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Structured abstract  

Objective: This study is a proof of concept that aims to measure the impacts of a human/cobot 

collaboration on the human and his task during a simulated chemistry assembly. 

Background: The 5th industrial revolution calls for refocusing work on the human operator, 

placing him or her at the center of the system. Thus, cobotic systems are increasingly 

implemented to support human work. In this research, we study the impact of a real-life cobot 

on the performance (e.g. number of errors, time completion), workload, risk exposure and 

acceptability of participants realizing an industrial-like assembly task. 

Method: Participants had to reproduce an assembly model with Duplos in collaboration with a 

cobot in a laboratory setting. The effect of the human expertise on the task (prior to the 

collaboration) and the level of cobot adaptation to human safety constraints on the performance 

at the task and on operator were tested.  

Results: The main results report that expert participants did less mistakes and were less exposed 

to risks than non-experts. However, both of them succeeded in the task thanks to the cobot 

adaptation. Also, the cobot was able to adapt to human safety constraints. This adaptation led 

participants to expose themselves to fewer risks. Also, contrary to previous findings, experts 

had a similar score of acceptability than non-experts. 

Conclusion: This laboratory experiment is a proof of concept demonstrating that using a 

cobotic solution could potentially assist humans in supporting high-risk work operations. 

Application: Cobotic system designers and work designers could benefit from this research’s 

exploratory results when supporting the design of constraints in workstations for high-risk work 

operations. 

Keywork: cobots, human-machine collaboration, risk exposure  
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1. Introduction 

The industry 5.0 calls for a paradigm shift from the actors of the industrial sectors (Xu et al., 

2021). This industry “recognizes the power of industry to achieve societal goals beyond jobs 

and growth, to become a resilient provider of prosperity, ensuring that production respects the 

limits of our planet and placing the well-being of the industrial worker at the center of the 

production process” (European Commission, 2021, p. 5). The European Commission (2021) 

supports collaborative technologies such as collaborative robots (cobots) to place the human 

resource in the center of the production. Therefore, collaborative robotic systems are 

implemented in the industrial work system to enhance efficiency and human well-being at work 

(Knudsen & Kai̇Vo-Oja, 2020). The term “cobotic system” is used to illustrate the collaboration 

between a human worker and a cobot or collaborative robot (Colgate et al., 1996). Cobots are 

robots designed to work on a task in a shared environment in collaboration with a human 

(Peshkin & Colgate, 1999). Their abilities to adapt to the operator could help dealing with 

variabilities at work (Hiatt et al., 2011). Studies have shown that this adaptation is able to induce 

less physical effort (Varrecchia et al., 2023), less errors (Fournier et al., 2022), less exposure to 

risks (Pauliková et al., 2021), a lower workload (Chan et al., 2020) and a better output quality 

(Fournier et al., 2024). However, because of its difficulties to adapt to human constraints, 

cobotic systems can also lead to negative consequences (Cheon et al., 2022; Fournier et al., 

2022; Schoose et al., 2023) like decreasing work precision and perceived work quality 

(Schoose, 2022). Different work situations were analyzed in the context of a cobotic 

implementation (e.g. maintenance workers, production line workers), while other have not been 

studied at all (e.g. chemists). Yet, chemistry is a risky activity, and the resulting variabilities 

can have negative impacts on the operator and his work (Bayram & Bilim, 2012; Garden, 1962; 

McNair, 2006; Sung et al., 2020; Triolet et al., 2002). And, studies have suggested that a cobotic 

collaboration could help reduce those negative impacts (Fournier et al., 2023; Tokatli et al., 
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2021). Also, Béguin et al. (1999) have proven that intelligent technologies can reduce the 

operator’s risks exposure. It has not been done using cobotic collaboration. It is important to 

determine if chemists will expose themselves to less risks if the cobot adapts to the safety 

constraints and human variability. Indeed, chemists have different strategies realizing a 

chemical task (Fournier et al., 2023). 

Even though cobotic systems could be beneficial to the work and the operator, considering 

technology acceptation is key to determine its use (Cippelletti, 2017; Nielsen, 1994; Venkatesh 

et al., 2003, 2012). The acceptation of a technology have been studied with different models, 

such as the Unified Theory of Acceptance and Use of Technology (UTAUT) that predicts 56% 

of behavioral intention (Venkatesh et al., 2003). Later the authors updated their model with 

other dimensions and predicted 74% of behavioral intention and 52% of use behavior 

(Venkatesh et al., 2012). In this adapted model (UTAUT2), the precursors of the intent of use 

are performance expectancy (or perceived usefulness), effort expectancy (or perceived ease of 

use), social influence, facilitating conditions, hedonic motivation (or pleasure perceived), price 

value and habit of using technology. Finally, the precursor of “use” is the “intent of use”. The 

table below illustrate the different dimensions and their definitions (Table 1). 

Table 1. Definition of the dimension of the UTAUT2 

Dimension of UTAUT2 Definition 

Performance expectancy 

(perceived usefulness) 

“The degree to which using a technology will provide benefits to 

consumers in performing certain activities” (Venkatesh et al., 

2012, p. 159) 

Effort expectancy 

(perceived ease of use) 

“The degree of ease associated with consumers’ use of 

technology” (Venkatesh et al., 2012, p. 159) 
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Social influence “The extent to which consumers perceive that important others 

(e.g., family and friends) believe they should use a particular 

technology” (Venkatesh et al., 2012, p. 159) 

Facilitating conditions “Consumers’ perceptions of the resources and support available 

to perform a behavior” (Venkatesh et al., 2012, p. 159) 

Hedonic motivation 

(pleasure perceived) 

“The fun or pleasure derived from using a technology” 

(Venkatesh et al., 2012, p. 161) 

Price value “Consumers’ cognitive tradeoff between the perceived benefits 

of the applications and the monetary cost for using them” 

(Venkatesh et al., 2012, p. 161) 

Habit “Self-reported perception” of the habits of using technology 

(Venkatesh et al., 2012, p. 162) 

The authors also tested moderators such as the experience of the respondent. The expertise of 

the operator mediates the acceptability of the system in other studies (Cippelletti, 2017). The 

authors found that more experienced workers did not accept as well as novice workers the 

technology implemented. Also, a more recent study has found that “the ease of use and 

perceived safety have a positive influence on the intention to use a cobot at work” (Cippelletti 

et al., 2024, p.10). A measure of trust in the human/cobot collaboration is also needed because 

it is lacking in the literature (Kaplan et al., 2023; Martin, 2018). 

Therefore, the aim of this study is to be a proof of concept measuring the impacts of a 

human/cobot collaboration on the human and his task during a simulated chemistry assembly. 

More precisely, the experiment will test whether the operator success in a task (Fournier et al., 

2022; Schoose et al., 2023), the completion time (Fager et al., 2019; Fournier et al., 2022; 

Mariscal et al., 2023), the number of errors (Fournier et al., 2022; Mariscal et al, 2023) and the 

number of risk exposures are different depending on whether the operator is working with a 



 

6 
 

cobot that adapts to safety constraints or with a cobot that does not adapt to those constraints. 

Also, the level of expertise can affect the acceptability of the technology and the task itself 

(Cippelletti, 2017). Therefore, there is a need to determine if the cobot can adapt to experts and 

non-experts to achieve the task. If the cobot adapts to the expertise, there should not be any 

different in terms of number of errors, risk exposure and success between experts and non-

experts. The impact of cobot adaptation on human workload, which is the amount of mental 

resources used for a specific task, is also important to measure (Verhulst, 2018). Indeed, a 

reduced mental workload is interesting for the industry 5.0 as it required to increase the 

operator’s wellbeing at work (European Commission, 2021).  

Considering the different research questions, we address in this work several hypotheses: 

H1: The operator’s expertise (expert vs non-expert) has an effect on the operator and his task 

during a cobotic collaboration. 

H1a: Experts have a lower level of acceptability than non-experts (supported by 

Cippelletti, 2017). 

H1b: The operator expertise has an effect on the number of errors. 

Indeed, due to their training, the experts should make less errors than non-experts. 

H1c: The operator expertise has no effect on the success of the task. 

Indeed, the cobot should adapt itself to the level of expertise of the participant. It should ensure 

that the task is succeeded whatever the level of expertise. 

H1d: The operator expertise has an effect on the number of risk exposures. 

Indeed, due to their training, the experts should expose themselves to less risks than non-

experts. 

H1e: The operator expertise has no effect on the workload. 

Indeed, the cobot should adapt itself to the level of expertise of the participant. It should ensure 

that the workload stays low whatever the level of expertise. 
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H2: The degree of cobot adaptation (adapt to the human’s constraints vs does not adapt) has 

an effect on the operator and on his task. 

H2a: Operators have a lower workload when the cobot adapts to their constraints than 

when it does not. 

H2b: Operators make less errors when the cobot adapts to their constraints than when it 

does not. 

H2c: Operators have a higher level of acceptability when the cobot adapts to their 

constraints than when it does not. 

 H2d: Operators are less exposed to risks when the cobot adapts to their constraints than 

when it does not.  

 

H3: There is an interaction between the effect of the degree of cobot adaptation and the effect 

of the expertise of the participant. 

 

2. Method 

 

2.1. Experimental setup 

 In this study, we have created a task which tends to reproduce the activity of a chemical 

operator: assemble chemical products with variable degrees of risk involved. In this context, 

participants had to wear surgical gloves to handle some dangerous products in the same way as 

chemists (Fournier et al., 2023). The “chemical products” were Duplo pieces and the “chemical 

mix” was the completion of a given model (Cf. Figure 1). All participants had to reproduce a 

Duplo model composed of 4 different colors and 5 floors. For technical reasons, participants 
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had to realize the model floors by floors. Indeed, they could put pieces for the second floor only 

when the first one was completed.  

 

Figure 1. A photograph of the experimental setup with a participant realizing the task with the 

collaborative robot YuMi 

To study the adaptation to safety constraints, we had to simulate danger exposure. For 

this, red blocks were presented as very dangerous and to be touched only with thicker gloves 

(just as chemists do, see Fournier et al., 2023).  

2.2. Participants 

38 adult participants (30 females and 8 males) without any color vision impairment and 

with no pain in the upper limbs participated in the study. It lasted approximately one hour for 

each participant. 34 were right-handed and 4 were left-handed. They were recruited by a post 

on the university’s website. Students were awarded points in certain courses. 34 out of 38 

participants declared not being used to work with robots. 19 participants were randomly placed 

in the condition “expert” and 19 in the condition “non-expert”. Contrary to the non-experts, 
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expert realized the experimental assembly three times alone (without cobot) before working 

with the cobot. In fact, during the pre-tests, it was only after three model executions that 

participants stopped making errors and no longer needed help. 19 participants were randomly 

placed in the condition “adaptation of the cobot” and 19 in the condition “non-adaptation”. In 

the condition of adaptation, the cobot associates a constraint (a cost) to a human risk exposure. 

It acts to minimize the human risk exposure. In the condition of non-adaptation, the cobot 

participates in the task without knowing the existence of any constraints. All participants 

succeeded the experimental task which is described below. 

 

2.3. Procedure 

All participants (experts and non-experts) realized one simple assembly task with the 

cobot as training (Cf. Figure 2).  
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Figure 2. Presentation of the different conditions and experimental procedures 
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All the participants had to reproduce a Duplo model. A total of two models were 

presented (Cf. Figure 3): the training model, labelled as “A” (used to train all participants to 

work with the cobot), and the experimental model, labelled as “B”, that all participants had to 

reproduce with the cobot (it was also used to train the experts before they collaborated with the 

cobot). 

 

 

 

 

 

Figure 3. The training model (A) and the experimental model (B) used in the experiment 

After the training session, all of the participants realized the experimental task with the 

cobot. The participant reproduced the experimental model in a precise area (Cf. area 1 in Figure 

4) with the cobot as fast as possible while answering simple math additions to mimic a complex 

work situation with multiple demands. In both conditions, the participant had access to more 

than half of the Duplo’s stock to realize the task (Cf. area 2 in Figure 4). The cobot had access 

to the remaining of the Duplo’s stock (Cf. areas 3 in Figure 4). 

 

 

 

 

 

Figure 4. Complex task distribution (1: work area; 2: human stock; 3: cobot stock) 

 

2.4. Measures and material 

1 

2 

3 3 

A B 
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We used different indicators to test our hypotheses. Our indicators of performance are 

the number of errors (piece placed and replace elsewhere), the completion time (the completion 

time of the model) and the percentage of success of the model (the model is correct). Our 

indicator of workload is the NASA TLX score (Hart, 2006; Hart & Staveland, 1998; Rubio al., 

2019; Webb al., 2021; Cf. Table 2).  

Table 2. Dimensions and items of the NASA-TLX questionnaire (Hart & Staveland, 1998) 

Dimension Item 

Mental workload How mentally demanding was the task? 

Physical demand How physically demanding was the task? 

Time demand How hurried or rushed was the pace of the task? 

Performance How successful were you in accomplishing what you were asked to do? 

Effort How hard did you have to work to accomplish your level of 

performance? 

Frustration How insecure, discouraged, irritated, stressed, and annoyed were you? 

This questionnaire was assessed on LimeSurvey using the SCREEN platform (Service 

Commun de Ressources pour l’Expérimentation et l’Equipement Numérique) managed by 

Grenoble Alpes University. Our indicator of acceptability is the score of an acceptability 

questionnaire derived from Venkatesh & Bala (2008) and Cippelletti et al. (2024). This 

questionnaire is measuring 6 indicators of the acceptability (trust perceived, pleasure perceived, 

usefulness perceived, coherence for the task perceived, social influence perceived and the ease 

of use perceived). Our indicator of risk exposure is the number of times the participant touches 

a « dangerous » block (red block). We also observed the position (on which level) where the 

risk exposure takes place. If it takes place during the construction of the first level (first floor 

of the model), it means that the participant exposed himself to some risk very soon during the 

task. If it happens at the last level, it means that the participant exposed himself to some risk as 

last resort. 
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The robotic environment set up for experimentation is detailed in Hmedan et al. (2022; 

Cf. Figure 5).  

Figure 5. Diagram of the robotic system setup used in the experiment. 

The setup comprises a collaborative robot, YuMi (ABB), which is configured via the ROS 

Rapid interface. Additionally, it includes a Vision Module utilizing a Jetson Nano camera and 

a Vision Interface programmed to handle perception of changes and assembly errors, while 

coordinating with the motion status of YuMi. A task planning interface, based on PDDL, 

Planning Domain Description Language (Ghallab et al., 1998), is utilized for continuous 

adaptation of robot behavior in response to perception and human interaction. The Planning 

solution is managed by the state-of-the-art Solver PDDL4J (Pellier & Fiorino, 2018), 
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employing hierarchical planning to determine the optimal sequence of tasks for the robot to 

execute, thereby minimizing human exposure. Acting as the system's central control unit, it 

dictates tasks to the robot and provides guidance to humans. A Graphic User Interface facilitates 

human-robot communication, providing crucial system status updates, task suggestions, and 

enabling users to request assistance from the robot. Finally, a controller orchestrates data flow 

between the various modules, ensuring effective communication and coordination. Under non-

adaptive conditions, the cobot will autonomously decide which block to move without 

considering any constraints. Conversely, under adaptive conditions, the cobot will prioritize 

moving red blocks to mitigate human risk, effectively responding to identified constraints. 

2.5. Statistical analysis 

Descriptive statistics such as means and standard errors are reported in the results section 

(see section 3). To test the effect proposed in the different hypothesis, Student T-tests were 

used. Parametric tests were used to achieve greater statistical power and assumptions (e.g. 

normal distribution, homogeneity of variance) were met. When an effect was found, a Cohen’D 

was used to have the effect size. Also, to test the proposed interaction effect (H4), a generalized 

repeated-measures mixed model was run. R-Studio (1.4.1106 version) was used to perform all 

tests. 

3. Results 

3.1. Questionnaire validity 

A test was performed to assess the reliability of the NASA-TLX: the result was 

satisfying with a Cronbach superior to 0,76. 

A test was performed to assess the reliability of the Acceptability questionnaire: the 

result was satisfying with a Cronbach superior to 0,9. All the scales tested separately had 

Cronbach’s score superior to 0,78. A factor analysis was performed to make sure than the scales 
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used were measuring independent factors. The test identified 6 different factors that predicted 

more than 84% of the scores’ variability (Cf. Table 3).  

Table 3. Number of components and explained variance by the factor analysis 

Component Total % of variance % cumulated 

1 3,821 16,614 16,614 

2 3,746 16,287 32,900 

3 3,595 15,628 48,529 

4 3,082 13,401 61,929 

5 2,809 12,212 74,141 

6 2,340 10,175 84,316 

Those 6 factors are the one we predicted: trust perceived, pleasure perceived, usefulness 

perceived, coherence for the task perceived, social influence perceived and the ease of use 

perceived (Cf. Table 4). 

Table 4. Factor loadings of the factor analysis by principal component analysis 

 1 2 3 4 5 6 

Trust3 ,897      

Trust1 ,895      

Trust2 ,887      

Trust4 ,816      

Pleas1  ,913     

Pleas4  ,893     

Pleas2  ,889     

Pleas3  ,723     

Pleas5  ,566     

Usefu2   ,891    

Usefu3   ,887    

Usefu4   ,825    
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Usefu1   ,775    

Coher1    ,905   

Coher2    ,887   

Coher3    ,840   

Influ3     ,950  

Influ2     ,926  

Influ1     ,862  

Usabi2      ,863 

Usabi3      ,820 

Usabi1      ,643 

Usabi4      ,484 

 

3.2. H1: The operator’s expertise (expert vs non-expert) effects 
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Table 5. Means and standard-errors of all the dependent variables tested classified as “expert” or “non-expert” 

Condition Ease of use Coherence Pleasure Usefulness Influence Trust Accept 

Expert M=21.95 

(SD=3.82) 

M=16,84 

(SD=3,69) 

M=27,42 

(SD=6,27) 

M=17 

(SD=5,99) 

M=13,74 

(SD=4,18) 

M=20,16 

(SD=4,6) 

M= 19,52 

(SD= 2,56) 

Non-expert M=21.21 

(SD=4.6) 

M=16,26 

(SD=4,09) 

M=27 

(SD=8,08) 

M=17,95 

(SD=6,39) 

M=13,21 

(SD=4,55) 

M=21,68 

(SD=5,37) 

M= 19,55 

(SD= 3,97) 

        

Condition Errors Risks Glove level Workload    

Expert M=0,84 

(SD=1,07) 

M=1,53 

(SD=0,7) 

M=3,42 

(SD=1,57) 

M=20,16 

(SD=4,6) 

   

Non-expert M=2,42 

(SD=3,11) 

M=2,05 

(SD=0,78) 

M=2,11 

(SD=1,59) 

M=21,68 

(SD=5,37) 
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H1a: Experts have a lower level of acceptability than non-experts. 

There is no significant effect of the participant’s expertise on the acceptability score (T(36)= -

0,03239; p= 0,9743). There is no effect of the participant’s expertise on all the different 

subscales of the acceptability questionnaire (Cf. Figure 5). 

 

Figure 6. Means scores of experts and non-experts on the different acceptability scales 

 

H1b: The operator expertise has an effect on the number of errors. 
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There is a significant effect of the participant’s expertise on the number of errors (T(22,174)=-

2,090;p=0,048). Expert participants do less mistakes than non-experts (Cf. Figure 6). The 

Cohen’s D is -0,6781501 (medium effect).  

 

Figure 7. Means of the number of errors made by experts and non-experts 

 

H1c: The operator expertise has no effect on the success of the task. 

The operator expertise has no effect on the success of the task as all the participants have 

succeeded in the assembly task. The cobot adapted to the human operator to ensure the success 

of the task as hypothesized. 

 

H1d: The operator expertise has no effect on the number of risk exposures. 
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There is a significant effect of the participant’s expertise on the number of risk’s exposure 

(T(36)=-2,194;p=0,035). Expert participants expose themselves to less risks than non-experts 

(Cf. Figure 7). The Cohen’s D is -0,7117683 (medium effect). There is a significant effect of 

the participant’s expertise on the level number on which participants first put their gloves 

(T(36)=2,559;p=0,015). Expert participants put their gloves later than non-expert participants. 

The Cohen’s D is 0,8302385 (large effect). 

 

Figure 8. Means of number of risk exposure of experts and non-experts. 

 

H1e: The operator expertise has no effect on the workload. 

There is no significant effect of the participant’s expertise on the acceptability score (T(36)= -

1,278; p= 0,2094). The cobot adapted to the level of expertise of the participant. 
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3.3. H2: The degree of cobot adaptation (adapt to the human’s constraints vs does not 

adapt) has an effect on the human and on his task. 

 

Table 6. Means and standard-errors of all the dependent variables tested classified as 

“adaptation” or “no adaptation” 

Condition Ease of use Coherence Pleasure Usefulness Influence Trust 

Adaptation M=21,21 

(SD=4,48) 

M=16,63 

(SD=4,27) 

M=26,37 

(SD=8,11) 

M=17,74 

(SD=5,14) 

M=13,05 

(SD=4,7) 

21,26 

(SD=5,37) 

No 

adaptation 

M=21,95 

(SD=3,96) 

M=16,47 

(SD=3,5) 

28,05 

(SD=6,11) 

M=17,21 

(SD=7,11) 

M=13,89 

(SD=4) 

20,58 

(SD=4,69) 

Condition Workload Errors Risks Accept Glove 

level 

Adaptation M= 120,66 

(SD=62,07) 

M= 1,11 

(SD=2,26) 

M= 1,42 

(SD=0,69) 

M= 19,38 

(SD= 3,84) 

M= 3,42 

(SD= 1,64) 

No 

adaptation 

M= 129,95 

(SD=64,18) 

M= 2,16 

(SD=2,54) 

M= 2,16 

(SD=0,69) 

M= 19,69 

(SD= 2,74) 

M= 2,11 

(SD= 1,52) 

 

H2a: Operators have a lower workload when the cobot adapts to their constraints than when it 

does not. 

There is no effect of the adaptation of the cobot on the perceived workload (T(36)=-

0,45352;p=0,6529). 

 

H2b: Operators make less errors when the cobot adapts to their constraints than when it does 

not. 
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There is no effect of the adaptation of the cobot on the number of errors (T(36)=-

1,3487;p=0,1858). 

 

H2c: Operators have a higher level of acceptability when the cobot adapts to their constraints 

than when it does not. 

There is no significant effect of the degree of adaptation on the acceptability scores (T(36)= -

0,29185; p= 0,7721). There is no effect of the participant’s expertise on all the different 

subscales of the acceptability questionnaire. Figure 8 presents the descriptive results of the 

questionnaire. 

 

 

Figure 9. Means scores of participants in the adaptated cobot condition and participants in the 

non-adapted cobot condition on the different acceptability scales 
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 H2d: Operators are less exposed to risks when the cobot adapts to their constraints than when 

it does not.  

There is a significant effect of the degree of adaptation on the number of risks taken (T(36)=-

3,2897;p=0,002249). Participants take more risks when the cobot doesn’t adapt to their 

constraints (Cf. Figure 9). The Cohen’s D is -1,067318 (large effect). There is a significant 

effect of the degree of adaptation on the level number on which participants first put their gloves 

(T(36)=2,559;p=0,015). Participants put their gloves later when the cobot adapts to their 

constraints. The Cohen’s D is 0,8302385 (large effect). 

 

Figure 10. Means of the number of risk exposure in the condition adaptation and no adaptation. 

 

3.4. H3: There is an interaction between the effect of the degree of cobot adaptation and 

the effect of the expertise of the participant. 
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To test an interaction effect, there need to be two significant single effects: this is the case for 

the "risk exposure" dependent variable. Both the expertise of the participant and the adaptation 

of the cobot have an effect on risk exposure.  

A generalized repeated-measures mixed model was run to test for an interaction effect. No 

interaction effect was found, the adaptation of the cobot does not moderate the effect of the 

expertise in terms of errors (F(1)=0,7896;p=0,380479).  

4. Discussion 

4.1. On the effect of expertise 

This study aimed to provide an innovative proof of concept on the impact of 

human/cobot collaboration in a risky work situation. Indeed, we tested the effect of the 

participant’s expertise (expert vs non-expert) on performance, workload, acceptability and risk 

taking. There was no effect of the expertise on the workload. Expert participants did less errors 

than non-expert. The training session seemed to have succeeded in making them experts. 

However, everyone succeeded in the task, whatever their level of expertise. Which means that, 

in both conditions, the cobot deals with the interindividual variability of the expertise by 

providing help to assemble the figure. However, there was no effect of the level of expertise on 

the acceptability scores. This result is contrary to what our colleagues, Cippelletti et al. (2017), 

have found. This means that the cobot is not a hindrance to the experts, unlike in Cippelletti et 

al. (2017) situation, where the software was not useful, hindered the experts more than the 

novices, and required them to perform additional tasks. The level of expertise had an impact of 

the risk taking. Expert participants took less risks than non-experts with or without the cobot. 

There may be an effect of learning the figure. This could mean that a human/cobot duo will 

allow the human to expose himself to less risks to realize a task in collaboration. However, this 

study is only a proof of concept, designed in a laboratory setting, therefore, results have to be 

taken with caution.  
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4.2. On the effect of adaptation 

The experimental setup enabled the comparison between a collaboration in which the 

cobot adapts to the operator safety constraints and one in which it does not adapt. This technical 

variability could impact the operator and his task. To the best of our knowledge, this comparison 

has never been tested before. Experiments usually compare two types of collaboration, 

according to the actors of this collaboration (Fournier et al., 2022, 2024), and according to the 

level of adaptation to human variability (Hiatt et al., 2011; Peternel et al., 2018). Only one study 

has tested the impact of a cobotic collaboration on performance, workload and posture in the 

presence of a technical variability, the pace imposed by the cobot (Bouillet et al., 2023). In our 

case, the adaptation had no effect on the perceived acceptability. Participants had positive 

perceptions toward the cobot whether it adapted or not. There was no effect either on the number 

of errors and on the success of the task. However, the adaptation of the cobot to the safety 

constraints of the human had a positive impact on the number of risk exposures by participants. 

Indeed, in the condition of adaptation, participants expose themselves to less risks (aka: touch 

the red blocks) and when they did, it was when there was no other solution (at the very end of 

the assembly if the cobot had no block left). The cobotic solution we have designed enables the 

operator to expose themselves to fewer risks, and to do so spontaneously. Those results could 

inspire future studies that could validate the benefits of implementing a cobotic system in 

workstations exposed to risks. 

4.3. Limits 

In future studies, it could be interesting to enable participants to work in longer time 

periods with the cobot. This would enable us to point the medium to long time impact of a 

cobotic collaboration on the performance and the acceptability of the human. Also, having more 

participants, including participants that have already worked with a cobot is important for 
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statistical analysis. Indeed, the influence of real experts of the industry could have a very 

different impact on the results found. In the experiment, the participants were all from an 

academic background, which may introduce a sampling bias. Therefore, the results should be 

interpreted with caution. Unfortunately, the experiment was impacted by numerous cobot bugs 

which may have affected the results, even though we tested their impacts and found none. And, 

certain dimensions, such as the acceptability of the cobotic collaboration, were measured 

through indirect measures (e.g. auto-reported questionnaire). Future studies could increase the 

generalizability of results by using more direct measures. To conclude on the limits, researchers 

should focus on other dimensions of the user experience to understand all aspects of work 

transformation when introducing a cobotic collaboration. Indeed, there needs to be studies on 

the long-term effects, such as impeded or facilitated work (Bobillier Chaumon, 2016).  

4.4. Practical implications 

There are obvious practical implications to those results. However, this is a laboratory 

experiment, so those implications have to be treated with caution. Firstly, there seems to be no 

issues to implement a cobotic collaboration with experts as their level of acceptability stays 

high. Secondly, it is possible to make a cobotic system consider human safety constraints by 

adding a high cost to a specific dangerous action. This adaptation reduces the human exposure 

to risks and does not negatively impact the quality of the task. And lastly, non-experts can 

succeed in a difficult task as well as the experts with the help of a cobot. 

5. Conclusion 

This research is a laboratory experiment testing the effect of the level of human expertise 

and the level of adaptation of a cobotic system to human safety constraints on the performance 

(success of the task and number of errors), the workload, the number of risk exposures and the 

acceptability during an industrial-like assembly task. The results suggest that it may be possible 
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to adapt a cobotic solution to human safety constraints without apparent negative impact on 

performance, workload, or the acceptability of collaboration. It suggests that cobots could assist 

humans in supporting high-risk operations. However, these findings are exploratory and 

originate from a proof of concept. There needs to be further analysis to validate these 

observations. Cobotic solutions and work designers could draw inspiration from our results to 

support the design of constraints in workstations for high-risk work operations. 
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