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Ship Detection From Raw SAR Echoes Using
Convolutional Neural Networks

Kevin De Sousa

Abstract—Synthetic aperture radar (SAR) is an indispensable
tool for marine monitoring. Conventional data processing involves
data down-linking and on-ground operations for image focusing,
analysis, and ship detection. These steps take significant amount
of time, resulting in potentially critical delays. In this work, we
propose a ship detection algorithm that operates directly on raw
SAR echoes, based on convolutional neural networks. To evaluate
our approach, we performed experiments using raw data simu-
lations and real raw SAR data from Sentinel-1 stripmap mode
scenes. Preliminary results on this set show the capability of de-
tecting multiple ships from raw data with similar accuracy as using
single-look-complex images as input. Simultaneously, running time
is reduced significantly, by-passing the image focusing step. This
illustrates the great potential of deep learning, moving toward more
intelligent SAR systems.

Index Terms—Deep learning, raw data, ship detection, synthetic
aperture radar (SAR).

I. INTRODUCTION

N RECENT years, synthetic aperture radar (SAR) has
I emerged as a powerful remote sensing technology with the
ability to operate in all-weather day and night conditions. SAR
missions are offering increasingly enhanced coverage capacity
and thus, have become a valuable tool for maritime surveillance
applications. They offer the capability to detect both small and
large ships while not being dependent on the utilization of the
automatic identification system.

SAR transmits microwave signals to an area of interest and
measures the reflected echoes. Their amplitude and phase are
utilized to create high-resolution images of the observed scene.

From these images, analysts can inspect and identify ships or
other targets of interest. Nevertheless, with the growing amount
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of SAR data, automatic approaches are becoming a necessity.
Traditionally, automatic ship detection is performed on the
ground due to the heavy computational load required. Usually,
the raw data are compressed, transmitted to the ground, decom-
pressed, focused to an image and then ship detection algorithms
are used. The delay resulting from these data processing steps
impedes real-time ship detection.

At the same time, deep learning algorithms have seen a surge
in popularity within the SAR community [1] (e.g., classifica-
tion [2] and on-board data compression [3]). In particular, for
ship detection, some early work with deep highway networks [4]
and convolutional neural networks [5] showed the potential of
deep learning for this application.

The research community has over the years built on these
early efforts, moving from more traditional techniques [6], [7],
[81, [9], [10] to deep learning based techniques. Several general
trends can be observed: two-stage detectors [11],[12],[13],[14],
[15], [16], [17], [18], one-stage detectors [19], [20], [21], [22],
[23], [24], [25], and anchor free detectors based on different
architectures, such as CenterNet [26], [27], FCOS [28], [29].
Contextual information is leveraged to perform detection in
complex scenes [30], [31]. As the models are becoming more
accurate, the community has started to push for lighter and faster
solutions to enhance the detection speed for real-time purposes
using techniques such as weight quantization and pruning (for
a detailed review [32]).

However, using SAR images to perform on-board ship detec-
tion implies that images are already available. Thus, on-board
SAR image focusing should be tackled in (near) real-time, which
is a nonnegligible technical and computational challenge. To
by-pass this computational burden, recent efforts have been
directed toward processing intermediate SAR data to detect
ships. Using range-compressed data as input to neural network
models is a promising avenue [33], [34], [35], [36].

Moreover, the research community is starting to explore the
potential of applying deep learning directly to raw SAR echo
data. In theory, neural networks can learn to approximate ar-
bitrary functions and should be able to learn a mapping from
raw data to a desired output, given sufficient and representative
training data and a suitable model. For example, an end-to-end
computational pipeline to perform image focusing and landscape
classification was proposed [37] or a trainable Omega-K and
sparse optimization-based SAR-GMT imaging network with
improved image quality [38].

More specifically, a recent study tried to perform ship detec-
tion directly on raw SAR echoes [39]. They illustrated that it

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
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Fig. 1.
From this map, the ship structures are extracted to estimate their location.

was possible to perform single ship detection on a simple scene
with calm sea background using a bidirectional long short-term
memory. Another work demonstrates its feasibility on simulated
data and on real data from the European Remote Sensing satellite
using residual neural networks (ResNets) [40].

We contribute by proposing a ship detection algorithm that
is able to detect multiple ships on real scenes based on convo-
lutional neural networks from raw data. Raw SAR echoes are
composed of complex numbers, thus two separate input channels
are used, one for the real and another for the imaginary part.
These are being processed by a series of convolutional layers to
produce an on-board segmentation map (ship or background).
In addition, an algorithm is presented, which extracts the ship
location based on the centre of mass (precise geolocation could
be estimated on-ground later). Using this, we demonstrate that
it is possible to detect multiple ships from raw SAR echoes
with real data from Sentinel-1 stripmap mode scenes. We also
compare the detection accuracy with networks utilizing SLC
images as input, discussing the benefits and pitfalls of our
approach.

The rest of this article is organized as follows. Section II
introduces our proposed ship detection algorithm. Section III
describes the experiments performed along with the datasets and
the results obtained. Section IV provides a discussion. Finally,
Section V concludes this article.

II. PROPOSED DEEP LEARNING ALGORITHM

In this section, the proposed ship detection algorithm (see
Fig. 1) is explained, along with possible variations. Due to
the fact that SAR data are complex in nature, additional
considerations are necessary during neural network design.
Given that the operations are performed in the raw SAR
data domain, we would like to provide to the network, both
amplitude and phase information which are paramount to
image focusing. However, since extra computation is required
to obtain these, it is preferable to operate directly on the real
and imaginary parts. The input data are structured such that
successive pulses are arranged into a matrix separated into two
input channels. The convolutional filters work on blocks of this

Visual representation of the proposed algorithm. First, the raw data are processed by a neural network. Then, a binary segmentation map is produced.

matrix. We investigated the use of two different convolutional
neural network architectures, described next.

A. Residual Neural Network

The first architecture tested is the ResNet [41]. The key idea
behind ResNet is the use of residual blocks, which contain skip
connections, and sequences of convolutional layers. It applies a
series of filters to the input image and produces feature maps.
These feature maps capture different aspects of the image, grad-
ually extracting higher-level features as the network increases
in depth.

B. U-Net

The U-Net [42] is a specific convolutional neural network that
consists of an encoder path, which downsamples the input data,
and a decoder path, which upsamples the encoded features to
produce a segmentation map. The input data are being processed
by a series of layers. Each layer consists of 2-D convolutional
filters, followed by normalization and ReLU activation. At each
stage of the network, two of these layers are used, denoted by the
green arrow in Fig. 1. Max-pooling then follows to downscale
the intermediate feature maps, denoted with a red arrow. At
the decoder side, the same structure follows, but upscaling is
performed using a transposed convolution denoted with a light
blue arrow.

C. Loss Function

To optimize the parameters that compose the neural networks,
aloss function is required. In this work, we use the cross-entropy
loss, which is defined as

1 N C
LEy)=—5 DD log
n=1c=1

where

exp(Yn,c
# Yne (1)
Zi:l exp(yn,z)

y is the output of the model,
C'is the number of classes,
y is the ground truth label, and
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N is the total number of pixels in the ground truth.

Cross-entropy could be used for the segmentation of multiple
classes (e.g. between ships, sea and land). Special care is needed
when there is imbalance of classes. This can be circumvented
with the use of weights for classes, inversely proportional to the
number of pixels belonging to each class. We focus on ships or
sea, to obtain a binary predicted output..

The predicted output of a neural network is given by

y=7(d) 2)

where d are the raw SAR data, normalized by the maximum
amplitude and F is the neural network mapping from data space
to ship detection. To obtain the binary segmentation map, the
predicted values for each pixel per channel are compared and
the highest value is selected as the class.

D. Estimation of Ship Locations

The binary cross entropy loss function can be used for image
segmentation. In our case, we are interested in separating the sea
background from the ships, i.e., a binary segmentation. The final
aim, however, is to detect the ships’ presence and their location,
not their shape. To achieve this, the ship structures composed of
cluster of points are identified using the following steps.

1) Nonzero elements in the binary map are flagged.

2) Connected nonzero elements are identified. This is achie-
ved by grouping nonzero elements into unique clusters
(ships) by iterating through nonzero pixels. Here, we
used a search algorithm [43] but any suitable method for
the task could be used. Proximity between clusters is not
considered.

3) Centre of mass is calculated per ship.

4) List of ship locations are returned.

III. EXPERIMENTS

In order to investigate our proposed algorithm, two datasets
are used. The first one consists of raw SAR data from point target
simulations and the second contains real stripmap data.

A. Raw SAR Data Simulation of Point Targets

A synthetic stripmap mode dataset was computed from point
targets, distributed randomly in the scene with homogeneous
background clutter. Real sea clutter can be modeled using
various different models as reviewed in [44]. In this article,
a simplistic representation of the sea clutter was modeled as
circular complex Gaussian noise [40]. The number and location
of the point targets varied randomly. The SAR transmits a chirp,
which appears in range. Another chirp appears in azimuth due
to the phase history of the collected echoes along the SAR
trajectory. These echoes were composed of 1871 azimuth lines
and 2500 range samples. Table I lists some key parameters
of the simulation. Note that these do not correspond to any
actual Sentinel-1 acquisition mode. The sampling frequency,
pulse duration, and height were set for ease of experiments.
Fig. 2(a) shows the real part of the raw data, Fig. 2(b) shows the
corresponding focused image and Fig. 2(c) shows the input of
the simulator used to generate the data.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE I
PARAMETERS OF THE SIMULATION
Parameters Values [units]
Centre frequency 5.405 [GHz]
Chirp bandwidth 50 [MHz]
Chirp pulse duration 3 [ps]
Range sampling frequency 150 [MHz]
Pulse Repetition Frequency 1871 [Hz]
Antenna length 12 [m]
Orbit altitude 690 [km]
Mean signal-to-clutter ratio 39.18 [dB]

TABLE 1T
SYNTHETIC DATASET DESCRIPTION

| | Data volumes | Number of targets |

Training 700 4053
Validation 200 1228
Test 100 1000
Total 1000 6281

The range-Doppler algorithm was used to focus the raw
data [45], which can be decomposed into three steps: range
compression, range cell migration correction, and azimuth com-
pression.

In total, 1000 simulation data volumes were generated and
divided into three separate datasets: training, validation, and test
as described in Table II. Since raw data were simulated from a
known input, labeling is not necessary. Instead, the simulator
input serves as the ground truth for the locations.

A ResNet was used to detect the presence and location of the
point targets from both raw data and SLC images focused from
the respective simulated raw data. The model trained using SLC
images as input converges faster than the one trained using raw
data as input. This could be due to the fact that the functional
mapping from SLC images to ships is simpler than the raw data
to ships mapping. Instead of training with the same number
of epochs, we first trained a model with SLC images as input
and empirically chose a cross entropy loss of 2.5 x 107> as a
threshold. This enables the models trained using raw data as
input to reach comparable detection accuracy to those trained
using SLC images as input, albeit for longer training time.

All the presented models have been optimized using the
ADAM optimizer [46] and trained using the cross entropy loss
defined in (1). Table III tabulates the results obtained with
different metrics, including the inference time and the focusing
time when running on NVIDIA Quadro RTX 8000 GPU. Note
that for the inference time, only the time to process the input to
the model output is recorded. The loading time of data into the
GPU is not taken into account. In addition, estimating the center
of mass for each ship structure is not included, as it can be done
on the ground with precise geolocation.

With regards to detection accuracy, the Fl-score is used as
metric. The common practice of using the standard F1-score
refers to image segmentation tasks. If the goal is to accurately
segment the shapes of the ships, then it would be more suitable
to use this. However, this is not what we are interested here, but
rather we would like to detect the ships. Thus, we utilize a relaxed
F1-score where a correct detection is considered when the centre
of mass of a prediction is within the ground truth label. We denote



DE SOUSA et al.: SHIP DETECTION FROM RAW SAR ECHOES USING CONVOLUTIONAL NEURAL NETWORKS

0 0
200 200

"] ("]

[ Q

£ 400 £ 400

s s

=] =]

£ 600 E 600

B b
800 800

400 600
range samples

(a)

N
o
o

£
o
o

600

azimuth lines

-]
o
o

200 400 600

range samples

(@

800

Fig. 2.

400
range samples

[-)) B N
(=] o (=]
o o o

azimuth lines

-]
o
o

200

400 600
range samples

600 800 1] 800

(b) (c)

N
o
o

»
(=]
o

600

azimuth lines

-]
o
o

200 400 600 800

range samples

(e)

Portion of data volume from raw SAR data simulator and corresponding results. (a) Real part of raw data. (b) SLC image. (c) Simulation input (ground

truth). (d) Prediction using the proposed algorithm from raw data. (e) Prediction using SLC image as input to trained model.

TABLE III
SYNTHETIC MODEL METRICS

[ Datatype (Channels, Layers) | Inference Time [ms] | Focusing Time [ms] |

Fleom | Training epochs |

RAW data (8, 6) 70.908 0 0.885 312

RAW data (32, 6) 159.366 0 0.909 177

RAW data (8, 14) 173.431 0 0.993 168
SLC (8, 6) 59.517 130.755 0.846 6
SLC (32, 6) 151.859 128.053 0.999 10

The bold values correspond to the best performance for the F1.,,, metric, which is the metric used to compare our models.

the relaxed F1-score as Flpn. It can be seen that it is possible
to achieve very high accuracy using models with either raw data
or SLC images as input. However, the training time of models
using raw data as input is much longer, which is performed
on-ground. For on-board ship detection, the important metric to
consider is the total running time (inference + focusing time),
which is considerably reduced when by-passing image focusing.
Fig. 2(d) and (e) illustrates the output of the ResNet with 14
layers and eight channels using raw data and SLC images as
input, respectively.

B. Real Sentinel-1 Stripmap Mode

Following the testing of our hypothesis to detect point targets
from raw SAR data simulations, we move on to real data. To
achieve this, we train neural networks from scratch using real
Sentinel-1 Stripmap mode (S6) VV polarization data, acquired
from the Copernicus Open Access Hub (Copernicus Service

Information 2022). Our study focused on the Sao Paulo region,
home to one of the busiest cargo container ports in Latin Amer-
ica, situated along the Atlantic Ocean coast. Fig. 3(a) illustrates
the real part of the raw SAR data. Fig. 3(b) shows the respective
SLC image and Fig. 3(c) is the test binary segmentation label,
manually created.

Note that a dim replica of some of the brightest ships in the
SLC image in Fig. 3 is visible in the vertical direction. This is
a known artefact of SAR images called azimuth ambiguities,
and can be mitigated by trading off azimuth resolution with the
replica’s brightness. Ambiguous ships were specifically not con-
sidered during the manual labeling process. A more systematic
labeling procedure would be advantageous and subject to future
work.

A total of 12 scenes from Sao Paulo were utilized, with each
scene cropped to 12 000 x 19 950 dimensions. To mitigate class
imbalance, a section of the sea was excluded. Within each scene,
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(@)
Fig. 3.
TABLE IV
REAL DATASET DESCRIPTION FOR INPUT SIZE 500 x 3000
Number of images Total number Number of

with ships of images targets
Training 189 448 713
Validation 52 113 169
Test 21 51 111
Total Samples 262 612 993

The bold values correspond to the best performance for the F1,,, metric,
which is the metric used to compare our models.

8500 azimuth lines and 9000 range samples were employed. The
dataset description for an input size of 500 x 3000 can be found
in Table IV. The mean and standard deviation signal-to-clutter
ratio is 42.81 and 4.95 dB, respectively, between the ships and
the sea clutter.

Applying the ResNet directly did not yield satisfactory results,
given the higher degree of complexity of real data. Thus, we
changed the architecture to a U-net and investigated different
configurations, to identify the most suitable with respect to
the limitations of computational complexity, training energy
consumption and detection accuracy.

1) Architecture Design: There are various hyperparameters
that could be changed during architecture design. Nevertheless,
here we focus on the three given in the following.

1) The number of depth layers: The amount of times the input

has been downscaled (e.g., 4 in Fig. 1).

2) The base channels: The number of channels after the first
convolutional layer (e.g., 8 in Fig. 1). The channels are then
increased by multiples of 2 in the encoder and decreased in
the decoder, respectively. The number of starting channels
will impact the size of the latent space at the bottleneck.

3) Theinput size: Number of range samples and azimuth lines
fed into the model.

Table V includes the relaxed F1-score achieved by different
configurations and corresponding inference time as defined be-
fore, which is illustrated in Fig. 4.

Increasing the amount of channels and thus increasing the
capacity of the model does not always translate to improved

(b) (©

Evaluation scen (contains modified copernicus sentinel data [2022]). (a) Real part of raw SAR data. (b) SLC scene. (c) Binary segmentation label.
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Fig.4. Visual representation of the different model configurations investigated

based on their relaxed F1-score against their inference time.

detection accuracy. This could be due to the fact that bigger
models require more training data to be trained sufficiently.

Increasing the range samples used is not always helpful. Too

big and the number of training data are reduced significantly
when the number of scenes is fixed. On the other hand, too small
and it might not be able to capture all the energy spread by the
chirp. Thus, it should be chosen depending on the specific SAR
mode characteristics, in particular the chirp length. Furthermore,
by increasing the number of layers, number of base channels and
the input size, the inference time increases. A tradeoff between
detection accuracy and inference time exists and needs thorough
consideration.

In our study, we highlight three configurations as follows:

1) (500 x 2000) and (four base channels and four depth
layers) achieves F'leom = 0.903 with inference time =
18.86 ms.

2) (500 x 3000) and (eight base channels and four depth
layers) achieves F'lq,,m = 0.937 and inference time =
35.84 ms.
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TABLE V
RELAXED F1SCORE AND INFERENCE TIME
Size of (base channels, number of depth layers)
input data
2,4 “, 2 “, 4 (8, 2) (8, 4 e, 2) a6, 4)

azimuth range time time time time time time time

lines samples | [ms] Fleom [ms] Fleom [ms] Fleom [ms] Fleom [ms] Fleom [ms] Fleom [ms] Fleom

250 2000 6.91 0.836 8.85 0.681 | 1041 | 0.844 | 13.06 | 0.801 | 17.67 | 0.823 20.09 | 0.807 30.79 0.826

250 3000 10.09 | 0.826 | 13.04 | 0.771 | 15.25 0.89 19.06 | 0.717 | 25.25 | 0.901 29.53 0.826 | 43.95 0.895

250 4000 14.23 0.844 17.52 | 0.678 20.27 0.783 25.24 | 0.691 31.25 0.838 33.84 0.678 48.52 0.844

500 2000 13.81 0.793 16.35 0.726 18.86 | 0.903 22.63 0.825 28.1 0.907 31.20 0.86 42.38 0.875

500 3000 17.07 0.897 21.39 | 0.743 23.95 0.882 28.53 0.859 35.84 | 0.937 46.07 0.855 63.77 0.914

500 4000 2425 | 0.859 | 28.09 [ 0.536 | 32.01 | 0.798 | 39.00 | 0.73 47.88 | 0.858 62.14 | 0.779 86.05 0.768

1000 2000 2391 | 0903 | 2823 | 0.727 | 31.04 | 0.899 | 38.07 | 0.762 | 46.73 | 0.913 64.31 0.815 87.46 0.88

1000 3000 35.63 | 0.839 | 4130 | 0.66 | 46.77 | 0911 | 57.61 | 0.629 [ 69.20 | 0.94 96.96 | 0.846 | 133.41 | 0.875

1000 4000 48.58 | 0.848 [ 57.29 | 0391 | 63.72 | 0.813 | 77.40 | 0.729 | 91.79 | 0.894 | 126.30 | 0.645 | 177.44 | 0.762
The bold values correspond to the best performance for the F1,,, metric, which is the metric used to compare our models.

TABLE VI
COMPARISON BETWEEN MODEL TRAINED USING RAW DATA AS INPUT AGAINST SLC IMAGES
F1 F1 Inference Focusing Power Training Energy used Model Model
com time time consumption time for training Memory | Parameters
[ms] [ms] [W] per epoch [s] [kWh] [MB] [#]

RAW | 0.840 | 0.937 35.84 0 111.7 446 5.83 (for total of 421 epochs) 4.846 1270394
SLC 0.912 0.976 34.48 37.84 104.6 431 6.22 (for total of 497 epochs) 4.845 1270194

3) (1000 x 3000) and (eight base channels and four depth
layers) achieves F'l.,m = 0.94 and inference time =
69.20 ms.

The second one is chosen, for our purposes, as the best
compromise between detection accuracy and inference time.
This is used as a benchmark to compare against an equivalent
model trained using SLC images as input.

2) Comparison Between Raw Data or SLC Images as Input:
In order to evaluate the performance of our proposed model that
uses raw data as input, we compare it against a model trained
using SLC images as input and the same targets. The model
with eight base channels and four depth layers is used with input
size of 500 x 3000. The same model specifications are used to
train a neural network using the amplitude of SLC images in
dB, as single channel input. Both models were trained for five
hundred epochs and the model with the lowest loss was selected,
respectively. Here, we do not impose a threshold on the loss
function such that the best possible model can be obtained, tak-
ing into account preselected energy requirements (proportional
to number of epochs). During the training of neural networks,
many performance metrics should be considered. Table VI lists
some first efforts to assess tradeoffs between detection accuracy,
inference time and energy consumption during training.

Our proposed model, when trained on raw data, demonstrates
arelaxed F1-score of 0.937, which is lower than its SLC equiv-
alent, reaching 0.976. With the standard F1-score, the model
trained using SLC images as input achieves a score of 0.912,
whereas the model that uses raw data as input obtains 0.840.
With regards to inference time, both models are comparable.
However, our approach does not require any image focusing,
approximately halving the total running time. A visual example
is shown in Fig. 5 where Fig. 5(d) illustrates the output prediction
of the model trained using raw data as input and Fig. 5(e) the
output prediction of the model trained using SLC images as

input. The raw data used as input is included in Fig. 5(a). The
centre of each of the responses in the raw data corresponding
to ships is shifted to the right by half of the chirp length and
careful consideration is needed when splitting it into portions.
In this work, nonoverlapping input data were used, but further
considerations are required on the best way to pass the data to
the networks.

To get accurate models, it is essential to train for sufficiently
long time. However, it is also important to monitor the energy
needed. In Table VI, we present the power consumption during
training, and the total energy is calculated based on the number of
epochs required for the best model. This depends on the specific
hardware used for training and can be reduced.

C. On-Board Data Computation

The original U-net model [42] was not designed for on-board,
light-weight applications. If it was used in our case, with two
inputs, it would have been composed of 31 031 234 parameters.
In order to perform on-board SAR data analysis, the proposed
neural network model should be as small as possible but simul-
taneously achieve high ship detection accuracy.

From the previous tradeoff analysis of 63 different model
configurations, we chose a model that had 1 270 394 parameters.
This is areduction by 95.91%. The model design was specifically
performed in such a way to facilitate on-board data process-
ing. Notably, the model is fully convolutional, with reduced
parameters. Fully connected layers are not included to reduce
the difficulty of the on-board implementation.

Prior to implementing the model in hardware, network quanti-
zation and pruning could be performed to reduce the complexity
and memory requirements. After each model alteration, the
resulting detection accuracy should be validated. Nevertheless,
hardware implementation is left for potential future studies.
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Fig.5. Visual example using real Sentinel-1 data (contains modified Copernicus Sentinel Data [2022]). A zoom-in portion of the 500 x 3000 input is shown with
the corresponding SLC image, ground truth, and predictions. Note the shift to the right in the range-axis of the raw data is equivalent to half of the chirp length.
(a) Real part of raw data. (b) SLC image. (c) Label. (d) Model prediction using raw data. (¢) Model prediction using SLC images.

IV. DISCUSSION

By performing experiments on both simulated and real data, it
was observed that it is possible to detect multiple ships directly
from raw SAR data. The functional mapping from raw data to
ship detection can be represented using convolutional neural
networks, provided that sufficient and representative data are
available as well as enough model capacity and structure.

Starting with simulated data, it was possible to detect targets
from raw data computed from simulations and achieve similar
performance as models using SLC inputs, at the expense of
longer training times. Nevertheless, the key parameter is the
running time, which is significantly improved by our proposed
approach, since no image focusing is required.

Moving to the real Sentinel-1 dataset, the scene is more
complex. The number of model parameters had to be increased

as well as the neural network architecture changed. A U-net was
utilized to leverage the downscaling and upscaling operations,
useful for data segmentation tasks.

It was observed that the U-net was also able to detect the ships
from the real raw data accurately, being comparable to a U-net
using SLC images as input. Nevertheless, if the shapes of the
ships produced in the segmentation map are intended to be used
explicitly as components for further post-processing (e.g., ship
classification), the model using SLC images as input could be
more suitable as shown by the difference in F1-score in Table VI.
This is because in this current analysis, the model trained using
SLC images produces more accurate shapes. Further develop-
ment is needed to investigate whether bigger, more sophisticated
models using raw data as input could improve this performance.

During our analysis, we noted some important factors that can
affect the prediction accuracy. The size of the neural network
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window (input data size) should be careful chosen. This choice
should be done by considering the length of the transmitted
chirp, the SAR mode characteristics and the amount of training
data available. The depth of the model also matters as it processes
more spatial information concurrently.

Overfitting is another factor that needs to be considered. In
this work, only training data from the Sao Paulo region was
used. This sea background is relatively calm and near a port
where ships are likely stationary. This stripmap mode scene was
used as proof-of-concept but further work is essential in order to
generalize our approach. To achieve this, it is necessary to create
a larger dataset with more diverse scenes (open ocean, different
levels of background noise, and different number of ships) and
various acquisition modes (e.g., extending this work to Inter-
ferometric Wide mode). In addition, when manually creating
a dataset, labeling is prone to human error. A more systematic
approach to training data generation should be considered during
further developments.

Running instances of these deep learning models on specific
hardware targets suitable for space missions would be very
useful. Choosing when and how best to perform the centre of
mass estimation and the precise geolocation of ships is also
essential, as well as investigating different inputs to the network
(e.g., using complex-valued neural networks [47]). Finally, the
evaluation of real-time capabilities as well as investigation of
any potential changes to detection accuracy (e.g., after weight
quantization or pruning) are required.

V. CONCLUSION

In order to reduce the running time of an on-board ship
detection module, it is beneficial to develop algorithms that
operate directly on raw SAR echoes. In this work, we developed
a novel ship detection algorithm based on convolutional neural
networks and demonstrated its performance using simulations
and real stripmap mode Sentinel-1 data.

Preliminary results illustrated that comparable detection per-
formance is achieved by our proposed model using raw data as
input and models that use SLC images as input. These results
serve as proof-of-concept with further investigation required
to generalize to more complex scenes and acquisition modes.
Depending on the complexity of the observed scene, models
could be applied either directly to raw SAR echoes or at various
stages of the processing chain (e.g., after range compression).
By doing so, more responsive and intelligent SAR systems could
be achieved and this work demonstrated the great potential of
deep learning toward this development.
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