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REVIEW ARTICLE

Planning and performing image-assisted robotic 
interventions using personalized, minimally 
invasive, safe, and precise therapeutics

Adel Razek*
Group of Electrical Engineering – Paris, CNRS, University of Paris-Saclay and Sorbonne University, 
Gif sur Yvette, France

Abstract
This review aims to analyze complex medical interventions planned and performed 
using image-guided robots. Such interventions, which may involve surgical 
or targeted drug delivery, are minimally invasive, precise, and safe therapies. 
The accuracy of robotic positioning is improved by reducing uncertainty and 
complexity, which can be achieved by matching real and virtual interventional 
procedures involving physical and virtual phantoms of the relevant part of the 
corresponding living tissues. Such tailored training includes personalized, patient, 
and interventional tool characteristics, and the results enable a real (with patient) 
intervention controlled by staff and a possible matched autonomous intervention 
under staff supervision. This paper discusses considerations for selecting appropriate 
scanners to control and monitor image-guided interventional procedures, planning 
personalized medical interventions using physical and virtual phantoms, involving 
staff in the loop, and employing augmented matched digital twins (DTs) for real 
interventions. Moreover, the paper positions the image-assisted robotic strategy 
in comparison to laparoscopic surgery. Each topic covered in this article, while 
self-contained, is supported by examples from the literature to facilitate a deeper 
understanding. The outcomes of this review highlight the importance of complex 
medical interventions involving image-assisted robotics or laparoscopic processes 
involving minimally invasive, nonionizing, and precise interventions. Furthermore, 
DTs already integrated into healthcare, combined with digital tools, could offer an 
effective solution for managing image-assisted robotics. This includes planning 
interventions with phantoms or patients and involving staff in the loop.

Keywords: Image-guided therapeutics; Living tissues; Surgery and drug delivery 
interventions; Complexity; Uncertainties; Monitoring paired real–virtual twins

1. Introduction
Throughout history, the drive for progress has remained constant. Today, many routine 
processes and technologies contribute to modern well-being, with one of the most critical 
domains being health-related strategies that prioritize safety, comfort, and curative 
outcomes. Recent advances in medical sciences have uncovered the causes of numerous 
illnesses and developed strategies to address them, primarily through surgical and drug 
delivery interventions. The effectiveness of these interventions is directly linked to factors 
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such as safety, comfort, and curative outcome of the patient, 
which rely heavily on the tactile and visual skills of medical 
staff. These interventions aim to be minimally invasive 
and precisely targeted, thus protecting healthy tissues 
surrounding the affected areas. Furthermore, medical staff 
is expected to deliver personalized patient care, which 
intensifies the skills required for operational efforts. The 
concept of personalized medicine involves medical care 
tailor-made to the specific requirements of each patient, 
allowing for, in addition to the specific disease to be 
treated, factors such as hereditary characteristics, daily life, 
ecological environment, and reaction to treatments.

Based on the above-described information, the least 
invasive and positional precision tactile and visual skills 
could be advantageously replaced through dedicated 
image-guided robotics1-4 or equivalent strategies such 
as laparoscopic surgery.5 In fact, robotic surgery is 
the daughter of laparoscopic surgery with an evident 
improvement in technology and also in the fatigue of the 
surgeon who assumes a more comfortable position for 
the entire duration of the procedure. Such substitution 
is particularly further recommended for more complex 
interventions. Moreover, such interventional complexity 
that can be encountered during major surgical procedures6-9 
or limited drug delivery10-12 obligates actions in a restricted 
area, as mentioned earlier, to protect healthy living tissues 
bordering the affected area. Hence, closed-loop robotic or 
laparoscopic processes would enable complex interventions 
reflecting positioning precision, minimally invasive, and 
restricted-area medical rulings by assistance using methods 
that are harmless to healthy living tissues.4,5 In such closed-
loop robotic control processes, different problems may be 
encountered, related to the management of complexity, 
uncertainty, and unanticipated dangerous incidents. Such 
problems can be solved using a control strategy based on 
matched physical–virtual pairs.4,13 Therefore, the concept of 
personalized medicine as well as the last mentioned medical 
rulings could be planned (predetermined) by monitoring a 
matched physical–virtual pair (involving a physical phantom 
and its model) allowing the verification of the intervention 
result. This supervision can be aided by a human intercession. 
Furthermore, in expectancy, a monitoring of the real–virtual 
pair could be autonomous in the presence of the patient and 
with the medical staff in the loop.

The aim of this review is to analyze complex personalized 
medical interventions planned and performed using 
image-guided robotics, ensuring minimally invasive and 
safe conditions for precise surgical or drug administration 
procedures. The next sections in this paper are summarized 
as follows. Section two is dedicated to image-guided 
medical interventions involving features of adapted 
interventional scanners. Section three discusses the control 

and monitoring of image-guided intervention procedures 
comprising closed-loop control of image-assisted robotics 
and the reduction of perturbing factors in such control 
by monitoring real–virtual pairs. Section four discusses 
the planning of personalized and medical rulings, which 
incorporate both physical and virtual phantoms, along 
with integrating prospective individuals (staff) in the loop 
and using augmented digital twins (DTs) for real (with 
patient) interventions. A discussion on additional details 
of notions and concepts involved in the developed analyses 
is provided in section five. Finally, section six discusses 
conclusions and future suggestions.

2. Image-guided medical interventions
Traditional invasive interventions pose challenges in 
surgical procedures and restrict drug administration. 
At present, minimally invasive, image-assisted robotics 
enhance patient ease and safety as well as procedural 
accuracy and therapeutic efficacy. These methods can 
target almost any area in the body, and controlled release 
through implants prevents side effects.

2.1. Characteristics of interventional scanners

Most imaging scanners can be used in robotic assistance. 
However, each of the imaging methods is acceptable for 
an explicit condition.14 Those engaging ionizing radiations, 
such as X-ray and positron emission, would not be 
appropriate for extensive-duration actions. Consequently, 
only the two nonionizing scanners, namely, magnetic 
resonance imaging (MRI) and ultrasound imaging (USI), 
would fit such prolonged actions.15-18

An imaging scanner is expected to provide 
high-resolution, 3D visualization the tissue structure and 
close-action instrumentation. Robotic assistance works 
within the imager scaffold alongside the object, enabling 
closed-loop management of tasks, such as tracking 
object motion and distortion, tracing robotic tools, and 
controlling drug release. Due to the increasing use of 
interdependent scanner–robot actions, a new approach 
has emerged that allows medical staff to treat patients more 
efficiently. Placing robotics within the imaging scaffold 
merges imaging capability with robotic competence, thus 
developing closed-loop management.

2.2. Features of MRI and USI

Both MRI and USI exhibit the abovementioned features 
relative to imaging and interventional tasks. However, 
USI can function only in boneless and airless frames.3,4 
The second distinction is the MRI’s requirement for a 
scaffolding environment devoid of electromagnetic (EM) 
noise.19-25 However, MRI appears to be a comprehensive 
scanner conditional to circumventing EM noise.
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In addition to these distinctions, other applications 
can be identified. MRI is suitable for imaging entire body 
parts without constraints. Although MRI is universally 
applicable, USI can serve as a replacement when 
appropriate for the object being examined. Moreover, 
USI offers good maneuverability and cost-effectiveness, 
whereas MRI, although capable of producing high-quality 
images of soft tissues, is more complex and expensive. 
Therefore, from the viewpoint of practical use, the choice 
between the two scanners depends on the situation. USI 
should be used whenever possible, whereas MRI should be 
reserved for imaging structures containing bone and/or air, 
such as the brain and certain other body parts. Typically, 
clinical centers that perform MRI-guided procedures 
likely possess surgical imaging facilities, eliminating the 
need for scanner transport. In terms of cost, when patient 
well-being is a consideration, MRI-guided interventions, 
such as brain surgery, are the only nonionizing, minimally 
invasive treatment options.

In fact, MRI can provide high-level 3D images of the 
object configuration, neighboring healthy tissues, and 
involved instruments; however, there are significant 
challenges in its implementation to successfully guide the 
intervention. These challenges include the use of three 
magnetic fields of different characters (magnitude and 
frequency), presenting allergic responses to EM noise, and 
imposing a restricted occupation zone inside the imaging 
structure. The latter problem can be overcome using an open 
scanner, although it involves tolerating the disadvantage 
of lower field intensity and therefore a slower process. 
Nonetheless, MRI may be better than other scanners for 
several reasons. It has an incomparable contrast allowing 
the visualization of tumors as well as other abnormalities 
undetectable by other scanners. It has a true 3D imaging 
capability, including multimodal detection, for example, 
blood flow, temperature, and biomarker tracking. In these 
circumstances, the training of robotic assistance by an MRI 
can allow an excellent intervention.

3. Control and monitoring of image-guided 
interventions
Intraoperative imaging strategies have created a need for 
medical tools that address the requirements of different 
imaging techniques. Developments in image resolution and 
disconnection capabilities have enabled new interventions. 
3D imaging techniques provide realistic and detailed 
views of living tissues; however, the tool must be activated 
within a specific area by locating the image coordinates. 
Moreover, operative drug delivery procedures can deliver 
drugs to the target site, maintaining therapeutic drug levels 
with minimal impact on surrounding healthy tissues. This 
can be facilitated by drug-delivery implants.

3.1. Closed-loop control of image-assisted robotics

As mentioned earlier, for patient comfort and safety, 
therapy must be limited to the affected area during surgery 
or drug delivery. Such precision depends on the accuracy 
of tool actuation and space localization. Accordingly, 
the prerequisite for such high-performance topological 
tracking is image-supervised location identification. Such 
conditions require a collaborative organization working 
autonomously, as demonstrated in a controlled drug 
release setting (Figure 1). This system includes the scanner, 
tissue-affected area, drug delivery implant, control system, 
and drug supply.3,4

The accuracy involved in such a control process related 
to actuation and spatial localization would be influenced 
by different disturbing factors, including the degree of 
complexity of the components of the combined procedure, 
the associated detection uncertainties, and different 
unanticipated external hazard incidents. Reliable control 
could be certified only after reducing these disturbing 
factors.

3.1.1. Surgical interventions

Image-assisted or laparoscopic intraoperative interventions 
that meet safety requirements for imaging and interventional 
actions generally use MRI and USI scanners3,4,6 or 
laparoscopic strategies.5 However, in some cases, MRI 
scanners are increasingly used in surgical interventions 
increasingly, particularly for their superior ability to 
differentiate tumors from normal tissues during surgeries 
and tumor extractions.26-29 As mentioned earlier, MRI 
is sensitive to EM noise; thus, all robotic materials 
inserted into the scaffold near body tissues must be MRI-
compatible (free of magnetic and conductive materials). In 
such settings, an actuation action is necessary. Few high-
performance actuators are MRI-compatible. One possible 
class of actuation devices is piezoelectric actuators, which 
come in different categories. More information on their 
structures, materials, fabrication, testing, and applications 
is described elsewhere.30-39 These devices must be tested 
to confirm their compliance, that is, to ensure that they 
do not disturb the field distribution produced by the 
radiofrequency (RF) coil used for imaging. Such devices are 
composed of piezoelectric materials, which are dielectrics 
and thin electrodes. Although dielectrics are not expected 
to disturb the field, conductive electrodes, even those of 
minimal size, must be carefully tested and regulated.

3.1.2. Drug delivery interventions

Conventional drug administration by intermittent oral 
or intravenous release can cause extraordinary blood 
drug concentrations immediately after delivery, probably 
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resulting in a dangerous effect in patients. Moreover, 
these methods undergo first-pass metabolism, causing 
a substantial concentration decrease in the liver before 
attaining regular flow, and consequently several doses are 
often required. Local, sustained, and controlled delivery 
allowing less hostile effects is possible through implant 
technology. Two situations regarding the spatial release are 
concerned. The first is spatially regular with constant drug 
release and biodegradable static configurations that enable 
their disposal; more information concerning the structures, 
materials, composition, and characterization is described 
elsewhere.40-50 The second is spatially non-uniform 
centering only on sick zones and circumventing healthy 
zones; hence, mobile implants are necessary. The strategy 
used in the second case is similar to the case of image-
assisted surgical interventions discussed in the previous 
section and satisfies safety features regarding imaging and 
interventional actions; these implants can involve different 
cases depending on the required precision, the treatment 
type, and the concerned placement.12,51-58

3.2. Reduction of control-perturbing factors

As mentioned earlier, the accuracy involved in the control 
process related to actuation and spatial localization is 
subject to disturbing factors, which include the degree of 
complexity of the components of the combined procedure, 
the associated detection uncertainties, and different 
unforeseen external hazard incidents. It is essential 
to reduce these possible perturbations and consider 
personalized patient data, which could be achieved by 
monitoring such factors and data through matching 

in physical–virtual pairs as DT tools.59 DTs could be 
termed as a simple incorporation of data between a real 
phenomenon and its digital copy pair, in both ways. DTs 
are generally used for monitoring procedure conditions, 
diagnostics, prediction, optimization, scenarios, and 
risk evaluation.60 Such tools can be designed at the levels 
of system, subsystem, and specific components. The 
concept of DTs is used for the administration of complex 
processes such as image-assisted robotized interventions; 
we describe here its central features.61 A DT is organized 
as a real–virtual pair that permits self-adapting conduct. 
The real part provides the processed detected data to the 
virtual part, and the latter conveys the control instructions 
to the real part. Such a matching also allows reducing 
uncertainties and decreasing undesirable and menacing 
operating singularities.

3.3. DT management

Following the description of the primary features of a 
DT, this section describes in detail the management of 
its monitoring. The processed information of the real 
side provides sensor detections paralleled and amended 
by outward data (IoT) as well as by acquired history. The 
resulting product is communicated after training in a 
data analysis format. These submissions, with a suitable 
reduced model, are transferred to the virtual side. Rapid 
matching requires a reliable virtual replica with short 
computation times, which can be achieved by reducing the 
comprehensive model – that is, a complete coupled model 
closely resembling the real system – while maintaining 
the real physical picture. Administration using such a 
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Figure 1. Schematic of an autonomous restricted drug release setting comprising the scanner, tissue affected area, drug delivery implant, control system, 
and supply

https://dx.doi.org/10.36922/itps.4567


Image-assisted personalized interventions

Volume X Issue X (2024)	 5� doi: 10.36922/itps.4567 

INNOSC Theranostics and 
Pharmacological Sciences

pair consents an adaptive control for a procedure when 
functioning.62 Figure  2 summarizes the topographies 
of a DT for monitoring an image-guided intervention 
procedure.

Note that the DT concept is progressively incorporating 
the healthcare sphere exploiting virtual replicas of 
bodily individuals that go further than a static situation 
incorporating the dynamic conduct of a real living 
tissues entity, many examples have been published in this 
intention, see for instance.63-73 As the healthcare sector is 
gradually exploring the use of DTs, successful proofs of 
concept in various sectors suggest that, if fully realized, 
DTs could transform connected care, lifestyle, health, 
and chronic disease management in the future. However, 
recognition of the vast capacity of DTs in health care may 
likely be slowed by hesitation challenges.

4. Planning of personalized and medical 
rulings
The concept of DT discussed in the previous section could 
be used in planning a fictive intervention without a patient. 
In this case, we monitor the fully imaging-assisted robotic 
intervention procedure, including the scanner, the robot, 
and the tissue (phantom). This physical phantom of the 
tissue part of interest will be incorporated into the real 
physical side of the DT. Similarly, the virtual model side 
of the DT involving the intervention procedure model will 
include a digital phantom replica of the physical one. This 
corresponds to Figure 2, with physical and digital phantoms 
representing the body part of interest in the living tissue. 
This planning would include personalized characteristics 
of the patient and the interventional tool as well as the 

recommended medical prescriptions to meet the safety 
features related to imaging and interventional actions 
for the intervention concerned. Such planning allows 
confirming the smooth running of the intervention and 
the possible adaptations required for the medical protocol 
practiced. Therefore, the real (with patient) image-guided 
intervention could be performed under good conditions, 
which could be achieved through an image-assisted 
collaborative environment, as illustrated in Figure 1, under 
the supervision of medical staff, or prospectively through 
an autonomous DT monitoring procedure with involved 
staff (in the loop).

4.1. Physical and virtual phantoms

Physical and digital phantoms, discussed in the previous 
section, represent living tissues on both sides of the 
DT. A major problem with both choices lies in the way 
of tissue representation. Considering that biological 
properties allow the erection of these phantoms with 
static behavior, such a static representation could 
be suitable for specific parts of body tissues and for 
particular demands. Nevertheless, as mentioned earlier, 
these phantoms should represent real body tissues 
with reasonable biological properties. In general, the 
mechanical behavior related to the deformation and 
displacement of living soft tissues, irrigated by fluids 
allowing their functioning, corresponds to an exhibition 
of a complex dynamic behaviour.74-78 Such a complex 
tissue behavior requires actually evaluated constitutive 
rules, adapted computational approaches, or both to 
address this problem. We can only approach this category 
of representation in an approximate manner. Different 
tissue models can be found in the literature.79-82

Figure 2. Summarized illustration of a matched monitoring of a complex procedure (image-guided intervention) with its virtual model
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4.2. Prospective human in the loop and 
augmented DTs

The abovementioned human-robot alliance (staff in the 
loop) related to DT authorizes higher supervision of 
image-guided interventions, thus reducing the threat for 
the patient and ensuring a guaranteed outcome for medical 
staff.83-85

Furthermore, the commitment of the practices of 
artificial intelligence (AI) in such medical therapeutics 
helps in reducing the complexity of data acquirement and 
post-processing in MRI through strategy acceleration and 
providing quicker analysis periods with relaxed image 
processing.86,87 AI can also be exploited to perform planned 
repeated training duties in image-assisted robotics related 
to the objective of the present paper.

The procedure can be significantly enhanced through 
augmented human-robot interactions, advancing the 
overall system with augmented reality (AR)-aided robotic 
actions. When combined with MRI, AR can reduce risks in 
complex procedures, such as tissue damage, bleeding, and 
post-operative trauma. Moreover, DTs can play a significant 
role in AR-supported robotic procedures. This allows for 
precise identification of the source of the disorder and 
the necessary action, using individual patient modeling 
from deep learning databases. Furthermore, the AR–DT 
combination enhances accuracy in suturing, knotting, and 
placement compared to manual operations.88-92

5. Discussion
In previous analyses, image-guided interventions have 
been comprehensively discussed and illustrated. Different 
necessary concepts or notions have been mentioned and 
used in these developments, which include complete 
coupled and reduced models, complexity, and matched 
real–virtual pairs. These aspects are further developed 
(extensions, reflections, or connected matters) and 
discussed in the following points:
•	 Historically, the concerns related to the minimally 

invasive surgical approach can be summarized as 
follows. Since the beginning of the 19th  century, 
open surgery through laparotomy was practiced 
until the middle of the 20th  century based on the 
argument that “you could see better with open 
surgery.” Then, laparoscopic minimally invasive 
surgery revolutionized the approach to specific areas 
of the human body by providing an enlarged view 
through a tiny video camera and light at the end 
of a thin tool. Robotic image-assisted surgery is a 
successor to laparoscopic surgery, offering significant 
technological advancements and reducing staff fatigue 
by allowing them to maintain a more comfortable 

position during the procedure. An intervention, such 
as partial gastrectomy, whether performed using open, 
laparoscopic, or robotic image-assisted techniques, 
involves the same surgical duration, with only the 
access being different.

•	 A complex procedure involves several compound-
interacting components characterized by different 
phenomena interacting in an interdependent manner, 
which is linked to the temporal and spatial behaviors 
of the involved phenomena. The closer the time 
constants and the higher the matter local nonlinearities 
in phenomena, the stronger their interdependence 
and, consequently, the greater the complexity. For 
distant time constants and linear matter behaviors, 
this interdependence and related complexity are 
greatly reduced. The concept of complexity is present 
in various natural and artificial occurrences93 as well 
as societal issues.

•	 A complex procedure can be modeled mathematically 
considering its compound-interacting components 
through the coupling of the equations governing the 
different phenomena interacting in an interdependent 
manner. The more complex the procedure and its 
related phenomena interdependence, the more will 
be the complexity of the coupled model. For stronger 
phenomena interdependence (near time constants 
and nonlinear matter behavior), the equations would 
be strongly coupled (solved simultaneously). In the 
case of low interdependence (distant time constants 
and linear behavior), the equation coupling would be 
weak (iterative solution). Furthermore, the solution of 
the concerned equations should account for diverse 
topographies of modeled assemblies, which reflect 
geometrical complexity, variables nonlinear behaviors, 
and interdependence of phenomena. Satisfying such 
characteristics inflicts a local solution in the matter 
suggesting the practice of discretized 3D methods 
as finite elements (FEM) or comparable methods. 
More details regarding the types of discretized 
elements, domain meshing, methods mixing, and 
numerical methodology are described elsewhere,94-103 
accompanying appropriate strategies for equations 
coupling, with more details described elsewhere.104 
These coupled solutions would faithfully represent 
the behavior of the complex procedure. However, they 
reflect an important computation time and could not 
be suitable for real-time executions.

•	 In the case of repetitive or online real-time 
computations, complete coupled models would be 
penalizing, and hence reduced models should be used. 
Reducing a model involves hastening its solution 
while debasing its accuracy as slight as possible; 
more details are described elsewhere.105 The trouble 
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is then frequently to obtain the border between 
sparing time and weakening exactness. The key idea 
originates from the observation that a superior model 
is much time-consuming to execute in real time” 
or consider revising suitably. A  model reduction 
(surrogate model) is therefore substituted106,107 for the 
superior model to perform a pre-sizing. Moreover, 
one can practice stochastic non-intrusive methods 
(e.g., kriging and polynomial chaos)108,109 that expend 
3D FEM calculations with a restrained group of 
attainments (learning samples), thus providing 
efficient metamodels.

•	 Real-virtual matched pairs are materialized in this 
review article by the DT concept. This concept was 
first introduced by Michael Grieves in 2002 [62], 
although its principle existed earlier. For example, its 
use by NASA for complex simulations to control the 
safety of spacecraft following a worrying explosion 
in the oxygen tank of the Apollo 13 mission in 1970. 
After this accident, the mission adapted simulators for 
the real spacecraft conditions; this was possibly one of 
the first practical applications of a DT, although it was 
not a common concept in 1970. Moreover, the practice 
of real–virtual matching is related to virtual modeling 
or reasoned deduction accounting for the observation 
of an object or phenomenon. Hence, the matching 
(or mirroring) of an observable with its virtual image 
has been and still practiced in numerous natural 
and artificial circumstances. Humans and other 
living beings often rely on observation and sensory 
maneuvers, using deduction and mimicry to ensure 
self-protection and survival. Deductive reasoning, 
coupled with observation, is one of the earliest 
learned natural abilities. For example in wildlife, life 
security is based on observation, and occurrences of 
imitation strategy are recurrent, this is materialized 
by camouflage.110 This facilitates living beings to blend 
into their environments through adaptive matching. 

Figure  3 illustrates a representation of camouflage, 
highlighting the link between environmental 
observation, mimicry strategy, and its bidirectional 
(sensory–feedback) link for a variable environment 
using real-time correspondence.

6. Conclusion
This review paper contributed to the analyses of 
complex medical interventions involving image-assisted 
robotics (or laparoscopic) processes under conditions of 
minimally invasive, nonionizing, and precise surgical or 
drug delivery interventions. The adaptation of scanners 
for robotic interventions, their control and monitoring, 
the mitigation of perturbing factors, and the planning 
of personalized medical decisions with prospective 
augmented routines have been analyzed and discussed. 
DTs, which can be readily integrated into healthcare, may 
offer an efficient solution for managing image-assisted 
robotics when combined with digital tools. This can be 
implemented in various forms, including planning and 
interventions using phantoms and patient involvement, 
with staff in the loop. A potential future research direction 
could focus on further exploring the mechanical behaviors 
of living tissues in real time.
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