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ABSTRACT
Contemporary society faces a growing set of complex issues representing significant socioeconomic,
health and well-being, environmental, and sustainability challenges. The discipline of industrial and
systems engineering (ISE) can play an important role in addressing these issues. This paper identifies
and discusses eight grand challenges for ISE. These grand challenges are (1) Artificial Intelligence
(AI) For Business and Personal Use: Decision-Making and System Design and Operations, (2) Cyber-
security and Resilience, (3) Sustainability: Environment, Energy and Infrastructure, (4) Health Issues,
(5) Social Issues, (6) Logistics and Supply Chain, (7) System Integration and Operations: Humans,
Automation, and AI, and (8) Industrial and Systems Engineering Education. The discussed grand
challenges were derived by accomplished ISE professionals who are the authors of this paper. The
implications of the ISE grand challenges for education, training, research, and implementation of ISE
principles and methodologies for the benefit of global society are discussed.
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1. Introduction

1.1. Background

Industrial and systems engineering (ISE) is defined as a
discipline concerned with the design, improvement and
installation of integrated systems of people, materials,
information, equipment and energy. It draws upon spe-
cialised knowledge and skill in the mathematical, physical,
and social sciences together with the principles and meth-
ods of engineering analysis and design, to specify, predict,
and evaluate the results to be obtained from such sys-
tems (IISE 2024). Furthermore, the main components of
ISE knowledge that reflect a categorisation of pertinent
industrial and systems engineering theories and models
include (1) work design & measurement, (2) operations
research & analysis, (3) engineering economic analysis,
(4) facilities engineering& energymanagement, (5) qual-
ity & reliability engineering, (6) ergonomics & human
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factors, (7) operations engineering & management, (8)
supply chainmanagement, (9) engineeringmanagement,
(10) safety, (11) information engineering, (12) design and
manufacturing engineering, (13) product design&devel-
opment, and 14) system design & engineering. Given its
broad knowledge base, the ISE discipline is well posi-
tioned to address and respond to the growing and highly
complex set of interrelated socioeconomic, population
growth, health and safety, and sustainability challenges
that global society faces today. ISE professionals can also
play an important role in accelerating the process of
translating relevant ISE research output into practical
solutions, desired tools, methods, systems, and applica-
tions to improve the lives of the billions of people on
Earth.

Themain goal of this paper was to define and discuss a
set of grand challenges that represent the key andpressing
areas of work for ISE discipline and profession. Our goal
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was not only to outline key grand challenges but also to
propose a way forward to ensure that ISE can respond to
each challenge, including how specific ISE methods can
be applied. Furthermore, our intent was also to commu-
nicate to ISE researchers and practitioners the role of ISE
in responding to major global issues and challenges. By
articulating how ISE can assist in responding to key grand
challenges, this position paper should facilitate further
discussion and applications of ISE to large-scale global
issues.

1.2. Grand challenges and their impact

The general idea of grand challenges in science,medicine,
engineering, technology, and education, explored by
individual scientists, research organisations, interna-
tional non-profit entities, or national governments, has
a long and rich history (Omenn 2006; Woolf et al.
2013; Hicks 2016; Lufkin 2017; Kaldewey 2018; Peña and
Stokes 2019). The notion of ‘grand challenges’ has also
recently beenwidely used in research and innovation pol-
icy, focusing on global societal problems such as energy,
health, and the environment (Ulnicane (2016).

According to Kaldewey (2018), the concept of grand
challenges and grand challenges discourse illustrates how
scientists, policymakers, and the public have commu-
nicated their respective agendas in recent decades (see,
for example, Peña and Stokes 2019). Furthermore, Bostic
(2016) pointed out that today, ‘the humanities must
engage global grand challenges’ since such challenges
represent urgent andwidely shared problems that require
large-scale, long-term, coordinated responses. He et al.
(2013) also underscored that the premise of grand chal-
lenges often constitutes ‘a call to action for investigators
to develop the capabilities of our society for research,
education, and translation . . . as well as for funding agen-
cies to continue or expand their support of these highly
important fields’.

Global challenges are highly complex, multifaceted,
dynamic, heavily interrelated, and difficult to fully
describe, understand, and manipulate successfully. This
evolution in how society thinks about complex global
risks is thus urgently needed (Arnold and Wade 2015).
The World Economic Forum’s latest global risks report
identifies climate action failure, extreme weather, social
cohesion erosion, livelihood crises, infectious diseases,
human environmental damage, natural resource crises,
debt crises, and geo-economic confrontation as the most
severe risks currently facing us (World Economic Forum
2022). By 2050, there will also be emergent global risks
related to artificial general intelligence (AGI), automa-
tion replacing human workers, the genetic modification
of humans, an aging population, and otherworld settling

(Hancock 2022; Salmon et al. 2021). A summary of the
selected grand challenges related to the field of indus-
trial and systems engineering is presented in Table 1.
It should be noted that some of these grand challenges
are already being addressed within the ISE profession,
demonstrating the interdisciplinary nature and theoret-
ical and practical overlaps of these challenges.

2. Methods

The development of this industrial and systems engineer-
ing (ISE) grand challenges position paper went through
the following process. The Chairs have identified the
potential coauthors based on the knowledge of their pro-
fessional interests, published contributions to the wide
spectrum of ISE discipline, and perceived reputation and
potential value to the teamwork. Each teammember was
asked to propose up to five ISE Grand Challenges with a
brief write-up of the rationale of the proposed grand chal-
lenges. Next, an extended virtual meeting was held dur-
ing which all team members discussed and extensively
deliberated the grouping of the originally submitted chal-
lenges and synthesised these into eight clusters. Such
groupings of the proposed ISE grand challenges were
conducted based on the similarity of the received ideas
and concepts proposed by all teammembers. During the
virtual meeting, the teammembers also determined their
interest in specific grand challenges, and leaders were
appointed for each of the eight grand challenges.

Each ISE grand challenge team had twomembers, one
serving as team leader. Each team was requested first to
prepare a Table of Contents, tables, figures, and a list of
references that the members planned to include in their
grand challenge. This information was then shared with
all the members of all eight teams. The team leaders and
members of each grand challenge team coordinated and
developed the write-up for each ISE grand challenge. The
chairs of the paper have integrated the write-ups for the
eight ISE grand challenges into a unified paper, including
an abstract, introduction, and conclusion. This complete
paper was shared with all themembers, and feedback was
requested from all team leaders and members on how to
improve the paper further. These inputs have been inte-
grated into the final paper submitted to the journal for
further review. All coauthors of the paper have reviewed
and accepted the final draft manuscript.

3. Grand ISE challenges

The following ISE grand challenges have been identi-
fied: (1) Artificial Intelligence for Business and Personal
Use: Decision-Making and System Design and Opera-
tions, (2) Cybersecurity andResilience, (3) Sustainability:
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Table 1. Selected grand challenges from domains related to industrial and systems engineering.

Domain List of grand challenges

Human Factors and Ergonomics
(Karwowski et al. 2025)

1) Evolution in Societal Thinking; 2) the Future of Human Activity; 3) Climate Change and Sustainability; 4) the Future
of Education and Training; 5) the Future of Personalised Health, and 6) Life, Technology, and the Metaverse.

Human-Centric Manufacturing
(Lu et al. 2022)

I) Social challenges: 1) Technology acceptance and trust; 2) Change of team dynamics; (3) Lifelong learning.
II) Technical challenges: (4) Human-centric AI and Personalised AI; (5) Transparency and Explainability; (7) Performance
measure; and 8) Manufacturing systems research.

Human-Centered Artificial Intelligence
(Ozmen Garibay et al. 2023)

AI that: (1) is centred in human wellbeing, (2) is designed responsibly, (3) respects privacy, (4) follows human-centred
design principles, (5) is subject to appropriate governance and oversight, and (6) interacts with individuals while
respecting human’s cognitive capacities.

Human-Computer Interaction
(Stephanidis et al. 2019)

(1) Human-Technology Symbiosis; (2) Human-Environment Interactions; (3) Ethics Privacy and Security; (4) Well-being,
Health and Eudaimonia; (5) Accessibility and Universal Access; Learning and Creativity; and (6) Social Organisation and
Democracy.

Science Robotics (Yang et al. 2018) (1) Newmaterials and fabrication schemes; (2) Biohybrid and bioinspired robots; (3) New power sources, battery tech-
nologies, and energyharvesting schemes: (4) Robot swarms; (5) intelligence; (7) Brain-computer interfaces; (8) Social
interaction and moral norms; (9) Medical robotics Navigation and exploration in extreme environments; (6) Funda-
mental aspects of artificial with increasing levels of autonomy; 10) Ethics and security for responsible innovation in
robotics.

Grand Challenges for Engineering in
the twenty-first century (NAE 2016)

(1) Advance personalised learning; (2) Make solar energy economical; (3) Enhance virtual reality; (4) Reverse-engineer
the brain; (5) Engineer better medicines; (6) Advance health informatics; (7) Restore and improve urban infrastructure;
(8) Secure cyberspace; (9) Provide access to clean water; (10) Provide energy from fusion; (11) Prevent nuclear terror;
(12) Manage the nitrogen cycle; (13) Develop carbon sequestration methods; and (14) Engineer the tools of scientific
discovery.

Modelling and Simulation (M&S)
(Taylor et al. 2015)

(1) Big simulation: data, ontology and simulationmodelling coordination for scalability; (2) Humanbehaviour and com-
posability; (3) Cloud-basedM&Sand composability; (4) ReproducibleM&S: engineering replicability into computational
models; (5) The democratisation of modelling & simulation.

Operations Research and Engineering
(Barnhart 2008).

(1) Developing a self-sufficient sustainable energy programme; (2) Using advanced sensor and telecommunication
technologies to diagnose infrastructure faults; (3) Creating driverless highways and achieving congestion mitigation;
(4) Improving healthcare in developing countries and in theUnited States; (5) Enhancingmedical imaging anddiagnos-
tic capabilities; (6) Developing effective counter-terrorism strategies; and (7) Using the Internet to improve education
in emerging countries.

Environment, Energy and Infrastructure; (4) Health
Issues, (5) Social Issues, (6) Logistics and Supply
Chain, (7) System Integration and Operations: Humans,
Automation, and AI, and (8) Industrial and Systems
Engineering Education (see Figure 1). These challenges
are discussed in detail below.

4. Grand challenge of artificial intelligence for
business and personal use: decision-making and
system design and operations

Over the next 10–20 years, artificial intelligence (AI)
will revolutionise industry, government, and society as
profoundly as technologies such as industrial machines,
computers, and the internet have done in the past. As a
discipline focused on improving industry (and society)
with engineering and related scientific methods, ISE has
an enormous opportunity and responsibility to address
grand challenges associated with artificial intelligence.

4.1. Background and the impact of artificial
intelligence

AI is a set of scientific approaches to train machines or
systems to conduct tasks that normally require human

Figure 1. Industrial and Systems Engineering Grand Challenges.

intelligence. AI utilises algorithms, analytics, natural lan-
guage processing, and other techniques to learn from
data and the environment to solve problems, learn skills,
or perform specific tasks. AI approaches build uponmul-
tiple disciplines such as computer science, mathematics,
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statistics, and engineering. AI can have a strong relation-
ship with areas such as operations research (OR), which
has an explicit focus on optimising decision-making
under uncertainty and with limited resources. The public
may not necessarily distinguish between different types
of algorithms (AI or not).

Interest in AI has existed since at least the 1940s,
when Alan Turing described a machine that could read,
learn, recall, solve problems, and more, usefulness for
specific tasks (e.g. playing chess) or more general ones
Turing (1950). A machine is considered ‘intelligent’ by
the Turing test if an interrogator cannot distinguish
the answers of the machine from those of a human
being (Turing 2009). Over decades, advancements in
methods and technology have led to AI programmes
that can play chess, navigate mazes, devise mathemati-
cal proofs, simulate dialogue, recognise patterns, learn
languages, navigate roads, and classify images. AI may
encompass approaches such as machine learning, neu-
ral networks, deep learning, evolutionary heuristics, and
natural language processing. Recent years have seen
advances in generative large language models, which can
learn to predict subsequent words from previous ones,
resulting in programmes that appear to speak and syn-
thesise knowledge. Already many companies say their
organisations are using generative AI for at least one
function.

There are many existing examples where AI has been
deployed to generate functionality to industry or soci-
ety. Current applications include smart assistants that
understand language and personalise services, manufac-
turing robots that collaborate with humans, chatbots to
engage customers and answer questions, smart devices
to control home environments, tools to generate images
based on language prompts, healthcare algorithms to
predict high-risk patients, programmes that screen job
applicants, facial-recognition systems, and social media
algorithms to encourage engagement. One difference in
recent AI applications is that some of the tasks mimic
those of humans where creativity seems involved (e.g.
such as generating new images or songs), although this
is achieved by learning from past data (Anantrasirichai
and Bull 2022).

Indeed, many uses of AI are not fully transparent, and
people are often unaware of AI’s role in decisions that
affect themdaily. Further, there aremany examples where
AI programmes are measuredly biased (e.g. towards hir-
ing men for a job), which can be a function of the data
used for training (Landers and Behrend 2023). A third
challenge is that the results from AI may be inaccurate
or unreliable, which can have significant consequences
when decisions are being made in high-impact areas
(Araujo et al. 2020). Fourth, it has been demonstrated

that there can be large computational, financial, and envi-
ronmental costs of training and running AI programmes
(Wu et al. 2022). These challenges and others help moti-
vate the need for AI that is responsible, ethical, equitable,
and effective.

In the next 10–20 years, more and more data will be
digitised. AI will be deployed for tactical, operational,
and strategic-level decisions across a broad set of domain
areas. It is likely to touch every grand challenge outlined
in this article and beyond, including ones such as sustain-
ability, environment, and energy; health; social issues;
logistics; system integration with automation; education;
and cybersecurity and resilience. AI will help further the
use of real-time decisionmaking in complex systems.We
can only begin to imagine the changes this will bring,
and the potential for positive transformation to society
if deployed well. Below we highlight four specific areas
where ISE as a discipline and profession can contribute
to this grand challenge, including (1) systems orienta-
tion, (2) integration of OR and AI, (3) people, and (4)
education.

4.2. Challenges related to AI

Artificial intelligence and similar methods integrate
sophisticated algorithmswith analysis of data that is deep
and broad to enable decision making that can mimic (or
exceed) that of humans. ISE, as a discipline and pro-
fession, should engage in understanding and improving
the impact of AI within systems. The results can include
improved outcomes across supply chains, health systems,
transportation, military, and many other applications. In
addition, by examiningAI in the context of industrial and
societal systems, Industrial and Systems Engineers will
play an important role in understanding the current and
future impacts of AI on equity, including related to the
data sets that are curated or used, the cascading effects
of one system element on another, the impact of AI on
human decisions throughout enterprises, and ultimately
on the responsible use of AI that is ethical, equitable, and
effective.

However, along with its capabilities, there are grand
challenges that must be addressed. Here are some of the
key challenges associated with the use of AI, to ensure it
will be Responsible, Ethical, Equitable, Effective AI, that
can contribute positively impact industry and society.

4.2.1. Challenge with AI #1: incorporating human
factors through AI systems
The grand challenge of AI for business and personal use
poses significant human factors challenges in decision-
making and system design and operations. One of
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the primary concerns is the need for effective human-
machine interaction to ensure safe and efficient operation
of AI systems. As AI becomes more autonomous, the
need for human oversight and intervention increases,
requiring a deep understanding of human factors princi-
ples to design effective interfaces andworkflows. Another
critical human factors aspect is the need for transpar-
ent and explainable AI decision-making processes to
support human decision-making (Lasi et al. 2014). The
increasing complexity of AI systems requires humans to
understand and trust AI-driven decisions, which can be
a significant challenge for humans without prior experi-
ence in these areas (Hermann, Pentek, and Otto 2016).
Ultimately, the success of AI integration in business and
personal use depends on the ability to design AI systems
that are intuitive, transparent, and trustworthy, and that
can effectively support human decision-making.

The importance of designing AI systems that are intu-
itive, transparent, and trustworthy is particularly rele-
vant in advanced manufacturing, where AI systems have
the potential to significantly impact productivity and
efficiency (Jan et al. 2023). To realise these benefits, it
is essential to ensure that AI systems are designed to
support human decision-making and oversight, which
requires a deep understanding of human factors prin-
ciples and the ability to design effective interfaces and
workflows. However, the integration of AI also raises sig-
nificant challenges for advanced manufacturing, includ-
ing the need for significant investment in infrastructure
and training, as well as the potential for job displace-
ment and changes to traditional workforce structures
(Manyika et al. 2017). Moreover, as manufacturing sys-
tems become increasingly complex, interconnected, and
automated, a systems perspective is essential for under-
standing and managing emerging risks and challenges.
Applying systematic thinking approaches can helpmanu-
facturing organisations and policymakers anticipate and
mitigate these risks.

4.2.2. Challenge with AI #2: identifying and reducing
bias in AI systems
The second major challenge is the potential for bias in
AI systems. AI systems are trained on data, and if that
data is biased, the AI system can perpetuate and even
amplify those biases, resulting in discriminatory out-
comes or reinforcing existing societal biases. For exam-
ple, a sentiment analysis tool that is trained on data from
primarily English-speaking sources may have difficulty
accurately analysing sentiment in non-English languages.
This risk is particularly acute in sensitive applications
such as criminal justice, where biased AI could poten-
tially influence decisions on suspect identification, risk
assessments, and sentencing (Angwin et al. 2022). This

type of bias not only undermines the reliability of AI
applications but also raises serious ethical concerns about
equity and inclusivity in AI-driven decision-making.

Overcoming this challenge requires careful data col-
lection, unbiased model training, and ongoing evalu-
ation to achieve fairness and mitigate bias in AI sys-
tems. Addressing AI bias necessitates a comprehensive
approach in system design and operations that encom-
passes: (1). Ethical Data Collection: Ensuring diversity
and representativeness in the datasets used for training
AI systems to prevent the perpetuation of existing biases
(Barocas and Selbst 2016). (2) Unbiased Model Training:
Implementing methodologies that detect and neutralise
bias in AI models during their training phase (Bellamy
et al. 2018). (3) Ongoing Evaluation and Calibration:
Continuously monitoring AI systems post-deployment
to detect emergent biases and recalibrating the systems
as necessary to maintain fairness over time. These mea-
sures are imperative to cultivate trust and reliability in
AI applications, fostering their successful integration into
both personal and business environments. The commit-
ment to unbiased AI also aligns with broader regulatory
and societal expectations for ethical AI use.

4.2.3. Challenge with AI #3: enhancing explainability
of AI systems
Many AI algorithms, particularly deep neural networks,
are complex and difficult to understand or explain. This
lack of transparency raises concerns about trust and
accountability. For instance, if an AI system recommends
a specific medical treatment for a patient, it is impor-
tant that healthcare providers can understand and trust
the reasoning behind that recommendation. Develop-
ing interpretable and explainable AI systems is crucial to
address this challenge and ensure that users can compre-
hend the decision-making processes of AI systems.

Addressing the challenge of explainability in AI sys-
tems requires strategic modifications in system design
and operations: (1) Development of Interpretable Mod-
els: It is crucial to focus on creating models that are
easier to comprehend. Prioritising techniques that make
complex models more interpretable or that approximate
them with simpler explanations is essential. The work
by Ribeiro, Singh, and Guestrin (2016) highlights meth-
ods for explaining the predictions of any classifier, which
is a step forward in this direction. (2) Integration of
Explainability Tools: Utilise tools and frameworks like
LIME or SHAP to make the outputs of complex mod-
els more comprehensible. These tools, as discussed by
Lundberg and Lee (2017), along with the methodologies
described by Sun, Lin, and Shen (2022), can help bridge
the gap between AI decisions and human understand-
ing. (3) User-Centric Design: Designing AI systems with
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the end-user in mind ensures that users can effectively
understand and interact with the AI’s decision-making
processes.

4.2.4. Challenge with AI #4: addressing data privacy,
security, and ethical concerns
AsAI technology advances and becomesmore integrated
into daily activities, significant challenges related to data
privacy, security, and ethics arise. These issues stem from
AI characteristics such as data dependency, complex-
ity, and autonomous decision-making. First, AI systems
require vast amounts of data, often including sensitive
personal information. Mishandling this data can lead
to privacy violations. Second, the complexity and inter-
connected nature of AI systems make them targets for
cyberattacks. Ziegeldorf, Morchon, and Wehrle (2014)
highlighted increased risks in systems like the Internet of
Things, where a breach in one part can compromise the
entire network. An example is a hack into an AI-powered
healthcare system, leading to stolen medical records.
Third, AI’s autonomous decision-making can lead to eth-
ical challenges, especially when decisions impact human
lives. Jobin, Ienca, and Vayena (2019) discussed concerns
over AI systems in sensitive areas like law enforcement,
where they might perpetuate biases and lead to unfair
treatment. These challenges can undermine public trust,
cause significant losses, and harm marginalised commu-
nities. Furthermore, the rapid pace of AI development
can outstrip regulatory and ethical frameworks, leading
to governance gaps.

When designing and operating AI systems, it is essen-
tial to prioritise privacy by collecting only necessary
data and employing technologies that safeguard per-
sonal information. Security is equally crucial; regular
testing and integrating security practices throughout
the AI development process help address vulnerabilities.
Moreover, ethical considerations should guide the oper-
ation of these systems, with clear guidelines and regular
assessments to ensure fairness and accountability. Trans-
parency is key to building trust, achieved by making
the AI’s decision-making processes understandable and
involving diverse perspectives in the development pro-
cess. Together, these measures ensure that AI systems are
safe, ethical, and well-received by society.

4.2.5. Challenge with AI #5: overcoming technical
limitations with current AI methods
AI faces several technical limitations that need to be over-
come, including handling ambiguity, understanding con-
text, common sense reasoning, and adapting to dynamic
environments. Moreover, while AI systems excel in spe-
cific tasks, they often struggle to generalise their knowl-
edge or skills to new or unfamiliar situations and lack

the broader adaptability and versatility of human intel-
ligence. For example, autonomous vehicles sometimes
struggle in unpredictable weather conditions or unex-
pected traffic scenarios because they are programmed for
specific, predictable environments and lack the ability
to adapt as quickly as a human driver might. Emulat-
ing human emotional intelligence, ensuring robustness
against adversarial attacks, and addressing other limita-
tions present additional challenges that need to be tack-
led. To successfully address these challenges, collabora-
tion among researchers, policymakers, industry leaders,
and society as a whole is crucial. By working together, we
can ensure the responsible and beneficial development
and deployment of AI technologies.

4.3. ISE opportunities to address challenges with AI

There are enormous opportunities for ISE to address AI
challenges, including across subdisciplines of ISE, in col-
laboration with computer science, and in partnership
with industry. Below we identify several including some
that relate to the challenges outlined above.

4.3.1. Systems orientation
The ISE discipline is at its core, a discipline that is focused
on methods in the context of a facility, an organisation,
a domain, or a system. AI has emerged as a power-
ful tool in addressing various challenges across industry
and academia. In common applications, AI is designed
to excel in specific areas such as speech recognition,
image classification, recommendation systems, and data
analysis. These task-specific AI systems rely on large
datasets to learn patterns, recognise objects, and make
predictions. Techniques such as machine learning (ML),
deep learning, and statistical models are employed to
process and analyse data, thereby informing decision-
making processes. For instance, AI plays a crucial role
in supporting decision-making in healthcare and Medi-
care (Vasey et al. 2022; Amann et al. 2022; Čartolovni,
Tomičić, andMosler 2022), enablingmore accurate diag-
noses, personalised treatments, and efficient patient care.
ML algorithms can analyse vast volumes of medical data,
including patient records and medical images, to iden-
tify patterns and assist in diagnosis. AI-powered systems
can predict patient outcomes, optimise workflows, and
support drug discovery.

AI can perform better than humans in situations
where there are well defined rules and regulations, such
as AlphaGo, and it can also learn huge amounts of
data and make reasonable conclusions about certain
things (e.g. chatbot responses) (Sarker 2021). However,
AI, in its current stage, still struggles in making deci-
sions in complex systems, where different stakeholders
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and competing objectives have to be considered. Sys-
tems engineering seeks to understand the big picture and
provide a structured approach to develop, implement,
and manage complex systems (Hitchins 2008). ISE prac-
titioners contribute by analysing requirements, design-
ing system architecture, managing data, optimising per-
formance, verifying, and validating systems, addressing
safety and security, and supporting maintenance and
upgrades. Their interdisciplinary knowledge ensures AI
systems align with user needs, operate efficiently, and
meet ethical and legal standards. They play a crucial role
in integrating AI technologies across diverse domains
and industries.

4.3.2. Integration of OR and AI
Recent advances have demonstrated that there can be sig-
nificant benefits from integrating techniques from OR
with AI. AI and ML have been of particular interest to
a vast number of researchers of various disciplines, offer-
ing solutions to specific problems, enhancing decision-
making processes, and automating tasks to improve effi-
ciency and performance. OR is one of the fields that
has been impacted and shaped by AI and ML (Gupta
et al. 2022). In fact, the fields of OR and ISE can also
bring valuable expertise and perspectives to the develop-
ment of AI and ML solutions. OR and ISE experts often
possess strong analytical and optimisation skills. They
specialise in mathematical modelling, optimisation tech-
niques, and decision-making processes, and OR tech-
niques often exploit the structure of complex problems.
The OR and ISE skills can be valuable in designing effi-
cient algorithms, developing optimisation models, and
addressing complex problems in various domains. These
are the complementary skill sets of OR and ISE experts as
comparedwith the field ofComputer Science (CS).More-
over, operations researchers often have domain-specific
knowledge and expertise in particular industries or appli-
cations. This understanding allows them to identify criti-
cal factors, constraints, and objectives, which can inform
the design and development of AI and ML solutions that
are tailored to specific needs and challenges within those
domains.

OR and ISE practitioners recognise the importance
of considering human behaviour, societal infrastructure,
and incentives when designing and implementing AI
and ML solutions. They understand the broader sys-
tems and human elements that impact the effectiveness
and acceptance of these technologies. It is also impor-
tant to note that CS experts bring invaluable expertise to
the development of AI and ML solutions, with special-
isation in areas such as ML algorithms, deep learning,
NLP, and data engineering. Their expertise in developing
and implementing advanced algorithms and techniques

is critical for building sophisticated AI systems. Hence,
collaboration among CS, ISE, and OR experts is crucial.
By working together, their respective skills, knowledge,
and perspectives can combine to build more comprehen-
sive and robust AI and ML solutions. This collaborative
effort ensures that technical aspects are balanced with
practical considerations and real-world constraints.

A large number of ISE and OR scholars have been
attempting to explore the interplay between OR and ML
in distinct forms (Subramanian and Holger Teichgrae-
ber 2023). The combination of ML and optimisation
has proven to be powerful in modern data-driven appli-
cations. The ‘predict-then-optimize’ paradigm involves
using an ML model to predict outcomes, which are then
fed into an optimisation model to make coordinated
decisions. By leveraging the structure of the optimisa-
tion problem, better prediction models can be designed,
resulting in improved decision outcomes (Elmachtoub
and Grigas 2022). Alternatively, by integrating the pre-
diction step and optimisation step, integrated data-driven
methods can generate improved solutions and have
shown applicability in many real-world decision-making
situations (Qi and Shen 2022), including supply chain
management, portfolio optimisation, and power sys-
tem operations. In particular, ML tools have become an
important technique for achieving integrated data-driven
solutions. For instance, an end-to-end deep learning-
based algorithm has been developed to solve the inven-
tory replenishment problem (Qi et al.). Moreover, ML
can also benefit from optimisation techniques, which
can make ML methods more interpretable or better per-
forming (Liu et al. 2024). Additionally, ML methods
can be embedded into optimisation solvers, improv-
ing performance and decision-making capabilities. On
the other hand, optimisation solvers can take advantage
of ML methods internally, where many state-of-the-art
solvers employ ML techniques. The development of sur-
rogate ML models for optimisation problems has proven
impactful, allowing for faster results and the development
of more powerful optimisation models.

4.3.3. People
ISE is a human-centred engineering discipline. Humans
are both autonomous decision makers (e.g. engineers,
designers, other workers), and receivers of products or
services (customers, users, stockholders). ISE as a dis-
cipline necessitates considering how humans interact
with technology and are affected by system changes.
The domains in which ISE operates also directly impact
humans and society, such as in healthcare, transporta-
tion, manufacturing, service centres, andmore.We iden-
tify at least three thrusts where ISE should be involved
with the AI Grand Challenge.
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First, in every domain where AI is deployed, human-
in-the-loop interactions are critical, and ISE can ensure
humans are incorporated in the system, designs the sys-
tem, curates the data, helps monitor the programme,
analyses, and evaluates the system. Along with this
aspect, human factors engineers bring added perspective
on topics such as human-machine interactions, worker
safety, and integration of technology like augmented
reality or virtual reality for workplaces. The focus on
human-in-the-loop is important for many systems, such
as healthcare, where AI may play a role in diagnosing
and treating, designing drugs or personalised treatments,
monitoring patients, and recommending or performing
interventions (Ahmed et al. 2020).

Second, AI (and associated areas such as automation)
will have a significant impact onworkers and on the over-
all jobmarket, and ISE can help in understanding impacts
and mitigating where possible. ISE may help determine
what process steps aremost appropriate forAI or automa-
tion tasks, and which require human creativity, complex
thinking, or team approaches. In addition to deployment
aspects, ISE should consider the impact that AI will have
on workers, jobs, and industries, and look for opportuni-
ties where worker skills can be utilised, and industry can
innovate to create new options.

Third, the evaluation of AI on systems and people
aligns well with the focus of ISE on reliability, quality,
and performance. ISE will be involved in ensuring AI
systems are monitored for anomalies and drift. Perhaps
the greater challenge will be in promoting quality of the
system overall, with a broad lens on quality. Specifically,
ISE can help translate concepts such as equity and effec-
tiveness into measures that can be quantified and mea-
sured in a system where AI is deployed. This is especially
important since AI and technology are known to have
some challenges including the potential to ‘hallucinate’
and display biases associated with input data. ISE should
also consider how to understand the potential gaps in AI
when it is deployed in a system and the unintended con-
sequences that can occurwhen one action has a cascading
effect.

4.3.4. Education
AI could have huge impacts on education, both within
a discipline such as ISE or computer science, as well as
in the broader sense in education across any field. There
are already AI initiatives to enable personalised learning.
In education, ISE has a critical role educating students
within degree programmes on how they can integrate
AI into problem solving, innovation, and deployment of
solutions.

This may include specific skills (e.g. prompt engi-
neering) as well as integration of technology throughout

a system (augmented reality, sensors with continuous
data collection, or AI algorithms for learning). One chal-
lenge includes enabling this AI-oriented education while
ensuring that students maintain the ability to think criti-
cally and are able to identify gaps in AI. Secondly, ISE has
a role to play in re-educating and upskilling professional
engineers, especially those who will work at the intersec-
tion of AI and associated technologies deployed in a sys-
tem. In many cases, AI will be deployed to improve pro-
cesses, learn from data in a system, recommend actions
that achieve an organisation’s goals, and be evaluated for
improvements. The intersection of the AI field with the
focus on systems andprocess improvementwill opennew
opportunities that ISE should address in the AI grand
challenge.

4.4. Conclusions and future steps

In summary, we are already seeing some of the impacts
of AI on the world around us. In some domains, meth-
ods and techniques from ISE andOR are even considered
part of the broader sphere of AI, in the context of helping
computers learn and make complex decisions as humans
do. However, AI in its current form has a number of lim-
itations and challenges that need to be addressed. The
ISE discipline and its associated community need to be
proactive in addressingAI challenges.Weneed to be inte-
grating AI into research, extending AI beyond its current
methods and technical limitations, expanding the educa-
tion of our students and practitioners, and showing what
can be done if the ISE perspective is integrated with AI.

5. Grand challenge of cybersecurity and
resilience

5.1. Background

The infrastructure of our world is increasingly connected
and composed of cyber components. The integration of
systems creates opportunities for delivering good, ser-
vices, and energy at scale and do so reliably. However,
at the same time the interconnectedness of systems also
introduces risk in the form of vulnerabilities to vari-
ous hazards (e.g. cascading failures in connected systems
(Dolgui, Ivanov, and Boris Sokolov 2018). Identifying
such vulnerabilities and protecting/securing systems is
crucial for designing resilient infrastructure. However,
knowledge gaps exist that must be addressed to ensure
that as interconnected systems grow in complexity, vul-
nerabilities are identified so that infrastructure is pro-
tected and secured.

Key to enhancing resilience is acknowledging that it is
impossible to fully protect these systems, and therefore,
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some components will fail. Taking a system-level view is
necessary for mitigating risks when failures occur and
addressing knowledge gaps. There are five challenges
within this topic :1) Protecting cyber-physical systems
and software supply chains, 2) Enhancing resilience in
connected infrastructure systems, 3) Resilience of sys-
tems in the context of shortage economy, and 4) Design-
ing energy-resilient networks, and 5) Designing stress
tests. These challenges lead to a wide range of opportu-
nities for the ISE community.

The challenges outlined above rely on a definition
of systems resilience. To this end, we define system
resilience as the capability to withstand, adapt, and
recover from disruptions to ensure the target perfor-
mance. There are multiple essential perspectives of
resilience (Woods 2015). Performance-deviation based
resilience captures the ability of a system to absorb dis-
ruptions and recover to its original performance and
structure after a disruption. Adaptation-based resilience
reflects the ability of a system to maintain the per-
sistence of system performance through adapt-ability
while accepting oscillations and performance deviations
(Hosseini, Ivanov, and Dolgui 2019). Viability of systems
reflects the ability of a system to operate and continue to
serve in the presence of disruptions and long-term crises
(i.e. the ability to survive in the long-term) through adap-
tation and reconfiguration and changing states dynam-
ically (Ivanov and Dolgui 2020). These perspectives of
resilience map to the rebound, robustness, adaptabil-
ity, and extensibility concepts of resilience from Woods
(2015), and they guide the challenges in this section.

Next, we review opportunities for the ISE field by
outlining the challenges across the five challenge areas
outlined above. Then, we discuss the next steps to enable
the next generation of engineers for addressing these
challenges, focusing on securing software supply chains.
Finally, we summarise this section.

5.2. Challenges in cybersecurity and resilience

In this subsection, we discuss each cybersecurity and
resilience challenge, and we outline several opportunities
for advancing resilience within each challenge area.

5.2.1. Challenge in cybersecurity and resilience #1:
securing cyber-physical systems and software supply
chains
Critical infrastructure has become increasingly reliant
on cyber systems, which has highlighted the importance
of protecting cyber-physical systems across all infras-
tructure sectors (Enayaty-Ahangar, Albert, and DuBois
2020). Cyber-physical systems encompass physical and
cyber components as well as information flows, people,

and processes. Securing cyber-physical systems is chal-
lenging due to the ubiquity of cyber-systems, the increas-
ing size of attack surfaces and number of attack vectors,
and the dynamic, persistent nature of threats (Zheng
et al. 2019). TheNationalAcademyof Engineering (NAE)
2008.

Grand Challenge of ‘Securing Cyberspace’ focuses on
protecting cyber aspects of systems (NationalAcademyof
Engineering 2008).Moving beyondprotecting cyberspace
to adopt a systems approach including physical and
human aspects of systems could yield a significant step
forward in security.

The ISE community has historically created models
to support security and protect critical infrastructure
(Brown et al. 2006), however, nearly all of these models
have focused on protecting physical systems and assets
(Albert, Nikolaev, and Jacobson 2023). Several advances
from the ISE community could advance the security of
cyber-physical systems, and we list these as the grand
challenges. First, new networks models that capture the
operational aspects of cyber-physical systems (e.g. cloud
computing networks (Dragotto et al. 2023)) would enable
the identification and understanding of system vulnera-
bilities (Albert, Nikolaev, and Jacobson 2023). Connect-
ing system dynamics to performance is crucial for allo-
cating scarce resources to improve security. Models that
capture the multifaceted aspects of system performance,
including financial consequences, information theft, and
deterrence, would add a layer of realism to the mod-
els that is informative for planning (John et al. 2024).
Enhanced models would likely be even more difficult to
solve than existing network models – which are gener-
ally NP-hard – which in turn may motivate algorithmic
advances.

Capturing human factors is crucial for understand-
ing and predicting the performance of cyber-physical
systems and could uncover new insights for protec-
tion (Scala et al. 2019). This is crucial, since humans
interact with cyber-physical systems, and the role of
human behaviour has been linked to the most signifi-
cant cybersecurity breaches. For example, human factors
can address the challenge of misinformation by expand-
ing our understanding of how users of cyber-physical
systems perceive and process complex information –
including misinformation propagating throughout such
systems, thereby contributing to risk and security. Cyber-
security risks stem from many types of adversaries rang-
ing from lone adversaries to nation-states, and adversary
types have different levels of resources, sophistication,
and goals. There is a need to gain insights when pro-
tecting against a range of adversarial sophistication and
intent. Expanding modelling paradigms to consider the
impact ofmultiple attackers with different goals, resource
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levels, and levels of strategic sophistication could yield
deeper insights (Zheng and Albert 2019; DuBois, Peper,
and Albert 2023; Rios Insua et al. 2021).

Security data offersmany opportunities for researchers
interested in data science and machine learning. Secu-
rity datasets often contain rare anomaly data and are
incomplete, since ground truth is often not known, and
breaches are generally not made public. Achieving unbi-
ased insights with security datasets is a challenge for fun-
damental research (Albert, Nikolaev, and Jacobson 2023).
Cybersecurity encompasses challenges such as misinfor-
mation that propagates through social networks, which
represents a new application area amendable to ISE tools
(Hunt, Agarwal, and Zhuang 2022; Paul and Nikolaev
2021) and can inform planning decisions (Allen, Sui, and
Parker 2017). Layered networks that consider infrastruc-
ture along with information and processes could uncover
deeper insights for protecting critical infrastructure. In
additional to providing insight into protecting cyberin-
frastructure, ISE tools could be applied to attribution
and forensics to support recovery (Albert, Nikolaev, and
Jacobson 2023). Finally, IISE should contribute to the
convergence of industrial, systems, and software engi-
neering theories andmethods to ensure the highest levels
of cybersecurity in the nation’s software supply chains.

5.2.2. Challenge in cybersecurity and resilience #2:
enhance resilience/security in connected systems
Industrial engineering models have been used to model
interconnected systems using network models, where
they have been used to evaluate the performance of sys-
tems based on how their components operate and inter-
act (Alderson, Brown, andMatthew Carlyle 2015). These
modelling efforts have been valuable in the planning,
design, and operations of infrastructure systems, where
they are used to identify vulnerabilities and prescribe
actions tomitigate the vulnerabilities (Brown et al. 2006).
Network interdiction and game theory have emerged as
important tools to address issues of resilience and secu-
rity (Sharkey et al. 2021). Network interdiction models
have studied the vulnerability and security of systems,
where the goal is often to limit the scope of damage.
Failure is often defined to capture worst-case compo-
nent failures or international damage inflicted by adap-
tive adversaries (Smith and Song 2020). These models
can be used to identify which components of a system
require protection or fortification. Game theory mod-
els have generally been used to model more strategic
issues involving resource allocation to counter terrorism
(Bier, Oliveros, and Samuelson 2007) as well as natu-
ral disasters (Zhuang and Bier 2007). Adversarial risk
analysis methods have sought to inform planning and

decision-making when facing intelligent adversaries and
uncertain outcomes (Banks et al. 2022).

Many of the methodological and computational
advances involving network interdiction models made
by the ISE community have focused on stylised interdic-
tion models that are address to treat using mathematical
optimisation methodologies, e.g. by exploiting duality
to solve large-scale problem instances (Smith and Song
2020). A challenge for the ISE community is to develop
realistic models that provide deeper insights into how
to protect critical infrastructure. There are several direc-
tions for future ISE research that would take a large
step forward in enhancing resilience in connected infras-
tructure systems. First is the consideration of repeated
games in consequential settings (Sefair and Cole Smith
2016). Existing game theory and network interdiction
models typically consider a one-shot game played by two
players, such as in Stackelberg models of a defender-
attacker game. Defender-attacker network interdiction
models are usually NP-hard, and extending these games
to more than two turns is al-most always more difficult
(e.g. Defender-Attacker-Defender models) (Sefair and
Cole Smith 2016). The consideration of more sophisti-
cated player interaction through repeated turns presents
a computational challenge for the ISE research commu-
nities (Smith and Song 2020). Fusing optimisation-based
approaches –where ISEhas excelled –with artificial intel-
ligence approaches may lead to a breakthrough (Albert,
Nikolaev, and Jacobson 2023).

Second, most of the mathematical optimisation
approaches focus on optimality with well-defined objec-
tive functions (Smith and Song 2020). Emphasising
resiliency rather than optimality may expand our under-
standing of how to protect complex systems. Resilience
could, for example, encompass prolonged disruptions
that occur over multiple time periods, human behaviour,
and equity (Albert, Nikolaev, and Jacobson 2023). Addi-
tionally, past research on modelling adversarial objec-
tive functions (e.g. Wang and Bier 2011) have indicated
that such functions reflect the adversarial organisation
and goals that generally reflect multiple criteria and are
dynamic. Adversarial risk analysis has introduced frame-
works for planning in the presence of intelligent adver-
saries and outcomes that mitigates some of the draw-
backs from game theory and can be informed by human
factors research (Banks et al. 2022). Other structured
approaches could overcome computational limitations to
provide insight into resilience. Research that addresses
this challenge may require interdisciplinary collabora-
tion between applied researchers who are adept at cre-
ating models as well as computational researchers who
can analyse model structures and identify algorithmic
techniques for solving the resulting problems.
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5.2.3. Challenge in cybersecurity and resilience #3:
energy-resilient supply networks
Transformation of the energy sector along with increas-
ingly volatile global and local environments, risks and
instability put the questions of energy-efficiency and
energy-resilience in the forefront of supply chain and
operations management (Ekinci et al. 2022). Both proac-
tive disruptive technologies based on renewable energies
and reactive responses and prioritization for scarcity of
energy resources caused by disruptions call for develop-
ingworkingmethods andmodels to support supply chain
managers. While the research on energy-efficient manu-
facturing and logistics has been flourishing in industrial
engineering for the last two decades, the integrated sup-
ply chain perspective of energy-efficiency still needs to
be developed. Energy-resilience of supply chains is a new
and unexplored research domain while the large body of
knowledge from supply chain resilience can be used to
develop this exciting and practically important area.

There are several areas that could lead to break-
throughs in the area of supply chain design and man-
agement with consideration of energy-resilience aspects.
Several possible research advances that could be trans-
formative includemodelling energy-efficient and energy-
resilient supply chains with consideration of advanced
energy-saving technologies inmanufacturing, warehous-
ing, and transportation; supply chain design, redesign,
and replanning with renewable energy considerations
(including the scarcity and volatility of energy resources);
and energy-resilience in the context of supply chain
viability, viable supply chain models, and reconfig-
urable supply networks. Models and empirical research
from operations management, industrial engineering,
and operations research communities are necessary to
respond to these challenges at the interplay of supply
chain energy-resilience and sustainability.

5.2.4. Challenge in cybersecurity and resilience #4:
resilience in the conditions of shortage economy
A transition from an economy of scale via economies
of scope, speed, and collaboration had been expected
to develop toward a digital economy and global, green
growth. However, we are now faced with what appears to
be an economy marred by widespread shortages (Ivanov
and Dolgui 2022b). Energy, workforce, and materials
are becoming scarce, and supply chains are adapting to
cope with resource shortages along with rapidly rising
prices and associated risks of hyper-inflation. For exam-
ple, semiconductor shortages have caused global ripple
effects and tremendous problems in the supply chains of
automotive and electronics industries, and power outages
in Texas in February 2021 and several provinces in China

in 2021 led to severe consequences for societal viabil-
ity and supply chain resilience. The global supply chains
experienced an unprecedented shortage of transporta-
tion capacities in 2020–2022 caused by the imbalances in
inter-continental logistics flows limiting the number of
available containers and resulting in an increase in freight
prices, product shortages, and overall destabilisation of
supply chains. As a delayed effect of the COVID-19 pan-
demic, demand and markets have recovered much faster
than expected, while the supply and production capacity
ramp-up times were longer and resulted in a severe mis-
match between demand and supply. Sometimes, man-
agers refer to the shortage setting as chaos which results
in global ripple effects (Hosseini, Ivanov, and Dolgui
2019).

This might be a temporary crisis or a long-term trend.
Regardless of the duration, resource scarcity and risks
of hyper-inflation pose novel and unexpected challenges
to resilience analysis in industrial and systems engi-
neering and operations management. Past research has
contributed to the area of aggregate planning and has
developed associatedmodels designed formultiple future
scenarios as well as dynamic and reactive re-scheduling.
However, most of the existing methods and models
consider disruptions and shortages from a short-term,
temporary perspective. For example, design and plan-
ning methods generally presume resource availability
and rational customer behaviours. Thesemethodsmostly
utilise a top-down planning approach starting from the
demand forecasts and assume availability of production
capacities and materials, even if with some constraints,
can be taken for granted. These assumptions require crit-
ical reconsideration in the setting of a shortage economy,
and overcoming these limitations represents an opportu-
nity for scientific breakthroughs. Thus, a major challenge
is to build an understanding of the implications of a
shortage economy on operations management and ISE
and to motivate new research areas instigated by its novel
context (Ivanov and Dolgui 2022b).

5.2.5. Challenge in cybersecurity and resilience #5:
stress tests
The real-life stress-tests such as COVID-19 pandemic
and geopolitical tensions have revealed new insights
about resilience and viability of existing supply chains. In
this setting, further research is needed for understanding
resilience and viability and developing new methods for
stress-tests of supply chains well before a real shock hits
and disrupts structures and operations (Simchi-Levi and
Simchi-Levi 2020). Topics suitable for research include
identifying methods that can be used to stress-test a
supply chain.
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Expanding our understanding of the optimal design
of a supply chain network – the most efficient, the most
resilient, or the most adaptable and viable one – could
uncover deep insights into designing resilient global sup-
ply chains. Methodologies for stress tests could inform
how to design supply chains that are both adaptable and
efficient as well as how to utilise digital technology and
data analytics to enhance supply chain resilience and via-
bility. Advances in the area of stress testing could shed
light on the role of adaptability in the resilience and
viability of value creation systems, as well as how inher-
ent adaptability can be implemented while maintaining
profitability (Ivanov and Dolgui 2022a).

5.3. ISE opportunities to address cybersecurity and
resilience challenges: securing software supply
chains

The cybersecurity and resilience challenges described
above provide a framework for the ISE community to
improve resilience in the decades ahead. These challenges
require a range of ISE tools that span operations research,
human factors, and advanced manufacturing. Interdisci-
plinary research and coordination across research teams.
In this section, we discuss an example to illustrate the
multifaceted aspect of the resilience challenges we intro-
duced. This example regards securing software supply
chains, which aligns with the first challenge.

Cybercrime, encompassing recovery costs and reme-
diation efforts, inflicted more than $3 trillion US on the
US economy 2015 and $6 trillion US in 2021. Under-
standing the interconnected aspects of security software
supply chains is essential, since these can be the source
of breakthroughs. Considerations include system inte-
gration, feasibility, reliability, human error, development
anddeployment costs, and alignmentwith regulatory and
social acceptance.

The President’s Executive Order (EO) 14028 (2021)
on Improving the Nation’s Cybersecurity (The White
House 2021) mandates enhancing cybersecurity through
various initiatives related to the security and integrity
of software supply chains. There are opportunities to
secure software supply chains that leverage the breadth
of ISE. Advances in risk analysis can ensure the integrity
of software supply chains by balancing multiple objec-
tives, including cost, quality, reliability and robustness.
Industrial engineers can contribute to the development
of standards, tools, and guidelines, which includes intro-
ducing criteria for evaluating software security, assessing
developers’ and suppliers’ security practices, and audit-
ing compliance with security policies. New methods
drawing on manufacturing methodologies could estab-
lish traceabilitymechanisms throughout the supply chain

to enhance forensics as well as optimised processing for
conducting audits to verify compliance with standards.
Recognising that human components are integral to
cyber-physical systems, ISE can improve next-generation
software supply chain security by centring human fac-
tors within software supply chains. Enhancing interfaces
and training programmes reduces accidental misuse and
fosters compliance with policies.

In summary, industrial engineering, with its holistic
approach and multidisciplinary toolkit, plays a pivotal
role in fortifying software supply chains against cyber
threats.

5.4. Conclusions and future steps

The ISE toolkit providesmany opportunities to positively
impact resilience. A common theme of the challenges in
this section is that they seek to leverage ISE knowledge
of interconnected system to identify andmitigate vulner-
abilities in complex systems in new and impactful ways.
To achieve breakthroughs in this area, it will be neces-
sary to leverage knowledge across ISE. Increased training
in networks, data analytics, and supply chains need to be
emphasised in undergraduate and graduate curricula to
enable progress on these challenges. Additionally, the role
of human factors is critical to these issues due to its his-
torical focus on improving people’s ability to perceive and
process complex information in various contexts.

6. Grand challenge of sustainability:
environment, energy and infrastructure

6.1. Background

In September 2015, the 193 UNMember States approved
the Sustainable Development Goals (SDGs), also known
as Agenda 2030 (Gigliotti, Schmidt-Traub, and Bas-
tianoni 2019). Together there are 17 goals addressing
the three pillars of sustainability: economic develop-
ment, social inclusion, and environmental sustainability,
as well as peace, justice, good governance, and part-
nership, within the SDG framework (see Figure 2). To
achieve these goals, complex challenges exist in sus-
tainability, involving numerous factors with significant
impact on the climate, environment, health, and quality
of life among many others (Chester 2019).

Particularly, maintaining ecosystem services and pro-
moting humanwell-being should be prioritised (Hender-
son and Loreau 2023). Responding to these challenges,
industrial and systems engineering (ISE) needs to study
the complex relationships between humans, their organi-
sations, surroundings, and communities, and the natural
environment from a system perspective, and investigate
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Figure 2. The framework of the 17 Sustainable Development
Goals (Gigliotti, Schmidt-Traub, and Bastianoni 2019).

the factors that affect the environmental, social and eco-
nomic goals of the society.

Numerous innovations have been developed using
a multidisciplinary, pragmatic, and systems-oriented
approach to improve the environment, such as delivering
clean water, reducing air, water, and soil pollution, and
processing waste, as well as recycling, remanufacturing,
and reusing. From an environmental perspective, provid-
ing a sustainable food, water, and energy supply, curbing
climate change and adapting to its impacts, designing
a future without pollution and waste, creating efficient,
healthy, and resilient cities, and fostering informed deci-
sions and actions are significant challenges (Wang 2021),
where industrial and systems engineering can contribute
in responding and solving through systems thinking and
management.

The significant increase of renewable energy genera-
tion (wind, solar, biomass, etc.) has created a number of
grand challenges to the manufacturers, power grid, and
end users. One such challenge is that renewable energy
exhibits substantial fluctuations in availability, making it
difficult to sustain a stable supply. This has made con-
sumption forecasting, power grid stabilising, and energy
management extremely complex and has presented sub-
stantial difficulty when integrating renewable energy to
the power network.

Infrastructure can be viewed as a set of technolog-
ical systems consisting of humans, their communities,
and the broader environment, as well as the interactions
among them (Thacker et al. 2019). From a physical per-
spective, it can be defined as the physical structures and

the associated equipment and arrangements to enable
and enhance human activities. From a broader point of
view, itmay include all the physical assets and the services
they can enable and provide, including power genera-
tion and information network facilities, water treatment
plants, roads, etc. The rapid development in digital
technology has created a new sector, which transforms
the sustainability infrastructure but also has substantial
impact on energy and environment (Wei et al. 2023). The
relationship among the infrastructures, and how humans
interact with the infrastructure and the natural environ-
ment have been the subject of a substantial amount of
work. However, how to quantify them is still challeng-
ing, because the corresponding systems have become
more and more complex. Physical infrastructures are
increasingly interdependent, since both scale and func-
tions have been growing over time, by incorporating
more and more components, as well as various new tech-
nologies. Thus, when infrastructure is impacted by, for
example, a natural hazard, or has experienced a com-
ponent breakdown due to aging, the resulting losses in
services are difficult, or, impossible to predict.

Industrial and systems engineers with their unique
training in decision-making and design methods for
complex and uncertain environments are uniquely qual-
ified to address the grand challenges in developing sus-
tainable systems. Specifically, challenges that ISE can
address and make a significant impact in improving sus-
tainability include: (1) environment, (2) energy and (3)
infrastructure.

6.2. Environment

(1) Studying complex issues in multiple scales over time
and space.

Extreme complexities exist in human-nature interac-
tions across multiple spatial and temporal scales. The
environmental challenges usually are not limited by local
or regional boundaries but are global issues. To respond,
incorporating the spatial externalisation and the tempo-
ral lagging effect of environmental issues into the anal-
ysis framework with higher resolution and across larger
spatial–temporal scales becomes inevitable.

(2) Integrating analysis various frameworks and meth-
ods across disciplines.

The multi-disciplinary nature of all environmental
issues is a fundamental grand challenge. Integrating the
knowledge, methods and ideas from different subjects
is necessary at four levels: integration of professional
knowledge, theories and methods; incorporation of the
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interaction and feedback dynamics of all kinds of sys-
tems into the analysis framework; recognition and appre-
ciation of diverse ideologies in different subjects; and
finally, dissemination and application of integration of
the results in multiple fields.

(3) Addressing broad and deep uncertainties from sys-
tematic changes.

Most of the changes are non-linear and time-varying,
especially when the system undergoes sudden, substan-
tial, and irreversible transitions. Thus, acquiring larger-
scale and higher resolution socioeconomic and natu-
ral system observation data becomes a necessity, in
order to investigate the dominating driving factors and
influencing mechanisms of the non-linear and time-
varying changes in the system, and finally, to develop
exploratory modelling, simulation, and analysis based
on extensive settings of future scenarios and adaptive
feedback dynamics.

(4) Virtual modelling for life cycle assessment (LCA).

The environment impacts of sustainable systems can
be analysed using virtual models based on life cycle
assessment to identify environmental impact indicators
and their metrics (Shao, Kibira, and Lyons 2010).

6.3. Energy

(1) Energy efficiency and management.

Improving energy efficiency and managing demand
to reduce energy cost while shaping the load profiles of
electricity consumption under demand changes and sup-
ply variations are critical in generating mixed supplies to
achieve this goal.

(2) Scheduling

Effective scheduling with strong optimisation capabil-
ities in real time can lead to significant savings and ben-
efits through better capacity utilisation, which not only
can result in substantial economic benefits but can also
help reduce the environmental load through decreased
or better controlled energy demand.

(3) Reduction of energy consumption with better coor-
dination

Reducing overall energy consumption without sac-
rificing the production and logistics through sufficient
coordination of production plans of up- and downstream

production stages, particularly in the short term, is of
significant importance.

(4) Digital technology for energy transition

Using digital technology such as AI-based optimisa-
tion tool, block chain, and open data platforms, as well
as generative AI models, to track emission and energy
consumption in a value chain to speed up the energy
transition to a deep decarbonisation future. A database
on sustainability development in renewable energy sys-
tem can speed up the studies (Abdolmaleki and Bugallo
2021).

(5) Transportation system

Cleanmobile technology and electrical vehicles offer a
crucial and viable option for the decarbonisation process,
which relies on battery development and their utilisation,
as well as electricity generation, transmission and dis-
tribution planning to ensure genuine benefits from the
decarbonisation of the energy system.

6.4. Infrastructure

(1) Network analysis

Studying the causality working in both directions,
such as the gap between inputs, outputs and outcomes,
the complex interdependencies between individual com-
ponents of the systems and between the networks.

(2) Data acquisition

Integrating data in different silos which requires stan-
dardisation of data with different types, volumes and
features, and the consolidation of datasets in different
contexts and the transfer across the contexts. In addition,
developing methods to handle small data sets is critical
to response to rare events.

(3) Digital communication

Providing information and communication as well
as the necessary channels, including hazard warnings,
financial transactions, carbon footprint, and transporta-
tion (access and safety), etc.

(4) Deployment

Investigating the conditions, applicable contents, vari-
ations, and social dimensions of the infrastructure and
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deploying the structure in reality, and adapting the struc-
ture to accommodate the responses from feedback.

6.5. Methodology integration

It is important to integrate the diverse array of method-
ologies and models, from qualitative and experimental
methods in the social sciences, to quantitative approaches
in optimisation, econometrics and computer simulations.
Understanding of these methodologies, including their
strengths, weaknesses and complementarities, is essen-
tial for the development of a more integrative perspec-
tive on infrastructure systems and services. In addition,
resilience and sustainability for civil infrastructure are
complementary and should be used in an integrated per-
spective with a unified approach (Bocchini et al. 2014).
We next illustrate these challenges and the role that ISE
can address them in context of a transportation system
example. The increasing demand on the transportation
infrastructure has caused significant social issues such
as traffic congestion and air pollution. For example, due
to continuous urbanisation and growth in the popula-
tion, traffic congestion has become an important issue
worldwide, especially in large cities. According to the
Urban Mobility Report, an average commuter had about
54 hours of annual delay due to traffic congestion, which
in monetary terms amount to 1170 USD. Nationally,
the total travel delay was about 8.7 billion hours and
congestion costs were 160 billion USD (Lasley 2021).
Meanwhile, there is no public support for increased tax-
ation to finance infrastructure capacity expansion and in
many cases land use issues restrict further infrastructure
expansion.

Therefore, transit agencies and cities need innova-
tive system level solutions that make use of advanced
algorithms as well as taking into consideration human
behaviour.

Significant advances have been made in the procure-
ment and provision of real-time information required
for the effective control of a transportation system and
transit operations. For instance, transportation infras-
tructure and vehicles are now equipped with sensors,
interconnected data systems, multi-way communication
devices, and onboard computers. These efforts havemade
available a wealth of real time and dynamic data about
traffic conditions that was not previously available. These
technologies have primarily been used for Automated
Traveller Information Systems (ATIS) to provide real-
time arrival time status at some stations to passengers
or congestion pricing on roads. However, these tech-
nologies have not led to a fundamental shift in the way
that transportation services are provided to the public.
That is, transit solutions in most urban areas are still

based on centralised system design primarily operating
on fixed lines. A centralised system may be suitable for
large cities such as New York City and some European
cities, but is not effective for satisfying the transporta-
tion needs of many cities due to a lack of a single high
density business and residential centre. A centralised sys-
tem lacks the flexibility required to meet the dispersed
demand and may be less effective than a dynamically
adaptable solution in very random or dynamic traffic
conditions.

The information technologies (such as GPS systems
both in vehicles and rider’s cell phones) can form the
basis for a new type of decentralised transportation sys-
tem for real-time allocation of resources, hence poten-
tially increasing service in a cost-efficient manner. Trans-
portation capacity is a valuable resource which needs
to be fully utilised and market-based mechanisms can
often achieve an efficient allocation of resources. Auc-
tion mechanisms and game theoretic models can exploit
the wealth of available traffic data and can be auto-
mated to allow services and pricing to respond directly
to consumer demand. The development of such a dis-
tributed transportation system that matches services to
demand in real-time will require the development of
fundamentally newmethods in distributed optimisation,
mechanism design, machine learning, agents and user-
interfaces, computation of large-scale equilibria, and
planning under uncertainty.

In addition to increased passenger demand, freight
shipments are increasing throughout the world as a result
of globalisation, rising incomes, and shifting patterns
of production and consumption. At the national scale
freight demand is largely a function of GDP per capita.
Given expected economic growth, it is estimated that
the global heavy-duty truck fleet will increase by a fac-
tor of 2.6–64 million by 2050 (Mulholland et al. 2018).
Trucks generate a disproportionate share of greenhouse
gases (GHGs), The transport sector in the US accounts
for 28% of greenhouse gases, second only to industry
According to the U.S. Environmental Protection Agency
(USEPA 2018a), trucks account for 23% of the transport
sector share (USEPA 2018b). Trucks also contribute dis-
proportionately to air toxics. The US transport sector
accounts for nearly 56% of nitrogen oxides (NOX) and
22%of volatile organic compound emissions (VOCs). the
precursors to smog andozone (USEPA2018a). The trans-
port sector also accounts for almost 20% of particulates.
Trucks account for about one third of NOX and 30% of
particulates from the transport sector.1 One of the most
promising directions for reducing GHG emissions in the
trucking industry is adopting zero-emission trucks such
as electric trucks in freight operations. However, the lim-
ited charging infrastructure and long charging times limit
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thewide-scale adoption of these trucks, which are natural
research problems for ISE to address.

In summary, significant changes and rapid develop-
ment in environment, energy and infrastructure have
created opportunities for ISE to contribute to addressing
these grand challenges grand challenges through sys-
tematic methods and approaches to develop sustainable
systems and societies.

7. Challenge of health issues

7.1. Background

Recent decades have seen extraordinary advances in data
collection in medicine, including the implementation of
electronic medical records, the creation of new devices
and wearable sensors for health monitoring, rapid gene
sequencing and editing technologies, and disease surveil-
lance and tracking systems, to name a few examples. Ulti-
mately, these advances, and their resulting data collec-
tion and storage, have surpassed the ability of industrial
and systems engineering methods to use these data to
improve medical decision-making and healthcare deliv-
ery. As a result, there is a knowledge gap that, until
addressed, will limit the effectiveness and adoption of
these new technologies to improve health and human
safety. There are two fundamental and equally impor-
tant technical challenges to address. The first challenge
concerns quantitative methods for harnessing data to
transform it into information and subsequently to rec-
ommendations (alternative decisions) for whether and
when to intervene to achieve health and safety goals in
a way that is consistent with patient preferences. The sec-
ond challenge is to overcome barriers to implementation
that result from a combination of constraints imposed by
human behaviour, policies, and processes resulting from
the fragmented nature of health systems that limit infor-
mation sharing and coordination across medical disci-
plines and healthcare providers. These challenges exist in
most health systems around the world, and some of these
challenges are particularly pronounced in the United
States, which serves as the primary reference point for
this article.

The challenges outlined above exist within the con-
fines of exogenously defined complexities, includingmul-
tiple and often competing criteria among stakeholders
(e.g. patients, physicians, third party payers), latent health
factors that may not be directly observable to decision
makers (e.g. undiagnosed cancer, asymptomatic infec-
tions), and a dynamically and unpredictably changing
health system that results in shifting stakeholder needs
and goals over time (e.g. the discovery of new health
interventions, the surge in demand due to a natural

disaster, spread of a novel virus). We consider these
complexities to be immutable, but nevertheless, impor-
tant considerations frame the feasibility of approaches to
address the above challenges.

Collectively, the above challenges and their attendant
exogenous complexities lead to a wide range of important
opportunities for ISE to play a role in affecting positive
improvements to healthcare systems. In the next section,
we begin by summarising each of the challenges and
subsequently discuss some of the root causes of these
challenges. Next, we summarise opportunities for the ISE
field by using specific examples to illustrate the nature
of the problems. Finally, we discuss the important next
steps to facilitate the development of the next generation
of engineers positioned to address the challenges.

7.2. Challenges in healthcare

To begin, we describe each health challenge indepen-
dently, followed by a discussion of how they interact and
the exogenous factors that contribute to the complexity
of addressing them.

7.2.1. Challenge in healthcare #1: harnessing
data-driven discoveries to prevent, treat, andmanage
diseases.
New technologies, such as sensors for remote moni-
toring, real-time DNA sequencing devices, molecular
biomarkers, and advances in information technology
(IT) infrastructure, are continuously adding to the possi-
bility of real-time situational awareness about individual
patients and the health systems where they seek treat-
ment. However, the sheer size of the resulting datasets
and the vast number of signals that can be monitored
overwhelm clinical decision-makers, insurers, and poli-
cymakers, who must balance the potential benefits and
harms of using these data to guide decision-making.
Approaches for addressing confounding, missing data,
and other sources of bias inherent to observational data
are not keeping pace with the opportunity for improving
the selection and execution of recommended courses of
action. Moreover, many advances are specific to an iso-
lated part of complex interconnected health systems. As
a result, the pace of medical discoveries and other tech-
nical innovations to acquire data has surpassed the speed
of the data analytic innovations needed to use the data to
optimise healthcare delivery and improve the prevention,
treatment, and management of diseases.

7.2.2. Challenge in healthcare #2: enhancing human
behaviour, policies, and processes
New technologies for furthering the understanding of
patient health at home, work, or clinics and hospitals
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Figure 3. Interaction between healthcare challenges #1 and #2
illustrating the role of healthcare challenge #2 in constraining
potential future data-driven discoveries related to healthcare
challenge #1.

are rapidly emerging. Still, these advances are only as
valuable as individuals and organisations enable them
to be. All health systems in developed countries operate
within amicrocosmof government regulations, laws, and
internal standard operating policies and processes that
define whether and when new innovations may be used,
subject to safety, cost, and privacy restrictions. More-
over, individual human behaviour and the propensity for
mistrust in new technologies and processes significantly
affect decision-making at the point of care between a clin-
ician and a patient. This often leads to inefficiencies in the
delivery of care, such as redundancy in diagnostic eval-
uations, fragmentation among healthcare providers, and
over-treatment that burdens patients unnecessarily and
contributes negatively to their overall well-being. Fur-
thermore, many healthcare delivery systems that comply
with their policies and regulations ultimately marginalise
vulnerable populations, increasing risk and widening the
disparity gap.

These two health challenges interact to create barriers
to improving healthcare delivery. Figure 3 illustrates this
interdependence as a Venn diagram. From the perspec-
tive of healthcare challenge #1, technologies in the form
ofmedical devices, such as patient sensors, imaging tech-
nologies, and new diagnostic tests, are now able to amass
extraordinary amounts of data for individual patients,
which, if aggregated, can serve as a resource to optimise
decision-making for the prevention, treatment, andman-
agement of diseases. These data present a resource that,
when collected over time, can be used for a wide range
of purposes, including understanding a patient’s cur-
rent health condition, predicting future health outcomes,
identifying possible health interventions, monitoring the
effects of interventions, and using these data to improve
decision-making through a continuous feedback loop
over time.

In practice, the various data sources needed to
enhance decision-making are challenging to aggregate

for several reasons, including patient privacy, health-
care provider policies and processes arising from propri-
etary and liability concerns, and general fragmentation
of healthcare delivery systems, resulting in challenges in
collecting and linking data across different organisations.
Nevertheless, the emergence of data aggregators such as
MarketScan, and Optum, as well as health system initia-
tives, are contributing to the ability of individuals and
organisations to access increasingly detailed data on large
populations, including demographic data, environmental
exposures, pastmedical history, claims, lab results, genet-
ics, and the results of diagnostic tests (Blewett et al. 2018).
As a result, researchers have access to an extraordinary
breadth of population data, and advances in data col-
lection and storage continue to accelerate. However, the
availability of data alone is not sufficient because obser-
vational data, while abundant, is rife with challenges
resulting from a wide range of complexities, as illus-
trated in Figure 4, adapted from Denton (2023), which
summarises some of the sources of bias that limit how
such data can be used to aid decision making. Emerg-
ing research in data analytics and artificial intelligence
is opening doors for addressing some of these chal-
lenges. Still, ultimately, such methods require a deep
understanding of the context in which the data is col-
lected. Otherwise, serious problems can arise, introduc-
ing inequities and unethical recommendations (Panch,
Mattie, and Atun 2019). Thus, a necessary condition for
success in this area is to combine methodological devel-
opments with a big-picture contextual understanding of
the underlying health system, including socioeconomic
considerations, stakeholder performance measures, pro-
cesses, and constraints. Many aspects of human factors,
such as human-centred design, human–computer inter-
action, and user trust in data analytics and artificial
intelligence will play important roles in the successful
implementation of decision support systems; This mul-
tidisciplinary endeavour is something the field of ISE is
ideally suited to address with its long history of combin-
ing expert knowledge of industrial systems withmethod-
ological advances in problem-solving, and the study of
human-technology interfaces and user trust.

Historically, much of the progress in the ISE com-
munity has been focused on isolated challenges, such
as a single disease or condition in the case of medi-
cal decision-making (e.g. cancer, diabetes, heart disease,
HIV), or a particular part of the health system in isolation
(surgical suites, outpatient clinic, laboratory operations).
The wide availability of data and data analytic methods
to address the challenges of using observational data will
open the door for the creation of more comprehensive
computational models that consider the complexity of
multiple comorbid conditions and diseases and linking



INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 1555

Figure 4. Sources of systematic bias interact to cause errors in
industrial engineering and operations researchmodels estimated
using observational data.

of interdependent networks of healthcare operations in a
way that avoid locally optimal solutions that do little to
improve the overall system of care.

From the perspective of healthcare challenge 7.2, there
are numerous constraints imposed by human behaviour,
policies, and processes, which limit potential opportuni-
ties to improve healthcare. The constraints arise from a
complex interaction of the overall population ecosystem,
driven by political pressures, population dynamics, and
economic objectives, forcing healthcare organisations,
clinicians, and patients to work within the prescribed
constraints. This further creates incentives that drive
healthcare organisation’s investments and subsequent
processes. Ultimately, this determines feasible courses of
action and system capabilities, which govern the poten-
tial options for physician and patient stakeholders. Thus,
healthcare challenge #2 imposes constraints on physi-
cians’ possible actions and recommendations. Ultimately,
this puts limits on the available capacity for further
probing of healthcare concerns identified by monitoring
patients (e.g. MRI, CT scan, biopsy, endoscopy) and cre-
ates financial incentives that lead providers to invest in
the capacity that is feasible with respect to third-party
payer requirements, and regulations imposed by govern-
ment agencies.

Some of the constraints related to healthcare chal-
lenge #2 are well-founded and intended to act in patients’
best interests. For example, regulations around the use
of new drugs and medical devices, which most devel-
oped countries impose, provide a process for a thor-
ough evaluation of the risk versus return tradeoff before
allowing widespread use, which could lead to unintended

Figure 5. Relationships among organisations and services
(Rouse, Johns, and Pepe 2019).

public health concerns. A recent case in point is the
opioid crisis, which started with the approval of a pur-
portedly non-addictive treatment that ultimately caused
hundreds of thousands of deaths and costs measured in
trillions of dollars (Maclean et al. 2022). Consequently,
the time it takes to achieve adequate assurances to enable
widespread use is, in part, a matter of process, which falls
squarely in the purview of the field of ISE. Thus, as this
example illustrates, the constraints related to healthcare
challenge #2 can be complex, involving multiple crite-
ria (e.g. risk vs return). Furthermore, the relative benefits
of modifying these constraints depend on many factors,
including the cost of such efforts, monetary and implied
human effort, and potential rewards, such as quality and
length of life.

Healthcare system design and operation constraints
arise from a complex interaction between policymakers
and health, education, and social services (Rouse, Johns,
and Pepe 2019). Figure 5 portrays who is involved in
providing health, education, and social services in the
United States and the inherent complexity of interac-
tions. The complex organisational ecosystem is highly
fragmented, often resulting in low-quality, expensive ser-
vices and inequity in access to healthcare. (Rouse 2015)
outlines a framework formodelling complex social enter-
prises, which can be applied to healthcare delivery (Rouse
and Cortese 2010; Rouse and Serban 2014) and other
domains such as higher education (Rouse 2016). This
framework addresses the physical, human, economic,
and social phenomena underlying complex ecosystems.
A population health version of this framework is shown
in Figure 6.

This multi-level framework provides the basis for
integrating different types of computational models to
explore policy alternatives. The People level is usually
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Figure 6. Population health enterprise.

agent-based, raising fundamental challenges in deci-
sion theory, behavioural economics, and human sys-
tem integration. The Process level is often represented
as networks of flows, resources, and resulting queues,
often modelled using descriptive and predictive models.
The Organisational level involves the microeconomics of
resource allocation and resulting decisions, often mod-
elled using prescriptive models to optimise resource allo-
cation. The Society level consists of the macroeconomics
of policy, which has a wide-ranging impact on all the lev-
els below. The resulting multi-level framework describes
a highly complex interaction that is difficult to change
and costly to experiment with.

At the People level, central phenomena include estab-
lishing a route through the many needed health services;
however, behaviourally, people may balk (not become
patients) or renege (drop out of treatment) along the
route due to delay times, and other factors. Process level
phenomena include getting appointments for each ser-
vice in the route in a way that considers overall delays
to patient care. Delays between services can be measured
in weeks or months. Often, delays are highly affected by
capacity constraints. At the Organisational level, capac-
ity constraints are due to investment policies, as well
as the availability of personnel. Organisations, not sur-
prisingly, tend to invest in capacities needed to provide
services that are highly reimbursed. Thus, cancer, car-
diology, and orthopaedic surgery services are typically
better provisioned than routine chronic disease manage-
ment. At the Society level, investment policies are related
to payer reimbursement policies for different services.

This level also relates to how value is defined. Healthy
people have lower healthcare costs and typically work,
earn incomes, pay taxes, etc. Thus, society benefits from
a healthy population far more than the lower healthcare
costs.

7.3. ISE opportunities to address healthcare
challenges

The healthcare challenges described above provide a
high-level framework for thinking about the wide range
of opportunities for the field of ISE to participate in
improving healthcare over the decades ahead. Ultimately,
the challenges described are too complex to be addressed
directly through single initiatives or by any one organ-
isation. Instead, what is needed is coordinated efforts
and a philosophy of continuous experimentation and
improvement that considers the complex sociotechnical
challenges of healthcare delivery. In this section, we pro-
vide motivating examples of such challenges, focusing on
the interdependency between the two grand challenges.

The first example is based on the predominant fee-
for-services payment scheme in the United States, which
discourages adopting technologies that reduce the need
for reimbursable services. In contrast, capitated pay-
ment schemes, like Medicare Advantage (MA), incen-
tivise adoption of such technologies. Kaiser Permanente’s
MA offers a case in point (Inovalon 2023). This illustrates
how phenomena underlying Challenge 2 can undermine
success in addressing Challenge 1. Fee for service reim-
bursements drives providers to invest in capacities whose
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use is highly reimbursed. Technologies such as remote
patient monitoring that reduce demands for highly com-
pensated services undermine the economic objectives
associated with these investments. However, fully taking
advantage of remote patient monitoring requires invest-
ing in analytic capabilities to monitor and interpret the,
often 24×7, flow of patient data, typically from thou-
sands of patients within a particular catchment region.
Clinician decision support systems are needed, and time
must be allocated to learn how to use the new systems.
Thus, providers must invest in new systems, compound-
ing the problem of reduced revenue and profits. This is
fundamentally at oddswith the sustainable economic via-
bility of healthcare providers unless a capitated payment
scheme incentivises keeping people healthy at a lower
cost, as with MA.

The second example is coordinating care for patients
with multiple chronic diseases and conditions. The aver-
age person in the United States has three or more chronic
conditions by the time they are 65 years of age (AHRQ
2014). Consider a patient who has a pacemaker due to
cardiovascular complications, chronic obstructive pul-
monary disease, type 2 diabetes, and suffers from depres-
sion. New technologies make it possible to conduct real-
time surveillance of risk factors in the home, such as
monitoring electromagnetic signals from the heart, pulse,
oxygen, blood pressure, lung congestion based on tho-
racic impedance, blood sugar, sleep patterns, and many
other relevant signals that could help predict the need for
a patient intervention. While technologies in the form
of sensors exist for remote monitoring of these factors
in real-time, there is little understanding of how to use
multiple streams of data, considering various comorbidi-
ties, and a large number of potential alerts – each subject
to false positives and false negatives for their respec-
tive outcomes – to make well-intended decisions that
seek to meet patient preferences for safety, the burden
of care, and risk attitude, and which may differ signifi-
cantly from one patient to the next. Additionally, the data
streamsmay be convoluted by hidden environmental fac-
tors or other confounding variables that are not observed,
leading to a wide range of open questions from a pre-
dictive and prescriptive modelling perspective. Technical
challenges notwithstanding, there are ethical and liabil-
ity concerns for providers in the event of a false negative.
This will necessitate AI insurance policies (Bertsimas and
Orfanoudaki 2021) to mitigate risk exposure. There are
also privacy concerns to be addressed and questions of
whether and how insurers would pay for the devices, how
they are priced, and whether they are cost-effective.

To inform and support the range of stakeholders
in the decisions associated with adopting new policies
and practices, computational models need to be highly

interactive and support complete immersion in interac-
tive representations. Clinician decision-makers will not
accept third-party analysts’ assertions of treatment rec-
ommendations. They will want to be involved in the
search for the best answer, laced with much discussion
and debate, and the need to be able to interpret how
and why algorithms arrived at a specific recommenda-
tion and how tomitigate various sources of bias and other
unintended consequences of using observational data to
aid decision making. Human Factors approaches will
be critical to understanding factors that influence clini-
cians’ trust in the computationalmodels and the resulting
AI-enabled software systems that support user-friendly
immersive interaction with data and recommendations.
New approaches for human-centred design to optimise
user experiences for clinicians, patients, policymakers,
and other stakeholders will be necessary for the suc-
cessful implementation of these discoveries in an already
complex healthcare delivery environment.

The above examples illustrate the complexities of the
healthcare challenges we laid out. A unifying construct is
the notion of humanwell-being, which includes physical,
mental, social, and economic health (Rouse, Johns, and
Curran 2024). The pursuit of this construct in the United
States involves a variety of performance challenges. The
inherent complexity of the highly fragmented US system
underlies these challenges. Numerous behavioural and
social phenomena must be addressed, and various inter-
ventions developed. Digital technologies and algorithmic
advances can enable these interventions, and the field of
ISE can contribute to addressing the management impli-
cations of developing and deploying these interventions.

7.4. Conclusions and future steps

Healthcare has been described as a class of production
system called a complex service system (Maglio et al.
2019) owing to the complicated interaction of numer-
ous resources, people, and processes. There are many
areas in the scope of the grand challenges where the
field of ISE, drawing on its history of innovation in pro-
duction systems, can positively influence healthcare. To
overcome the multi-level impediments of challenge #2
that are undermining success in addressing challenge #1,
ISE education and research must address the economic,
behavioural, and social phenomena across multiple lev-
els, in addition to data analytics and related methods
for responsible data-driven decision-making. Increased
training in statistics, causal inference, machine learning,
and related data analytic methods need to be empha-
sised in undergraduate and graduate curricula to enable
progress on challenge #1. Further, increased training
and experiential learning opportunities related to public
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health, economics, public policy, law, and other rele-
vant aspects of behavioural and social sciences are crit-
ical skills needed to position future engineers to affect
positive change in healthcare.

8. Grand challenge of social issues

8.1. Background: technology and culture

In this section, we discuss two main topics related to the
grand challenge of social issues that the ISE community
can potentially tackle, namely 1) technology and culture
and 2) re-engineeringwelfare states: ISE for social welfare
delivery system.

Conversational agents provide opportunity for users
to use natural language to communicate with an auto-
mated system. Ruane, Birhane, and Ventresque (2019)
suggest ways for agent designers, developers and own-
ers to approach conversational agents with the goal of
responsible development. These agents can have a direct
effect on everyday life and even behavioural change. It is
noted that conversational agents and bots are developed
by teams that can influence social, political, economic
and culture. Social and ethical issues include trust and
transparency, privacy, agent persona and anthropomor-
phism (Ruane, Birhane, and Ventresque 2019).

Increased interest in artificial intelligence (AI) has
contributed to recent discussions about augmentation
versus automation by machine intelligence. Augmenta-
tion of intelligence can provide industrial and systems
engineering-related challenges for design, use and impact
of AI on professionals, organisations and the future of
work (Paul et al. 2022). In order to improve the intel-
ligence, there needs to be some collaboration between
the human and the AI. The impact can of AI on jobs
is a subject of debate. The nature of the effect may
depend on how and where the technology is imple-
mented, and its cost for the use context. Future research
directions include human-automation interaction (HAI)
and human factors (Paul et al. 2022). Key elements of
the research include dimensions of HAI trust such as
expected performance, the process by which the AI is
working, and the purpose. Additional detail about trust
elements is shown in Table 2.

8.2. AI and automation for the future of work

Modern workplaces are changing. Additionally, modern
work necessitates the continued attention to occupational
safety and health on behalf of the workforce. The
National Institute for Occupational Safety and Health
(NIOSH) of the Center for Disease Control in the
U.S. has developed priority topics and subtopics for
future research in support of the future of work.

Table 2. Dimensions of Human-Automation Interaction (HAI)
and Trust (adapted from Paul et al. 2022).

HAI trust dimensions Trust elements

Performance

• Competence of HAI
◦ Functional
◦ Human-AI interaction

• Timeliness of solution in real-time HAI
• Reliability

◦ Context-specific reliability

Process

• Openness
• Consistency
• Understandability
• Predictability
• Data integrity
• Accessibility

Purpose

• Authorised responsibility for administering and
using HAI

• Intention of machines and users in HAI
• Faith in HAI

Those are shown in more detail in Table 3. Prior-
ity topics in the Future of Work initiative at NIOSH
include: organisational design, technological job dis-
placement, work arrangements, artificial intelligence,
robotics, smart technologies, sensors and surveillance,
demographics, economic security and skills (Tamers et al.
2020).

The use of AI has potential for improving the well-
being social good. As a research theme, AI for Social
Good (AI4SG) has shown trends in terms of applica-
tion domains and AI techniques used. According to Shi,
Wang, and Fang (2020), eight application areas can pro-
vide conceptual groupings. These are listed in order of
the greatest number of research articles to least include
healthcare (344), transportation (253), environmental
sustainability (225), public safety (177), combating infor-
mation manipulation (155), social care and urban plan-
ning (90), education (78), agriculture (40). The top ten
techniques used include: machine learning (460), plan-
ning, routing and scheduling (210), constraint satisfac-
tion and optimisation (173), multiagent systems (122),
human computation and crowd sourcing (98), computer
vision (79), reasoning under uncertainty (78), game the-
ory and economic paradigms (78), human-AI collabo-
ration (69), heuristic search and optimisation (69) (Shi,
Wang, and Fang 2020).

West (2018) explains that his assistant emailed Amy,
the personal assistant of the individual withwhomhewas
to meet. Amy was prompt in her follow-up and emailed
West’s assistant multiple times over the weekend trying
to find a date that would work. Amy performed the tasks
of a human assistant who read emails, discerned intent,
and came upwith a relevant response. The clue to discov-
ering that the respondent was virtual was the incredible
persistence over a weekend, West explained. The digital
assistant performed quite well according to West and is
no longer a futuristic vision.
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Table 3. Priorities topics in future of work initiative as CDC/NIOSH (adapted from Tamers et al. 2020).

ISSUES THAT IMPACTWORKPLACE, WORK ANDWORKFORCE

Emergency and Disaster Preparedness and Response ∗ Exposures and Hazards ∗ ExtremeWeather Conditions ∗ Globalization ∗ Industry 4.0 ∗ OSH 4.0 ∗ Policies
∗ Politics ∗ Resources ∗ Social Disruption

WORKPLACE

ORGANIZATIONAL DESIGN Autonomy ∗ Burnout and Stress Prevention ∗ Healthy Leadership ∗ Job Flexibility ∗ Leave Systems ∗ Scheduling ∗
Social and Corporate Responsibility ∗Workplace Built Environment ∗Workspace ∗Work Life Fit

TECHNOLOGICAL JOB DISPLACEMENT Automation ∗ Digitalization ∗ Job Quantity and Quality ∗ Occupational Polarization ∗ Productivity Enhancement
and Quality Improvement through Automated Manufacturing ∗ Stable, New and Redundant Work

WORK ARRANGEMENTS Alternative ∗ App-based ∗ Contingent ∗ Contractual ∗ Direct Hire ∗ Distributed ∗ Free Lancer ∗ Job Sharing ∗ Non
Standard ∗ On-Call ∗ On Demand ∗ Part-Time ∗ Platform ∗ Precarious ∗ Seasonal vs Multi-Employers ∗ Temporary

WORK

ARTIFICIAL INTELLIGENCE Deep Learning ∗Machine Learning ∗ Neural Networks

ROBOTICS Autonomous, Collaborative, Industrial, Managerial, Service, and Social Robots ∗ Autonomous Vehicles ∗ Human
Machine Interaction ∗ Unmanned Aerial Systems ∗Wearable Exoskeletons and Exosuits

TECHNOLOGIES Additive and Smart Manufacturing and #3D Printing ∗ Advanced Cloud and Quantum Computing ∗ Bio-
Manufacturing ∗ Bio-Technology ∗ Clean and Green Technologies ∗ Digitalization ∗ Information and Communica-
tion Technologies ∗ Internet-of-Things ∗Nanotechnology and AdvancedMaterials ∗ Sensors ∗ Sensor Surveillance
∗ Smart Personal Protective Equipment

WORKFORCE

DEMOGRAPHICS Diversity and Inclusivity ∗Multi-Generational ∗ Productive Aging ∗ Vulnerable

ECONOMIC SECURITY Adequate Wages ∗ Equitable and Commensurate Compensation and Benefits ∗Minimum Guaranteed Hours

SKILLS Continual Education, Learning and Training ∗ Re-Skilling and Up-Skilling

Robots, AI, virtual reality, autonomous vehicles, facial
recognition, drones, and mobile sensors are altering
numerous sectors and leading us to an automated society
(West 2018). The impact of these emerging technologies
is considered in the context of work, education, poli-
tics, and public policy (West 2018). West wonders, ‘If
companies need fewer workers as a result of automa-
tion and robotics, how are people outside the workforce
for a lengthy period of time going to get income, health
care, and retirement pensions?’ West suggests that it is
important to rethink work and move toward lifetime
learning.

8.3. Data analytics for qualitymanagement and
industry 4.0

Recent research has explored how big data analytics can
facilitate effective decision making in different quality
management problems of small andmedium-sized enter-
prises. Smart technologies have been shown to assist
managers to control quality in manufacturing using
sophisticated data-driven techniques (Sariyer et al. 2001).
A proposed 3-stage model and algorithm that uses main
features of the data set, product, customer, country, pro-
duction line, production volume, sample quantity and
defect code can support product quality level classifica-
tion with 96% accuracy (Sariyer et al. 2001).

Data analytics is the set of techniques that focus on
gaining actionable insight to make smart decisions from
a massive amount of data (Duan and Xu 2021). As per-
formance is improved by smart decisions and smart

decisions need support from operations to collect rele-
vant data, there has been an increase in research efforts
in support the synergistic efforts of data analytics and
Industry 4.0 together. Industry 4.0 is the considered the
fourth industrial revolution for decentralised production
through shared facilities to achieve on-demand manu-
facturing and resource efficiency (Duan and Xu 2021).
Three elements of overlapping interest between Indus-
try 4.0 and data analytics include: the industry sector,
cyber-physical systems and analytical methods. Interdis-
ciplinary research areas of interest for ISE that have social
implications include 5G network, big data, blockchain,
cloud computing, deep learning, IoT and quantum com-
puting (Duan and Xu 2021).

8.4. Job design and organisational culture

Job design has potential to impact psychological state
of motivation. Ho and Wu (2019) report that perceived
social impact can effect motivation to benefit others’ lives
and further improve service quality. The results have
practical implications for ISEs through consideration of
appropriate job design to support employee’s ability to
perceive their job impact on customers as well as have a
connection with them (Ho and Wu 2019).

Additionally, organisations are concerned with devel-
oping leadership from employees that can lead from a
distance (Bagga, Gera, and Haque 2023). Organisations
rely more on virtual teams now to accomplish their work
and goals. Given the pace of change in the work envi-
ronment and organisational culture, leaders need to be
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Figure 7. A conceptual model of the characteristics, challenges
and suggested design in the future of work (adapted fromMalho-
tra 2021).

proactive in their approach as all organisations are work-
ing more in virtual teams connected by information and
communication technologies (Bagga, Gera, and Haque
2023).

A conceptual model of the characteristics, challenges
and suggested design in the future of work include:
virtual work, multiple teams, location autonomy, goal
autonomy, maintaining organisational culture, monitor-
ing performance, meaningful work design and mindful
work design (Malhotra 2021) (see also Figure 7). Malho-
tra (2021) suggests that as individuals realise new ways of
accomplishing their tasks using technology and as they
adapt to new ways of working, organisations will need to
rethink how they structure themselves for the future of
work.

8.5. Re-engineeringwelfare states: ISE for social
welfare delivery system

Another direction that the broad ISE community
can potentially make a significant contribution toward
addressing social issues is to improve and enhance the
formal societal system itself. A good example is welfare
state and social welfare delivery system. A welfare state is
a type of government in which the government is respon-
sible for providing basic economic security and social
well-being for its citizens (Weir 2001). Originated from
the German term ‘sozialstaat (social state)’ which refers
to the reform by Otto von Bismarck, the first chancel-
lor of the German Empire, the notion of welfare state in
the modern sense has become a critical part of govern-
ment functionalities after World War II, especially in the
USA and some of Western European countries (Skocpol
1995).

While the specific ways of implementation vary sub-
stantially across different countries (Alesina, Glaeser, and
Sacerdote 2021) as its evolution has been highly depen-
dent upon the historical trajectories, its domain has
grown enormously since WW2. The definition of a wel-
fare state is still equivocal, its purpose is well established
and widely understood (Barr 2018) – 1) to assist the
poor, and more importantly, 2) to address market fail-
ure. The main areas covered by welfare state include:
pensions, healthcare, disabilities, family, unemployment,
housing benefits, etc. As of 2022, the average public
social expenditure-to-GDP among OECD countries is
21% (OECD 2023). In many parts of the world, it is
unimaginable for the government to fully neglect such
responsibilities. Consequently, it has long been a very
active research topic in social science, especially in politi-
cal science, economics, social welfare, and public admin-
istration.

8.6. Unexplored territory: how to deliver social
welfare efficiently and effectively ‘in ISE Sense’

There is a vast amount of literature spending including
multiple Nobel Prize winningworks (Sen 1982) related to
welfare states and social. Nevertheless, despite the colos-
sal size and impact that social welfare has to the society,
there seems to be a lack of studies specialising in mak-
ing it more efficient and effective from engineering –
to be exact, industrial and systems engineering – per-
spective, with the exception of healthcare (Choi 2021).
A prominent example is the social welfare service deliv-
ery system. Its objective is to deliver the social welfare
services to those who are in need in the most efficient
and effective manner. It has been studied within the
fields of social welfare and public administration disci-
plines almost exclusively, but the line of research does not
address such aspects much.

While anecdotal, the child abuse prevention system of
South Korea exemplifies this well. After a series of unfor-
tunate events, South Korean government implemented
a machine learning based child abuse identification and
prevention system, called ‘eChild’ in 2018. Albeit not a
crystal ball, by leveraging the sensitive social welfare data
of every single child of the nation collected and man-
aged by Social Security Information Services (SSIS), it
is designed to provide useful information as to whom is
likely to be a next victim.

Disappointedly, it did not serve its purpose to the
degree that was initially anticipated.While the systemhas
a room for an improvement for its accuracy, it is not the
main cause. Rather, it is due to the fact that the eChild
system has not been properly integrated with the exist-
ing child abuse prevention network consisting of social
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workers, police, and local communities at the operation
level, which ultimately made the people in charge not to
use it as designed (Han 2022). Loosely translating it to ISE
terms, it is as if the sensor network is introduced without
carefully designing operations within the existing quality
management and preventive maintenance system, thus
leading to confusion and unnecessary overhead costs.

As the case of eChild system illustrates, many unad-
dressed issues in the welfare state and its delivery system
resemble what the ISE community has been studying for
a long time. At the micro level, such matters as identify-
ing the children in danger, lonely death, etc., share similar
features as qualitymanagement, preventivemaintenance,
etc. The key challenge in providing care for those in need
such as the disabled and the elderly at the state level is
essentially a large-scale supply chain management prob-
lem. From this perspective, many members of the ISE
community will agree that addressing operational issues
with welfare state and its delivery system could be a great
application field for ISE to make a great social impact,
in addition to academic and industrial implications. It
is quite obvious that the quantitative and technical tools
that the ISE schools have been adopting as the core
curriculum such as optimisation, simulation, statistics,
human factors, ML and AI that ISE will be of great use
for tackling relevant problems. This implies that, the ISE
community canmake an immediate and sizable impact in
making the social welfare delivery system more efficient
and effective.

8.7. Huddles and challenges

Those who are trained in the ISE community might feel
that one can simply plug in the quantitative models to
the welfare delivery system related issues to get the right
answers. However, the reality is more complicated than
one can imagine, as the subject matters are not commer-
cial products. They are human beings. For instance, there
are two possible errors regarding the child abuse case –
type I and II. Upon the occurrence of a type II error,
a child who could have saved may face an unspeakable
event. As any statistics textbook states, a type II error
should be reduced to a certain degree. In turn, it tends to
increase the chances of a type I error. Under the typical
preventive maintenance scenario, it is no big deal as the
consequence is some loss in monetary value. However,
a type I error in child abuse prevention means stigma-
tising a happy and innocent family by falsely accusing
them. The typical quantitative approach that minimises
an objective function consisting of reward and penalty
does not fit the bill anymore.

Putting the ethical and philosophical dilemmas aside,
there is another huddle for ISE methodologies to be

employed at the quantitative modelling level – data. It is
obvious that quality research requires a good amount of
real data desirably along with a platform to test hypothe-
ses. Unfortunately, it is not so easy to have access to
such a data set as it contains very sensitive personal
information. The eChild system uses extremely pri-
vate date sets such as the income level of the parents,
daycare/school attendance, missing vaccination, miss-
ing utility bills, etc., which should not be publicly dis-
closed under any circumstance. Inmany cases, it is illegal,
or at least unethical to get a hold of such data. This
makes it practically impossible to initiate any type of
research, not to speak of publishing the results to aca-
demic forum.

There seems to be one remedy, though. If one can
generate synthetic data by AI trained on real world sam-
ples with sensitive information, and if the generative AI
has enough representation power, the data related issues
could be much relieved. In this regard, KAIST and SSIS
has taken an initiative toward such a direction with the
financial support from National Research Foundation.
While it is hard to tell how long it will take, once success-
ful, it will allow themembers of the broad ISE community
to have a free access to the synthetic data without violat-
ing privacy for academic purposes, which will certainly
make the ISE community the first and only discipline
to deliver a social value to a greater public by reengi-
neeringwelfare state and improving social welfare service
delivery system around to world.

9. Grand challenge of logistics and supply chain

9.1. Background

In today’s era, the logistics industry plays a pivotal role
in the global economy. They are the backbone of mod-
ern commerce, facilitating the movement of goods from
manufacturers to consumers.

Hence, the challenges supply chain and logistics com-
panies facing are diverse and complex.

Organisations can use specific strategies and a com-
mitment to adaptability to overcome the challenges,
contributing to the smooth flow of goods and global
economic services. Supply chain resilience has recently
become vital for businesses (Chen and Miller-Hooks
2021). Cyclone Debbie (March 2017) caused damage in
Australia and disrupted Indian steel mills by disrupting
coal imports and impacting supply chains. The Russia-
Ukraine conflict disrupted oil, gas, and wheat supplies,
raising prices. Therefore, understanding and measuring
resilience is essential, especially with the increasing com-
plexity of expanding supply chains. Significant work has
been done to quantify and define resilience (Gao et al.
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2019), especially in themanufacturing sector (Ergun et al.
2022; Waseem and Chang 2023).

9.2. Challenges in logistics and supply chain

The logistics and supply chain industry are currently
facing a range of challenges that stem from global eco-
nomic shifts, technological advancements, and evolving
consumer demands. The challenge of enhancing sup-
ply chain resilience and efficiency in logistics and sup-
ply chain management is multifaceted and encompasses
various interconnected factors.

9.2.1. Sustainable transportation
While facilitating the movement of goods, rising trans-
portation costs become the grand challenge in logistics
and supply chains. It is a significant expense for the
logistics companies as the transportation costs continue
to increase. The expenses of transporting goods from
one location to another are influenced significantly by
fuel prices, labour costs, and regulatory changes. These
increasing costs make it challenging to remain competi-
tive. Rising transportation costs increase overall expendi-
ture on supplied products, negatively influencing market
demand. Using eco-friendly transportation like electric
vehicles to optimise logistics for fuel efficiency will help
reduce the environmental impact of the supply chain.
Incorporating renewable, reusable, recyclable materials
in the process is needed to minimise waste and promote
a more sustainable approach to management. Integrat-
ing supply chain and sustainability helps avoid the risks
associated with damage, resource scarcity, and regula-
tory changes. Themajor challenge for logistics and supply
chain sustainability is balancing the economic objec-
tive with the environmental responsibility. This requires
investment in technology, materials and processes. In the
era of e-commerce, customers expect quick and reliable
delivery. To meet ever-increasing customer expectations
and service quality while maintaining profitability is a
significant logistics and supply chain challenge. With
technological advancements, as the industry continues to
evolve, the growing skills gap must be filled. Finding and
retaining skilled workers in the industries can be a signif-
icant challenge. Consequently, the logistics industry faces
operational difficulties due to the increasing demand for
skilled workforce.

9.2.2. Competitive pressure and global trade wars
The intense competition in the world within the logistics
industry can lay down the profit margins. The logistics
and supply chain industries encounter the challenge of
competitive pressure in the fiercely competitive global
environment. The presence of numerous players in the

same industry intensifies competition within the logistics
sector, potentially triggering price wars and inevitably
compressing profitmargins. Companies engaged in inter-
national trade face a challenging environment due to the
global tradewars. Uncertainties stemming fromgeopolit-
ical tensions and tariff fluctuations directly impact ship-
ping costs, causing a ripple effect throughout the entire
supply chain. To manage and mitigate risks effectively,
companies can employ logistics strategies encompassing
potential modifications to shipping routes and imple-
menting advanced inventory management practices.

9.2.3. Effective warehousemanagement
Striking the required or right inventory balance in the
logistics and supply chain companies is a constant chal-
lenge. Effective inventory management is crucial for
logistics companies, but it’s difficult, and hence com-
panies often struggle with managing inventory effec-
tively. Missed opportunities and dissatisfied customers
are the result of understocking, whereas overstocking
leads to high storage costs. The holiday seasons and spe-
cial sales events typically witness a spike in demand, cre-
ating challenges for logistics capacities to cope with the
increased workload. Meeting these peak demands and
capacity constraints while maintaining the service qual-
ity can be a logistical challenge. In the order fulfilment
processes of a customer, the lack of adequate space for
storage leads to inefficiencies, causing customer dissatis-
faction. To maintain order fulfilment capabilities, ware-
house space constraints are the challenges faced by many
logistics’ companies, especially in urban areas where real
estate costs are high.

9.2.4. Supply chain disruptions
Logistics heavily relies on smooth supply chains. Dis-
ruptions in supply chains can have repercussions for
logistics companies, causing delays and escalating costs,
ultimately resulting in customer dissatisfaction. The dis-
ruptions include natural disasters, political instability
and global health crises. Supply chain disruptions are
a significant challenge to businesses, creating obstacles
to solving this issue. Some measures should be taken,
such as strategic planning and the integration of tech-
nology to enhance visibility in the logistics and supply
chain. Due to the interdependency and interconnected-
ness of all companies, even a small problem in a particular
region can impact the entire global supply chain. So,
the massive change in trends and events can affect sup-
ply chain disruption enormously. During the Covid-19
pandemic, around 75% of U.S. companies witnessed a
supply chain disruption. According to the World Trade
Organization report, more than 44% of companies still
need a strategy to manage the disruption in the supply
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chain during the pandemic. Pierre Haren and SimchiLevi
published a paper in Harvard Business Review (Haren
and Simchi-Levi 2020) that predicted the peak impact of
Covid-19 on global supply chains would happen in mid-
March. Every element of themanufacturing supply chain,
spanning vendor operations and the availability of pack-
aging to the logistics of transportation across land, sea,
and air, has been significantly shaped by the imposition
of lockdowns and social distancing measures during the
Covid-19 pandemic.

The ongoing conflict between Russia and Ukraine
led to an increase in the prices of several commodi-
ties, encompassing nickel, neon, fertilisers, wheat, corn,
oil and natural gas. As a consequential outcome, ware-
housing space availability has dwindled, increased freight
charges, created container shortages, and forced com-
panies to grapple with heightened storage constraints.
The impact extends to port operations, with several ports
forced to close due to the tumultuous situation. The
worldwide impact of a power surge-initiated fire at the
Renesas Electronics factory in Naka, Japan, in March
2021, damaging 23 machines, resonated strongly in the
automotive industry. Renesas, a major supplier, provides
nearly a third of the world’s microcontroller chips, sig-
nificantly affecting the global production of vehicles by
renowned brands, including Ford, Hyundai, and Toy-
ota. The global supply chain encountered a severe set-
back when the Ever Given container ship became lodged
in the Suez Canal, disrupting trade networks far and
wide. While the vessel’s extraction took only six days,
the ensuing traffic backlog cast a long shadow, causing
a substantial 60-day disruption to supply chains world-
wide. The Ever Given’s blockade affected a total of 62
container ships, boasting a combined capacity exceed-
ing 727,000 TEUs (Leonard 2021). The ripple effect
extended further as alternative routes around South
Africa and the Cape of Good Hope led to additional
delays for various vessels. With the Suez Canal being a
critical conduit for approximately 12 per cent of global
trade, Ever Given’s obstruction triggered a shortage of
containers, resulting in elevated prices for these essen-
tial shipping units. Additionally, the disruption caused
numerous missed handovers to freight transport, com-
pounding the challenges faced by the global supply
chain.

Hence the challenges of logistics and supply chain
are diverse ranging from rising transportation costs, sus-
tainability, competitive pressure, global trade wars, effec-
tive inventory management, peak demand and capacity
constraints, customer expectations and service quality,
shortage of skilled labour to supply chain disruption.
Resilience becomes strategically imperative when the
disruption is more complex for the various industries. To

adhere to resilience needs robust riskmanagement strate-
gies, clear communication or visibility and leveraging
technology for monitoring and support for decision.

9.3. Enhancing supply chain resilience and
integration of languagemodels

In this technological era, all industries are moving
towards advanced technologies to build human-friendly
models so users can use them conveniently. The sup-
ply chain management and logistics field has witnessed
a paradigm shift towards data-driven decision-making,
playing a pivotal role in providing valuable insights into
the supply chain performance of companies. Advanced
technologies (Yan et al. 2023) such as knowledge graphs
(Mitra, Wongpiromsarn, and Murray 2013), transform-
ers (Vaswani et al. 2017, Reimers and Gurevych 2020),
large language models (LLM) (Li, Mellou et al. 2023; Li,
Yu, et al. 2023), and versatile tools where a transformer
encodes and decodes the natural language text. A signifi-
cant challenge lies in developing a robust resilience met-
ric that is both comprehensive and accurate. Resilience
is often interconnected with various factors, so captur-
ing the interdependencies accurately in a metric can be
complex. A crucial aspect of our work involves craft-
ing a dynamic resilience metric that comprehensively
considers almost every important scenario in its calcu-
lation. Therefore, we are developing a resilience met-
ric and integrating it with an LLM to utilise it conve-
niently. By quantifying these factors, the company can
use these as leverage to gain meaningful advantage. For
example, an eligibility indicator for banks to assess loan
qualifications of organisations. LLM integration empow-
ers diverse industries, enabling automation, insights, and
innovation across sectors, driving progress and efficiency.

We introduced a framework (Figure 1) that uses the
concepts of Time-to-Survive (TTS) andTime-to-Recover
(TTR) to estimate the resilience of a supply chain.Various
factors that influence TTS and TTR have been identi-
fied, and amathematical approach is provided tomeasure
TTS and TTR. We identified different scenarios that can
occur during disruption and devised a pseudo code to
determine a component of TTR. Further, an approach to
integrate the LLM into the framework of resilience calcu-
lations is introduced. We trained this LLM according to
our use cases and linked it with the resilience equation,
enabling us tomeasure various resilience-relatedmetrics.
A generative questionand-answer conversation model is
developed to facilitate engaging and informative inter-
actions, providing answers to our inquiries. We trained
our languagemodel to calculate resilience by natural text,
facilitating generative conversations for problem-solving
and explanations.
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Figure 8. The conceptual framework with stages.

This framework (Figure 8) is segmented into three
distinct stages:

• Stage 1: Involves the establishment and computation
of the resilience equation.

• Stage 2: Configuring a LLM for our specific use case.
• Stage 3: Incorporating LLM into the resilience equation

and generating question-and-answer conversational
model.

9.3.1. Stage 1: resiliencemetric
Prior efforts by Simchi-Levi et al. (2015) on TTR and
TTS, provided a solid foundation to delve into the critical
concepts of supply chain resilience and risk manage-
ment. TTR refers to the time taken for a supply chain to
recover and return to normal state after a disruption. On
the other hand, TTS is the maximum duration that the
supply chain can match supply with demand after a node
disruption.

9.3.2. Stage 2: large languagemodel (LLM)
To improve supply chain resilience, we utilise an inno-
vative method using DistilBERT (Sanh et al. 2019), a
well-regarded language model. DistilBERT-base-cased-
distilled-squad offers advantages over other LLMs. It
balances model size and performance well, providing
a smaller, faster alternative. It’s also proficient in han-
dling question-answering tasks due to specialised train-
ing on the SQuAD dataset. Moreover, its accessibility
via the Hugging Face Transformers library, including

pre-trained models and user-friendly APIs, stream-
lines integration and deployment. We took a strategic
approach to empower DistilBERT with domain-specific
knowledge by intricately curating and fine-tuning cus-
tom datasets crafted to measure supply chain manage-
ment resilience precisely. These datasets encompass a
diverse array of scenarios. We trained the model using
a unique prompt for resilience-based word problem-type
questions, thus imbuing it with an innate understanding
of supply chain resilience (Figure 9).

Context Training: Research has demonstrated that
LLMs use context learning for tasks like solving math
problems and answering questions. It offers a clear way
to interact with LLMs using examples, making it easier
to incorporate human knowledge. In-Context Learning
(ICL) resembles human decision-making and is training-
free compared to supervised training. During ICL, LLMs
learn tasks like question answering with task descriptions
and examples. Then this knowledge is applied to new
examples and undergo evaluation.

Fine Tuning: Commenced the fine-tuning process
by initialising the LLM with pre-trained weights and
subsequently augmented it with specialised layers tai-
lored to the Question-and-Answer task, encompassing
start and end token classifiers. The model has been
trainedwith a dataset and is experiencing iterative refine-
ment through supervised learning. During fine-tuning,
constant validation dataset monitoring ensured halting
training at optimal convergence, observing performance
plateau.
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Figure 9. Integration of LLM (Distilbert-base-cased-distilled-squad).

9.3.3. Stage 3: integration of LLMwith working codes
Combining LLMs with code can greatly enhance their
capabilities. This integration improves natural language
understanding, content generation, task automation,
problem-solving, and rapid prototyping. LLMs are adapt-
able and scalable, providing versatile tools to enhance
user experiences and application functionality like chat-
bots, virtual assistants, and interactive applications.
LLMs face difficulties with recursive operations like TTR
calculations and also to overcome the limitations of LLMs
in code execution accuracy, we used them to extract val-
ues from natural language text. These values were then
incorporated into another set of code for calculating TTS,
TTR, and resilience metrics.

9.4. Human aspects of logistics and supply chain
operations

Logistics plays a pivotal role in a country’s economy
by facilitating the efficient movement of goods, ser-
vices, and information throughout the supply chain. The
global logistics market size was approximately 10.71 tril-
lion USD in 2023 and expected to reach 14.08 trillion
USD in 2028 (Makedon, Mykhailenko, and Vazov 2021).
The logistics industry creates employment opportunities
across a wide range of sectors, including transportation,
warehousing, distribution, and freight forwarding. By
employing a diverse workforce, logistics contributes to
reducing unemployment rates and improving living stan-
dards in communities. From workforce shortages and
skill gaps to employee safety andwell-being, these human

aspects profoundly impact the efficiency and effective-
ness of supply chain management.

With the increasing complexity of operations and
the adoption of advanced technologies like automation,
cobot (Faccio et al. 2023) and generative AI (GenAI),
there is a growing demand for skilled workers who
can adapt to new tools and processes. The adoption of
platforms provides substantial advantages for organisa-
tions, businesses, and customers alike, enabling seam-
less information sharing, fostering collaboration, and
unlocking both individual and collective benefits (Sun
et al., 2022). Additionally, human-centric considerations
such as ergonomics, workplace culture, and training pro-
grammes are essential for ensuring employee satisfaction,
reducing turnover, and enhancing overall productivity.
Furthermore, effective communication and collabora-
tion among team members, both within organisations
and across supply chain partners, are critical for over-
coming logistical challenges and improving operational
resilience. By taking into account these human factors,
companies can create more agile and adaptable supply
chains capable of navigating evolving market dynamics
and meeting customer expectations.

9.4.1. Human factor implications in advanced
manufacturing and logistics
Human factors play a critical role in advanced man-
ufacturing supply chains, influencing efficiency, qual-
ity, and innovation. The implications of human factors,
combined with GenAI, LLM, transformer, knowledge
graph (Mitra, Wongpiromsarn, and Murray 2013),
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and geo-spatial technologies in logistics and supply
chain management for advanced manufacturing are
profound. Human factors, such as workforce skill
sets and behaviour, directly impact the adoption and
effectiveness of AI-driven technologies. LLM offers
transformative capabilities, enabling predictive analyt-
ics, real-time decision-making, and autonomous sys-
tems. However, successful integration requires address-
ing human-centred challenges, such as workforce train-
ing, change management, and trust-building with AI
systems. By leveraging LLM, supply chain managers
can optimise production processes, predict demand
fluctuations, and enhance supply chain visibility. This
convergence of human factors and advanced tech-
nologies promises to drive efficiency, innovation, and
competitiveness in advanced manufacturing environ-
ments.

Skilled workers are needed to operate complex
machinery, manage automated processes, and interpret
real-time data analytics. Workforce diversity and train-
ing become essential as technologies evolve, requiring
adaptable teams capable of effectively learning and lever-
aging new tools. Workplace ergonomics and safety are
paramount, especially in robotic systems and heavy
machinery environments. Additionally, addressing the
implications of human factors involves promoting a cul-
ture of innovation and fostering employee engagement to
embrace technological advancements and optimise sup-
ply chain performance. By recognising and addressing
these implications, organisations can enhance their com-
petitive edge and achieve sustainable growth in advanced
manufacturing supply chains.

9.5. Conclusion and future steps

Global interactions between companies have made the
business landscapemore interconnected and interdepen-
dent than ever before. While these connections are good,
they also increase the vulnerabilities of the companies
against any disasters. This introduces a framework for
resilience, using TTS and TTR to assess and understand
resilience more comprehensively. Resilience can demon-
strate the strength of a company, risk management, and
adaptability. Our conversational LLM enhances result
acquisition and can be integrated into various applica-
tions, including chatbots. By integrating cost considera-
tions, we can gain a holistic view of a ability of a com-
pany to manage disruptions cost effectively. As LLMs
evolve, we can enhance the framework further, incorpo-
rating factors like demand fluctuations, supplier avail-
ability, lead time, and financial ability to delve deeper into
resilience mathematically.

10. Grand challenge of system integration and
operations: humans, automation, and AI

10.1. Background

Technological innovation in computing, sensing, com-
munications, and robotics is creating opportunities to
give both decision-making capabilities and physical
autonomy to systems that are, or could be ubiquitous, and
that directly engage humans on a large scale (Annaswamy
et al. 2023).

Examples range from systems that are locally deployed
to systems that span the globe:

• Collaborative robots (Cobots) in manufacturing (Liu
et al. 2024)

• Assistive robotics in healthcare (Christoforou et al.
2020)

• Self-driving vehicles (Baldwin 2020)
• Personalised commerce (Brown and MacKay 2022)
• Battlefield autonomy (Knight 2023)
• Smart grid (Omitaomu and Niu 2021)
• Air traffic control (Gopalakrishnan and Balakrishnan

2021)

Expansive computational capabilities and sensing
devices are also behind emergent technologies such as
digital-twins (Jones et al. 2020; Srai et al. 2019) which
blend the physical and digital world for improved mon-
itoring, predictive analysis, and optimised data-driven
decision. The promise of advanced autonomous tech-
nologies is further amplified by recent advances in AI
and machine learning that demonstrate ‘super-human’
performance in settings ranging from drone racing (Ack-
erman 2023; Song et al. 2023) to highly complex strategy
games such as poker (Brown and Sandholm 2019), Star-
Craft II (Simonite 2019), and Diplomacy (Meta Funda-
mental AI Research Diplomacy Team (FAIR) 2022).

For these kinds of systems, it is easy to speculate on the
benefits of faster and better decision-making and physi-
cal autonomy. It is muchmore difficult to assess potential
risks, especially those that might lead to catastrophic
failures, or to identify and implement mitigations. Tech-
nological progress brings with it great promise, but as we
have learned from past experiences that promise must be
vetted against potential risks and the ability to mitigate
unforeseen bad outcomes. The pharmaceuticals indus-
try is one good example. The development of a single
new drug will consume upwards of US$1 billion and
require a decade or more, yet 90% of new drugs fail in
clinical trials despite having passed a pre-clinical test.
Failure can result from lack of efficacy or unacceptable
side effects (Sun et al., 2022).What seemed like a promis-
ing idea 15 years ago turns out to be a very expensive
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mistake. The failure rate is so high because experiences
like Thalidomide (Kim and Scialli 2011) showed us the
societal consequences of not being careful with pharma-
ceutical technology.

Robots in the factory may allow removing people
from hazardous jobs, ‘lights out’ operations, and more.
When used for very simple, though physically demand-
ing, tasks in highly structured environments, robot adop-
tion has been enormously successful. As more sophis-
ticated applications are tried, especially those requiring
human-robot collaboration, results have not always been
so good (Gihleb et al. 2023). It should be noted that
several of the examples were the result of people not
fully understanding their role in the collaboration. Auto-
mated driver assistance systems (ADAS) are a form of
robotics that can drive our vehicles for us and offers great
promise in areas of logistics and urban traffic manage-
ment. On the other hand, despite upwards of US$40 bil-
lion in development, reliable and more importantly, safe,
self-driving vehicles are still ‘on the horizon’ (Baldwin
2020). According to reports (Lauge 2023) both the US
and China are pursuing the development of battlefield
robots, while at the same time, international efforts seek
to ban certain capabilities, such as autonomous targeting
and firing.

Another example is smart infrastructure. As such
systems become increasingly sophisticated, they also
become increasing interconnected. This interconnectiv-
ity offers opportunities for increased performance while
simultaneously introducing fragility through the possi-
bility of cascading failure because of newly introduced
interdependencies (Kilmek et al. 2018). A hypotheti-
cal example is physical damage to commuter rail, e.g.
because of a storm, can lead to utilisation of an electric
vehicle fleet that was providing power during an hour
where there is typically high demand, thereby impacting
electricity supply.

10.2. System integration and operations

Technological innovations allow us to do something that
in the past was not possible. That is the promise. Where
we face challenges is in understanding andmitigating the
risks of technological innovations. Consider self-driving
vehicles. Unless their deployment is accompanied by a
massive make-over of the existing vehicle transportation
infrastructure, they will operate in an environment that
is not tightly controlled. In other words, the developers
of these systems will not have a precise definition of the
domain of application, and thus cannot predict with per-
fect certainty how the systems will perform once ‘in the
wild’. Such a consideration is magnified many times for
systems like the electric power grid (EPG), which actually

is the aggregation and integration of many unique and
somewhat independent systems. Historical experience
demonstrates that local contingencies can lead to system
failure on a larger scale. Because of the size and complex-
ity of the EPG it is simply impossible to test all possible
contingency scenarios. So how do we ‘qualify’ a new
technology that promises better control of a nation-wide
EPG?

From a societal perspective, the grand challenge of
physically autonomous, AI-enabled systems is guarantee-
ing safety with regard to humans and efficacy with regard
to the domain of application. The requirements for achiev-
ing this grand challenge are formidable. Below, we briefly
describe some of the most critical topics that are current
areas of active research.

10.2.1. Open decision architectures
As autonomous systems becomemore sophisticated, they
may learn from past experiences to improve perfor-
mance or adapt to evolving environmental conditions
for increased resilience (cf., deep learning [LeCun, Ben-
gio, and Hinton 2015]). Such open decision architec-
tures present unprecedented challenges in the certifi-
cation of safe operations. This issue may be the most
formidable concern in the deployment of increasingly
advanced autonomous systems. Existing approaches to
system certification (Mitra, Wongpiromsarn, and Mur-
ray 2013) incorporate tools such as formal methods (Pola
and Di Benedetto 2019) to assure that a process complies
with all requirements and specifications under a pre-
sumed range of operating environments. A complemen-
tary approach is to incorporate validation in the design
process, rather than after the fact, to derive systems that
are ‘correct by construction’ (Tabuada 2021). The main
challenge is one of computational feasibility. Thesemeth-
ods rely onmodels derived from a blend of first principles
and increasingly available data (Rai and Sahu 2020). As
systems are more complex, the problem of certification
may be computationally intractable, leading to simpli-
fying assumptions and approximations that either dilute
the certification or are overly conservative. Setting aside
these issues, an implication of opendecision architectures
is that it becomes difficult a priori to foresee the outcome
of adaptation, since adaptation depends on the order in
which operating environments are encountered, i.e. path
dependencies. Accordingly, although the original system
may meet a set of prescribed specifications, its evolved
version need not.

10.3. Strategic environments

Another complication is that one does not have an
a priori characterisation of the range of operating
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environments. A major contributing factor is that adap-
tive systems will be deployed in the presence of other
adaptive systems, and these ‘systems’ may be other
machines/algorithms or may be humans. Accordingly,
systems will be evolving/learning in a non-stationary
environment. Even in highly stylised settings, learning
in the presence of other learners can lead to chaotic
behaviour (Piliouras and Shamma 2014). In the case of
interacting machines/algorithms interacting with other
such systems in a particular domain, each system may
be developed and deployed by different entities, per-
haps even competitors. That is, there most likely will
not be a central entity in charge of system planning
in that particular domain. Accordingly, there may be
unintended emergent behaviours in the long run. A rep-
resentative illustration is work that demonstrates how
profit maximising algorithms with independent adapta-
tion can learn to collude (Calvano et al. 2021). The prob-
lem is magnified by the potential interactions between
autonomous systems across domains.

There are similar concerns in the case of adaptive sys-
tems interacting with humans, as humans also exhibit
adaptive behaviour. A representative instance is the case
of driver collusion in rideshare platforms (Tripathy, Bai,
andHesse 2022). Such platforms deploy pricing strategies
in response to customer demand and driver availabil-
ity. It has been reported (Hamilton 2019) that drivers
will collude to create an artificial shortage to trigger the
activation of surge pricing for the collective benefit of
drivers. Aswith the previous case ofmachine-to-machine
collusion, intelligent agents adapted to exploit other intel-
ligent agents, except now on one side are ‘machines’ and
on the other side ‘humans.’ This phenomenon is a form
of decision-dependent distributions (Dong, Zhang, and
Ratliff 2023), where data characteristics that were gath-
ered prior to the deployment of a decision system shift in
reaction to the specific decisions of the deployed system.
Research includes the design of systems that are robust
to distribution changes (Delage and Ye 2010; Kuhn et al.
2019) or anticipate strategic reactions (Zrnic et al. 2021)

10.4. Online vs offline learning

Many of the successes of learning systems employ exten-
sive simulations of realistic environments for which
there are computational models of sufficient fidelity. This
approach, called simto-real transfer (Zhao, Queralta, and
Westerlund 2020), is motivated by two main considera-
tions. First, it bypasses the need of gathering real-world
data sets. Second, it allows for experiential learning that
balances exploitation versus exploration without real-
world consequences. An active area of research is how
to design the simulation environment in such a way

to maximise the likelihood that the autonomous sys-
tem will be successful, or at least require minor adjust-
ment, when deployed. Major concepts, among others,
are domain randomisation (Tobin et al. 2017), so that
the learning system is insensitive to environmental vari-
ations, and meta-learning, which is training a system
to best adapt/learn to unseen environments (Finn et al.
2019), and variable domain fidelity, which challenges
the notion that higher fidelity is necessarily better for
training (Truong et al. 2023). It is noted that the theory
of reinforcement learning does admit a middle ground,
known as off-policy learning, where real-world data is
used to train an autonomous system offline (Di-Castro,
Di-Castro, and Mannor 2021).

An obvious challenge in this framework is the avail-
ability of a simulation environment that enables the
transfer from simulation to real-world. In the absence
of such an environment, one must gather real-world
data and experience simultaneously. This requirement
presents a major limitation of applying learning methods
to safety-critical systems, where there may be costly or
even tragic consequences to a failed experiment, e.g.
large-scale infrastructure or small-scale operation near
humans. To address this concern, there is extensive inter-
est in the concept of ‘safe learning’ (Hewing et al. 2020;
Brunke et al. 2022). In this setting, there are internally
imposed limiters in the learning algorithm that inhibit
exploration until sufficient data has been gathered so that
a performance improvement can be realised through a
cautious learning step. Data may be learning about the
autonomous system (e.g. robot or vehicle dynamics) or
the environment (e.g. the behaviours of other actors).
As mentioned previously, learning in the presence of
other learners, be they machines or people, presents a
significant challenge to safe learning.

10.5. Technology acceptance and adoption

Advanced autonomous systems cannot be deployedwith-
out a societal acceptance of their presence and adop-
tion of the technology. Emerging themes related to
this topic are trusted autonomy (Hoff and Bashir 2015)
and explainable/interpretable AI (Dosilovic, Brcic, and
Hlupic 2018). As discussed in (Hoff and Bashir 2015),
accidents can occur because of both under-trusting
autonomy and over-trusting autonomy. Opposing exam-
ples are overriding an autopilot in favour of manual
control or continued usage of an autopilot after sensor
failure warnings (see also (Dingus et al. 1998) for histori-
cal perspectives). Furthermore, once trust is diminished,
perhaps because of a system failure, an autonomous sys-
tem must somehow regain the trust of a human user (de
Visser, Pak, and Shaw 2018). This is where the notion
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of explainable or interpretable AI may come into play.
As decisions are handed off from humans to algorithms,
there is a desire to understand the reasoning behind
algorithmic decisions.

A complicating factor in all the above discussion Is
that these issues depend on the perception of the human
user. For example, to be trustworthy, motion planning
of mobile autonomous vehicles in close proximity to
humansmust not only assure collision avoidance but also
must alsomaintain such a distancewhere the human feels
safe, even when closer trajectories still avoid collisions
(Yoon et al. 2019). Such issues are compounded by vari-
abilities in human behaviours and attitudes that occur
from person to person, or over time for the same person,
and depend on the underlying context of the environ-
mental setting (Hoffman and Stawski 2009). Another
complicating factor, which is by now a recurring theme, is
that trust in adaptive autonomous systems is much more
challenging because of temporally longitudinal changes
in behaviours stemming from learning and adaptation.

10.6. Closing (by ChatGPT2)

In conclusion, the rapid evolution of computing, sens-
ing, communications, and robotics has ushered in a
new era of advanced autonomous technologies with the
potential to revolutionise various aspects of our daily
lives, from manufacturing to healthcare, transportation
to infrastructure. The examples provided, ranging from
collaborative robots in manufacturing to self-driving
vehicles and smart infrastructure, illustrate the breadth
of possibilities that these technologies offer. However,
as we venture into this era of unprecedented innova-
tion, it becomes increasingly clear that along with the
promise of enhanced efficiency and autonomy comes the
critical responsibility of managing and mitigating poten-
tial risks. The pharmaceutical industry’s costly lessons
serve as a poignant reminder that technological advance-
ments must be rigorously vetted to avoid unforeseen and
undesirable outcomes.

The grand challenge we face is not only to guaran-
tee the safety and efficacy of physically autonomous,
AI-enabled systems but also to navigate the complex-
ities of open decision architectures, strategic environ-
ments, online vs. offline learning, and societal accep-
tance. Addressing these challenges requires continuous
research and development, a commitment to safe learn-
ing methodologies, and an understanding of the intricate
interplay between technology and human perception. As
we pursue the promises of technological innovation, it is
imperative that we tread carefully, ensuring that the ben-
efits realised are not overshadowed by the risks encoun-
tered on this transformative journey into the future.

11. Grand Challenge of industrial and systems
engineering education

This section discusses the grand challenge in Indus-
trial and Systems Engineering education, including back-
ground, motivation, and recommendations. We have
identified the following five main challenges relevant to
Industrial and Systems Engineering Education:

(1) What new and different subject matter needs to be
taught? How best to maximise the learning of the
new subject matter on the part of students?

(2) What research is needed to harmonise and exploit
synergy between Industrial Engineering (IE), Sys-
tems Engineering (SE), and Artificial Intelligence
(AI)?

(3) What new methods need to be included in practice
based on lessons learned especially from transporta-
tion and aerospace domains?

(4) What domain-specific knowledge needs to be
imparted to students in different domains (e.g.
healthcare, manufacturing, finance)?

(5) How can Large Language Models (LLM) be
exploited in IE/SE education and research while
recognising the bounds of competence of LLMs and
chatbots?

Clearly, these challenges are not independent and
will have to be addressed accordingly. In the following
sections, we undertake a broader explanation and foun-
dations of how and why of these challenges. We discuss
why addressing these challenges is important to ensure
the sustainability of IE education in the long-term.

11.1. Background: complexity growth

Complex socio-technical systems are characterised by
dynamic interactions which are multi-directional, often
within networked systems, and frequently leading to
emergent properties. Consequently, education and
research cannot be independent of societal factors,
technological advancements, and infrastructure-related
issues. Complexity in such systems primarily results from
an increase in the number of interacting independent
entities in the system. The global community itself is
a complex sociotechnical system, an amalgamation of
systems comprising natural and human-made entities.
Interconnectivity in these systems is characterised by the
ability of these entities to communicate with each other.
According to Statista (URL 1) there are currently 6.92
billion smart phone users, which translates to 85.88% of
the world’s population. In the limiting case, a fully inter-
connected network of humans is estimated to have 6.92
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billion nodes. An undirected network of this magnitude
will have approximately 23.95 quintillion edges. While
not everyone will be connected to everyone else, this
number is an upper bound which indicates the potential
growth in complexity of the world we inhabit.

Today with multiple means and modes of information
dissemination, such ultra-large networks in the absence
of dissemination policies and controls, will manifest not
only in instantaneous diffusion of relevant information
but also unverified information. The opportunity for
industrial and systems engineering as a profession is how
best to address this challenge from educational, research,
and training perspectives.

11.2. Opportunities for IE discipline resulting from
disruptive AI technologies

Nowadays, we also must contend with disruptive tech-
nologies such as Large Language Models (LLMs) and
chatbots based on LLMs such as ChatGPT. As educators,
we have come to realise that both our instructional con-
tent and modes of delivery must be critically reviewed
as students now have all the requisite information at
their fingertips because of technologies such as Chat-
GPT. Having an LLM available to students in the class
is akin to each student having a personalised teaching
assistant or tutor. While current LLMs do hallucinate
(i.e. generate incorrect or nonsensical text and hence
irrelevant context), it is a matter of time before their
responses markedly improve. Therefore, the bigger ques-
tion for academia is how to teach foundational disciplines
with ubiquitous availability of technologies, and growing
number of excellent online courses. Are traditional ways
of teaching and existing instructional content in IE still
relevant? If not, what needs to change and how?

The most important dynamic change is the explosion
of data, and the growing interest in of a unified integrated
data repository (a one-stop shop). While feasible, the lat-
ter still poses a formidable challenge when it comes to
maintenance, update, and sustainment. In our lifetimes,
we have seen simple IBM SQL databases of the 1970s
that focused primarily on financial (payroll) applications
transition to datawarehouses (1980), to data lakes (2011),
to lake houses (2020). This progression has made real-
time streaming data analysis through AImodels and data
science approaches (whichwill be the future of training of
industrial engineers) a non-trivial task. Against this back-
drop, systems modelling, and optimisation need to con-
sider the dynamism and heterogeneity of data to develop
meaningful methodologies and sustainable applications.
We have to ask ourselves ‘Is our profession prepared to
tackle this problem?’ If not, what steps do we need to take
to ensure that we can?

Below, we do not attempt to answer such questions.
Rather, we focus on identifying fundamental changes
needed in IE education, research, and training given the
disruptive advances in AI and Systems Engineering (SE).
Specifically, we posit that the future of IE lies in exploit-
ing the potential synergy of Systems Engineering (SE)
with Industrial Engineering (IE), and in fully utilising
the recent developments in AI to enhance engineering
productivity. We note that even though IE has changed
its name to ISE, thus far this is a change in name only
with little progress made in understanding the points of
synergy between these two potentially complementary
disciplines.

The past decade haswitnessed an ongoing transforma-
tion of systems engineering to address the ever-growing
complexity of sociotechnical systems. It has also seen dra-
matic advances in AI with the advent of deep learning
and Large Language Models. The new slogan, AI4YOU,
which implies personalised AI, is not a mere buzzword,
but a slowly but surely evolving reality. Not only will
we be dealing with systems interacting with individuals,
but individuals also be modelled as digital twin systems.
We include both individual and collective entities such
as person, enterprises, and governments (local to state
to federal) in this definition. The question then is how
do we introduce such sophistication and complexity of
thought process into IE education? The IE imperative
today is to begin to explore how SE and AI advances
can be harnessed to increase IE’s regime of applicabil-
ity, core competencies, and assure continued relevance in
the twenty-first century.With these concerns inmind, we
review the evolution of these fields, and suggest promis-
ing directions for IE to pursue in education to assure its
continued relevance in the twenty-first century.

11.3. Evolution of IE, SE, and AI

Disciplines continue to evolve with new research findings
and emergence of new technologies.

IE, SE, and AI have also evolved especially in the past
decade.

11.3.1. IE evolution.
IE has been historically concerned with the design,
improvement, and optimisation of complex systems, pro-
cesses, and organisations. The first IE department, at
Penn State was founded in 1908 focused primarily on the
foundational works of Hugo Diemer (Diemer 2012) and
Frederick Winslow Taylor (Taylor 1919). In the 1970s,
it became Industrial and Management Systems Engi-
neering, and then changed again. Despite several name
changes, the emphasis on systems remained constant,
even as the very concept of systems expanded to ‘an
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interconnected network of people, devices, and tools.’
The above definition captures what is taught in IE today.
Manufacturing, optimisation, human factors, and data
analytics (or data science) are the basic silos that we have
created. While ISE students are well trained in these dis-
ciplines and 321,400 industrial engineers are gainfully
employed in the US (Bureau of Labour Statistics 2022) it
is unclear to what extent these students understand and
can apply ISE principles when pursuing IE approaches
to solving problems. Understanding complexity, inter-
actions, dependencies, and life cycles from a systems
perspective has become vitally important for industrial
engineers today.

11.3.2. SE evolution
SE is an interdisciplinary field of engineering focusing on
design, development, and management of complex sys-
tems, with emphasis on quality attributes such as usabil-
ity, safety, availability, and resilience. SE emerged as a
distinct, recognised discipline in the 1940s with the term
first employed by Bell Labs. Despite its initial lack of for-
mal underpinnings, SE played a vital role in the 1969
Moon landing and the safe return of astronauts to earth.
A perfunctory review of early SE applications suggests
a few recurring themes: systems engineers tend to be
domain experts; their analysis relied on domain specific
engineering; their work cuts across multiple technical
and non-technical disciplines. Over the past two decades,
SE has focused on increasing its structure and rigour by
exploiting concepts from computer science, biology, and
software engineering. The emphasis today is on trans-
disciplinary systems engineering (Madni 2018), Model
Based Systems Engineering (Madni and Sievers 2018),
Trade-offs Analyses (Bahill and Madni 2016), design
elegance (Madni 2018), and quality attributes such as
cyber-resilience and agility.

11.3.3. AI evolution.
In the past five years there has been a surge in interest
in AI for systems engineering and systems engineering
for AI led by organisations such as the DoD Systems
Engineering Research Center (sercuarc.org).With recent
advances in LLMs and the advent of ChatGPT and its
variants, systems engineers and industrial engineers have
begun to explore ways to leverage the capabilities of
LLMs as a means to automate routine tasks and serve
as intelligence augmentation on cognitive and decision-
making tasks. It is important to realise that LLM is a
data association model that is capable of exhibiting com-
petence within limited domains but is inappropriate for
problems that require common sense and causal rea-
soning. Considering these findings, Madni (2020) has
suggested the role of Augmented Intelligence for all AI

based systems. The key idea is to exploit AI as a perfor-
mance enhancer or capability amplifier in cognitive tasks
such as problem-solving and decision-making (Madni
2020).

From the initial coining of the term, ‘AI’ at the
Dartmouth conference in 1956, AI has progressed from
Knowledge-Based Systems to the more recent Attention-
Based deep learning (Vaswani et al. 2017). AI has also
progressed from foundational AI (Nilsson 1982; Gene-
sereth & Nilsson 2012; Russell and Norvig 2010) to AI
applications in medicine (Hamet and Tremblay 2017;
Topol 2019) and manufacturing (Kumara, Kashyap, and
Soyster 1989; Davies 2023). It is safe to say that AI is here
to stay; however, its formcan be expected to evolve. Look-
ing back,AI has evolved from its initial prominence in the
1980s to a prolonged lull in the 2000s, to its re-emergence
with machine learning as a ‘hot’ technology. Today AI is
becoming increasingly an integral part ofmodern society.

11.4. Evolvingworld contexts

In The Future ofWork (West 2018), the author states that
the future is one in which there will be lifelong learn-
ing needed for every worker. The commercial stream of
thought is that college degrees will no longer be neces-
sary because it will be ‘gig economy,’ in which people
with specific skills will drive the economy. In this regard,
platform-based work has become critical (Taylor et al.
2017). This shift in the future of work implies that exist-
ing college education will need to change. We are already
seeing the impact of this shift through online platforms
such as EdX, Coursera, and others. We have a choice. We
can continue with business as usual, doing what we have
always done, or find alternate, robust means to train the
future workforce. The key question here is how do we
train the future workforce without adversely affecting the
basic skillset that future industrial engineers would need?

11.5. New paradigm and key questions

Considering the foregoing, domains such as transporta-
tion (Malandraki et al. 2007), healthcare (Topol 2019),
manufacturing (Balakrishnan, Kumara, and Sundaresan
1999), human systems (Karwowski 2005), cyber physi-
cal systems (Monostori et al. 2016) and social systems
(Barabasi and Albert 1999), must be studied and under-
stood from a more encompassing systems perspective.
To this end, we propose two fundamental premises: the
structure and behaviour of a complex system can bemod-
elled as a network of interactions among its constituents;
and complex sociotechnical problems need to exploit the
convergence of engineering with other disciplines, i.e.
Transdisciplinary Systems Engineering (Madni 2018).
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It is worth recalling that many baby boomer genera-
tion industrial engineers were in fact exposed to systems
theory not that long ago. They studied theworks of Berta-
lanffy, Simon, andWiener as graduate students. Unfortu-
nately, today only a few schools still teach systems theory.
Perhaps it is timely for IE to re-introduce the founda-
tions of systems theory and SE in this age of exponentially
growing system complexity and instantaneous feedback.

11.6. Human factors aspects

Industrial Engineering discipline focused on time and
motion study, expending human effort, and efficiency
improvement from human factors viewpoint most of
the past 6 decades. In the last decade human computer
interface has become important. Only recently with the
proliferation of research as well as widespread usage
of Robotics and AI human-machine collaboration has
become critical. We address this in grand challenge 5,
especially when we are dealing with this aspect from an
education perspective. The future of IE from a SE point
of view need to consider the complex issues that arise
(see discussions earlier in this section) due to human-
machine collaboration, and the emergent behaviours
manifest from such complex interactions. IE discipline
as mentioned before need to consider education its next
generation using the extensive body of knowledge origi-
nated from Santa Fe Institute (Gellman

11.7. Implications for advancedmanufacturing

AI and other related technologies are becoming an inte-
gral part of society. From healthcare tomanufacturing AI
is already seen as a driving force. This implies that the
next generation Industrial Engineers must have a good
background inAI, whichwe propose (see our discussion)
to be an integral part of IE/SE education. Next generation
systems (not only manufacturing but almost all includ-
ing service systems) will have to address complexity in
the context of technology as well as society. Let us for
the sake of explanation hypothesise that future manufac-
turing will be using GenAI extensively. This leads to dif-
ferent human-machine (computer) and manufacturing
machines interaction. Which will result in an exponen-
tial usage of energy which in turn will affect the socio-
economic systems. Decisions in the future cannot be
made in isolation (profit maximisation), independent of
all these interconnected and interactive factors. Our dis-
cussion therefore emphasises that next generation engi-
neers need to have a good understanding of systems, and
networks besides other topics mentioned in this section.
Manufacturing related decisions cannot be made in iso-
lation but should be made considering value addition in

the context of climate, social wellness, and long-term sus-
tainability. The current day Industrial Engineers are not
equipped to address these.

11.8. Recommendations

Going forward, IE needs to re-introduce systems think-
ing and SE into the IE curricula. It needs to exploit
AI not just for automating routine or repetitive tasks,
but as a means for enhancing human performance and
amplifying human capabilities in problem-solving and
decision-making tasks (Madni 2020) It needs to address
large scale systems, complexity, and data interconnec-
tivity, intelligent decision making, augmented AI, sys-
tems theory, human-AI teaming, and sustainability. Of
course, IE needs to continue to advance statistics, optimi-
sation, simulation, and stochasticmodelling. An interest-
ing observation is that medical education in universities
is always connected with hospitals. Medical students get
real-world experience through their integral immersion
with university attached hospitals. However, though
engineering discipline is towards designing, building,
analysing, and improving systems, they are not con-
nectedwith enterprises in problem solving on a continual
basis. Though some universities have real-world problem
solving through a course using the capstone ‘Learning
Factory Model”, real world problem solving is not an
integral part of engineering education. Going into the
future, the greatest challenge for industrial engineering
profession is to work with enterprises (manufacturing,
service, government, and NGO) and integrate real world
problem solving in its education, research, and training.

This would make ISE relevant in the changing futur-
istic landscape of ISE workforce. The easiest course of
action is to follow the adage of old wine in new bottle by
repackaging existing courses with new names and await
the demise of ISE or commit to a grass roots change.
It is imperative that the ISE schools form an extended
arm of individuals (individuals, enterprises, and govern-
ments) and to be in continuous engagement in training
the next generation ISE workforce. A simple yet chal-
lenging advancement can be to define a case study that
can be used in all the courses taught in an ISE school,
in the new integrated ISE curriculum. From optimisation
to machine learning to human centred analysis, a single
case can be considered through different courses to get
real-world problem-solving experience embedded into
education. Such a case study possibly will pave the way
to a future where teachers and students think seriously
about how to effectively use a technique in real world
problem solving than simply learning the technique by
solving textbook examples. NSF has embarked on the
new model of use-inspired research, and comprehensive
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case studies that can effectively address various aspects of
ISE learning may truly fit that model.

ISE needs a foundational change – one that exploits
SE methods in IE problem formulations, and lever-
ages IE methods in SE problem-solving with both
being informed by advances in technologies such as AI,
machine learning, and augmented intelligence. We are
entering an unprecedented era of extended exponential
technology growth in which bold action is called for
within IE. It begins with exploring how complex systems
thinking, SE, and AI can be harmonised with IE to assure
continued relevance of ISE education and research in the
twenty-first century.

12. ISE perspective on grand challenges

This paper identified eight grand challenges for industrial
and systems engineering (ISE), including (1) artificial
intelligence (AI) for decision-making and system design
and operations, (2) cybersecurity and resilience, (3) sus-
tainability: environment, energy, and infrastructure, (4)
health issues, (5) social issues, (6) logistics and supply
chain, (7) system integration and operations and 8)
industrial and systems engineering education. We also
want to point out that ISE is uniquely positioned to
addressmany of contemporary society’smultifaceted and
interconnected global problems. By leveraging its com-
prehensive knowledge and systems approach, ISE can
provide holistic solutions to complex socioeconomic,
health, education, environmental, and sustainability
issues. The discussed ISE grand challenges point out the
need to understand better how the current ISE principles
and methodologies can be applied and what new body
of knowledge will be needed for ISE to make impactful
advancements to improve the human condition world-
wide.

First, ISE can enhance complex decision-making and
system design by integrating applications of artificial
intelligence technologies for business and personal use.
By optimising processes, improving operational efficien-
cies, and enabling data-driven insights, ISE professionals
can ensure that AI is effectively utilised to meet industry
and societal needs. The focus on human-centred design
should ensure that the integration of AI systems into all
aspects of human life is safe, transparent, ethical, and
user-friendly,

Second, protecting and sustaining critical systems
against cyber threats is paramount in today’s digital
age. ISE can contribute to achieving socially desired lev-
els of cybersecurity by facilitating the development of
resilient system architectures, implementing robust secu-
rity measures, and designing processes that can quickly
recover from disruptions. The above should ensure the

continuous and secure operation of essential services and
infrastructures globally.

Third, ISE can play a critical role in promoting envi-
ronmental sustainability by optimising natural resource
utilisation, reducing waste, and improving energy effi-
ciency. By designing and managing sustainable systems
and infrastructures, ISE can help organisations minimise
their environmental footprint and contribute to global
sustainability goals.

Fourth, addressing health challenges requires the effi-
cient design and management of healthcare systems. ISE
methodologies, such as process optimisation and systems
integration, can improve healthcare delivery, enhance
patient outcomes, and reduce costs. By focusing on sys-
tem efficiency and effectiveness, ISE can improve the
health and well-being of populations worldwide.

Fifth, tackling societal challenges involves under-
standing and solving complex social problems. ISE can
contribute to the above quest by designing systems and
processes that promote social equity, improve access to
essential services, and enhance community resilience. By
integrating social considerations into system design, ISE
can ensure that all future technological advancements
benefit all segments of the global society.

Sixth, improving the efficiency and resilience of logis-
tics and supply chains is essential for socioeconomic and
political stability and growth worldwide. ISE can opti-
mise supply chain operations, enhance logistics manage-
ment, and ensure the smooth flow of goods and services.
Such efforts can reduce costs, increase reliability, and
improve business responsiveness to market demands.

Seventh, harmonising the interactions between peo-
ple, automation, and AI is crucial for modern system
integration and operations. ISE can provide the frame-
work for designing integrated systems that leverage the
strengths of both human operators and automated tech-
nologies. The above should ensure that all technological
systems are efficient, adaptable, and resilient to changes
and disruptions.

Eight, advancing education and training in ISE is
fundamental to preparing the next generation of engi-
neers to successfully address the needs and aspirations of
the global society. ISE education should equip students
with the skills and knowledge needed to address com-
plex global issues by updating curricula, incorporating
new technologies, and emphasising interdisciplinary and
systems approaches.

In summary, by integrating scientific and engineer-
ing expertise with a deep understanding of human and
social factors, ISE professionals can design and imple-
ment systems that improve efficiency, enhance resilience,
and promote sustainability across various domains of
modern life. The ISE discipline and profession can lead
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and significantly contribute to addressing the pressing
socioeconomic issues facing our world today.

13. Conclusions

The outlined eight grand challenges of ISE should sup-
port more effective design and operation of integrated
systems of people, materials, information, equipment,
and energy. These challenges also underscore the increas-
ing importance of the need for effective system integra-
tion of complex technological systems at all levels. To
date, ISE practice has been mainly based on twentieth-
century knowledge. The development of new knowl-
edge, identification, and adoption of recently devel-
oped twenty-first models, theories, and strategies in
the related fields of science, engineering, and medicine
should help address the identified grand ISE challenges.
The above discussion points out the need to signif-
icantly expand the current knowledge content of the
ISE domain. Such a need is primarily driven by the
rapid development of intelligent technologies, the evolv-
ing global economy, the sustainability of life on Earth,
and many emerging socio-economic trends that will
likely transform and shape modern societies. Finally,
we hope that this paper will contribute to the current
discussion about the future of ISE, stimulate much-
needed reflections on ISE challenges, and facilitate devel-
opments in ISE theory and practice for the benefit of
humankind.

14. Study limitations

The current study has several limitations. The discussed
ISEGrand Challenges reflect the joint views and vision of
co-authors from 3 continents and five countries, includ-
ing China, France, India, S. Korea, and the United States.
Future studies should address and discuss the implica-
tions of the above concerns and limitations.
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