
HAL Id: hal-04927568
https://hal.science/hal-04927568v1

Submitted on 3 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Invariant Audio Prints for Music Indexing and
Alignment

Rémi Mignot, Geoffroy Peeters

To cite this version:
Rémi Mignot, Geoffroy Peeters. Invariant Audio Prints for Music Indexing and Alignment. 21st
International Conference on Content-based Multimedia Indexing, Sep 2024, Reykjavik, Iceland. pp.1-
7, �10.1109/CBMI62980.2024.10859214�. �hal-04927568�

https://hal.science/hal-04927568v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Invariant Audio Prints for Music Indexing and
Alignment
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Abstract—This work deals with music indexing and alignment
using audio codes designed to be representative of the music
content and robust to sound modifications. First, based on
properties of the Fourier Transform and of the logarithm, high-
dimensional audio descriptors are designed. Then, a dimension
reduction is learned with criteria based on sound discrimination
and invariance to transformations. Finally, a binarization is
computed to derive codes (integers). This last process allows
a fast searching for large catalogs with a hash table, and a
Hamming distance on codes makes possible the time alignment
using an adapted ”Dynamic Time Warping”. The contributions
of this paper are tested for two different tasks. The goal of the
first task is to identify the segments of music medleys with the
audio indexing process, and to accurately find the corresponding
original time positions. The goal of the second task is to measure
the accuracy of the time-alignment with synthesized MIDI files,
where the tempo continuously varies, and with modified pitches
and instruments. Additionally, the audio indexing is also tested
for these data, in order to exhibit some properties of the used
audio prints.

Index Terms—Content Analysis and Indexing, Signal process-
ing, Machine learning

I. INTRODUCTION

For music applications, audio-to-audio alignment consists in
synchronizing recordings being different performances of the
same music work/score; but played by different musicians,
and with possibly different instruments, pitches and tempi. As
presented in [1], most standard methods in the literature search
the time alignment by means of music similarities computed
from time sequences of combined content-based short-term
audio descriptors. They are for example: spectral centroid,
spread, roloff, or flatness, MFCCs, pitch chroma, onset fea-
tures (e.g. spectral flux). For a more efficient alignment, it is
concluded in [1] that using a combination of different features
achieves better results. Nevertheless, some of them are highly
dependant on the pitch (chroma e.g.), or the timbre (MFCCs
e.g.), and there use may negatively affect the results with music
transposition or different instruments for example.

In audio indexing, the inputs signals are represented as
time sequences of codes which are, ideally, invariant to such
transformations. The most efficient and popular audio indexing
methods are based on local spectrogram peaks, see e.g. [2].
The provided fingerprints are highly robust to noise addition
and filtering. They can also be made robust to pitch shifting

and time stretching with some adaptations, see [3], [4]. Nev-
ertheless, these codes are not relevant neither to the acoustics
and timbre properties nor to the music content, and then they
are not suited for music similarity or distances.

We propose here to use the mid-term audio prints of [5],
initially derived for audio indexing, and which are as robust as
possible to transformations (e.g. noise addition, filtering, time
stretching, pitch shifting) and relevant to the music content
(e.g. rhythm, melodies). With an adaptation of the original
indexing process of [5], including e.g. time alignment, we
present a new method for audio-to-audio alignment. With these
modifications, we also propose a segmentation task of medleys
in an audio indexing context.

In Sec. II, the audio prints are presented together with their
properties, then the hashing process and the search steps are
presented in Sec. III, and the two tested tasks in Sec. IV.
Finally Section V concludes this paper.

II. DESIGNING AND LEARNING OF AUDIO PRINTS
INVARIANT TO DEGRADATION

The audio indexing method proposed in [5] relies on extract-
ing sequences of mid-term audio prints robust to degradation.
First, high-dimensional audio descriptors are computed using
frame analysis with a window of a few seconds. Using
properties, of the Fourier transform e.g., this representation
is by design invariant to some sound transformations. Then,
an affine reduction is learned to reduce the dimensionality with
criteria based on robustness, discrimination and decorrelation.
Finally, a binarisation provides integer codes used to index
a hash table. The following sections summarize these three
steps. Note that more details are available in [5], about the
choice of the parameter values for example.

A. Handcrafted High-Dimensional Audio Descriptors

1) Spectrogram: The Short-Time Fourier Transform X[k,ℓ]

is computed over the whole signal, where k and ℓ denote
the indices of the frequency bins (up to 5500 hertz) and the
time frames. Then, sub-spectrograms of 3 seconds mid-term
windows are extracted: Xp

[k,ℓ] = |X[k,ℓp+ℓ]| for all ℓ ∈ J0, LJ,
with L the window duration expressed in number of frames.
The ℓp’s denote the starting time frames of the p-th mid-term
window, their selection is described in Sec. III-B.



2) Log–log conversion: So far, the time axis ℓ and fre-
quency axis k are expressed in linear scales (homogeneous
to seconds and hertz). We convert those to logarithmic scales
(log-time and log-frequencies). The new log–log spectrogram
Hp

[κ,λ] represents the frequencies from 150 to 5000 Hz, and
the times from 0.5 to 2.5 sec, with ℓ = ℓp as origin t = 0.
The conversion is based on a fast interpolation schema with
a good behavior both for over-sampling (low frequencies and
times close to 0) and under-sampling (high values). κ and λ
are the indices of the sampled axes with a logarithmic profile,
between the previously given limits.

3) Sub-band division of the frequencies: We split the log-
frequency axis into 5 bands, with an equal quality factor,
and with 50% overlapping. We denote the corresponding sub-
matrices by hp,b

[κ,λ] = Hp

[κ+κb
0,λ]

, with κ + κb
0 ∈ Jκb

0, κ
b
1K the

frequency range of the band b ∈ J1, 5K . Each sub-matrix is of
size (32 × 64). The following steps are identically processed
on the 5 matrices of the bands.

4) Amplitude modifications: First, low amplitude values of
hp,b are rectified, see (1). Second, a 2D weighting is done to
smoothly bring the borders to 0 (both for time and frequency
axes). Third, a L∞ normalization is applied, and fourth, a
quasi-logarithmic conversion of the amplitudes is done. The
former conversion maps the range [0, 1] to itself, with a linear
behavior for low values, and a logarithmic behavior for higher
values. The four steps are summarized by:

g ← max (σ,h) , where σ = r max {h⊙w} , (1)
g ← g ⊙w, (2)
g ← g/max {g} , (3)
f ← log (1 + a g) / log (1 + a), (4)

with w[κ,λ] the 2D Hamming window, r = 0.15 and a = 10
two parameters, and ⊙ the Hadamard product.

5) 2D Discrete Fourier Transform: Finally, a 2D-DFT is
computed on each modified log–log spectrogram fp,b. Only
its modulus is considered. The final representation is then:

Yp,b =
∣∣∣2D-DFT

{
fp,b

}∣∣∣ . (5)

Because of the 2D hermitian symmetry, only one half is
kept, leading to matrices with size (32× 33): 32 for the log-
frequency axis, and 33 for the log-time axis. We then obtain
a vector of 1056 coefficients for each band b and time ℓp.

6) Invariance properties: The previous steps have been
designed to get intrinsic invariance to some transformations.

• Time stretching (t← αt) and pitch shifting (f ← βf )
are considered. Because of the log–log conversion of
the scales (both time and frequencies), they lead to a
2D translation of the content of Hb,p

κ,λ. Then, because of
the shift-invariance of the Fourier Transform magnitude,
the final representation is robust to time and pitch com-
pression or expansion. Note that, the DFT magnitude is
actually invariant to circular shifts, so the 2D-weighting
of (2) has the goal to lessen border effects.

• Noise addition is considered. First, with band-pass noises,
the sub-band division permits to isolate the noise effect to

some bands, and so to leave others unchanged. Second,
the rectification of (1) cancels the noise effect if its level
is below the floor σ, and leaving higher values unchanged.

• Filtering and gain modulation behave as the products of
the spectrum with a time-invariant frequency response, or
the time signal with a frequency-independent modulating
signal, respectively. Because of the logarithmic behavior
of (4), these two modifications provide offsets of fp,b

independent from the time or the frequencies respectively.
After the 2D-DFT, these modifications only have effects
on the first column and the first row of Yp,b. In this work,
they are kept and we leave the following projection to
choose if this information is useful.

7) Embedded music information: Unlike standard audio
fingerprints (such as based on local spectrogram peaks [2],
[4]), our method relies on audio descriptors which are more
relevant to the music. For example, applying a 1D-DFT over
the time (instead of the 2D-DFT) provides coefficients similar
to the modulation spectrum (see [6], [7]), which are related to
the rhythm. Applying a 1D-DFT over the frequencies provides
coefficients similar to the cepstrum or MFCCs (see [8], [9]),
which are related to the timbre. Here, the last step is a 2D-DFT
(DFT both in frequency and time). The obtained coefficients
are then meaningful to the music, related to the timbre, the
rhythm, and the melody. In this paper, these properties are used
for music similarity, indexing, segmentation and alignment
tasks.

B. Learning an Invariant Projection

Because the audio descriptors are high-dimensional (1056),
we need to reduce their dimensionality. To reduce it, we apply
a chain of five linear projections which are learned using
criteria related to - robustness to degradation, - discrimination
on the original content, and - decorrelation of the output
variables. The next paragraphs summarize each projection,
more information are available in [5]. Note that the following
process is identically repeated for each band.

1) Ill-Conditioned Component Rejection: Our goal is to
avoid conditioning issues. For this, we make the variables
linearly independent. We do this by computing a projec-
tion similar to a Principal Component Analysis (PCA), but
without initial variable centering and keeping all components
associated with non-null singular values. When computed
on our training dataset, we obtained a reduction from 1056
coefficients to 1026 (30 directions of the original space are
redundant; this is partly due to a residual effect of the
hermitian symmetry).

2) Linear Discriminant Analysis: Our goal is to make the
descriptions robust to degradations. For this, we perform an
LDA [10] in which each class is defined as the set of vectors
obtained from the same original signal segment (3 seconds, see
Sec. II-A) but various degradations. The LDA both minimizes
the within-class covariance, reducing the degradation effects of
the new sub-space, and maximizes the between-class covari-
ance, increasing the discrimination of the new representation



for different original signals. The output sub-space is chosen
with a size of 80 components.

3) Independent Component Analysis: To improve the uni-
form filling of the hash table, see Sec. III-A, the chosen path
is the use of independent variables. To achieve this, the Fast-
ICA algorithm is used, see e.g. [11]. We then obtain a new
basis of the same space, with size 80, and with independent
variables. Nevertheless, based on informal tests, we remarked
a loss of robustness of this representation. For this reason, the
next reduction has the goal to recover robustness, and with
an orthogonal projection which guarantees the preservation of
the variable decorrelation.

4) Orthogonal Mahalanobis PCA: The Mahalanobis PCA
has the same goal as the LDA (improving the robustness and
discrimination), but using a different formulation (similar to
metric learning). More details of the method are presented
in [5]. To preserve the variable decorrelation, an orthogonal
version has been derived, based on a recursive process rather
than a Gram-Schmidt orthogonalization. The size of the new
sub-space is 40, and the components are ordered with a
decreasing order of discrimination power.

5) Hadamard’s Transform: The last step is a Hadamard
Transform with size 40, see [12]. First, because of its orthogo-
nality, the variable decorrelation is still preserved, and second,
because its matrix cells have the same magnitude, with dif-
ferent signs, it has the property to equalize the discrimination
power of the output variables.

6) Combined projection: Because all these 5 transforma-
tions are linear or affine, they can be combined to get a global
affine projection: Z = Pb X + tb, with X the initial high-
dimensional audio descriptors with dimension 1056, and Z
the output vector with 40 components which are: centered,
normalized, mutually uncorrelated, robust to degradation and
discriminant to the original signal. Note that, these projections
are separately learned for each band b, leading to 5 different
reductions, with the same properties.

C. Binarisation

Audio print codes are finally obtained with a binarisation
of the reduced audio keys Z components based on their sign.
With 1 ≤ k ≤ 40, the k-th bit of the code Γ is given by:

γk = h(zk) = 0 if zk < 0, 1 otherwise. (6)

In this work, the codes Γ are used both to define indexes for
a hash table, see Sec. III-A, and to compute music similarity
with the Hamming’s distance, see Sec. III-D. Note that one
code Γ is obtained for each analysis time ℓp and each band b.

III. INDEXING AND TIME ANALYSIS

A. Approximate Hashing

The audio print codes Γ can be used to index a hash
table for a fast search, as in [2], [13]. Nevertheless, if at
least one bit of Γ is altered, the whole index is corrupted.
To significantly improve the tolerance to bit corruption, an
approximative hashing is used, inspired by the Local Sensitive

Hashing (LSH), see e.g. [14], [15]. To this end, L LSH-
functions are derived by selecting 16 bits of Γ. With l ∈ J1, LK,
we then obtain the lsh-code βl, composed of a selection of 16
bits of Γ. These bit selections are chosen with a quasi-random
drawing to maximise the decorrelation of the βl’s, and are
fixed for the whole process. Whereas the alteration of one
bit corrupts the whole code Γ, it only affects some lsh-codes,
leaving the others unchanged.

Note that, the lsh-codes obtained from the L lsh-functions
and the 5 bands cannot be mixed in a same hash table with
dimension 216. Either we build 5L = 255 different sub-hash
tables, or we use a unique hash table by extending the codes
to 24 bits, i.e. with 8 additional bits to inform about the band
b and the lsh-function l.

B. Adaptive Anchoring Time for a Non-Regular Sampling

The mid-term audio prints presented in Sec. II are computed
using frame-analysis with a window of a few seconds anchored
in ℓp. For indexing, we use a mean time lag of δ̄ = 0.25 sec
between two adjacent windows. Nevertheless, as explained in
[16], a uniform sampling of the time axis may provide time
shifts between the query and the corresponding reference song.
To solve this issue, the analysis times ℓp are synchronised to
the maxima of an onset detection function.

For this, we use the frame-wise difference of the L1 norm
with a half-wave rectification R(x) = max(0, x):

φℓ = R (∥Xℓ∥1 − ∥Xℓ−1∥1) , (7)

which is a good compromise between simplicity and robust-
ness, see [5]. Finally, the analysis times ℓp are selected by
picking up the positions of the local maxima of φℓ with a
sliding window of size δ̄ = 0.25 sec.

C. Search steps

Indexing is performed in two steps:
STEP1: We first compare the codes of the query and the

reference songs of the catalog and select n candidates based
on the number of matching code occurrences. This step is
accelerated using a hash table, as in [2].

STEP2: We then analyze the time coherence of the
matching codes between the query and each candidate. We
details this in the next section.

D. Time Alignment

In [2], a linear relation (with a slope of 1) between the query
time and the reference time (tq and tr) is assumed. For this,
they compute the histogram of tq − tr(tq) which is supposed
to remain constant. In [5], this process was refined to deal with
constant time stretching, i.e. for a linear relation with a slope
different than 1. To improve flexibility, and deal with different
tasks, such as segmentation and audio-alignment, see Sec. IV,
we propose here to adapt the Dynamic Time Warping method.

The DTW allows the alignment of two sequences based on
local distances (which measure the similarity of each possible
element pair). DTW determines the best path joining the
start and the end of the sequences, defined as the one which



minimizes the sum of local distances, and with additional
transition constraints. In audio, this is used to align time
between two signals, see e.g. [17, Chapter 4].

In this work, the audio print sequences of the query and of
the reference are used to compute the local distance matrix.
The Hamming’s distance, which is the number of different bits,
is calculated for all binary code pairs. At each time step ℓp,
we consider the code obtained by concatenating the 5 codes
Γb of the bands, forming 200-bits integers. To better fit our
applications, we propose four adaptations.

1) Transitions: The method proposed in Sec. III-B for
selecting the analysis times ℓp results in different anchors
depending on the time-stretching factor of the audio. Most ℓp’s
remain unchanged, but some disappear with speeding up and
others appear with slowing down. In this case the DTW path
must be able to “jump” anchor times. That’s why we introduce
new DTW transitions instead of the traditional horizontal and
vertical transitions. The three used transitions are then:

• (m,n)→ (m+ 1, n+ 1): diagonal transition,
• (m,n)→ (m+ 2, n+ 1): accelerated transition,
• (m,n)→ (m+ 1, n+ 2): decelerated transition,

with m and n the time indices of the reference and the query.
2) Free path boundaries: For a standard recognition of

audio excerpts, the start and the end of the two sequences
may not correspond, which transgresses the standard DTW
constraints. To overcome this issue the constraint of the path
boundaries is released. So, the path can start and end at any
time, with the only constraint to coincide with boundaries
of the query or the reference, but not necessarily both. As
a summary, the path must start and end on the “borders” of
the distance matrix, and not necessarily in the “corners”.

3) Mean distance: With the two previous adaptations, the
shortest paths may be favored. To avoid this, the adapted DTW
algorithm tries to select the path which minimises the mean
distance rather than the sum of local distances. Note that it
may lead to a sub-optimal solution, but is not a critical issue.

4) Even freer boundaries: For the segmentation task of
Sec. IV-A, the boundaries of the matching segment may not
correspond with the boundaries of neither the query nor the
reference, providing a problem similar to the local alignment
as in [18]. In this work, first the path is searched with
boundaries on the borders of the distance matrix, second the
limits of the best segment is searched with a 1D process on
the found path.

E. Candidate selection

To speed up the process, rather than selecting a fixed number
n of candidates in STEP1 (passed to STEP2), we use an
outlier detection. With the candidate songs sorted in decreasing
order of matching occurrence count, the idea is to iteratively
compute the time alignment with the candidates, and to stop
as soon as an abnormally low DTW distance is returned.

In the following experiments, we use the standard Inter-
Quartile Range method for the outlier detection, but only
considering low values as outliers. We use a minimal number
of candidates of 10, and a maximal number of 400.

IV. EXPERIMENTS

In this section, we present two experiments which have been
designed to demonstrate on one hand the benefit of the derived
audio prints, and their invariance properties, and on the other
hand the flexibility of the adapted DTW: the segmentation of
medleys and audio-to-audio alignment.

A. Audio Indexing and Segmentation of Medleys

1) Task description: The goal is to recognize the different
audio fragments that compose a music medley. We measure
the indexing performance, as well as the accuracy of the time
mapping.

2) Details of the method: To facilitate this task, the medleys
are divided into 30 sec chunks with a 15 sec hop size. For each
chunk, the indexing is processed to find segment candidates
in the catalog. Because the boundaries of the segment and the
chunk may not correspond, the boundary constraint is fully
removed, see Sec. III-D4.

Then a post-processing filters out bad segments, with low
distances, and tries to merge segments of different chunks from
the same reference song. Finally, a linear regression is applied
to refine the time mapping, (linear because the time stretching
factor is supposed to be constant for each segment).

The time stretching provides a systematic bias of the esti-
mated time. This is explained by the 2 sec windowing and the
0.5 sec time shift of Sec. II-A2. We empirically observed that
for a stretching factor 2, the bias is 0.5 sec, then it is removed
based on the estimated time stretching factor.

3) Evaluation procedure: We built a large dataset (catalog)
made of approximately 40 000 reference songs from [19], and
we added the 195 songs of [20]. The full hash table is built.
The medleys are automatically built by a random selection
among the 195 original songs. The segment durations are
randomly drawn between 15 and 30 sec, and the segments are
concatenated to form medleys of approximately 2 minutes.

To test the robustness, we consider different levels of
degradations as described below. Time stretching: The stretch
factors of the segments are randomly drawn in the ranges:
σ ∈ [−33, 33] cents, or [−66, 66] cents. The cent unit, noted
(ct), is defined by: f = 2σ/100, where f is the stretch factor.
For example, 100 cents corresponds to a slow down of the
tempo by a factor 2. Pitch shifting: The pitch shifting factors
are: ±1, ±2, and ±4 half-tones, noted (ht). Only the sign is
randomly drawn. Sound degradations: First, a graphical EQ
is used with alternated gains ±4.5 dB for each octave band.
Then, a pink noise is added with 10dB SNR, a 40 kbps MP3
encoding is simulated, and a distortion is simulated with a
pre-gain of 3 dB and a sine function1.

4) Results: The results are given in Tab. I. Each perfor-
mance measures are computed with 730 medleys. The Good
detection measure is the time-wise ratio of sum of times
where the good song is recognized to the total duration.
The F-measure presents the medley-wise performance of song

1Some sound examples can be heard at the following address:
https://anasynth.papers.ircam.fr/2024/CBMI/



TABLE I
MEDLEYS: RESULTS OF SEGMENTATION.

Time Stretch (cents) 0 [ − 33, 33 ] [ − 66, 66 ]

Pitch Shift ( 12 tones) 0 ±1 ±2 ±4 0 ±1 ±2 ±4 0 ±1 ±2 ±4

No
degra-
dation

Good detection (%): 96.5 97.3 97.2 94.3 97.2 97.1 96.3 87.5 95.7 94.9 91.6 76.6

F-measure mean (%): 100.0 100.0 99.9 96.8 99.9 99.8 99.2 90.6 99.5 98.9 96.2 80.6

Time error: median (mean) (ms): 1 (59) 2 (31) 2 (95) 4 (94) 36 (113) 35 (60) 34 (70) 38 (179) 47 (108) 47 (102) 51 (184) 66 (334)

With
degra-
dation

Good detection (%): 96.6 96.4 93.6 77.2 95.9 93.7 86.7 63.4 92.4 88.9 76.6 50.8

F-measure mean (%): 99.8 99.3 96.4 79.9 99.3 97.2 90.1 66.8 96.8 93.7 81.3 54.5

Time error: median (mean) (ms): 4 (104) 5 (86) 6 (66) 12 (275) 29 (120) 30 (93) 31 (261) 42 (328) 47 (255) 47 (190) 53 (373) 75 (734)
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Fig. 1. Medley: Illustration of a medley segmentation. The colored rectangles
represent: the true songs on the bottom half, and the detected songs on the
top half, and the white spaces of the upper part are for time ranges when no
song is detected. The black lines (resp. red) plot the time mapping between
the medley time (x-axis) and the time of the true (resp. detected) reference
songs (y-axis). The input medley has been created with: time stretching range
[−66, 66] (ct), pitch shifting ±2 (ht), and with sound degradations, providing
a difficult configuration. The slope of the black lines inform about the time
stretching of the segments. Even if the original songs are well recognized most
the time, and the time following is accurate, we can observe small errors
at some transitions, providing short bad detections, and a more important
inaccuracy at the transition between the 5th and 6th segments. Additionnally,
a “unknown” song (coming from the big catalog) is detected during the first
half of the third segment, providing also a bad detection, and reducing the
precision value (and so the F-measure).

recognition. Then, computed for each time where the reference
song is correctly detected, the Time error presents the median
(and the mean) of the absolute difference between the true and
the estimated mapped time.

As expected, the performances decrease when the transfor-
mation level increases. For example, without transformation,
the F-measure is 100%, meaning that all the original songs are
detected without False Positive. The time-wise good detection
rate is 96.5%: the 3.5% of bad detections are due inaccuracy
in the detected transitions, see e.g. Fig. 1 which illustrates the
result on one medley.

Whereas the median of the time error does not significantly
change with additional sound degradations, the mean and the
detection rates are worse. So, we can conclude that the pres-
ence of degradations makes the estimations more “instable”,
but the audio prints are robust enough to degradations to make
the time alignment working well. This results is tested in the
next experiment for an audio alignment task.

B. Audio-to-Audio Alignment

1) Task description: We test here the time alignment based
on the audio prints and the adapted DTW, in the context where
the music to recognise is modified with continuously time-
varying tempo. The task is then to map the time of the query
to the time of the reference, or inversely. An indexing search
of the modified songs, among a catalog, is also tested.

2) Details of the method: For indexing, the same procedure
is used, but without linear regression.

For time alignment, the mean time lag of anchor times is set
to 0.1 sec (instead of 0.25 sec) to get a finer time resolution.
To remove the bias, a first alignment is done, and the time
stretching is estimated by σ̃(t) = dτ̃(t)/dt, with t the time of
the reference song and τ̃(t) the estimated time mapping to the
modified song. The bias is then empirically estimated as in
Sec. IV-A with: b(t) = 0.5 log2 σ̃(t). Note that the mapping
τ̃(t) is pre-processed using a symmetrical low-pass filtering
(with null group delay) to smooth the evolution of σ̃(t).

For both sub-task, the DTW path is forced to “touch” the
borders, with a duration not lower than 95% of the total
duration of the query and the reference.

3) Evaluation procedure: From 238 MIDI files of [21],
we modified the time stamps of the MIDI messages to finely
control the time-varying time stretching. Additionally, we can
easily change the note pitch and the synthesized instruments
to test the invariance of the audio prints to different timbres.

Different levels of transformations are tested. Time stretch-
ing: The time stretching continuously changes on short seg-
ments with target values drawn in the ranges [−33, 33],
[−66, 66] or [−100, 100] (ct). The duration of the segments
are also drawn between 1 or 6 sec. The sign of the time
stretching alternatively change and the extreme values are
favored to provide a strong effect. Pitch shifting: For the tests
that use pitch shifting, the used transformations are: ±2, ±6,
and ±13 (ht). Only the sign of the transformation is randomly
drawn. Instrument changes: To test the invariance of the audio
prints to the timbre, we changed the original instruments by
randomly drawing new ones among the proposed instrument
list of the General MIDI norm, excluding sound effects.
Additionally, the drum track is removed.

The MIDI files are modified using the Pretty MIDI python
module [21], and the sound is synthesized offline using the



TABLE II
MIDI COVERS: RESULTS OF INDEXING.

Time Stretch (cents) [ − 33, 33 ] [ − 66, 66 ] [ − 100, 100 ]

Pitch Shift ( 12 tones) 0 ±2 ±6 ±13 0 ±2 ±6 ±13 0 ±2 ±6 ±13

Same
instruments

STEP1: rank (full catalog): 1.0 1.2 4.3 17.9 1.0 1.3 5.7 22.7 1.0 1.4 5.9 29.

STEP2: rank (over the 200 best): 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1

Changed
instruments

STEP1: rank (full catalog): 132.3 174.5 310.1 319.9 128.7 185.6 243.0 301.5 129.5 199.5 274.6 302.

STEP2: rank (over the 200 best): 2.2 5.0 15.3 17.9 2.6 6.3 16.8 20.5 4.3 10.2 24.9 30.3

Fig. 2. MIDI Covers: Time accuracy of the alignment. Top figure: instruments
unchanged, bottom figure: instruments changed and drums removed. Each
figure is splitted into 3 blocks for the 3 time stretching ranges, and each
block presents the 4 tested pitch shiftings and the baseline. The box plots
display the median, the first and third quartiles, and the 5% and the 95%
percentiles. Additionnally, the mean is diplayed with the rose small bar.

FluidSynth software with the Soundfont FluidR3, see [22].
For the indexing task the original synthesized MIDI files are
added to the same catalog of 40 000 songs, see Sec. IV-A.

4) Results: Table II presents the indexing results. For
STEP1, and with the same instruments, the mean rank of
the true song is below 30 (over 40 000 songs) whatever the
time stretching range and the pitch shifting. With instruments
changed and drums removed, the mean rank increases but stay
below 320 (/40 000). For STEP2, the rank over 200 tested
songs, which are the best of STEP1, is almost perfect with only
pitch shifting and time stretching. With modified instruments,
the mean rank significantly increases, which demonstrates a
certain sensitivity of the audio prints to the timbre. Hence, the
tested method is probably not suited to search music covers
with big catalogs. Note that the results are quite stable along
the 3 time stretching configurations.

For time-alignment, the accuracy of the estimated time
mapping is displayed in Fig. 2. Each result is compared with a
baseline simply obtained by the time error of the true mapping

and a straight line between the start and the end. We can ob-
serve a significant benefit of the method, even with instruments
changed and drum removed. This demonstrates the ability
of the audio prints to efficiently embed music information
related to the rhythm and the melody, independently from
the pitch, the tempo and the timbres. This is indeed useful
when aligning audio with different instruments, and without
prior knowledge about the used pitch shifting. Nevertheless,
we remark lower performances with instrument change, which
still shows sensitivity to timbre. Note that the results are quite
stable along the 4 pitch shifting configurations.

Finally, let’s remark that despite the coarse time resolution
of the sampled times, almost 100 ms, the achieved accuracy is
better in some cases thanks the special selection of analysis
times, see Sec. III-B, based on an onset detection function.

V. CONCLUSION

For music segmentation and alignment, a method initially
designed for audio indexing has been adapted. It takes benefit
of audio prints relevant to the music and robust to some
transformations (e.g. time stretching, pitch shifting, filtering).
Representative of rhythm and melodies, they allow the seg-
mentation and the alignment without any prior knowledge
about the possible pitch modification, and instrument change.

To measure this, we made two experiments, one based on
medley segmentation and the other based on synthesized MIDI
covers. Even if the presented results do not seem sufficient for
an indexing task with very big catalogs and strong degrada-
tions, these preliminary results are very encouraging for the
targeted tasks: segmentation and alignment, even with strong
transformations and instrument changed.

In a future work, we should focus more on audio-to-
audio alignment, with a more in-depth comparison with the
literature. Moreover, this work does not take benefit of recent
progresses in machine learning, such as Deep Learning, and
there are many ways for improvement, e.g. using neural metric
learning as in [23]. Finally, for audio/music mixes, even if we
obtained some interesting results (not presented), the currently
method has not been designed for that, and it will be beneficial
to specifically deal with this task.
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