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Abstract. Managing power converters is crucial for Photovoltaic (PV)
and Fuel Cell (FC) hybrid power systems. This study develops a model
and control strategy for a grid-tied hybrid system using the Takagi—Sugeno
fuzzy model. The system includes a grid-connected PV/FC and power
electronic converters to meet the electric load. First, the study presents
the overall grid configuration with dynamic models for the PV, FC, and
their power electronic interfaces. A fuzzy logic controller is designed for
maximum power point tracking of the PV system. A PI controller man-
ages the methane flow rate in the FC reformer. Additionally, a Nonlinear
Fuzzy Converter Control (NFCC) scheme is developed for the grid-side
converter connected to the DC-Link. Sufficient conditions are formulated
as linear matrix inequalities. This NFCC controller enhances the convert-
ers’ performance, allowing them to endure grid faults, maintain efficiency,
and support the grid by regulating DC bus voltage. The control of the
studied system is validated under grid fault conditions. Inverter control
incorporates power support to meet network requirements, ensuring fault
ride-through and stabilizing grid voltages. A case study of the system,
simulated using MATLAB/Simulink, demonstrates the proposed control
strategy. Results highlight the system’s ability to handle various grid
faults effectively.

1 Introduction

Electricity is vital for global development, powered predominantly by finite fossil
fuels that emit Greenhouse Gases (GhG) [1]. Renewable Energy Sources (RES)
like hydrogen, solar, wind, biomass, geothermal, and marine energy offer sus-
tainable alternatives with minimal GhG emissions [2].

Photovoltaic (PV) energy converts solar radiation into direct current, despite
weather dependency and moderate efficiency (10-18%) [3]. Proton Exchange
Membrane Fuel Cells (PEMFC) efficiently generate electricity but require fur-
ther technological advancements [4].
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Fig. 1. Overall Structure of the PV/FC hybrid system with proposed control strategy.

Research emphasizes integrating PV and FC in hybrid systems for grid sup-
port and mobile energy [5]. Efforts to enhance PV/FC resilience during grid
faults use techniques like Linear Quadratic Regulator (LQR) and model predic-
tive control [6].

This paper proposes a grid configuration with dynamic PV and FC mod-
els. It introduces a fuzzy logic-based Maximum Power Point Tracking (MPPT)
for PV optimization and a PI controller for FC power regulation. A Nonlinear
Fuzzy Converter Control (NFCC) enhances grid-side converter performance and
stabilizes DC bus voltage using a Takagi—-Sugeno (TS) fuzzy model with Linear
Matrix Inequalities (LMI).

Key contributions include a MATLAB/Simulink PV/FC model and NFCC
implementation. Simulation shows improved Fault Ride-Through (FRT) and sta-
bility across varied grid conditions.

The paper is structured as follows: Section 2 details system modeling and
control strategies, Section 3 covers stability analysis and proposed control meth-
ods, Section 4 presents simulation results, and Section 5 concludes with future
research directions.

2 Proposed of PV/FC Hybrid Power Sources Structure

The dynamic modeling block diagram of the PV/FC Hybrid Power Sources
(PV/FC-HPS) system, including interfacing power electronics connected to the
main grid at the Point of Common Coupling (PCC), is shown in Fig. 1. This
diagram outlines the structure of the PV /FC-HPS system, which includes models
for PV, FC, DC-link, and the grid.
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2.1 Proposed of PEMFC/PV Model Structure

The study model of the PEMFC/PV model in this paper is based on [7], [8].
Therefore, the model details are not presented in this paper.

2.2 Nonlinear DC-Link Model

The DC-AC converter consists of two voltage source converters interconnected
through a DC-link, as illustrated in Fig. 1. Neglecting losses in each converter, the
comprehensive dynamic model of the grid-connected DC line can be expressed
in a compact nonlinear affine form as:

z(t) = A(z,w)z(t) + B(z)u(t) + W (1)

where z(t) denotes the state vector, u(t) represents the input vector, y(t)
signifies the output vector, A(z,u) corresponds to the state matrix, B(z) pertains
to the input matrix, and W stands for the disturbance. These elements are
specified as follows:

x(t) = [iod ioq VDC]T 7y(t) = [iod Z.oq VDC]T 7u(t) = [ﬁod Boq]T»

Ry V r
T Iy wy 0 2?? 0 Ul;
A R B Vb Uy
(CU, u) wy ?j: 0 ) (SU)— 0 72[? ,[/L = —7[: s
3 3 1
4Cﬁ0d 4cﬁoq CR, 0 0 0

The d — q components v,q and v, represent the output inverter voltage,
while v.q and v, denote the grid voltages in the d — g reference frame. The
parameters Ry and Ly correspond to the resistance and inductance of the grid
filter, respectively, and wy denotes the angular frequency of the grid voltage.
The control signal (5;) is determined as the average value of u; over the PWM
period. The DC-link voltage Vp¢ is kept constant by the Grid-Side Converter
(GSC)

3 Proposed PV/FC Hybrid System Control strategy

In this section, we describe the control model for the PV/FC hybrid system [9]
and analyze its structure with the Nonlinear Fuzzy Converter Control (NFCC)
strategy for the grid-side converter, formulated with LMIs to enhance perfor-
mance and stabilize the grid.

3.1 PV/FC Hybrid System Control Model Analytic Description
and Grid Connection

In this paper, we focus on simplifying power system dynamics crucial for regu-
lator synthesis. Assuming v,y = 0, the active and reactive power injected into
the grid can be calculated as follows:

Ppcc = 3Vodiod, Qprcc = —3Vodiog (2)
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3.2 FC Subsystem and PV Subsystem Control Strategiesy

In this study, a control strategy for the FC utilizes a proportional and integral
(PI) controller to regulate the methane flow rate in the reformer. The goal is to
adjust hydrogen flow based on the FC’s output power and current based on the
strategies given in [10]. The control strategy for optimizing PV output power is
based on the boost DC-DC converter positioned between the PV generator and
DC bus. This converter plays a critical role in extracting maximum power and
ensuring operation at the Maximum Power Point (MPP) through MPPT control
based on [11]. The MPPT controller adapts to varying environmental conditions,
such as changes in irradiance and temperature, utilizing a Fuzzy Logic Control
(FLC) algorithm.

3.3 Grid Connected Converter Control and Proposed Nonlinear
Fuzzy Converter Control (NFCC) a

The primary goal of this subsection is to develop the Nonlinear Fuzzy Con-
verter Control (NFCC) for the grid-side converter connected to the DC-Link.
The overall TS fuzzy model is described as follows [12]

palg(®)[Aiw () + Biu(t) + W]

y(t) = Zm( (1)) [Ciz(t)]

where: p is the fuzzy sets, and p is the number of rules. To achieve this, dynamic
fuzzy controller rules are formulated using the Parallel Distributed Compensa-
tion (PDC) method [13] tailored for the fuzzy model (3). The resultant output
from the adapted fuzzy controller NFCC is defined as:

=
—
N
I
~T M

3)

u(t) = 3" Kt (4)

where K; € R™*™ are feedback gain vectors. To analyze the closed-loop fuzzy
system, we start with equations (3) and (4) considering W = 0. The main results
for the global asymptotic stability of the TS fuzzy control system are summa-
rized in the following Theorem:

Theorem 1. The equilibrium of the fuzzy control system is asymptotically sta-
ble across its entire domain when employing the controller (4). This stability
is guaranteed if the controller gains are chosen as K; = M;Q™", and there ex-
ists a positive definite symmetric matric P = Q™' These conditions ensure the
satisfaction of the following LMIs:

QAT + A;Q + (B; M;) + (B;M;)T <0
QAT + AiQ + (B;M;) + (B M;)"

+QAT + A;Q + (B;M;) + (B;M;)" <0 ()
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These LMIs are crucial for verifying the stability and robustness of the closed-
loop fuzzy control system, ensuring that it operates stably under various opera-
tional scenarios.

Proof. The proof can be given directly from [12].

4 Simulation studies

To assess the PV/FC hybrid power system and evaluate the proposed control
strategy, MATLAB simulations were conducted based on the model described
in Section II. The effectiveness of the strategy was verified under grid faults
introduced by varying loads at specific intervals: from ¢ = 2.5 sec to t = 3 sec
and t = 7 sec to t = 8sec, with a network fault occurring at t; = 5 during 150ms.

Simulation results depicting the load voltage, current, active power and re-
active power are shown in Fig. 2. The trajectories of the DC bus voltage and
current are illustrated in Fig. 3. Additionally, the figures presenting the grid and
inverter voltages, currents, active power, and reactive power are displayed in Fig.
4 and Fig. 5, respectively
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Fig. 2. Trajectories of the load voltage, current, active power and reactive power.

From the simulation results, It can be seen that the responses with varying
the load and the grid faults are better damped with the proposed strategy.

5 Conclusion

The paper presented a control strategy for a PV /FC hybrid power system con-
nected to a real network, focusing on precise DC-Link voltage control for both the
DC and inverter. The strategy used Nonlinear Fuzzy Converter Control (NFCC)
based on a Takagi-Sugeno fuzzy model and Linear Matrix Inequalities (LMIs) for
robust system stabilization, especially during network short-circuit conditions.
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Fig. 3. Trajectories of the DC bus voltage and current.
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Fig. 4. Trajectories of the grid voltage, current, active power and reactive power.
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Fig. 5. Trajectories of the inverter voltage, current and power.
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Maximum Power Point Tracking (MPPT) employed a fuzzy logic controller
to optimize PV performance, while a Proportional-Integral (PI) controller regu-
lated FC output power. This approach enhanced system performance during grid
faults and integrated well with the network, adapting to specific grid conditions.

Simulation results demonstrated effective management of PV /FC operation
under normal and fault conditions. Future research aims to expand this approach
to include additional grid services, such as addressing sub-synchronous resonance
in wind farms.
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