

C

γ
+ (1 + λ2 − λ1)

∫ t

0

e−γ(t−s)W 2
2

(
ñ(s, ·), ūZ(s)

)
ds,

and we apply a Gronwall inequality (see [38], Theorem 1) to show, for t ≥ 0,

W 2
2

(
ñ(t, ·), ūZ(t)

)
≤ Ce−γt +

C

γ
+ γ(1 + λ2 − λ1)

∫ t

0

(
Ce−γs +

C

γ

)
e−γ(t−s)eγ(1+λ2−λ1)(t−s) ds

≤ C

γ
+ Ce−γ(λ1−λ2)t +

C

γ(λ1 − λ2)
. (32) {est:tilden-baru}{est:tilden-baru}

Step 3: Estimate on |Z(t)− Z̄(t)|
The equations satisfied by Z(t) and Z̄(t) (see (16), (11)) imply∣∣∣∣ ddt ln
(
Z(t)− Zb
Z̄(t)− Zb

)∣∣∣∣ = ∣∣∣∣∫ ∞

0

α(x)
(
ūZ̄(t)(x)− ñ(t, x)

)
dx

∣∣∣∣ ≤ ∥α′∥L∞(R+)W1

(
ñ(t, ·), ūZ̄(t)

)
≤ ∥α′∥L∞(R+)

[
W1

(
ñ(t, ·), ūZ(t)

)
+W1

(
ūZ(t), ūZ̄(t)

)]
≤ C

√
γ
+ Ce−γ(λ1−λ2)t + C

∣∣Z(t)− Z̄(t)
∣∣ ,

thanks to (32) and Proposition 2.1. Since Z ′(t) and Z̄ ′(t) are bounded (see (30)) and Z(0) = Z̄(0), we
have

∣∣Z(t)− Z̄(t)
∣∣ ≤ Ct and then,∣∣∣∣ln(Z(t)− Zb
Z̄(t)− Zb

)∣∣∣∣ ≤ C
√
γ
t+

C

γ
+ C

∫ t

0

∣∣Z(s)− Z̄(s)
∣∣ ds ≤ C

√
γ
t+

C
√
γ
+ Ct2,

and thus (
Z̄(t)− Zb

)
e
−
(

C√
γ t+

C√
γ +Ct2

)
≤ Z(t)− Zb ≤

(
Z̄(t)− Zb

)
e

(
C√
γ t+

C√
γ +Ct2

)
.

12



As a consequence, ∣∣Z(t)− Z̄(t)
∣∣ ≤ C

(
e
C
√
γt+ C√

γ +Ct2 − 1
)
≤ C

√
γ
t+

C
√
γ
+ Ct2,

provided t ∈ [0, 1], and in particular,

∀t ∈ [0, γ−1/4],
∣∣Z(t)− Z̄(t)

∣∣ ≤ C
√
γ
. (33) {eq:shorttime}{eq:shorttime}

For t ≥ γ−1/4, we estimate

Z(t)− Z̄(t) = (Z(t)− Zb)− (Z̄(t)− Zb)

= (Z(0)− Zb)e
−

∫ t
0
(r+

∫
α(x)ñ(s,x) dx) ds − (Z(0)− Zb)e

−
∫ t
0 (r+

∫
α(x)ūZ̄(s)(x) dx) ds

= (Z(0)− Zb)
(
e−

∫ t
0 (

∫ ∞
0
α(x)(ñ(s,x)−ūZ̄(s)(x)) dx) ds − 1

)
e−

∫ t
0 (r+

∫ ∞
0
α(x)ūZ̄(s)(x) dx) ds.

We notice that

W1

(
ñ(s, ·), ūZ̄(s)

)
≤W2

(
ñ(s, ·), ūZ̄(s)

)
≤W2

(
ñ(s, ·), ūZ(s)

)
+W2

(
ūZ(s), ūZ̄(s)

)
,

and thus, thanks to (32) and Proposition 2.1, for t ≥ C ′ ln γ
γ (and provided we select C ′ > 0 large enough),

W1

(
ñ(s, ·), ūZ̄(s)

)
≤ C

√
γ
+ C|Z(s)− Z̄(s)|. (34) {est:intalpha}{est:intalpha}

We can use this estimate and the Kantorovich-Rubinstein formula (see (58)) to show∫ t

0

∣∣∣∣∫ ∞

0

α(x)
(
ñ(s, x)− ūZ̄(s)(x)

)
dx

∣∣∣∣ ds
≤
∫ C′ ln γ/γ

0

∣∣∣∣∫ ∞

0

α(x)
(
ñ(s, x)− ūZ̄(s)(x)

)
dx

∣∣∣∣ ds+ ∫ t

C′ ln γ/γ

∣∣∣∣∫ ∞

0

α(x)
(
ñ(s, x)− ūZ̄(s)(x)

)
dx

∣∣∣∣ ds
≤
∫ C′ ln γ/γ

0

2∥α∥L∞(R+) ds+ ∥α′∥L∞(R+)

∫ t

C′ ln γ/γ

W1

(
ñ(s, ·), ūZ̄(s)

)
ds

≤ C
ln γ

γ
+

C
√
γ
t+ C

∫ t

0

∣∣Z(s)− Z̄(s)
∣∣ ds ≤ C

√
γ
(1 + t) + C

∫ t

0

∣∣Z(s)− Z̄(s)
∣∣ ds.

Then, provided γ > 0 is large enough and t ≥ γ−1/4

∣∣Z(t)− Z̄(t)
∣∣ ≤ |Z(0)− Zb|

(
e

C√
γ (1+t)+C̄

∫ t
0 |Z(s)−Z̄(s)| ds − 1

)
e−

∫ t
0 (r+

∫ ∞
0
α(x)ūZ̄(s)(x) dx) ds

≤ C
(
e

C√
γ (1+t)+C̄

∫ t
0 |Z(s)−Z̄(s)| ds − 1

)
. (35) {eq:intermtimes}{eq:intermtimes}

We have the following estimate as well, still for t ≥ γ−1/4 and γ > 0 large enough,∣∣Z(t)− Z̄(t)
∣∣ ≤ Ce

C√
γ (1+t)+C̄

∫ t
0 |Z(s)−Z̄(s)| ds−rt ≤ CeC̄

∫ t
0 |Z(s)−Z̄(s)| ds− r

2 t, (36) {eq:longertimes}{eq:longertimes}

Note that we have specified the constant C̄ > 0 in the expressions above ((35) and (36)), to define

t̄ := min

{
t ≥ 0;

∫ t

0

∣∣Z(s)− Z̄(s)
∣∣ ds ≥ 4C̄

ln(γ)
t

}
,

and notice that (33) implies t̄ > Cγ−1/4 (we recall that γ > 0 is large). For t ∈ [γ−1/4,min(ln(γ)/(4C̄), t̄)],
thanks to (35),

∣∣Z(t)− Z̄(t)
∣∣ ≤ C

√
γ
(1 + t) + C̄

∫ t

0

∣∣Z(s)− Z̄(s)
∣∣ ds ≤ C ln γ

√
γ

+ C̄

∫ t

0

∣∣Z(s)− Z̄(s)
∣∣ ds.
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This inequality implies, thanks to a Grönwall inequality,∣∣Z(t)− Z̄(t)
∣∣ ≤ C ln γ

√
γ
eC̄t ≤ C

γ1/4
, (37) {est:ZZmoyen}{est:ZZmoyen}

provided γ > 0 is large enough and t ∈ [γ−1/4,min(ln(γ)/(4C̄), t̄)]. This estimate implies in particular
that t̄ > ln(γ)/(4C̄), provided γ > 0 is large enough. If t̄ > ln γ/(4C̄), we notice that, thanks to (36),

∀t ∈ [ln(γ)/(4C̄), t̄],
∣∣Z(t)− Z̄(t)

∣∣ ≤ Ce−
r
4 t ≤ Cγ−

r
16C̄ , (38) {est:ZZlong}{est:ZZlong}

and in particular t̄ = ∞ provided γ > 0 is small enough. Brought together (33), (37) and (38) imply

∀t ≥ 0,
∣∣Z(t)− Z̄(t)

∣∣ ≤ Ce−
r
4 t ≤ Cγ−

r
16C̄ . (39) {est:ZZtotal}{est:ZZtotal}

Step 4: Estimates on |N(t)− N̄(t)|
We define Ñ := 1

β

(
r +

∫∞
0
α(x)ūZb

(x) dx
)
> 0. For t ≥ 0,

d

dt

(
N̄(t)− Ñ

)
=

(
r +

∫ ∞

0

α(x)ūZ̄(t)(x) dx− βN̄(t)

)
N̄(t)

=

[(
r +

∫ ∞

0

α(x)ūZ̄(t)(x) dx− βN̄(t)

)
−
(
r +

∫ ∞

0

α(x)ūZb
(x) dx− βÑ

)]
N̄(t) (40) {eq:NmN}{eq:NmN}

=
(
O(e−rt)− β

(
N̄(t)− Ñ

))
N̄(t), (41) {eq:NmN2}{eq:NmN2}

where we have used |Z̄(t) − Zb| ≤ Ce−rt, thanks to the equation satisfied by Z̄(t) (see (11)) and
Proposition 2.1 to estimate∣∣∣∣∫ ∞

0

α(x)
(
ūZ̄(t)(x)− ūZb

(x)
)
dx

∣∣∣∣ ≤ CW1

(
ūZ̄(t), ūZb

)
≤ CW2

(
ūZ̄(t), ūZb

)
≤ C|Z̄(t)− Zb| ≤ Ce−rt.

Since N(t) is bounded from below (see (28)), estimate (41) proves the exponential convergence of N̄(t)
to Ñ > 0:

d

dt

(
emin(r,βN(0))t

∣∣∣N̄(t)− Ñ
∣∣∣) = sgn

(
N̄(t)− Ñ

) [(
O(e−rt)− β(N̄(t)− Ñ)

)
N̄(t)emin(r,βN(0))t

+min(r, βN(0))emin(r,βN(0))t
(
N̄(t)− Ñ

) ]
≤ C +

(
min(r, βN(0))− βN̄(t)

)
emin(r,βN(0))t

∣∣∣N̄(t)− Ñ
∣∣∣ ,

and
(
min(r, βN(0))− βN̄(t)

)
< 0 (see (28)) implies

∀t ≥ 0,
∣∣∣N̄(t)− Ñ

∣∣∣ ≤ Ce−min(r,βN(0))t. (42) {eq:cvbarZ}{eq:cvbarZ}

Thanks to (14) and a calculation analogous to (40),(
N − Ñ

)′
(t) =

(∫ ∞

0

α(x) (ñ(t, x)− ūZb
(x)) dx− β

(
N(t)− Ñ

))
N(t). (43) {eq:NNtilde}{eq:NNtilde}

Note that the definition of Ñ and (11) imply
∣∣Z̄(t)− Zb

∣∣ ≤ Ce−rt. This estimate, (32), (39), and
Proposition 2.1 imply∣∣∣∣∫ ∞

0

α(x) (ñ(t, x)− ūZb
(x)) dx

∣∣∣∣ ≤ ∥α′∥L∞(R+)

(
W2

(
ñ(t, ·), ūZ(t)

)
+W2

(
ūZ(t), ūZ̄(t)

)
+W2

(
ūZ̄(t), ūZb

))
≤ C

(
1
√
γ
+ e−γ

λ1−λ2
2 t + γ−

r
16C̄ + e−rt

)
,
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provided γ > 0 is large enough. Then, for any ν ∈ (0,min(1/2, r/(16C̄))],
∣∣∫∞

0
α(x) (ñ(t, x)− ūZb

(x)) dx
∣∣ ≤

Cγ−ν as soon as t ≥ ν
r ln γ. If we multiply (43) by sgn(N − Ñ)(t) and use this last estimate, we obtain

that for t ≥ ν
r ln γ and γ > 0 large enough,

d

dt

∣∣∣N − Ñ
∣∣∣ (t) ≤ (Cγ−ν − β

∣∣∣N(t)− Ñ
∣∣∣)N(t) ≤ Cγ−ν − β

C

∣∣∣N(t)− Ñ
∣∣∣ .

Since additionally
∣∣∣N − Ñ

∣∣∣ is bounded uniformly in γ (see Step 1), we have, for t ≥
(
1 + C

β

)
ν ln γ and

γ > 0 large enough, ∣∣∣N(t)− Ñ
∣∣∣ ≤ Cγ−ν .

This estimate and (42) show that if η > 0 is small enough,

∀t ≥
(
1 +

C

β

)
ν ln γ,

∣∣N(t)− N̄(t)
∣∣ ≤ Cγ−ν . (44) {eq:estN-large-t}{eq:estN-large-t}

To estimate (N(t)− N̄(t)) for t ∈ [0, (1 + C/β)ν ln γ], we notice that thanks to (14), for t ≥ 0,

(N − N̄)′(t) =

(
r +

∫ ∞

0

α(x)ñ(t, x) dx− β
(
N(t) + N̄(t)

)) (
N(t)− N̄(t)

)
+N̄(t)

∫ ∞

0

α(x)
(
ñ(t, x)− ūZ̄(t)(x)

)
dx,

and thus, thanks to a Duhamel formula,

(N − N̄)(t) =

∫ t

0

(
N̄(s)

∫ ∞

0

α(x)
(
ñ(s, x)− ūZ̄(s)(x)

)
dx

)
exp

[∫ t

s

(
r +

∫ ∞

0

α(x)ñ(σ, x) dx− β(N̄(σ) +N(σ))

)
dσ

]
ds,

Thanks to (34), (39) and the boundedness of N , for t ≥ 0,

∣∣N(t)− N̄(t)
∣∣ ≤ C

∫ t

0

(
1
√
γ
+ γ−

r
16C̄

)
e(r+∥α∥L∞(R+))(t−s) ds ≤ Cγ−min( r

16C̄
, 12 )e(r+∥α∥L∞(R+))t.

This estimate implies
∣∣N(t)− N̄(t)

∣∣ ≤ Cγ(1+C/β)(r+∥α∥L∞(R+))ν−min( r
16C̄

, 12 ) for t ≤ (1 + C/β) ν ln γ. If
we choose ν > 0 small enough, this estimate and (44) imply:

∀t ≥ 0,
∣∣N(t)− N̄(t)

∣∣ ≤ Cγ−ν
′
, (45) {est:N}{est:N}

for some ν′ > 0. Together, (39), (45) and (32) conclude the proof of Theorem 2.2.

4 Convergence to a unique steady-state:Proof of Theorem 2.3

Step 1: Rough estimate on the first moment of ñ(t, ·)
We recall the notation ñ introduced in (13), and the equation (16) satisfied by Z(t) =

∫∞
0
xñ(t, x) dx,

which implies∣∣∣∣Z(t)− ∫ ∞

0

xnb(x) dx

∣∣∣∣ ≤
∣∣∣∣Z(0)− ∫ ∞

0

xnb(x) dx

∣∣∣∣ ≤ max

(∫ ∞

0

xñ(0, x) dx,

∫ ∞

0

xnb(x) dx

)
≤M,

for t ≥ 0, and in particular

W1(nb, ñ(t, ·)) ≤W1(nb, δ0) +W1(δ0, ñ(t, ·)) ≤ 3M. (46) {est:barx}{est:barx}

Step 2: The contraction argument
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Let n1, n2 two solutions of (7), associated to two initial functions n01, n
0
2. We denote ñ1, ñ2 the two

corresponding renormalized measures, and

ω(t) := r +
1

2

(∫ ∞

0

α(y)ñ1(t, y) dy +

∫ ∞

0

α(y)ñ2(t, y) dy

)
. (47) {def:omega}{def:omega}

Thanks to (15), ñi, for i = 1, 2 can be written

ñi(t, x) = ñ0i (x)e
−

∫ t
0
ω(s)+γ ds +

∫ t

0

e−
∫ t
s
ω(s)+γ ds

[(
r +

∫ ∞

0

α(y)ñi(s, y) dy

)
nb(x)

+

(∫ ∞

0

α(y)
ñic(s, y)− ñi(s, y)

2
dy

)
ñi(s, x) + γ

∫ ∞

0

∫ ∞

0

K(x, x1, x2)ñi(s, x1)ñi(s, x2) dx1 dx2

]
ds,

where ic = 1 if i = 2, and ic = 2 if i = 1. We consider ψ ∈ W 1,∞(R+) such that ∥ψ′∥L∞(R+) (see the
Kantorovich-Rubinstein formula (58)), and estimate:

I =

∫ ∞

0

ψ(x) (ñ1(t, x)− ñ2(t, x)) dx

= e−
∫ t
0
ω(s)+γ ds

[∫ ∞

0

ψ(x)
(
ñ01(x)− ñ01(x)

)
dx

]
+

∫ t

0

e−
∫ t
s
ω(s)+γ ds

[∫ ∞

0

ψ(x)

{((
r +

∫ ∞

0

α(y)ñ1(s, y) dy

)
nb(x)

+

(∫ ∞

0

α(y)
ñ2(s, y)− ñ1(s, y)

2
dy

)
ñ1(s, x)

)
−
((

r +

∫ ∞

0

α(y)ñ2(s, y) dy

)
nb(x)

+

(∫ ∞

0

α(y)
ñ1(s, y)− ñ2(s, y)

2
dy

)
ñ2(s, x)

)}
dx

]
ds

+ γ

∫ t

0

e−
∫ t
s
ω(s)+γ ds

[∫ ∞

0

ψ(x)

{(∫ ∞

0

∫ ∞

0

K(x, x1, x2)ñ1(s, x1)ñ1(s, x2) dx1 dx2

)

−
(∫ ∞

0

∫ ∞

0

K(x, x1, x2)ñ2(s, x1)ñ2(s, x2) dx1 dx2

)}
dx

]
ds (48) {eq:estIrep}{eq:estIrep}

The first term can be estimated thanks to the dual formulation of the Wasserstein distance (see (56)),
and to estimate the second term we introduce

θ(t) :=

∫ ∞

0

α(y)
ñ1(t, y)− ñ2(t, y)

2
dy,

and consider (we recall the definition (47) of ω)

J :=

∫ ∞

0

ψ(x)

{((
r +

∫ ∞

0

α(y)ñ1(s, y) dy

)
nb(x) +

(∫ ∞

0

α(y)
ñ2(s, y)− ñ1(s, y)

2
dy

)
ñ1(s, x)

)
−
((

r +

∫ ∞

0

α(y)ñ2(s, y) dy

)
nb(x) +

(∫ ∞

0

α(y)
ñ1(s, y)− ñ2(s, y)

2
dy

)
ñ2(s, x)

)}
dx

= ω(s)

∫ ∞

0

ψ(x) (nb(x)− nb(x)) dx+ θ(s)

∫ ∞

0

ψ(x) (nb(x)− ñ2(x)) dx

− θ(s)

∫ ∞

0

ψ(x) (ñ1(s, x)− nb(x)) dx

the first term on the right hand side cancels, and thanks to the dual formula (58), we get

J ≤ |θ(s)|
(
W1(nb, ñ1(s, ·)) +W1(nb, ñ2(s, ·))

)
.

16



Using the dual formula (58) again, we can show |θ(s)| ≤
∥α′∥L∞(R+)

2 W1

(
ñ1(s, ·), ñ2(s, ·)

)
, which, combined

to (46), implies
J ≤ 3M∥α′∥L∞(R+)W1

(
ñ1(s, ·), ñ2(s, ·)

)
. (49) {est:J}{est:J}

Finally, to estimate the last term of (48), we notice that for any πs ∈ Π(ñ1(s, ·), ñ2(s, ·)) (see (55)),

L =

∫ ∞

0

ψ(x)

{(∫ ∞

0

∫ ∞

0

K(x, x1, x2)ñ1(s, x1)ñ1(s, x2) dx1 dx2

)
−
(∫ ∞

0

∫ ∞

0

K(x, x1, x2)ñ2(s, x1)ñ2(s, x2) dx1 dx2

)}
dx

≤
∫
R2

+

∫
R2

+

(∫ ∞

0

ψ(x) (K(x, x1, x2)−K(x, x′1, x
′
2)) dx

)
dπs(x1, x

′
1) dπs(x2, x

′
2)

≤
∫
R2

+

∫
R2

+

W1 (K(·, x1, x2),K(·, x′1, x′2)) dπs(x1, x′1) dπs(x2, x′2).

We can now use the second estimate of Lemma 6.1 to get

L ≤
∫ ∞

0

∫ ∞

0

[(1− λ1)|x1 − x′1|+ λ1|x2 − x′2|] dπs(x1, x′1) dπs(x2, x′2)

=

∫ ∞

0

|x1 − x′1| dπs(x1, x′1),

and since this estimate holds for any πs ∈ Π(ñ1(s, ·), ñ2(s, ·)), we get (see (55)):

L ≤W1(ñ1(s, ·), ñ2(s, ·)). (50) {est:L2}{est:L2}

Finally, (48) becomes

I ≤ e−
∫ t
0
ω(s)+γ dsW1(ñ

0
1, ñ

0
2) + 6M∥α′∥L∞(R+)

∫ t

0

e−
∫ t
s
ω(σ)+γ dσW1 (ñ1(s, ·), ñ2(s, ·)) ds

+ γ

∫ t

0

e−
∫ t
s
ω(σ)+γ dσW1(ñ1(s, ·), ñ2(s, ·)) ds.

Since this estimate is independent of ψ ∈W 1,∞(R+) with ∥ψ′∥L∞(R+) ≤ 1, we can apply (58) to get

W1 (ñ1(t, ·), ñ2(t, ·)) ≤ e−
∫ t
0
ω(s)+γ dsW1(ñ

0
1, ñ

0
2)

+

∫ t

0

e−
∫ t
s
ω(σ)+γ dσ

(
3M∥α′∥L∞(R+) + γ

)
W1 (ñ1(s, ·), ñ2(s, ·)) ds.

Then y(t) := e
∫ t
0
ω(s)+γ dsW1 (ñ1(t, ·), ñ2(t, ·)) satisfies:

y(t) ≤W1(ñ
0
1, ñ

0
2) +

∫ t

0

(
3M∥α′∥L∞(R+) + γ

)
y(s) ds,

and then, thanks to a Grönwall inequality,

y(t) ≤W1(ñ
0
1, ñ

0
2)e

(3M∥α′∥L∞(R+)+γ)t,

that is
W1 (ñ1(t, ·), ñ2(t, ·)) ≤W1(ñ

0
1, ñ

0
2)e

3M∥α′∥L∞(R+)t−
∫ t
0
ω(s) ds.

Since ω ≥ r +minx∈R+
α(x), we have

W1 (ñ1(t, ·), ñ2(t, ·)) ≤W1(ñ
0
1, ñ

0
2)e

−(r+minx∈R+ α(x)−3M∥α′∥L∞(R+))t. (51) {est:n1n2}{est:n1n2}

Step 3: Convergence of ñ
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For any 0 ≤ σ ≤ τ , we use the estimate (51) with ñ1(t, x) = ñ(t, x), ñ2(t, x) = ñ((τ − σ) + t, x), to
get

W1 (ñ1(σ, ·), ñ2(τ, ·)) ≤W1(ñ(0, ·), ñ(τ − σ, ·))e−(r+minx∈R+ α(x)−3M∥α′∥L∞(R+))σ

≤ (W1(ñ(0, ·), δ0) +W1(δ0, ñ(τ − σ, ·))) e−(r+minx∈R+ α(x)−3M∥α′∥L∞(R+))σ

≤ 6Me−(r+minx∈R+ α(x)−3M∥α′∥L∞(R+))σ, (52) {est:Cauchy1}{est:Cauchy1}

It follows that for any sequence tn → ∞, (ñ(tn, ·))n is a Cauchy sequence in the complete metric space
(P1(R+),W1), and the sequence then converges to a limit. Thanks to (52), this limit n̄ ∈ P1(R+) is
actually independent of the sequence (tn). Note that n̄ is actually a steady-state of (15). Since we have
not defined the transfer operator on measure spaces, we will not develop this aspect in this manuscript.

With σ = t and τ → ∞, we obtain

W1 (ñ(t, ·), n̄) ≤ 6M e−(r+minx∈R+ α(x)−3M∥α′∥L∞(R+))t. (53) {est:cv-tilde-n}{est:cv-tilde-n}

Step 4: Convergence of N and n
Thanks to the definition of ñ, we simply need to show that N(t) =

∫∞
0
n(t, x) dx converges to the

following limit:

N̄ :=
1

β

(
r +

∫ ∞

0

α(x)dn̄(x)

)
.

We recall that N(t) satisfies (14), where∣∣∣∣∫ ∞

0

α(x) d (ñ(t, ·)− n̄) (x)

∣∣∣∣ ≤ ∥α′∥L∞(R+)W1 (ñ(t, ·), n̄)

≤ 6M∥α′∥L∞(R+)e
−(r+minx∈R+ α(x)−3M∥α′∥L∞(R+))t,

thanks to (53). There exists then T > 0 such that for any t ≥ T ,
∣∣∫∞

0
α(x) d (ñ(t, ·)− n̄) (x)

∣∣ ≤ βN̄
2 , and

for t ≥ T ,

N ′(t) =

(∫ ∞

0

α(x) d (ñ(t, ·)− n̄) (x)− β
(
N(t)− N̄

))
N(t) ≥ β

(
N̄

2
−N(t)

)
N(t),

and then N(t) ≥ N̄
4 for t large enough, that is for t ≥ T ′. Then, thanks to the equality above, for t ≥ T ′,

∣∣N(t)− N̄
∣∣ ≤

∣∣N(T ′)− N̄
∣∣ e−β ∫ t

T ′ N(s) ds +

∫ t

T ′

∣∣∣∣∫ ∞

0

α(x) d (ñ(s, ·)− n̄) (x)

∣∣∣∣ e−β ∫ t
s
N(σ) dσ ds

≤ max

(
3N̄

4
,M

)
e−

βN̄
4 (t−T ′) + 6M∥α′∥L∞(R+)

∫ t

T ′
e−(r+minx∈R+ α(x)−3M∥α′∥L∞(R+))se−

βN̄
4 (t−s) ds

≤ Ce
−min

(
βN̄
8 ,(r+minx∈R+ α(x)−3M∥α′∥L∞(R+))

)
t
. (54)

Finally, we check that the convergence of ñ and N implies the convergence of n for the weak-*
topology of measures. Let φ ∈ C0(R+) and any ε > 0. Thanks to the density of C1(R+) in C0(R+),
there exists φ̃ ∈ C1(R+) such that ∥φ̃′∥L∞(R+) <∞, and ∥φ− φ̃∥L∞(R+) ≤ ε. Then,∣∣∣∣∫ ∞

0

φ(x)
(
n(t, x)− N̄ n̄(x)

)
dx

∣∣∣∣ ≤ ∥φ− φ̃∥L∞(R+)

(
∥n(t, ·)∥L1 + N̄∥n̄∥L1

)
+

∣∣∣∣∫ ∞

0

φ̃(x)
(
N(t, x)ñ(t, x)− N̄ n̄(x)

)
dx

∣∣∣∣
≤ Cε+ |N(t)− N̄ |∥φ̃∥L∞(R+) + N̄∥φ̃′∥L∞(R+)W1(ñ(t, ·), n̄)
≤ (C + 1)ε,

provided t is large enough, thanks to (53) and (54). This estimate with (53) and (54) concludes the proof
of Theorem 2.3.
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5 Discussion

The model considered in this manuscript describes the effect of PgP transfers on the ecological dynamics
of a population of tumour cells, inspired by the experiments carried out in [30]. In [22], a simple
transfer operator has been proposed, where cells exchange a fixed fraction of their proteins PgP. We
have introduced a generalisation of that model, where the exchanged quantities can be given by a
probability variable. For a full theory of these operators, we refer to upcoming [24], and to [21] for
another generalisation of that model. An interesting property of these generalisation is that while the
transfer model in [30] led the population to a monomorphic population with all cells carrying the same
number of PgP, we observe for general transfer kernels the convergence to a non-singular distribution
(see [24]).

Apart from the transfer model that we introduce, the model we consider includes death and birth
events, that depend on the number of PgP carried by the cell. This is coherent with the protection effect
provided by the PgP against cytostatic drugs used in chemotherapy treatments. These ecological terms
in the models could however take numerous forms, and it would also be very relevant biologically to
include interactions with other types of cells: PgP are produced in larger quantities in Chemotherapy-
resistant cells than in sensitive cancer cells, and the experiments in [30, 31] used a combination of these
two types of cells. Another fascinating effect is the exchange of proteins between cells through different
means: we have considered here transfers through nanotubes (see [30]), but PgP can also be relieves in
the environment within microparticles [19]. These microparticles are then captured by any other cell.
We have chosen to focus our analysis on a simple model, but we believe the WassersteinW2-based theory
developped in the proof of Theorem 2.2 could be used for many generalisation of the model considered
here. The approach developed for Theorem 2.3 is probably more limited.

The transfer operator that is at the heart of this study is related to non-linear operators that appear
in different contexts. In [15, 5], a population of bacteria carrying plasmids was considered. An operator
related to our transfer operator describes how plasmids more between cells. More broadly, the transfer
operator can be seen as a model for plastic effect on population phenotypes, and an interesting aspect
of the approach developed here is its proximity with recent developments in the analysis of structured
population models for sexual populations, see e.g. [27, 13, 33, 2, 11, 12], cooperation models (see e.g.
[25, 29, 1]), as well as some models for animal flocking [18, 17]. Having coherent framework for these
models could be an asset to consider more complex models combining several effects.

The model we consider incorporates the effect of births and deaths of individuals, which happen at
a rate that depends on the trait x (number of PgP carried by the cell). It may seem difficult to use the
methods introduced by Tanaka (contraction of non-linear operators based on the Wasserstein distance
W2, see [34]) in this context: the solutions are no longer probability measures, and the birth-death op-
erator is of a different nature than the transfer operator. Our strategy is to combine the Wasserstein
estimates on the transfer operator to Ordinary Differential Equation estimates on the macroscopic mo-
ments N(t) and Z(t). In the special case where α(x) = ax + b, it is possible to derive closed equations
on N(t) and Z(t), and the two types of estimates (Wasserstein estimates for the transfer operator and
ODE estimates for N(t) and Z(t)) can be done independently. In the general case, those two types of
estimates have to be carefully combined, as we propose in the proof of Theorem 2.2. Notice that the
output of that Theorem is very simple: we describe the dynamics of a complex model through a simple
differential system. This is an asset to build predictions in biological systems that are robust and that
could provide a pathway for experimental testing.

6 Appendix

6.1 Wasserstein distances

Our analysis is based on Wasserstein distances, and more precisely, the Wp−Wasserstein distances for
p = 1 and p = 2. We refer to [36, 14] for a detailed description of those distances, but review below the
definition and a few properties of these metrics that we will use in this manuscript. The distance Wp is
defined on the set Pp(R+) of measures supported on R+ with a finite p−moment:

Pp(R+) :=

{
µ ≥ 0 a probability measure over R+, such that

∫ ∞

0

xp dµ(x) <∞
}
.
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for two such probability measures µ, ν ∈ Pp(R), we define

Wp(µ, ν) :=

(
sup

π∈Π(µ,ν)

∫ ∞

0

∫ ∞

0

|x− y|p dπ(x, y)

) 1
p

, (55) {def:Wasserstein}{def:Wasserstein}

where Π(µ, ν) is the set on measures on R2
+ with marginals µ and ν, that is such that for any measurable

set ω ⊂ R+,
µ(ω) = π(ω × R+), ν(ω) = π(R+ × ω).

For µ, ν ∈ Pp(R), the Kantorovich formula states that

Wp(µ, ν)
p = sup

(φ,ψ)∈Φp

(∫ ∞

0

φ(x)dµ(x) +

∫ ∞

0

ψ(X) dν(X)

)
, (56) {def:Wasserstein-dual}{def:Wasserstein-dual}

where the suppremum is taken over all functions

(φ,ψ) ∈ Φp := {(φ,ψ) ∈ Cb(R); φ(x) + ψ(X) ≤ |x−X|p}. (57) {def:Phi}{def:Phi}

Finally, for p = 1, the suppremum in (56) can be taken over functions (ψ,−ψ), which leads to the
Kantorovich-Rubinstein formula:

W1(µ, ν) = sup
∥ψ′∥L∞(R+)≤1

(∫ ∞

0

ψ(x)dµ(x)−
∫ ∞

0

ψ(x) dν(x)

)
. (58) {def:Wasserstein-dual-W1}{def:Wasserstein-dual-W1}

6.2 Technical lemma on the transfer operator for the W1−distance

Lemma 6.1. Let x1, x2, x
′
1, x

′
2 ∈ R∗

+, K as in (5), and λ1 ∈ [0, 1] as in (18). Then,

W1

(
K(·, x1, x2),K(·, x′1, x′2)

)
≤ (1− λ1)|x1 − x′1|+ λ1|x2 − x′2|. (59) {eq:KW1}{eq:KW1}

Proof of Lemma 6.1. The proof of the first part of Lemma 3.1 can be reproduced for (φ,ψ) ∈ Φ1 until
(20). Similarly, we can use the fact that (φ,ψ) ∈ Φ1 (see (57)) to get

I ≤
∫ 1

0

|(x1 − x1y1 + x2y2)− (x′1 − x′1y1 + x′2y2)|B (y1)B (y2) dy1 dy2

≤ |x1 − x′1|
∫ 1

0

(1− y1)B (y1) dy1 + |x2 − x′2|
∫ 1

0

y2B (y2) dy2

and then, with the notations (18),

I ≤ |x1 − x′1|(1− λ1) + |x2 − x′2|λ1.

Since this is true for any (φ,ψ) ∈ Φ1 (see (57)), we can use this estimate and (56) to show that

W1

(
K(·, x1, x2),K(·, x′1, x′2)

)
= max

(φ,ψ)∈Φ1

I

≤ |x1 − x′1|(1− λ1) + |x2 − x′2|λ1.
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