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Abstract—This paper introduces a use case of our energy
analysis platform, named ENRICO (for ENeRgy sustalnability
COding), which aims to analyze and provide feedback on the
development process by evaluating the energy consumption of
each feature. This paper presents how an user can use the the
ENRICO platform to improve the implementation of an appli-
cation. The platform introduces a new concept of analyzing and
optimizing energy consumption of new features in a development
process. This platform adds a step in the continuous integration
and continuous development process (CI/CD). ENRICO can be
integrated into Gitlab to give feedback to the development team.
This tool can be considered similar to a sonar tool that analyzes
energy consumption of code. The platform uses Gitlab merge
requests to identify which part of the code was modified and
analyzes the impact of the newly developed feature, providing
some recommendations to improve the code and reduce the
energy footprint.

This paper introduces a use case of a development process to
reduce the energy consumption of an application using ENRICO.
The platform provides feedback on the energy consumption of the
new feature and allows for code improvement by receiving energy
feedback. ENRICO is designed to identify the parts of an applica-
tion that consume the most energy. These recommendations can
pertain to code, frameworks, or languages. Sometimes, changing
the application architecture and transitioning from a monolith to
microservices can reduce energy consumption. Improving energy
efficiency can be achieved at different levels, and developers
need guidelines to make informed decisions on reducing energy
consumption.

In this paper, the ENRICO platform architecture and a
practical use case that allows for reducing and measuring the
performance of the application is presented.

Index Terms—Green Computing, CI/CD, Energy, Code Anal-
ysis.

I. INTRODUCTION

Every day, new applications are being developed and de-
ployed to data centers. These new applications are crafted
using high-level frameworks that abstract the underlying hard-
ware system’s complexity. However, a side effect of this
approach is that applications are becoming more resource-
intensive, requiring more CPU and memory. Moreover, the
energy consumption of an application is usually not a priority
for development teams, except in the case of IoT or mobile
applications [14]. On the hardware side, teams are proposing
more efficient data centers with modern hardware or more
efficient cooling systems. The Power Usage Effectiveness
(PUE) of data centers is decreasing [1]-[5], and they become
more eco-friendly [6].

In the development process, teams use CI/CD (Continuous
Integration and Continuous Deployment) to validate new fea-

tures of their app. These tools aim to streamline the develop-
ment process, generate artifacts for deployment, and perform
regression tests. The CI/CD is built by DevOps teams, who
construct pipelines based on different steps: testing, building,
storing artifacts, and deployment. Occasionally, a code quality
step is added to the pipeline, which is designed to detect
security issues or analyze code complexity.

Companies start to integrate Sustainable Development Goals
proposed by the UN [25]. But, the energy footprint of a
company is being impacted by the increasing size or com-
plexity of applications. With the rise of Al (Artificial Intel-
ligence) and the use of GPUs (Graphical processing Unit)
and computation units, the energy consumption of applications
will continue to grow. Furthermore, optimizing software is no
longer considered a key feature in the development process
(at the expense of simple-to-maintain applications), except for
game development. Development teams are often unaware of
the energy consumption of their software and are primarily
focused on adding features. To improve the energy efficiency
of an application, various solutions can be proposed, such as
changing frameworks or languages, optimizing code, or utiliz-
ing hardware features (e.g., Single Instruction/Multiple Data
aka ’SIMD’ ). However, transitioning from one framework to
another can be complex and is often overlooked by develop-
ment teams. Using a new framework or changing languages
can improve application performance, but it is a challenging
and complex process. Additionally, some best practices in the
development process can also negatively impact the energy
footprint of an application. Using modern architecture like
microservices, for instance, can increase the energy footprint
of an application. It can also lead to cleaner code by splitting
the logic into multiple sub-services.

In this context, a novel approach that utilizes the CI/CD
tools to analyze the energy impact of an application. The
name of this application is ENRICO, short for ENeRgy
sustalnability COding. This platform introduces a new CI/CD
step that analyzes the result of a merge request and compares
the energy consumption of the new code with the previous
implementation. Our solution gives developers the opportunity
to understand which parts of the application have a negative
impact on energy. This paper introduces the architecture of
the ENRICO platform, how this platform is integrated into a
Gitlab project, and a practical use case of the platform applied
to a standard algorithm.

This paper is organized as follows: Section II discusses
related research on energy measurement for both software and



hardware in the context of software development. Section III
introduces the ENRICO platform. In Section IV presents an
experimental setup with results in the Section V. Finally, the
paper concludes with a review of the ENRICO platform.

II. RELATED WORKS

Energy consumption is a pressing issue for both industries
and researchers. The escalating climate crisis further amplifies
the challenge of reducing the energy footprint in the Infor-
mation and Communication Technology sector with the aim
of drastically decrease the energy usage on this sector. Data
centers alone use 2% of Europe’s total energy produced. In
France the consumption of data centers was 200 TwH in 2018
and 500 TwH in 2020. Providers of data centers are actively
working on reducing the energy impact of these complex
systems, and this aspect has been well studied [10]. Providers
strive to enhance their hardware infrastructure by adopting the
latest technologies and incorporating energy-efficient hardware
components. With this strategy, they have been able to opti-
mize the energy needs of data centers. However, the number
of applications being deployed on these systems continues to
rise, thereby impacting the overall energy footprint.

In the literature, various software solutions are available to
measure the power consumption of an application. However,
these solutions primarily focus on RAPL (Running Average
Power Limit Energy Reporting) metrics [8], which provide
CPU estimations of power consumption. It is important to
note that these metrics are only available on Intel or AMD
CPUs and cannot be used on ARM CPUs. Additionally,
when the computation involves accelerators such as GPUs,
it becomes necessary to collect GPU consumption metrics
simultaneously. These metrics are highly accurate, as stable
power management is crucial for the proper functioning of
GPUs. This kind of approach can be found in [7] for GPU
analyses or [16] for static code.

Energy efficiency is frequently overlooked by software
developers who create applications for servers. Their work
is mainly focused on reducing the cognitive complexity of
the code and enhancing software maintainability. Most devel-
opment teams use software like Sonar [26] to identify code
smells and improve their code quality, and use CI CD to
enhance their deployment process [21], but the footprint of
new code is not evaluated. Tools to monitor the energy impact
exist, based on processing metrics, RAPL instructions [27].
Some example of tools are Scaphandre [28] or Greenspector
[29] that can evaluate the energy of the code or deployed
platform. However, these tools have some limitations in terms
of accuracy. RAPL is based on Intel’s or AMD instructions to
measure the CPU’s energy consumption [30]. Although power
meters on the power supply can provide an overall measure-
ment of energy consumption, they may not assess the energy
usage of specific components like memory, motherboard, and
I/O. To tackle this limitation, some developers opt to use power
meters on the power supply, but it is not a widely adopted
solution. Additionally, this approach primarily measures the

whole system’s energy consumption rather than focusing on
individual features or components.

As architecture evolves, software complexity is growing and
monolithic applications are shifting towards microservices.
This evolution is expanding the need for more robust in-
frastructure and a distributed system. Deployment capabilities
have advanced simultaneously, enabling developers to launch
their software on virtual machines or other systems. Further-
more, with the advent of container technology, development
teams are now deploying software in this specific system.
Consequently, the resources required by these systems are on
the rise due to these tools.

Containers, such as Docker, provide a lightweight and
isolated environment for running applications. They share the
host operating system kernel, which eliminates the need for
a separate guest operating system as required in VMs. This
reduced overhead results in improved performance compared
to VMs. Containers can start faster, require less memory, and
have lower CPU overhead.

Additionally, containers allow for better resource utiliza-
tion. Multiple containers can be deployed on a single host,
effectively utilizing the available resources more efficiently.
Container orchestration tools like Kubernetes provide features
such as auto-scaling, load balancing, and resource allocation,
which further optimize resource utilization.

However, it’s important to note that while containers offer
better performance and resource utilization compared to VMs,
they still have some overhead compared to running applica-
tions directly on bare metal. The additional layer of abstraction
provided by containers [23] introduces some performance
trade-offs, although these are generally minimal.

Performance analyses can be performed on CPU, memory,
and I/O. Energy can also be used to measure the perfor-
mance of an application. Some related works analyze energy
consumption of a whole application [17]-[19]. For container
solutions, some analyses are provided, but the impact com-
pared to bare applications is avoided. In the context of cloud
infrastructure, energy analyses are run in order to understand
the impact on scaling [9]. The cloud analyses can be found
in [22], [24]. These analyses are executed in the context of
a production environment. With this solution, the main idea
was to anticipate the deployment impact of the software by
analyzing the software before releasing the application.

Compared to other solutions, our solution provides a new
method to analyze the energy impact of an application during
the development process. Compare to existing methods which
are focus on evaluating CPU energy, ENRICO measures the
energy consumption of the whole system. It enables the
development team to anticipate and measure the energy impact
of new features in the software development process.

In the following section, the methodology used to analyze
software energy consumption is presented to test of the so-
lution within the context of an N-body simulation, detailing
the various improvements made to the application using the
platform.
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Fig. 1. Architecture of the platform deployed to run energy measurement.

III. ENRICO PLATFORM

This paper introduces a new platform that aims to analyze
the energy consumption of an application in the development
process. This platform is called ENRCIO (for ENeRgy sus-
talnability COding). To avoid perturbation in the production
environment, we monitor the energy in the development phase:
these measurements are performed when unit tests are running
(in the CI/CD process).

To perform these measurements, ENRICO uses a dedicated
node with specific monitoring capabilities to analyze and
understand the energy behavior of the application. This node
runs a gitlab runner that is specifically monitored for ENRICO.
This node is monitored using RAPL and a physical wattmeter.
The platform also collects data from the node using telegraf
(which pushes data to influxdb). With all of these metrics,
ENRCIO is able to provide analysis on the running pipeline
based on energy consumption, memory usage, disk usage, and
CPU usage. With this strategy, it is easier to identify and
control the behavior of a running application.

From the energy side, ENRCIO uses a physical wattmeter to
collect more accurate data on the entire node, rather than just
the CPU. The wattmeter pushes data to an MQTT bus (based
on Mosquitto), and the Telegraf agent collects these values and
pushes them to InfluxDB. Using RAPL metrics alone excludes
other components of the server, such as memory occupation
or I/O levels. Factors like hard disks and network usage can
significantly impact server power consumption. Therefore, it
is necessary to add a physical device, such as a wattmeter, to
capture this information.

The ENRCIO platform is based on a microservices architec-
ture. Each computing node (nodes where tests are executed)
collects system metrics and RAPL metrics using a Telegraf
agent. Data is collected every second and stored in an In-
fluxDB database.

To address measuring energy consumption of specific code
segments, ENRICO uses different strategies to capture con-
sumption. ENRICO is interfaced with the CI/CD tool by
extending unit tests step to analyze the energy consumption
of an application. ENRICO is currently in the development
process and is only integrated with Gitlab. In future works,

ENRICO will be integrated with other CI/CD platforms such
as Github and Bitbucket.

The architecture of ENRICO is presented in figure 1. EN-
RICO has a specific CI/CD step that runs tests on a dedicated
node that is highly monitored (using a wattmeter and special
CPU instructions).

To simplify the extraction of data, ENRICO uses tags to
track the steps of the running process. Before starting the
test, ENRICO emits a start tag to an InfluxDB database
with a timestamp and a start indicator (with a bash script
named: push-start-tag.sh). At the end of the test, ENRICO
also sends a stop tag (with a bash script named: push-stop-
tag.sh). Because tests are executed three times, a run tag
with a start and stop indicator is also emitted. For each tag,
we attach the commit ID (in gitlab we use the variable:
$CI_COMMIT_TAG) and branch name (in gitlab we use
the variable: $CI_COMMIT _BRANC H) to track the evo-
lution of the energy consumption for a project. The energy is
evaluated on the development of the same branch..

At the end of the unit test, ENRICO simply extracts data
between the tags and computes the energy consumption using
RAPL data and wattmeter data. ENRICO measures the con-
sumption of current the test. Then, the results of the computed
measurements are sent to Gitlab as a comment to provide
information on the energy impact of the current development
branch. To achieve this goal, ENRICO uses specific Docker
images with all the necessary tools integrated into the system’s
path. For this initial version, it is necessary to specify the end
of the test to indicate which tests need to be run.

Below is an example of the .gitlab-ci.yml (Listing 1) file
that handles the ENRICO measurement on a Java application,
but this strategy can be reused with any language.

Listing 1. Yaml of the CI/CD to run ENRICO measurment
stages:
— test
— test—energy
— build

test—all:
image :
stage:
script:
— export GRADLE_USER_HOME=‘pwd ‘/. gradle

— ./gradlew check test

gradle : jdk21
test

test—enrico:

image: gradle—enrico:jdk21
stage: test—energy
script:

— export GRADLE_USER HOME=‘pwd ‘/. gradle
— push—start —tag.sh
- for i in {1..3};

- do

- push—start —run.sh $i

- ./ gradlew test ——tests org.acme.nbody.runl
- push—end-run.sh $i

— done

— push-stop—tag.sh

The ENRICO approach is a significant step towards on
understanding and minimizing the energy impact of a software.
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import sys import sys
def recur_fibo(n):
if n <= 1:
return n
else:
return(recur_fibo(n-1) + recur_fibo(n-
2))

nterms = int(sys.argv[1]) nterms = int(sys.argv[1])

if nterms <= 0: if nterms <= 0:
print("Plese enter a positive integer") print("Plese enter a positive integer")
else: else:
for j in range(int(sys.argv[2])): for j in range(int(sys.argv[2])):
print("Fibonacci sequence:") print("Fibonacci sequence:")
for i in range(nternms):
print(recur_fibo(i))

print(0)
print(1)
for k in range(2,nterms):
nl=0
n2 =1
suivant = 0
for i in range(2, k+1)
suivant = nl + n2
n = n2
n2 = suivant
print(suivant)

Fig. 2. Two distinct Python implementations of the Fibonacci sequence were
employed to demonstrate the incorporation of the pipeline within GitLab.

ENRICO introduces a new CI/CD step to analyze merge
requests and evaluate the difference in energy consumption
between the old and new code. ENRICO platform allows
to simplify the understanding of energy consumption and
enable developers to make more informed decisions regarding
energy efficiency. An example of the integration of our tool
is presented in Figure 2, an experimental run on a specific
pipeline is run with a simple Python code that computes the
Fibonacci sequence.

ENRICO introduce a new concept called “energy code
smell” that identifies any potential energy-related issues intro-
duced by the new code. The analysis of this code is conducted
during a merge request or a pull request. Furthermore, an
extended step specifically for the CI/CD pipeline was designed
for this paper, where the integration of our measurement
step can be observed in Figure 3. ENRICO also integrate an
“energy gate” which enforces a quality policy based on energy
by answering one question: does my project not consume more
resources?

IV. EXPERIMENT SETUP

This section presents the setup used to run analyses provided
by the ENRICO platform. The energy is captured using two
different solutions: RAPL metrics and a physical wattmeter
device.

A. Hardware

1) Computing node: In order to perform the analyses, a
dedicated node is required. For this experimentation,
CPU used is an Intel-based computer. This node is
equipped with an Intel(R) Core(TM) 19-10920X CPU
@ 3.50GHz processor, with 12 physical CPU cores,
appearing as 24 logical cores (threads) thanks to hyper-
threading. The server has a cache of 12.25MB and 128
GB RAM. It runs Debian 12 OS with Docker 20.10.24.
For storage, a 500 GB NVMe disk is used. The server
also has 3 Nvidia GPUs: RTX 4060 TI.

@ Pipeline #382249276 passed for €794c629 on change-fibo 38 seconds ago

av { Approve | Approval is optional ®

@ Merge when pipeline succeeds v Delete source branch

> 1 commit and 1 merge commit will be added to main. Modify merge commit

0 $o ||

© I

ENRICO Cl integration

e Tests passed
® Energy consumption reduced

Reduction of 500% for the energy consumption HBHDHH

cates o[ o

Fig. 3. Integration of the ENRICO result into gitlab, highlighting the load
test comparison for the two implemented Fibonacci sequences in Python.

2) Metrics Node: The monitoring of the solution is per-
formed on another node. It is an HP EliteDesk 800 G2,
equipped with an Intel(R) Core(TM) 19-10920X CPU @
3.50GHz processor. The system has 64 GB of RAM and
a 4 TB NVMe storage disk.

3) Energy Measurement: The compute node is monitored
by a smart power plug. This device measures the energy
of the power plug using a BL0942 chip. This sensor is
managed by an ESP8266 chip. This chip is in charge
of the main application and also communication with
the Metrics node. Communication is performed using
MQTT. This plug measures different metrics: Voltage
(V), Power (W), and Energy (kWh). This device mea-
sures energy consumption every 500 ms and sends data
regularly to MQTT.

B. Software

1) Collection of Energy Data: Because most of data are
send to a MQTT bus, ENRICO run with a Telegraf agent
to collect data from the event bus and store it into a
dedicated database in InfluxDB. The retention policy of
this dedicated database is set to “none” .

2) Monitoring: In order to analyze the performance of
the system and usage of memory and processor, the
deployed monitoring stack is based on Telegraf [31]
and InfluxDB [32]. The main goal of this kind of tool
is to collect data from the compute node. With these
tools, ENRCIO can extract data from the database in
order to capture data from CPU usage, memory, 1/O,
and network.

V. RESULTS

In this section, we will discuss how a development team can
gain insight into the energy consumption of their application.
By utilizing this approach, the team can enhance the efficiency
and quality of their code, and assess the resulting impact on
energy usage.



Algorithm 1: The n-body algorithm.

1 Function calculate_force() is

2 foreach i: body do

3 L find_force(i, particles) ;

4 Function find_force(i: body, particles) is

5 foreach j in particles do

6 if j # i then

7 d_sq = distance(i, j) ;

8 ans[i].x += d_x * mass(i) / d_sq"3 ;
9 ans[i].y += d_y * mass(i) / d_sq™3 ;
10 ans[i]l.z += d_z * mass(i) / d_sq"3 ;

In this analysis, a development team aims to improve the
performance of a computationally intensive algorithm known
as the n-body simulation. This algorithm has a complexity of
O(n?) and is highly CPU-intensive. However, its ability to be
easily parallelized makes it an ideal candidate for optimiza-
tion. The pseudo-code for the n-body simulation algorithm is
presented in 10.

In the initial phase of the project, the development team
opted for Python as the programming language. This choice
was based on the language’s popularity in the research com-
munity and its increasing use in industry, particularly among
data scientists. However, the team is willing to consider other
languages in order to reduce the energy footprint.

Each particle has six dimensions: X, y, z, VX, vy, vz. For this
development phase, the team is trying different techniques to
optimize the data structure, five different data structure:

o Python V1.0: particles are store in a one-dimensional

vector where each dimension is contiguous to each other
(eX: 1,Y1,21,4%1,0Y 1,021, - »TnsYn>2n:0Ln0Yn0%n),

e Python VI1.1: particles are stored in a one-dimensional
vector where each dimension is stored into a blob
(EX: T1seesTris YloeensYns ZLseeesZrs QL1 seees@Tryy QYo @Yy
A2 ey @ Zp),

o Python V1.2: particles are stored in multiple arrays that
are stored within one array (ex: [x1,....Zn], [Y1,---Ynls
[21,--52n], [aZ1,...azy], [aY1se...ayn], [a21,....a2,]),

o Python V1.3: particles are stored in a 2D array

o Python V2.0: numpy implementation

For this experimentation, a N-body simulation run in differ-
ent steeps. For this example 100 steps of the simulation with
10000 particles are executed for the test phase.

ENRICO allow to compare all of these Python implemen-
tations and show the time results in Figure 4 (logarithmic
scale), energy consumption in Figure 5 (logarithmic scale), and
power usage in Figure 6. Based on these different implemen-
tations, Python V1.1 improves performance slightly compared
to Python V1.0. However, versions 1.2 and 1.3 significantly
degrade the performance of the Python application.

The execution time for the initial versions of the algorithm
was found to be very slow. To improve performance, the

Time (s)

10

Python V1.0 MPythonV1.l ®PythonV12  PythonV1.3 M Python V2.0

Fig. 4. Pyhton comparison of time for a 100-step simulation with 10,000
particles.
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Fig. 5. Energy consumption for a simulation of 10,000 particles in python.

development team decided to integrate the NumPy library.
With this second version (V2.0), the execution time was
reduced, but the power required to run the model was found
to be more significant. The improvement in performance can
be attributed to the native parallelism and data structuring
capabilities of NumPy, which allow it to use SIMD instructions
of the CPU to increase the speed of algorithms. However,
this strategy also results in a drastic increase in the power
needed to run the simulation. The overall energy used is lower,
and the time is also reduced, but the power peak is the most
significant. The cognitive complexity of using NumPy is not
too significant and simplifies the readings.

In the remainder of this document, ENRICO allows to
compare the same algorithm implemented in different pro-
gramming languages to determine the most suitable solution.
Specifically, a C , Java, Python, and Javascript was proposed
by some developers. These different implementations are used
to measure performance using RAPL and the wattmeter. It is
important to note that all of these implementations are used
without SIMD instructions and without parallelism. The C
version is compiled using GCC with different compilation
optimization options.

Figure 7 presents the execution time for each language.
Since the runtime in Python is significantly longer, it is
necessary to use a logarithmic scale. Since some tests have
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Fig. 7. Execution times for all configurations of the N-body simulation.

already been performed using Python, the analysis will now
concentrate on the two most successful Python implementa-
tions: v1.1 and v2.0.

Firstly, the C version proves to be the fastest solution when
using the correct compilation option (O2 in this case). The O3
version can potentially be faster, but the number of particles
is too low to observe a significant difference.

The computation time of Javascript can be compared to the
Python 2.0 version. When using a traditional implementation
with 10,000 particles, Javascript outperforms Python with
numpy.

The C and Java versions can be compared as they have
similar execution times. For future work, the performance
of the C version can be improved by integrating SIMD
instructions, which would involve refactoring the data structure
to be Array of Structure friendly. However, for the purposes
of this paper, developers have chosen not to use this feature
in order to avoid adding complexity.

In order to accurately evaluate the energy consumption of
the different implementations, it is necessary to compare the
two measurement methods: RAPL and the wattmeter. This
paper aims to compare both strategies to determine if the
values are similar or if there is a significant divergence.
To gain a more comprehensive understanding of the system,
simulations will be executed with a higher number of particles.
This strategy provides us with a more comprehensive overview

7000
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0 10 20 30 40 50 60
®C ®JAVA

Java native

Fig. 8. C, Java, and Java Native configurations, including time measurements.

of power management. This approach is inspired by research
that utilizes large simulations with a significant number of
particles. This test run 100 steps with 100,000 particles. In
the subsequent steps, and the parallelism in both languages is
enabled. For the JAVA version, a native compiler is used to
enhance running performance. Since the server has 12 CPU
threads and 12 hyper-threads, the parallelism is configured
with the following options: 1, 2, 4, 8, 12, 16, 24, 30, and
48 threads. As for the C version, uses the O3 compilation
option to achieve optimal performance.

As shown in Figure 8, if the number of threads increase, the
execution time is not linear. However, for each configuration,
the curve remains the same and follows a consistent path. At
12 threads a ceiling have been reach, increasing the number
of threads does not affect the execution time, this can be
observe in I. When comparing the execution time of the C
version and the Java native version, an average factor of
1.95 with a standard deviation of 0.02. This means that the
Java native version is approximately twice as slow as the C
version. However, the maximum power required for execution
favors the Java native version (see Figure 9). Despite the
lower execution time of the C version compared to Java or
Java native version, analyzing the energy required reveals
that running the code in JAVA is more efficient (Figure 10).
Furthermore, in C or C++, it is possible to improve the
execution time using SIMD instructions, which could lead to
even better results with the C version.

Based on this analysis, if a developer team has a constraint
on peak usage, the Java native version would be the best
choice. On the other hand, if the team has timing constraints,
the C version would be more suitable. Additionally, if read-
ability and ease of maintenance are the main concerns for
the development team, the Java version appears to be the
most suitable option. With a change in the compiler, the
performance can be drastically improved.

In the final part of this paper, a comparison is made
between RAPL and the wattmeter in terms of measurement
accuracy. For this analysis, the focus is on the C version of
the application. Figure 11 presents a real-time measurement
of the power usage of the developed application compared



# threads | C Speedup | Java Speedup | Java Speedup C | Java Native Speedup | Java Native Speedup C
1 1.00 1.00 0.56 1.00 0.51
2 1.95 2.01 1.14 1.96 1.00
4 3.89 4.00 2.27 3.88 1.98
8 7.79 7.97 4.53 7.63 3.89
12 11.30 11.88 6.75 11.32 5.77
16 11.46 12.42 7.05 11.57 5.90
24 11.46 13.55 7.70 11.89 6.06
30 11.72 13.32 7.57 11.89 6.06
48 11.68 13.19 7.49 11.89 6.06
TABLE I
SPEEDUP OF C, JAVA AND JAVA NATIVE
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Fig. 9. C, Java, and Java Native configurations, for power measurements.
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Fig. 10. Energy needs for the n-body simulation in a C, Java, and Java native
implementation for a large simulation using multi-threading.

to the RAPL metric. As shown in Figure 11, the simulated
measurements are not very accurate, especially as the number
of threads increases. The difference between RAPL and the
wattmeter becomes more significant with a higher number
of threads. Based on TDP (Thermal Design Power) of the
processor, the theoretical value is 165W. The RAPL has a
maximum value of 150W, while the wattmeter has a maximum
value of 250W. The wattmeter measures more power because it
collects power from the entire system (This server is equipped
of 3 GPUs), whereas RAPL only estimates the power of the
CPU. With this approach, the global power consumption of
the system can be estimated more accurately, by taking into
account factors such as 10 and memory. Both metrics are

Nb threads

Fig. 11. comparison between RAPL and Wattmeter for the C implementation
of the N-body simulation.

complementary and help in understanding the distribution of
power usage. This strategy is particularly efficient for future
works involving GPU usage. In future research, ENRCIO
will be able to estimate the power of each component with
greater accuracy by employing memory-intensive algorithms
and network-intensive computations.

Based on these examples, ENRICO can assist the devel-
opment team in understanding the impact of code evolution
during the Merge Request process. In this specific example, the
team started implementing the N-body simulation in Python
and, after some optimizations, successfully reduced the energy
footprint. However, due to insufficient performance with the
new implementation using numpy, the team decided to explore
alternative programming languages such as Javascript, Java,
and C. The Javascript implementation was ultimately aban-
doned due to its slow performance and complex parallelism.
When comparing the C and Java versions, the C version
outperformed the Java version. However, considering the
availability of developers, it is easier to find Java developers
compared to C developers. According to various sources [34],
the Java community is now larger than the C/C++ community.

Considering the development process, it is important to
integrate cognitive complexity when selecting the best pro-
gramming language. Guiding the development team in their
language choices can significantly improve the energy effi-
ciency of future applications.



VI. CONCLUSION

In this paper, we introduced the ENRICO (ENeRgy sustaln-
ability COding) platform and presented the results produced
by the platform for a specific use case. In order to give
an overview of the capabilities of ENRICO, an analysis of
an N-body algorithm implemented in various programming
languages was provided. This paper shows the advantages of
using Java or C compared to Python or Javascript based on
the power consumption metric. This paper highlighted perfor-
mance improvements based on maximum power and energy
for different Python implementations. Because ENRICO is
designed for development teams, it is enable to analyze the
code simplicity in order to enable knowledge sharing within
the team. This paper present different strategy to measure
power consumption on a dedicated CI/CD node, this strategy
is based on two methods RAPL and a wattmeter. This paper
shows the difference between physical measurements and
estimated measurements (using RAPL). For this specific kind
of application, in most cases, the C implementation is the most
suitable, but in order to have a comprehensive understanding,
this paper also presented different implementations of the same
algorithm and determined which solution was the most adapted
based on power peaks, code complexity, and timing.

This work is an initial phase of ENRICO, presented as the
first step towards a more complex system to help developers
improve their code using their knowledge. For future versions,
ENRICO will integrate code smells from Sonar to improve
solutions and propose energy-based optimizations to the de-
velopment team.

In future work, we aim to improve the ENRICO platform
by adding the capability to target specific languages and
frameworks for platform suggestions. Additionally, we plan to
incorporate Sonar recommendations to provide best practices
based on code quality and energy consumption. Another
improvement will be the integration of measurements into
other categories such as CPU, memory, I/O, and network
usage. Given the growing importance of Al in the industry,
ENRICO will also include metrics for GPU usage. Finally, we
plan to develop a theoretical model that estimates the overall
system consumption based on code and RAPL metrics.
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