
HAL Id: hal-04925482
https://hal.science/hal-04925482v1

Submitted on 20 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Constraint learning approaches to improve the
approximation of the capacity consumption function in

lot-sizing models
David Tremblet, Simon Thevenin, Alexandre Dolgui

To cite this version:
David Tremblet, Simon Thevenin, Alexandre Dolgui. Constraint learning approaches to improve
the approximation of the capacity consumption function in lot-sizing models. European Journal of
Operational Research, 2025, 322 (2), pp.679-692. �10.1016/j.ejor.2024.11.039�. �hal-04925482�

https://hal.science/hal-04925482v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

European Journal of Operational Research 322 (2025) 679–692

A
0

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/eor

Interfaces with Other Disciplines

Constraint learning approaches to improve the approximation of the capacity
consumption function in lot-sizing models
David Tremblet ∗, Simon Thevenin , Alexandre Dolgui
IMT Atlantique, LS2N-CNRS, 4 rue Alfred Kastler, La Chantrerie, Nantes, 44307, France

A R T I C L E I N F O

Keywords:
Production planning
Lot-sizing
Scheduling
Machine learning
Data-driven methods

A B S T R A C T

Classical capacitated lot-sizing models include capacity constraints relying on a rough estimation of capacity
consumption. The plans resulting from these models are often not executable on the shop floor. This
paper investigates the use of constraint learning approaches to replace the capacity constraints in lot-sizing
models with machine learning models. Integrating machine learning models into optimization models is not
straightforward since the optimizer tends to exploit constraint approximation errors to minimize the costs. To
overcome this issue, we introduce a training procedure that guarantees overestimation in the training sample.
In addition, we propose an iterative training example generation approach. We perform numerical experiments
with standard lot-sizing instances, where we assume the shop floor is a flexible job-shop. Our results show that
the proposed approach provides 100% feasible plans and yields lower costs compared to classical lot-sizing
models. Our methodology is competitive with integrated lot-sizing and scheduling models on small instances,
and it scales well to realistic size instances when compared to the integrated approach.
1. Introduction

Advanced Planning and Scheduling software is crucial for operation
management in manufacturing industries. Such tools usually follow the
hierarchical approach (Stadtler, 2005), where a production planning
module provides the input for a scheduling model. Production planning
gives weekly (or monthly) production quantity, adjusting the capacity,
and placing orders with suppliers to meet the demand while minimizing
inventories. At the operational level, the scheduling modules take
as input the production quantities, and they assign the operations to
machines, sequence the operations, and compute their starting times.
To better integrate the limitation at the scheduling level, capacity
consumption is computed at the production planning level.

This capacity consumption calculation has been included since the
use of the MRPII planning system, but the resulting tools only roughly
consider the time required on each resource, and they do not take into
account the complexities of the scheduling environments. This compu-
tation plays a crucial role in production planning since underestimating
capacity consumption leads to a plan that cannot be implemented on
the shop floor. Such a situation often results in unmet demand, and a
lot of actions must be engaged to produce the quantities on time. This
situation is hard to manage for practitioners since it requires either re-
computing the quantities for the whole plan, which is time-consuming

∗ Corresponding author.
E-mail addresses: david.tremblet@imt-atlantique.fr (D. Tremblet), simon.thevenin@imt-atlantique.fr (S. Thevenin), alexandre.dolgui@imt-atlantique.fr

(A. Dolgui).

or shifting the quantities, causing delay and a drop in customer confi-
dence. In addition, the gap between an infeasible production plan and
its repaired solution can be huge, and the cost associated with these
initial plans becomes irrelevant. Overestimating capacity consumption
leads to a loss of opportunity since it prevents the resources from being
used at full capacity. As a result, despite the inclusion of capacity in
complex optimization models provided by advanced planning systems
(APS), this type of software keeps providing plans that are too tight, and
often cannot be implemented in practice. For instance, Tenhiälä (2010)
showed that APS with finite capacity do not fit well in job-shop-like
environments because the user cannot provide accurate enough values
for the required parameter (e.g., the capacity consumption per unit). As
users are unsatisfied, they tend to turn towards simpler and less cost-
efficient planning approaches (often relying on simple rules to apply
by hand). As a result, a large proportion of manufacturers still rely on
Excel software to plan their production (Filho et al., 2010; Liu et al.,
2019). Many authors highlight the drawback of aggregated capacity
constraints in lot-sizing models and the necessity to acquire further
information at the planning level (Almeder et al., 2015; Dauzère-
Pérès & Lasserre, 2002). This includes scheduling decisions or detailed
capacity constraints, leading to impractical mathematical programs or
constraints that are too complex to be integrated.
https://doi.org/10.1016/j.ejor.2024.11.039
Received 14 September 2023; Accepted 25 November 2024
vailable online 10 December 2024
377-2217/© 2024 The Authors. Published by Elsevier B.V. This is an open access a
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/eor
https://www.elsevier.com/locate/eor
https://orcid.org/0000-0002-5026-2098
https://orcid.org/0000-0002-2497-1018
https://orcid.org/0000-0003-0527-4716
mailto:david.tremblet@imt-atlantique.fr
mailto:simon.thevenin@imt-atlantique.fr
mailto:alexandre.dolgui@imt-atlantique.fr
https://doi.org/10.1016/j.ejor.2024.11.039
https://doi.org/10.1016/j.ejor.2024.11.039
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2024.11.039&domain=pdf
http://creativecommons.org/licenses/by/4.0/

D. Tremblet et al.

a

c

m
e
a
o
r

c
a
H
i
T
t
w
f
o

m
b
a
p

w
r
i

d
s
i
w
l

o
c
m

t
m
e
n

G

l
f
l

o
p

European Journal of Operational Research 322 (2025) 679–692
We assume that the capacity requirements are known and fixed,
nd we focus on finding approximations of the capacity consumption

leading to feasible and cost-efficient production plans. This capacity
consumption calculated at the lot-sizing level corresponds to an approx-
imation of the scheduling problem from the next production level on
the shop floor. The corresponding production environment is assumed
to be immutable and deterministic, but the inclusion of uncertain
parameters on the shop floor can be considered with our approach.

With the rising interest in machine learning, the operation research
ommunity recently provided several approaches to translate machine

learning models into mathematical programs (e.g., Fajemisin et al.,
2023). In this work, we propose to replace the basic capacity consump-
tion function in lot-sizing models with an approximation built using

achine learning algorithms. The capacity consumption is learned from
xamples that give the total amount of time required to complete
ll operations. While our experiments rely on production schedules
ptimized with linear and constraint programming, the methodology
emains applicable when the examples for learning capacity are gen-

erated by other means. For instance, the examples can correspond to
historical data obtained by reconciling Advance Planning System and
Manufacturing Execution System data, or they can be generated from
simulation models. Machine learning models lead to accurate approxi-
mations of capacity consumption, and this leads to integrated lot-sizing
and machine learning models returning reliable and cost-efficient pro-
duction plans. This reliability is also essential and time-saving since
it prevents practitioners from recomputing the quantities in case of
infeasibility.

To better understand the capacity consumption calculation and
ompare the value of each approach proposed in this work, we evalu-
ted our approach in an integrated lot-sizing and scheduling problem.
ence, the capacity consumption at each period of the production plan

s measured as the makespan of a flexible job shop scheduling problem.
he violation of the capacity at the scheduling level is undesirable since
his leads to plans that cannot be implemented in practice. As a result,
e consider that a production plan respects the capacity if we can

ind a production schedule with a makespan lower than the number
f working hours in the factory.

The contributions of this work are fivefold: (1) We propose several
extensions of the lot-sizing problem (LSP) formulation where the capac-
ity constraint is approximated with machine learning techniques. These
formulations correspond to approximation with linear regressions, de-
cision trees, and piecewise linear regressions. We study different sets
of features to train machine learning models, and our results suggest
that the most important features include the lot sizes and lower bounds
on the makespan; (2) The optimal solution of a Mixed Integer Linear
Program usually lies at the extremes of the feasible region. When
a constraint is approximated by a machine learning model, approxi-
mation errors lead to undesirable solutions. Therefore, we propose a
constrained training approach that prevents us from overestimating
the capacity consumption in the training sample. This new training
procedure increases the number of feasible plans of the proposed
models, with a percentage of feasible plans increased by 17% up
to 93%. In addition, we propose an iterative learning scheme that
integrates machine learning training with an optimization approach.
This learning procedure results in integrated lot-sizing and machine
learning models returning 100% of feasible plans for all types of
instances and can be adjusted to favor the cost of the plans over
their feasibility. (3) We show that machine learning leads to good
approximations of capacity constraints. A comparison with the exact
(but unpractical) approach that integrates the lot-sizing and scheduling
models shows that the proposed formulation yields close to optimal
solutions. Our results show that the computational efforts required to
solve the model depend on the complexity of the machine learning
model. Simple approximations with linear regression do not impair
the computational performance, while complex models such as deep
decision trees lead models that are hard to solve. Our experimental
 o

680
results show that the proposed approach outperforms models based on
integrated lot-sizing and scheduling, such as the approach proposed
by Dauzère-Pérès and Lasserre (1994). In addition, the method we pro-
pose yields reliable production plans compared to standard lot-sizing

odels, including lot-sizing with fixed scheduling sequence proposed
y Wolosewicz et al. (2015). (4) We incorporate the machine learning
pproximation approach into an iterative lot-sizing and scheduling
rocedure. The resulting methodology produces good quality solutions

for large size instances. (5) The machine learning can be trained with
scheduling examples that incorporate uncertainty, and the resulting
method is efficient in dealing with uncertainty. We consider the case

here the processing time is uncertain, and we show that the method
eturns feasible schedules even when the process duration is unknown
n advance, only the probability distributions are known.

The paper is organized as follows. Section 2 gives a literature review
of production planning and scheduling problems, as well as machine
learning approaches to predict the makespan. Section 3 states the con-
sidered problem. Section 4 describes our data-driven approach and the
ifferent machine learning models used in this paper. Section 5 presents
everal approaches to generate relevant datasets related to the schedul-
ng level considered. Finally, we compared our data-driven method
ith multiple integrated lot-sizing and scheduling models from the

iterature in the numerical experiments in Section 6, before concluding
in Section 7.

2. Literature review

This section successively reviews the literature on the integration
f machine learning models into mathematical programs, capacity
onsumption computation in lot-sizing models, and machine learning
odels in scheduling problems.

2.1. Constraint learning framework for production planning

Embedding machine learning models into mathematical programs
is an increasingly popular area of research. This approach, referred
to as ‘‘constraint learning’’ or ‘‘surrogate modeling’’ , leverages machine
learning techniques to incorporate constraints or objective functions
hat are either computationally challenging or complex to formulate
anually. Numerous studies have explored the translation of differ-

nt machine learning models into linear programs, including neural
etworks (Fischetti & Jo, 2018), decision trees and ensemble meth-

ods (Biggs et al., 2022; Mišić, 2020), among others (Fajemisin et al.,
2023; Maragno et al., 2023). This approach has led to multiple tools to
facilitate the translation of machine learning models into mathematical
programs, such as the OptiCL package (Maragno et al., 2023) or the
urobi Machine Learning package.

There is a growing interest in the application of machine learning
techniques for production planning. In this research field, machine
earning is commonly used to either generate specific parameter values
or the lot-sizing model or leveraged to solve the lot-sizing prob-
em (e.g., Larroche et al., 2021; Şenyiğit et al., 2013; Yu et al., 2024;

Zhang et al., 2021). For example, Rohaninejad et al. (2023) use neural
networks to predict safety stocks and safety slacks in situations where
processing times are uncertain. Similarly, Beykal et al. (2022) devel-
ped a data-driven optimization framework to solve bi-level production
lanning, with scheduling and lot-sizing under uncertain demand.

Machine learning approaches are also commonly used to learn the
uncertainty set in robust optimization methods. For instance, Shang
et al. (2017) used Support Vector Clustering (SVC) for a robust chemical
planning problem. SVC computes the uncertainty set of several param-
eters, including demands and prices with piecewise linear kernels to
ensure the resulting uncertainty set corresponds to a linear program.

The literature review on the application of machine learning for
production planning is extensive. In the rest of this section, we focus
n papers that consider a similar approach to the one we use in this

D. Tremblet et al.

l
C

i
f
e

h

d
a
f
g

t

p

t
t
d
s
d
o
s

S

t

c
a
a

i
o
s
M
i

s

i

s
f

s

s

European Journal of Operational Research 322 (2025) 679–692
paper. Specifically, we concentrate only on papers related to constraint
earning approaches for production planning programs. Casazza and
eselli (2019) consider a data-driven model for the integration of pro-

duction planning and scheduling, where the constraints related to the
scheduling problem are replaced by a decision tree. At the scheduling
level, a set of jobs has to be scheduled on a set of parallel machines
while respecting release dates and due dates, and jobs can be split into
two to make the assignment easier. The objective is to find a feasible
assignment of jobs that minimizes the number of split jobs. Dias and
Ierapetritou (2019) considered the integration of a lot-sizing model
and scheduling decisions, where scheduling decisions correspond to
a discrete state–task network. The authors incorporate classification
models into lot-sizing to ensure the plan is feasible, and they consider
different machine learning models such as neural networks, decision
trees, and support vector machines. The authors show that the latter ap-
proach scales very well on high-dimensional instances when compared
to methods integrating the whole scheduling decision. The resulting
method also provides accurate approximations in the case of uncertain
production capacity as by Hu et al. (2008). This latter study led
to an increasing interest in surrogate modeling for the integration of
production planning, scheduling, and control (Badejo & Ierapetritou,
2022; Dias & Ierapetritou, 2020).

These studies consider discrete scheduling problems (where the
scheduling horizon is discretized in a set of discrete time periods)
or parallel machine scheduling. To the best of our knowledge, this
paper is the first to consider learning capacity consumption in a flexi-
ble job-shop environment with sequence-dependent setup times. Flex-
ible resources are frequent in make-to-order industries (Bish & Wang,
2004; Chod & Zhou, 2014), and their popularity is increasing in the
manufacturing industry (Begnaud et al., 2009). In addition, the flex-
ble job-shops generalize many scheduling environments (job-shop,
lexible flow shop, etc...), and our results remain valid in all these
nvironments.

Setup times are also frequent in manufacturing systems and they
ave been considered early in the literature on capacitated lot-sizing

problems (Trigeiro et al., 1989). With the inclusion of setup times, the
problem of finding production plans respecting both the capacity and
emand becomes NP-complete. Realistic scheduling applications often
ccount for sequence-dependent setup time (Allahverdi et al. 1999),
or instance in the food industry, chemistry, fast moving consumer
oods (Larroche et al., 2021; Thevenin et al., 2017).

In addition, we investigate different approaches to improve the
accuracy of machine learning models when used in optimization mod-
els. In particular, we propose methods to generate efficient datasets,
including an approach that takes advantage of the scheduling problem
structure to generate adversarial examples. In addition, we introduce
additional features for our problem that improve the prediction of ca-
pacity consumption. Finally, we compared our approach with standard
mathematical models for the integrated lot-sizing and scheduling prob-
lem, and show the potential of our data-driven approach for solving
large-scale instances.

2.2. Approximation of capacity consumption in lot-sizing models

Lot-sizing models determine the optimal production quantities in
each period of the horizon. Once the plan is available, the lots of each
period become production jobs to schedule on the machine. The acqui-
sition of capacity in lot-sizing problems also led to an increasing body
of literature review. In these problems, the lot-sizing formulation incor-
porates decisions regarding the capacity, including subcontracting and
capacity acquisition (Atamtürk & Hochbaum, 2001; Hwang, 2021), or
he adjustment between different levels of capacity (Ou & Feng, 2019).

In the classical hierarchical decision framework, scheduling decisions
are made independently of production planning decisions (Axsäter,
1986). Lot-sizing models represent aggregated production planning
roblems, where the items correspond to aggregated product families
681
rather than specific items produced on the shop floor. Consequently,
the computation of the capacity consumption function in the lot-sizing
model relies on the quantity per aggregated item family, which offers
only a rough approximation of the actual resource consumption on
he shop floor. The accurate computation of actual resource consump-
ion takes place at the scheduling level, where product families are
isaggregated to perform computations at a more detailed level. As
cheduling has a smaller granularity, it often incorporates additional
etails that cannot be considered at the planning step, such as sec-
ndary equipment required for production, transportation time on the
hop floor, blocking constraints, etc. Therefore, the feasibility of a

production plan is only assessed at the production scheduling step.
everal extensions (Copil et al., 2016) of the classical lot-sizing model

integrate scheduling decisions into lot-sizing problems. For example,
he continuous setup lot-sizing problem incorporates setup times into

the lot-sizing model and determines if resource configurations change
between periods (Drexl & Kimms, 1997). However, these models typi-
ally assume that machines can only perform one operation per period,
nd the capacity consumption remains a rough approximation of the
ctual complexity of the shop floor.

Other models introduced the concept of macro periods subdivided
nto several micro-periods, where each micro-period produces at most
ne item. This methodology has led to the general lot-sizing and
cheduling problem (GLSP) presented in Fleischmann and Meyr (1997).
ultiple versions of the GLSP have been proposed in the last decades,

ncluding versions with parallel machines (Meyr, 2002) or bills of
materials with multiple levels (Seeanner & Meyr, 2012). For instance,
Rohaninejad et al. (2014) propose a genetic algorithm and particle
swarm optimization to solve the GLSP in a Flexible Job-Shop Schedul-
ing environment. While these approaches provide better approxima-
tions of the capacity consumption, they remain aggregated models. The
scheduling problems are not a detailed representation of the operations
on the shop floor. For instance, such models cannot represent a job-shop
environment precisely.

Some authors consider the integration of scheduling and lot-sizing
(e.g., Lasserre, 1992). These approaches address situations where the
equencing of lots is crucial, such as when there are sequence-

dependent setup times in the production process. Simultaneous lot-
sizing and scheduling methods typically involve iterative procedures
that determine lot sizes at the planning level and order operations on
resources for fixed product quantities. Similarly, different mathematical
models have been proposed to incorporate the scheduling decisions in
each period of the production plan. Dauzère-Pérès and Lasserre (1994)
propose a model that integrates a flexible job-shop scheduling problem
with setup into a lot-sizing model. Dauzère-Pérès and Lasserre (2002)
extend the model to the case of multi-level lot-sizing. Urrutia et al.
(2014) propose an efficient solution method for this problem. Their
method starts with an initial solution, and it creates this initial solution
with the lot-sizing model with fixed sequences of operations proposed
n Wolosewicz et al. (2015). Afterward, the approach iterates between

a Lagrangian heuristic to solve the lot-sizing problem with a fixed
equence of operations and a Tabu-search to improve the sequence with
ixed lot sizes.

Almeder et al. (2015) highlight the weakness of the classical capac-
itated lot-sizing formulations for the multi-level bill of materials. The
classical models lead to lot-sizing solutions that are infeasible for the
cheduling problem that considers each period separately. The authors

propose an improved mathematical formulation for the batching and
lot-streaming cases.

The integration of job-shop scheduling into lot-sizing models leads
to accurate computation of the capacity consumption. However, solving
the resulting model is hard, and no method exists for solving large-
cale instances to optimality. In particular, for a flexible job-shop,

alternative routings increase the number of operation sequences, and
the integrated approach rapidly becomes impractical for large-scale

instances. In addition, shop floors may involve complex structures and

D. Tremblet et al.

A

s
p

s

c
t
d
w
t
t

t

p
T

T
n
t
s
s

p
p

e

i
i

r
j
s
o
a
𝑖
t
𝑘

d
m
t
𝑖
t
c
a
t
i
p
b
c
o
a

European Journal of Operational Research 322 (2025) 679–692
constraints, including workers unavailabilities, machine breakdown
during production, or the requirements of tools to perform certain
operations. Such complexities are generally difficult to model as they
would require a prohibitive number of binary variables and constraints.

s a result, the final lot-sizing models discard these details, which
leads to a less accurate computation of the capacity consumption.
In our study, we aim to improve the approximation of the capacity
consumption by training machine learning models with historical data
from the scheduling problem encountered on the shop floor. The re-
sulting approach yields a model that is computationally less expensive
than the integration of scheduling decisions into lot-sizing models. In
addition, since these machine learning models are trained directly from
the historical data of the shop floor, they may incorporate all the
complexity of the scheduling decision process, even the parts that are
difficult to model mathematically.

2.3. Machine learning for scheduling applications

A wide variety of applications of machine learning exist in the
scheduling literature. The first works to use machine learning in
scheduling (e.g., Lee et al., 1997; Shinichi & Taketoshi, 1992) seek to
predict the best dispatching rule for a given instance. Jun et al. (2019)
how this methodology is relevant for flexible job-shop scheduling
roblems. These approaches can be seen as a pre-processing phase

to improve the performance of heuristics. Very few papers study
predictive models to approximate the value of makespan in job-shop
cheduling problems.

Some works (e.g., Raaymakers & Weijters, 2003; Schneckenreither
et al., 2020) propose regressive models to predict lead times of in-
oming orders in batch processing. The problem is to predict the lead
ime of incoming orders, to ensure that the shop floor can meet the
emand on time. Predicting these lead times avoids computing the
hole schedule, which saves precious time when urgent decisions have

o be made in the case of incoming orders or unanticipated event on
he shop floor. Raaymakers and Weijters (2003) introduced the use of

regression analysis and neural networks to predict the makespan of
scheduling problems in a job-shop environment. Schneckenreither et al.
(2020) considered a similar approach by considering neural networks
o predict the lead times in order release planning.

Recently, Tremblet et al. (2023) considered machine learning mod-
els to predict the makespan of flexible job-shop scheduling problems.
These machine learning models have the advantage of instantly ap-
roximating the makespan without computing the scheduling decisions.
he present study aims at integrating these powerful predictive models

into capacitated lot-sizing models, in order to replace the well-known
capacity constraints.

3. Problem description

This section presents the mathematical model of classical lot-sizing.
he problem is to determine optimal lot sizes at a production plan-
ing level while satisfying capacity constraints at each period for
he scheduling. In this study, we consider a flexible job-shop at the
cheduling level, and this section provides a formal description of this
cheduling problem.

3.1. Capacitated lot-sizing problem (CLSP)

The capacitated lot-sizing problem (Drexl & Kimms, 1997) sizes
production lots to minimize holding costs, fixed setup costs, and unit
roduction costs. The production plan accounts for customer demand,
roduction capacity, and lead times.

The factory produces each item 𝑖 in the set of items 𝐽 in a batch of
consecutive operations, since the processing of a batch of item 𝑖 ∈ 𝐽
results in a setup time 𝑠𝑖, and a setup cost 𝑐𝑠𝑖 . Each operation in the
batch yields one unit of item 𝑖, and it has a cost 𝑐𝑝 and a duration of
𝑖 H

682
𝑝𝑖𝑘 units on machine 𝑘 ∈ 𝑀 . In each period 𝑡 ∈ 𝑇 of the horizon, the
production is limited by a given capacity of 𝐶𝑡 units. The production
plan must respect the demand 𝑑𝑖𝑡 of item 𝑖 ∈ 𝐽 in period 𝑡 ∈ 𝑇 . In our
formulation, 𝐼+𝑖𝑡 refers to the inventory level of item 𝑖 ∈ 𝐽 at the end
of period 𝑡 ∈ 𝑇 , and 𝐼−𝑖𝑡 refers to the backlog level of item 𝑖 in period
𝑡. Inventory and backlog levels generate costs 𝑐ℎ𝑖 and 𝑐𝑏𝑖 , respectively.
Therefore, the lot-sizing model involves decision variables for the lot
sizes, setup, inventory level, and backlog level for each item 𝑖 ∈ 𝐽 and
each period 𝑡 ∈ 𝑇 , denoted respectively by 𝑋𝑖𝑡, 𝑌𝑖𝑡, 𝐼+𝑖𝑡 , 𝐼

−
𝑖𝑡 . The CLSP

corresponds to the following Mixed-Integer Linear Program (MILP):

min
∑

𝑡∈𝑇

∑

𝑖∈𝐽
𝑐ℎ𝑖 𝐼

+
𝑖𝑡 + 𝑐𝑏𝑖 𝐼

−
𝑖𝑡 + 𝑐𝑠𝑖 𝑌𝑖𝑡 + 𝑐𝑝𝑖 𝑋𝑖𝑡 (1)

s. t. 𝐼+𝑖𝑡−1 − 𝐼−𝑖𝑡−1 +𝑋𝑖𝑡 − 𝐼+𝑖𝑡 + 𝐼−𝑖𝑡 = 𝑑𝑖𝑡, 𝑖 ∈ 𝐽 , 𝑡 ∈ 𝑇 (2)

𝑋𝑖𝑡 ≤ 𝐻 ⋅ 𝑌𝑖𝑡, 𝑖 ∈ 𝐽 , 𝑡 ∈ 𝑇 (3)
∑

𝑖∈𝐽
𝑝𝑖𝑘𝑋𝑖𝑡 + 𝑠𝑖𝑘𝑌𝑖𝑡 ≤ 𝐶𝑡, 𝑘 ∈ 𝑀 , 𝑡 ∈ 𝑇 (4)

𝐼+𝑖0 = 𝐼−𝑖𝑇 = 𝐼+𝑖𝑇 = 0, 𝑖 ∈ 𝐽 (5)
𝑋𝑖𝑡 ≥ 0, 𝐼+𝑖𝑡 ≥ 0, 𝐼−𝑖𝑡 ≥ 0, 𝑖 ∈ 𝐽 , 𝑡 ∈ 𝑇

𝑌𝑖𝑡 ∈ {0, 1}, 𝑖 ∈ 𝐽 , 𝑡 ∈ 𝑇 .

The objective function (1) minimizes the total cost, which includes
holding costs 𝑐ℎ𝑖 , backlogging costs 𝑐𝑏𝑖 , setup costs 𝑐𝑠𝑖 , and production
costs 𝑐𝑝𝑖 . Constraints (2) compute the inventory balance constraints for
each product and period of the horizon. Constraints (3) force 𝑌𝑖𝑡 to be
qual to 1 if a batch of items 𝑖 is produced at a period 𝑡, using the well-

known big 𝑀 constraints, where 𝐻 =
∑

𝑡∈𝑇 𝐷𝑡. Constraints (4) ensure
that the capacity consumption does not exceed the capacity 𝐶𝑡 for all
periods 𝑡 ∈ 𝑇 . The basic formulation of the capacity constraint accounts
for the process duration per production unit and for the setup time on
each resource 𝑘 ∈ 𝑀 . Finally, constraints (5) ensure that there is no
nventory level at the beginning of the period and that there is neither
nventory nor backlogged items at the end of the planning horizon.

3.2. Flexible job-shop scheduling problem (FJSP)

At the scheduling level, each production lot becomes a job to
schedule. As a result, the set 𝐽 of items in the lot-sizing model cor-
esponds to a set of 𝐽 jobs in the scheduling problem. The flexible
ob-shop scheduling problem is an extension of the well-known job-
hop scheduling problem, but a set of machines can perform each
peration in the routing. A set 𝐽 of 𝑛 jobs have to be performed on
 set 𝑀 of 𝑚 machines with respect to routing constraints. Each job
∈ 𝐽 is subdivided into 𝑛𝑖 successive operations, and 𝑂𝑖𝑗 denotes

he 𝑗th operation of job 𝑖. Each operation 𝑂𝑖𝑗 performed on machine
∈ 𝑀𝑖𝑗 has a processing time 𝑝𝑢𝑖𝑗 𝑘, where 𝑀𝑖𝑗 ⊆ 𝑀 denotes the set of

machines that can perform operation 𝑂𝑖𝑗 . We also consider a sequence-
ependent setup time 𝑠𝑘𝑖𝑖′ occurs when job 𝑖′ is processed after job 𝑖 on
achine 𝑘. To avoid inconsistency, we assume that setup times respect

he triangular inequalities, i.e., 𝑠𝑘𝑖𝑖′′ ≤ 𝑠𝑘𝑖𝑖′ + 𝑠𝑘𝑖′𝑖′′ for any jobs 𝑖, 𝑖′ and
ε ∈ 𝐽 and any machine 𝑘 ∈ 𝑀 . This paper focuses on minimizing
he makespan, i.e., the time required to complete all jobs 𝑖 ∈ 𝐽 . We
onsider a production plan period to be feasible if the makespan of the
ssociated schedule for the production lot within that period is less than
he total working hours in that period. A production plan is feasible
f all its periods are feasible. We assume that, within a period of the
roduction plan, each of the successive operations of each job has to
e operated once and that none of these operations can be delayed or
anceled if the inventory level is sufficient to perform the remaining
perations of a job. We also assume that all the operations are available
s soon as their predecessors have already been processed.

The Supplementary Materials of this paper provide the formulation
of the integrated flexible job-shop scheduling and lot-sizing model.

owever, the latter approach leads to a complex mathematical model

D. Tremblet et al.

m
l
b

p
f

t
t
w
a
a
c
b

t
j
p
E
w
r
e

l
s

t
n

l
a
R
j

a
h
t
t
o
p

i

c
d

(

o
w

e

European Journal of Operational Research 322 (2025) 679–692
that is not practical in large-scale instances. We use this integrated
odel to benchmark the proposed approaches that rely on constraint

earning (Fajemisin et al., 2023) to replace the capacity constraints (4)
y a machine learning model.

4. Machine learning based method

To improve the accuracy of the capacity constraint, we rely on
machine learning models to predict the makespan of the schedule
for the lots in each period. In our framework, the lot-sizing model
integrates the translation of a fitted machine-learning model for each
period 𝑡 of the planning horizon. Given a production plan (𝑋 , 𝑌 , 𝐼+, 𝐼−),
the linear program translation of each of the machine learning models
predicts a value for capacity consumption. The model includes one
machine learning model for each period. We restrict our study to the
case where the machine learning models of each period are identical
and trained on the same dataset.

Supervised learning models are predictive models trained with sam-
les of past observations, and they return appropriate forecasts for the
uture. The training of a supervised learning model requires a training

dataset 𝐷 = {𝑠,𝑠
| 𝑠 = 1,… , 𝑁}, where 𝑁 is the number of samples,

𝑠 represents the value of the features for sample 𝑠, and 𝑠 is a targeted
value observed for this sample. The model is trained over this dataset
by minimizing an error, typically the mean squared error, between the
target and the output of the model.

Note that a classification model could predict if a plan is feasible
or not. However, a regression model provides more flexibility. For in-
stance, in scenarios where available capacity fluctuates across different
ime periods, the same regression model can predict capacity consump-
ion. Conversely, addressing this variability with a classification model
ould necessitate training a distinct model for each period. In addition,
 regression model integrates seamlessly into lot-sizing models that
ccount for extra-capacity penalties. Finally, forecasting the capacity
onsumption rather than a binary class helps in evaluating the gap
etween the prediction and the actual makespan.

We assume that the flexible job-shop environment remains the same
hroughout the planning horizon, but the quantity associated with each
ob changes. Therefore, the training dataset corresponds to different
rocessing durations in a single flexible job-shop scheduling problem.
ach sample of the training dataset provides the makespan obtained
hen solving the flexible job-shop scheduling problem with the same

esources and routing, but with different quantities 𝑋𝑖 associated with
ach job 𝑖 ∈ 𝐽 . For each sample 𝑠 ∈ 𝐷, the targeted value 𝑠 represents

the makespan, and the features 𝑠 are the quantities 𝑋𝑖 of each job
𝑖 ∈ 𝐽 .

The rest of this section presents the input features of the machine
earning model, before introducing three model, namely, linear regres-
ion, piecewise linear regression, and regression tree. The choice of

these models is motivated by the following theoretical result, which
that shows the capacity consumption function is a piecewise linear
non-convex function.

Proposition 4.1. Given any quantities 𝑋 ∈ R+
|𝐽 |, the capacity consump-

ion (i.e. the makespan of the resulting FJSP) is defined as a piecewise linear
on-convex function.

Proof. In the Supplementary Materials. □

4.1. Features selection

This section presents a set of relevant features for our machine
earning model that predicts the makespan. Besides the lot sizes 𝑋,
dditional features can be considered to improve the forecasting ability.
ecent studies highlight important correlations between features of

ob-shop scheduling problems and the makespan (e.g., Mirshekarian &
683
Šormaz, 2016; Schneckenreither et al., 2020). However, to translate
the resulting machine learning model into a mathematical program,
feature 𝑓 ∈ must be a linear combination of decision variables of the
problem. Non-linear features cannot be used for the prediction. Also,
s the production system remains the same over the entire planning
orizon, features that do not depend on the decision variables will
ake the same values in all examples, and they are not relevant. In
his sense, features based on scheduling decisions, such as assignment
r sequencing decisions, are of little interest for capacity consumption
rediction.

In addition, as we assumed that producing an item requires perform-
ing all its operations during the period, inventory and backlog level
𝐼+, 𝐼− have no impact on the capacity consumption, and there is no
need to consider inventory level for work in progress.

For the sake of clarity, we make a distinction between a feature
𝑓 ∈ used to train a model, the value 𝑠

𝑓 of this feature in a data
sample 𝑠 ∈ 𝐷, and the decision variables 𝑓 𝑡 that represent the feature
n each period 𝑡 ∈ 𝑇 when embedded in a mathematical program.

The first features are the lot sizes 𝑋𝑖 for each job 𝑖 ∈ 𝐽 , and they
an be directly embedded into the lot-sizing since they correspond to
ecision variables 𝑋𝑖𝑡:

𝑖𝑡 = 𝑋𝑖𝑡 ∀𝑖 ∈ 𝐽 , 𝑡 ∈ 𝑇 .
In addition, we consider the four features introduced in Tremblet et al.
(2022) that are linear combinations of lot sizes.

(|𝐽 |+1)𝑡 = max
𝑖∈𝐽

{ 𝑛𝑖
∑

𝑗=1
min
𝑘∈𝑀𝑖𝑗

{𝑝𝑖𝑗 𝑘 ⋅𝑋𝑖𝑡}

}

∀𝑡 ∈ 𝑇 (6)

(|𝐽 |+2)𝑡 = max
𝑘∈𝑀

⎧

⎪

⎨

⎪

⎩

∑

𝑖∈𝐽

𝑛𝑖
∑

𝑗=1

∑

𝑀𝑖𝑗={𝑘}
𝑝𝑖𝑗 𝑘 ⋅𝑋𝑖𝑡 + 𝑠𝑚𝑖𝑛𝑘 ⋅ 𝑌𝑖𝑡

⎫

⎪

⎬

⎪

⎭

∀𝑡 ∈ 𝑇 (7)

(|𝐽 |+3)𝑡 = max
𝑘∈𝑀

{

∑

𝑖∈𝐽

𝑛𝑖
∑

𝑗=1
𝑜𝑖𝑗 𝑘 ⋅ 𝑝𝑖𝑗 𝑘 ⋅𝑋𝑖𝑡 + (𝑜𝑘 − 1)𝑠𝑚𝑒𝑎𝑛𝑘 ⋅ 𝑌𝑖𝑡

}

∀𝑡 ∈ 𝑇 (8)

(|𝐽 |+4)𝑡 =
1
𝑚

∑

𝑘∈𝑀

(

∑

𝑖∈𝐽

𝑛𝑖
∑

𝑗=1
𝑜𝑖𝑗 𝑘 ⋅ 𝑝𝑖𝑗 𝑘 ⋅𝑋𝑖𝑡 + (𝑜𝑘 − 1)𝑠𝑚𝑒𝑎𝑛𝑘 ⋅ 𝑌𝑖𝑡

)

∀𝑡 ∈ 𝑇

(9)

Feature (6) and (7) are lower bounds of the makespan. Feature
6) is the maximum among all jobs 𝑖 ∈ 𝐽 of the sums of processing

times of the operations of job 𝑖. If an operation can be performed on
more than one machine, the operation with the minimum processing
time is selected. Feature (7) is the sum of the processing times of all
perations processed on each machine. Since the machines are flexible,
e only consider the operations that can be performed on a single

machine and the minimum setup time 𝑠𝑚𝑖𝑛𝑘 that occurs on the machine.
Features (8) and (9) provide a more realistic estimate of the makespan
and average sum of processing time for each machine. These features
account for flexible machines by considering all possible operations 𝑂𝑖𝑗
that can be performed on each machine 𝑘 ∈ 𝑀 , where 𝑜𝑖𝑗 𝑘 represents
the likelihood of operation 𝑂𝑖𝑗 being performed on machine 𝑘 ∈ 𝑀𝑖𝑗 .
𝑜𝑘 is an estimation of the number of operations performed on machine
𝑘 ∈ 𝑀 , and 𝑠𝑚𝑒𝑎𝑛𝑘 is the average setup time that occurs on this machine.
The expressions used to compute 𝑜𝑖𝑗 𝑘 and 𝑜𝑘 are described in Tremblet
t al. (2022), and we summarize them in the Supplementary Materials.

Features (6)–(8) include max operator, and their representation in
a MILP requires big-M formulations. To avoid the cumbersome big-M
formulations, we can restrict the approximated capacity consumption
function to be non-decreasing with features (6)–(8). For instance, in
a linear regression, we can force the coefficient of these features to be
positive. Since the value of the prediction should be as small as possible
to respect the capacity constraints, the decision variables associated
with these three features will automatically take the lowest values in

D. Tremblet et al.

c
p

w
a

t

c
i
t
t
d
t
w
(

p

i
c
t

p

a
b

C

o

n

i
e
a
s

m
d

E

I
n
t

European Journal of Operational Research 322 (2025) 679–692
the mathematical program. Therefore, features (6)–(8) can be expressed
as the following linear inequalities:

(|𝐽 |+1)𝑡 ≥
𝑛𝑖
∑

𝑗=1
min
𝑘∈𝑀𝑖𝑗

{𝑝𝑖𝑗 𝑘} ⋅𝑋𝑖𝑡 ∀𝑖 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (10)

(|𝐽 |+2)𝑡 ≥
∑

𝑖∈𝐽

𝑛𝑖
∑

𝑗=1

∑

𝑀𝑖𝑗={𝑘}
𝑝𝑖𝑗 𝑘 ⋅𝑋𝑖𝑡 + 𝑠𝑚𝑖𝑛𝑘 ⋅ 𝑌𝑖𝑡 ∀𝑘 ∈ 𝑀 ,∀𝑡 ∈ 𝑇 (11)

(|𝐽 |+3)𝑡 ≥
∑

𝑖∈𝐽

𝑛𝑖
∑

𝑗=1
𝑜𝑖𝑗 𝑘 ⋅ 𝑝𝑖𝑗 𝑘 ⋅𝑋𝑖𝑡 + (𝑜𝑘 − 1)𝑠𝑚𝑒𝑎𝑛𝑘 ⋅ 𝑌𝑖𝑡 ∀𝑘 ∈ 𝑀 ,∀𝑡 ∈ 𝑇 (12)

As setups are important in lot-sizing and scheduling problems, we
onsidered another feature that computes the number of setups in each
eriod 𝑡 ∈ 𝑇 :

(|𝐽 |+5)𝑡 =
∑

𝑖∈𝐽
𝑌𝑖 ∀𝑡 ∈ 𝑇 (13)

Note that a machine learning model may give different predictions
hen 𝑌𝑖𝑡 takes the value 1 or 0 when the value of 𝑋𝑖𝑡 is equal to 0. In
ddition, the lot-sizing model (1)–(5) does not prevent 𝑌𝑖𝑡 taking the

value 1 when 𝑋𝑖 equals 0. If setting the value 1 to variable 𝑌𝑖𝑡 reduces
he capacity consumption forecasted by the machine learning model,

the solution may set a setup to 1 even if item 𝑖 has a lot size of 0 during
period 𝑡. Although this situation is unlikely to happen due to setup
osts, this leads to a situation where the solution of the lot-sizing model
s not consistent with reality. Constraints can be employed during
he training of the machine learning model to force the prediction
o increase when a setup is performed. However, this restriction can
ecrease the performance of the resulting model. Therefore, to avoid
his situation, we impose a minimum lot size 𝜖 to each item 𝑖 ∈ 𝐽
ith a setup by adding the following constraints to the lot-sizing model

1)–(5):

𝜖 ⋅ 𝑌𝑖𝑡 ≤ 𝑋𝑖𝑡 ∀𝑖 ∈ 𝐽 , 𝑡 ∈ 𝑇 (14)

4.2. Model of capacity consumption with machine learning

We consider three machine learning models to predict capacity
consumption, namely, linear regression, piecewise linear regression,
and regression tree.

4.2.1. Linear regression
Linear regression is a simple choice when translating a machine

learning model into a linear program. The model fitted associates
coefficients 𝛼𝑓 for each feature 𝑓 ∈ , as well as an intercept value
𝛼0. Linear regression computes capacity consumption of vector 𝑗 with
the following formula:

 =
∑

𝑓∈
𝛼𝑓𝑓 𝑡 + 𝛼0.

Therefore, the capacity constraints (4) are replaced by the following
equations:
∑

𝑓∈
𝛼𝑓𝑓 𝑡 + 𝛼0 ≤ 𝐶𝑡 ∀𝑡 ∈ 𝑇 , (15)

where 𝑓 𝑡 is the variable representing features 𝑓 ∈ in the dataset of
eriod 𝑡 ∈ 𝑇 .

4.2.2. Piecewise linear regression
Piecewise linear regression divides the value of one feature 𝑓 ∗ ∈

nto a discrete set of regions . Each region is delineated by two
onsecutive breakpoints in a set of breakpoints . Each sample of
he data falls into one region 𝑟 ∈ depending on the value of the

corresponding feature, and a linear regression is trained on the data
oints of each region. The vector 𝛼𝑟𝑓 represents the coefficients of each
feature 𝑓 ∈ for each region 𝑟 ∈ 𝑅.

684
To translate piecewise linear regressions into a linear program, we
dd some binary variables 𝑍 that determine the region the samples
elong to. The resulting linear program is as follows:

𝑓∗𝑡 ≤ 𝑏𝑟 +𝐻 ⋅ (1 −𝑍𝑟𝑡) ∀𝑟 ∈ 2..||,∀𝑡 ∈ 𝑇 (16)

𝑓∗𝑡 ≥ 𝑏𝑟 +𝐻 ⋅ (1 −𝑍(𝑟+1)𝑡) + 𝜖 ∀𝑟 ∈ 1..|| − 1,∀𝑡 ∈ 𝑇 (17)
∑

𝑟∈
𝑍𝑟𝑡 = 1 ∀𝑡 ∈ 𝑇 (18)

∑

𝑓∈𝐹
𝛼𝑓 𝑟𝑓 𝑡 + 𝛼0𝑟 ≤ 𝐶𝑡 +𝐻 ⋅ (1 −𝑍𝑟𝑡) ∀𝑟 ∈ ,∀𝑡 ∈ 𝑇 (19)

Eqs. (16) and (17) define the region to which the regression applies,
depending on the value of the selected feature 𝑓 ∗ ∈ . The sufficiently
small value 𝜖 prevents a feature from being included in two regions.

onstraints (18) ensure that only one region is selected for each period
𝑡 ∈ 𝑇 . Finally, the capacity constraints associated with this machine
learning model are given by (19). For each period, only one capacity
constraint is active, depending on the region where the regression
ccurs.

Finding the best feature that defines the regions requires testing
each possible breakpoint. Some studies proposed mathematical models
that compute the best feature and breakpoints for the fitting of a
piecewise linear function (Rebennack & Krasko, 2020; Yang et al.,
2016), but these approaches remain time-consuming and impractical
for large models.

To delineate the regions, we select the feature corresponding to the
umber of setups (|𝐽 |+5) since the approximation of capacity consump-

tion changes when the product mix changes. The number of breakpoints
s a sensitive parameter since increasing the number of regions requires
mbedding more variables and constraints for the integrated lot-sizing
nd machine learning model, which increases the computing time
ignificantly. In this work, we propose different sets of breakpoints

depending on the size of the scheduling problem considered in the
lot-sizing problem.

4.2.3. Regression tree
A regression tree (or decision tree regressor) is a machine learning

odel that iteratively splits the search space to provide the best pre-
iction value according to the input data (Breiman et al., 1983). A

regression tree is composed of nodes, which include a set of leaf
nodes . Each splitting node works as a query prescribing the path to
follow in the tree until falling into a leaf node 𝑖 ∈ 𝐿, which returns the
value to predict (here the capacity constraints). In the splitting nodes,
the queries are conditions computed based on the features of input .
ach query can be represented as a linear condition on the vector of

features . For each node 𝑗 in the set of nodes , these equations are
represented as ∑

𝑓∈𝐹 𝐴𝑗 𝑓𝑓 𝑡 ≤ 𝑏𝑗 , where parameter 𝑎𝑗 𝑓 takes the value
1 if feature 𝑓 ∈ is involved in the splitting node 𝑗, and 0 otherwise,
and parameter 𝑏𝑗 represents the threshold of the splitting condition.
f the condition is satisfied, the decision tree moves to the right child
ode, or to the left child node otherwise. After a number of queries, the
ree arrives at a leaf where a score 𝑆 lies, and this score corresponds to

the outcome of the prediction. We adapt the mathematical formulation
of Biggs et al. (2022) to embed random forest. In this formulation,
binary variables 𝑞𝑡𝑖𝑗 indicate, for every node 𝑗 ∈ , if the input lies
in a leaf node that is a descendant of node 𝑘. For each node 𝑗 ∈ , the
left and right child nodes are respectively given by 𝑙𝑗 and 𝑟𝑗 , and the
parent node is provided as 𝑝𝑗 . This formulation with binary variables
represents the path followed in the tree for each data sample . The
score of each leaf 𝑗 ∈ is provided by 𝑆𝑗 . The model is described as
follows:
∑

𝑓∈
𝑎𝑗 𝑓𝑓 𝑡 −𝑀(1 − 𝑞𝑡𝑗 ,𝑙𝑗) ≤ 𝑏𝑗 , ∀𝑡 ∈ 𝑇 , 𝑗 ∈ (20)

∑

𝑎𝑗 𝑓𝑓 𝑡 +𝑀(1 − 𝑞𝑡𝑗 ,𝑟𝑗) ≥ 𝑏𝑗 + 𝜖 , ∀𝑡 ∈ 𝑇 , 𝑗 ∈ (21)

𝑓∈

D. Tremblet et al.

𝑗

𝑞

n
n

m
f
s
t
c
a
t
a

a
g

t
t
c
c
i
m
t

o

f
t

t
c

t
s
i
s
s
t
d

p
t

S

t
i
t
n

European Journal of Operational Research 322 (2025) 679–692
𝑞𝑡𝑗 ,𝑟𝑗 + 𝑞𝑡𝑗 ,𝑙𝑗 = 𝑞𝑡𝑝𝑗 ,𝑗 , ∀𝑡 ∈ 𝑇 , 𝑗 ∈ (22)
∑

𝑗∈
𝑞𝑡𝑝𝑗 ,𝑗 = 1, ∀𝑡 ∈ 𝑇 (23)

∑

∈𝐿
𝑆𝑗 ⋅ 𝑞

𝑡
𝑝𝑗 ,𝑗

≤ 𝐶𝑡 ∀𝑡 ∈ 𝑇 (24)

𝑡
𝑗 ,𝑙𝑗 , 𝑞

𝑡
𝑗 ,𝑟𝑗 , 𝑞

𝑡
𝑝𝑗 ,𝑗

∈ {0, 1}, ∀𝑡 ∈ 𝑇 , 𝑖 ∈

Constraints (20) state that variable 𝑞𝑡𝑗 ,𝑙𝑗 takes value 1 if the query at
ode 𝑗 ∈ is satisfied, so the predicted value lies in the left subtree of
ode 𝑗. Alternatively, constraints (21) ensure that variable 𝑞𝑡𝑗 ,𝑟𝑗 takes

value 1 if the value predicted by the tree lies in the right subtree of
𝑗 ∈ . Eqs. (22) and (23) state that only one node is active at each
stage of the regression tree. Eqs. (24) compare the predicted value
provided by the tree and the capacity.

5. Prediction improvement

The training procedure of a machine learning model is a crucial
step, and datasets used to train a model have to be carefully selected.
As the optimal solutions of mathematical programs often lie in the
extreme rays of the feasible region, the optimization model embedding
machine learning is prone to explore solutions that are not part of the
training dataset (Goodfellow et al., 2014). Thus, the prediction of the

achine learning models deteriorates when exploring solutions that are
ar from the data samples used for training. In particular, the lot-sizing
olutions are likely to set the predicted capacity consumption equal to
he available capacity. In such situations, a small underestimation of
apacity consumption leads to an unfeasible solution. Recent papers
ddressed this issue by considering trust regions to limit the prediction
o the convex hull of the training dataset (Maragno et al., 2023) or
daptative sampling to generate adversarial examples (Cozad et al.,

2014). To alleviate these issues, we consider the latter paradigm,
nd this section presents a training procedure as well as methods to
enerate accurate data samples.

5.1. Training procedure to prevent infeasible solutions

Training procedures minimize the error between the prediction and
he value observed in the dataset. If a regression model does not fit a
raining dataset perfectly, the prediction may underestimate the real
apacity consumption for some training samples. As underestimating
apacity consumption leads to infeasible plans, we propose a train-
ng approach that overestimates the prediction when fitting a linear
odel. In other words, the fitting procedure forbids underestimating

he capacity consumption in the training dataset.
We propose a MILP to minimize the mean absolute error between

the training dataset and the prediction of a linear regression model.
This model relies on finding the best weight 𝛼𝑓 associated with each
feature 𝑓 ∈ of our regression model while minimizing an absolute
error 𝑑𝑠 between the actual capacity consumption and the prediction
𝑝𝑟𝑒𝑑
𝑠 for each sample 𝑠 ∈ 𝐷.

A classical training model for a linear regression that minimizes the
Mean Absolute Error (MAE) is as follows:

min 1
|𝐷|

∑

𝑠∈𝐷
𝑑𝑠 (25)

s. t.
∑

𝑓∈
(𝑠

𝑓𝛼𝑓) + 𝛼0 = 𝑝𝑟𝑒𝑑
𝑠 , ∀𝑠 ∈ 𝐷 (26)

𝑝𝑟𝑒𝑑
𝑠 − 𝑠 ≤ 𝑑𝑠, ∀𝑠 ∈ 𝐷 (27)

𝑠 − 𝑝𝑟𝑒𝑑
𝑠 ≤ 𝑑𝑠, ∀𝑠 ∈ 𝐷 (28)

𝑝𝑟𝑒𝑑
𝑠 ≥ 0, 𝑑𝑠 ≥ 0, ∀𝑠 ∈ 𝐷

𝛼 ∈ R, ∀𝑓 ∈ .
𝑓 v

685
The objective function (25) minimizes the mean absolute error between
the output and the prediction. Constraints (26) link the weighted sum
f features and the predicted value for each sample of the training

dataset. Constraints (27) and (28) compute the absolute errors between
the targeted output 𝑠 and the value predicted by the linear regression.

To ensure the fitted model overestimates the capacity consumption
or all in-sample data points, we forbid negative errors during the
raining by replacing (28) with the following set of constraints:

𝑝𝑟𝑒𝑑
𝑠 ≥ 𝑠, ∀𝑠 ∈ 𝐷 (29)

The same process applies to piecewise linear regression. To train
such models, we divide the dataset 𝐷 into || smaller datasets depend-
ing on the region where each data point falls. We fit a linear regression
o each of these datasets by using this new fitting procedure. We then
onsider these two machine learning models, named constrained linear

regression (CLR) and constrained piecewise linear regression (CPLR) in
the next section of this paper.

5.2. Data generation procedure

Fitting our machine learning models requires datasets that corre-
spond to historical data from actual production schedules implemented
on the shop floor. However, we may take advantage of available
scheduling or simulation tools to generate data points that help train
the machine learning model. For proper comparison with methods from
he literature, we generate the dataset by solving flexible job-shop
cheduling problems. Each dataset is associated with one scheduling
nstance, where each data sample corresponds to one vector of lot
izes 𝑋 applied to each job. Generating data samples of a flexible job-
hop scheduling instance requires both the quantities of each item and
he associated makespan (or capacity consumption). The other features
escribed in Section 4 are inferred from the lot sizes for each data

sample. To build the training dataset, we generate some lot sizes 𝑋𝑖
for each item 𝑖 ∈ 𝐽 , and associate each of them with the processing
time of each operation of each job 𝑖 of the corresponding flexible
job-shop scheduling problems. We solve each sample with the MILP
(see in the Supplementary Materials (A.1)–(A.5)) with a single period
(|𝑇 | = 1). Note that the hardest instances were solved with constraint
rogramming approaches. The rest of this section describes approaches
o generate lot sizes examples.

5.2.1. Random procedure
One standard idea for data sampling is to generate the lot sizes

𝑋𝑖 randomly. Advanced sampling methods such as Latin Hypercube
ampling (LHS) generate samples that cover the input space more

evenly than simple Monte Carlo procedures (Mckay et al., 2000). This
sampling method works by dividing the input space into | | bins of
identical sizes. The data samples are generated so that no two samples
fall into the same bin. However, the samples generated using LHS may
not represent the solutions that can be found by solving a lot-sizing
model. For instance, randomly sampled lot sizes may have very small
lots for some item 𝑖 ∈ 𝐽 , which is not coherent with the high setup
costs that can be encountered in lot-sizing problems.

5.2.2. Iterative training procedure
This section suggests a practical enhancement where we look for

adversarial examples by running a simulation. Fig. 1 summarizes the
procedure. In each iteration, we solve a randomly generated instance of
the lot-sizing problem, and we solve the associated scheduling problems
o check if the capacity is violated in any period. Each sample that
s underestimated by the machine learning method is added to the
raining dataset 𝐷, and the machine learning method is fitted into this
ew dataset. The method stops after solving a given number 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟

of lot-sizing instances without finding periods where the capacity is

iolated.

D. Tremblet et al.

s
W
w
s
a
𝜆
w
d
m

s

𝑖

w

European Journal of Operational Research 322 (2025) 679–692
Fig. 1. Flow chart for ILS-based.
e

o
u

t
b
H
m

i

s

l
s

s
s
s
o
i
f

l

However, the approach remains time-consuming for complex in-
tances, with large scheduling sizes or parameters such as setup costs.
e proposed an approach (denoted as ILS-KP), that better identifies
rongly predicted samples better. The idea is to generate lot-sizing

olutions with tight capacity and with different structures. To generate
 wide variety of production plans, we randomly associate a profit
𝑖 with each item 𝑖, and we seek solutions that maximize the profit
hile respecting the capacity constraint. The capacity consumption is
etermined through the machine learning model 𝑀 𝐿 translated into a
athematical program as described in Section 4. Solving the following

MILP a large number of times with different weights yields various
olutions with tight capacities:

max
∑

𝑖∈𝐽
𝜆𝑖𝑋𝑖 (30)

s. t. (6)–(14) (31)

𝑀 𝐿() ≤ 𝐶 (32)
𝑌𝑖 ∈ {0, 1}, 𝑋𝑖 ≥ 0 𝑖 ∈ 𝐽

The objective function (30) maximizes the profit of each item
∈ 𝐽 while satisfying the capacity constraint (32). Constraints (6)–

(14) compute the features. Constraint (32) approximates the capacity
consumption with a machine learning model 𝑀 𝐿 translated into a
mathematical program for the input vector . Each iteration of this
procedure generates a vector of profit 𝜆 as well as a capacity 𝐶, and

e solve (30)–(32).
In the case of linear regression, this approach is close to a contin-

uous knapsack formulation with a profit 𝜆𝑖 ∈ R for each item and a
capacity 𝐶. In the numerical experiments, we run this procedure with
the ILS-KP model, and the method stops when there is no more than 𝜌
percent of underpredicted schedules in the last 𝑁 iterations. To ensure
that our machine learning models always overestimate the capacity
consumption, the intercept of the constrained linear regression trained
using this procedure is increased by the difference between the forecast
and the real makespan of the last example that was underpredicted.

In addition to this iterative procedure, an exact method for finding
adversarial examples is presented in Appendix G.

6. Numerical experiments

This section summarizes the results of the computational experi-
ments. We define the lot-sizing instances in Section 6.1. Then, we
compare the performance of all machine learning models in Section 6.2.
Sections 6.3 and 6.4 provide the results of the machine learning models
compared to standard mathematical models for integrated lot-sizing
and scheduling. Finally, we propose an iterative lot-sizing and schedul-
ing approach in Section 6.5. Experiments assessing both the prediction
performance of models that approximate the capacity consumption and
686
the data generation procedures are also proposed in Appendix F. All the
xperiments were conducted on computers with Intel Xeon Broadwell

EP E5-2630v4 @ 2,20 GHz and 124 Go of RAM. The mathematical
models were solved using IBM ILOG CPLEX 20.1.0.0 running with
ne thread. The linear regression and regression tree were trained
sing the Scikit-learn (Pedregosa et al., 2011) package from Python,

with a maximum depth of 10 to limit the number of variables and
constraints in the MILP formulation. The constrained linear regression
and constrained piecewise linear regression were fitted using CPLEX
to minimize the mean absolute error. Note that we also tried to fit
hese machine learning models using the same mathematical model
ut minimizing the mean squared error using a quadratic objective.
owever, we observed no significant improvement by considering the
ean squared error instead of the mean absolute error.

6.1. Instance definition

To generate the lot-sizing instances we adopt the procedure given
n Wolosewicz et al. (2015). At the scheduling level, the flexible job-

shop scheduling instances mt06, mt10, and mt20 from Hurink et al.
(1994) are considered. The Supplementary Materials details the in-
tances generation procedure.

We compare the proposed approach with two methods from the
iterature, denoted by ILS-Exact and ILS-Fixed. ILS-Exact is
imilar to ILS-CLSP but it replaces constraints (4) with constraints

(A.1)–(A.5). The resulting MILP solves the integrated lot-sizing and
flexible job-shop problem. This model provides perfect information on
capacity consumption at each period since it simultaneously finds the
best quantities for each item and sequences the operations on the shop
floor.

Wolosewicz et al. (2015) propose an approach that solves the lot-
izing problem with a fixed sequence of operations for the job-shop
cheduling problem. The new lot-sizing model is less complex and
olved with a heuristic based on Lagrangian relaxation. However, they
nly considered one possible sequence of operations for the schedul-
ng problem. We denote by ILS-Fixed the lot-sizing model with a
ixed sequence of operations for the scheduling problem as presented

in Wolosewicz et al. (2015). We consider the sequence that is the
solution to the flexible job-shop scheduling problem with lot sizes equal
to 1 for each job.

We summarize below all the mathematical models used to solve the
ot-sizing instances:

• ILS-CLSP : Capacitated Lot-sizing problem (1)–(5)
• ILS-CLSP75 : Capacitated Lot-sizing problem with capacity

reduced by 75%
• ILS-Exact: Integrated Lot-sizing and Flexible Job-shop

Scheduling (A.1)-(A.5)

D. Tremblet et al.

m
q
d
e
t
q
a
c
n
t
p

l

European Journal of Operational Research 322 (2025) 679–692
Table 1
Comparison between constrained and standard machine learning models.

Size 6 × 6 10 × 10 20 × 5

𝑇 5 30 50 5 30 50 5 30 50

ILS-LR

UB 1600 9368 15 517 2659 15 309 25 746 5323 30 423 51 996
LB 1600 9368 15 517 2659 15 309 25 746 5323 30 423 51 996
Gap (%) 0 0 0 0 0 0 0 0 0
Feasibility 88 18 5 89 12 7 83 72 67
Time (s.) 0.08 3.11 8.1 0.15 11.5 81.7 0.07 1.2 2.07

ILS-CLR

UB 1603 9382 15 537 2664 15 361 25 833 5332 30 470 52 034
LB 1603 9382 15 537 2664 15 361 25 819 5332 30 470 52 034
Gap (%) 0 0 0 0 0 0.05 0 0 0
Feasibility 100 100 98 100 99 96 100 100 100
Time (s.) 0.02 1.66 7.5 0.03 325.0 3409 0.09 19.1 142.1

ILS-RT

UB 1600 9367 15 518 2659 15 308 25 742 5324 30 443 52 153
LB 1600 9367 15 518 2659 15 308 25 739 5324 30 424 51 996
Gap (%) 0 0 0 0 0 0.004 0 0.06 0.3
Feasibility 91 50 28 88 19 3 72 59 53
Time (s.) 2.99 327.0 1154.5 10.8 1443.6 3263.6 111.1 3568.7 3600

ILS-PLR

UB 1601 9371 × 2659 15 308 × 5321 30 420 ×
LB 1601 9371 × 2659 15 308 × 5321 30 420 ×
Gap (%) 0 0 × 0 0 × 0 0 ×
Feasibility 64 5 0 64 3 0 7 1 0
Time (s.) 0.02 0.2 0.4 0.02 0.3 0.43 0.07 0.7 1.45

ILS-CPLR

UB 1602 9379 15 527 2665 15 342 25 742 5333 30 462 52 023
LB 1602 9379 15 527 2665 15 342 25 718 5333 30 462 52 023
Gap (%) 0 0 0 0 0 0.09 0 0 0
Feasibility 91 75 67 100 97 91 100 100 98
Time (s.) 0.05 14.4 321.3 0.06 1645.7 3597.1 0.1 6.7 15.1
t

i
l
t

t
a
t

i

• ILS-Fixed: Integrated Lot-sizing and Scheduling with a fixed
sequence

• ILS-LR: Integrated Lot-sizing and Scheduling with Linear Regres-
sion (15)

• ILS-PLR: Integrated Lot-sizing and Scheduling with Piecewise Lin-
ear Regression (16)–(19)

• ILS-RT: Integrated Lot-sizing and Scheduling with Regression Tree
(20)–(24)

• ILS-CLR: Integrated Lot-sizing and Scheduling with Constrained
Linear Regression

• ILS-CPLR: Integrated Lot-sizing and Scheduling with Constrained
Piecewise Linear Regression

Both ILS-CLR and ILS-CPLR have been trained with 𝜌 = 100%
and 𝑁 = 10,000 to ensure the feasibility of the production plans
obtained. Since these models can be restrictive, we also considered
two additional models, ILS-CLR95 and ILS-CPLR95, trained with
𝜌 = 95% and 𝑁 = 1000. All the lot-sizing models were solved by CPLEX
with a time limit of 1 h.

6.2. Machine learning models comparison

This section reports the performance of different lot-sizing models
that embed machine learning methods to approximate the capacity
constraint. We compare the performance of different machine learning

odels and different training methods. First, we analyze the solution
uality and the feasibility of production plans obtained by embed-
ing different machine learning models. For each scheduling size and
ach period horizon, we generate 100 lot-sizing instances. To check
he feasibility of the solution returned by the models, the production
uantities in each period are associated with a scheduling problem,
nd the solution of this scheduling problem gives the actual capacity
onsumption. A solution to the lot-sizing model is infeasible either if
o feasible solution has been found by the solver after reaching the
ime limit or the solution returned by the solver includes at least one
eriod where the capacity is exceeded.

Table 1 reports the performance of all the embedded machine
earning and lot-sizing models presented in Section 6.1. The metrics

used to compare the solutions are the upper bounds UB, lower bounds
 f

687
LB, and the relative gap found returned by CPLEX. Note that these
metrics are provided only for the instances where all methods find a
feasible solution.

Table 1 shows that most of the solutions returned by the linear
regression and regression tree are infeasible, while the constrained ap-
proach leads to a large percentage of feasible solutions. When compared
to linear regression, regression trees appear to perform badly, since
his approach requires a significant computational time to find optimal

solutions. The number of variables and constraints grows exponentially
with the size of the tree. For example, a regression tree with a depth of
20 can include a total of 220 nodes, which leads to at least 220 variables
and three times more constraints for each period in the horizon. The
resulting mathematical model rapidly becomes impractical when the
number of periods increases. Although models learned without the con-
straint that prevents underapproximation of the capacity consumption
have high precision, they struggle to find solutions that respect capacity
consumption. The importance of the constrained learning approach is
clear, and we keep only the constrained machine learning models for
the rest of the experiments.

6.3. Performance of the proposed approach

This section compares the state-of-the-art models ILS-Exact,
ILS-CLSP, and ILS-Fixed with lot-sizing models that embed con-
strained regression, namely ILS-CLR and ILS-CPLR. We generate
nstances for this experiment by varying the scheduling size, horizon
ength, and setup costs. Machine learning models were trained using
he ILS-KP method proposed in Section 5.2.2.

Table 2 reports the results on all the instances, aggregated per
scheduling size, period, and setup costs. For each of these parameters,
we considered the percentage gap (denoted by Gap𝐵) of each model
over the best solution found, the percentage of plans that are feasible,
he average absolute gap between the estimated capacity consumption
nd the real makespan (denoted by Gap𝑀 𝐴𝐸), and the computational
ime in seconds. For a solution where the production plans resulted in

impractical schedules, the percentage of violated capacity is provided
n brackets.

The Supplementary Materials gives detailed tables with the results
or each instance.

D. Tremblet et al.

f
r
f
m
s
t
c
r
a
l
b
i
t
W
n
b
a
w

European Journal of Operational Research 322 (2025) 679–692
Table 2
Results for lot-sizing models aggregated by scheduling size, period, and setup costs.

Metrics Scheduling Period Setup costs

6 × 6 10 × 10 20 × 5 5 30 50 15 50 100

ILS-Exact

Gap𝐵 (%) 0.31 0.07 1.31 0.07 0.45 0.47 0.18 0.07 0.66
Feasibility (%) 99.3 55.6 8.6 74.8 44.8 43.9 75.2 44.2 44.0
Gap𝑀 𝐴𝐸 (%) 11.7 26.5 43.5 25.0 13.2 13.3 28.7 11.6 8.5
Time (s.) 1666.8 3378.6 3600.1 2201.4 3203.9 3240.2 2225.7 3202.0 3217.8

ILS-CLSP

Gap𝐵 (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 × ×
Feasibility (%) 15.8 (14.3) 15.7 (15.6) 2.4 (13.6) 16.0 (18.5) 11.1 (12.8) 6.8 (12.2) 33.9 (4.4) 0.0 (16.0) 0.0 (23.2)
Gap𝑀 𝐴𝐸 (%) 8.3 11.1 18.7 14.2 12.1 11.9 11.2 12.9 14.0
Time (s.) 51.1 233.3 84.7 0.1 20.5 348.6 0.1 2.3 366.7

ILS-CLSP75

Gap𝐵 (%) 0.86 0.1 0.1 0.66 0.15 0.13 0.16 0.94 3.4
Feasibility (%) 42.8 (3.0) 33.4 (5.9) 43.0 (4.7) 53.6 (4.5) 33.1 (4.8) 32.6 (4.4) 97.8 (1.8) 17.8 (4.3) 3.7 (6.3)
Gap𝑀 𝐴𝐸 (%) 18.7 15.9 8.8 14.7 14.4 14.4 16.5 13.5 13.4
Time (s.) 421.5 598.9 1433.5 0.5 850.8 1602.7 0.8 655.7 1797.5

ILS-Fixed

Gap𝐵 (%) 0.53 0.82 4.47 1.78 1.64 2.4 0.25 1.98 3.59
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Gap𝑀 𝐴𝐸 (%) 6.2 12.8 30.0 17.5 15.6 16.0 22.6 14.4 12.1
Time (s.) 1534.9 2013.0 2834.6 443.7 2781.7 3157.1 1205.2 2369.3 2808.0

ILS-CLR

Gap𝐵 (%) 3.61 0.68 1.25 2.31 1.66 1.57 0.27 1.78 3.48
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Gap𝑀 𝐴𝐸 (%) 22.9 17.5 24.9 23.2 21.0 21.1 27.1 20.3 18.0
Time (s.) 1606.5 1681.7 2190.3 208.8 2440.9 2828.8 468.8 2401.2 2608.5

ILS-CPLR

Gap𝐵 (%) 3.22 1.05 1.01 1.63 1.62 1.93 0.18 1.62 3.42
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Gap𝑀 𝐴𝐸 (%) 22.7 21.8 22.9 25.0 21.1 21.3 25.1 22.1 20.2
Time (s.) 2074.1 1995.0 2018.1 286.0 2531.8 3269.5 1001.4 2402.1 2683.8

ILS-CLR95

Gap𝐵 (%) 4.4 0.44 0.45 2.18 1.61 1.5 0.3 1.72 3.29
Feasibility (%) 100.0 100.0 99.3 (0.8) 100.0 99.7 (0.8) 99.7 (0.8) 100.0 99.9 (1.0) 99.4 (0.7)
Gap𝑀 𝐴𝐸 (%) 27.7 16.5 22.9 24.0 21.6 21.6 27.8 20.9 18.5
Time (s.) 1605.8 1642.1 1865.3 127.3 2412.6 2573.3 185.9 2400.9 2526.4

ILS-CPLR95

3.95 0.87 0.07 1.57 1.53 1.81 0.21 1.46 3.27
Feasibility (%) 99.8 (0.3) 100.0 98.4 (1.0) 100.0 99.3 (1.7) 98.9 (0.5) 100.0 99.8 (0.4) 98.4 (0.9)
Gap𝑀 𝐴𝐸 (%) 26.3 18.4 18.8 23.0 20.2 20.3 24.2 20.8 18.5
Time (s.) 2220.5 2050.3 1814.1 213.1 2690.7 3181.1 1071.7 2401.6 2611.7
p
t
a
s
u
a
i
l
p
f
s

For most instances of size 6 × 6, ILS-Exact finds at least one
feasible production plan within the time limit, but it struggles to find
easible solutions when the size of instances increases. ILS-CLSP
eturns solutions within a reasonable computational time, and the
easible ones represent the best production plan. However, the large
ajority of solutions found by ILS-CLSP are not feasible at the

cheduling level. Such solutions are undesirable, and the reliability of
his model remains low when compared to the other approaches. Setup
osts greatly impact the complexity of the instances since the plans
esulting from their solutions include large lot sizes for some periods to
void high setup costs. These solutions tighten the capacity constraints,
eading to production plans that tend to be infeasible. For the infeasi-
le solutions of ILS-CLSP, the capacity is highly violated, particularly
n scenarios with large setup costs. The safety capacity feature prevents
he model from utilizing more than 75% of the available capacity.

hile this parameter enhances the feasibility of solutions, a significant
umber of infeasible plans persist. This model still exceeds the capacity
y 6% for instances with large scheduling sizes. To ensure feasibility in
ll instances, the model must account for a large safety capacity which
ould lead to poor quality solutions.
ILS-Fixed proposes the best trade-off between objective values

and feasibility for small-size instances. However, ILS-CPLR out-
performs the ILS-Fixed model when the instance size increases.
Increasing the number of periods does not impact the overall perfor-
mance of ILS-CLR and ILS-CPLR, whereas it decreases the quality
of solutions for ILS-Fixed. However, increasing the setup costs has
an impact on the solutions found by all the models, even if ILS-
CLR and ILS-CPLR remain better on average. Our intuition is
that lower setup costs imply small quantities of items for each period,
which remain relatively easy to approximate for scheduling with a fixed
sequence. Larger setup costs involve large lot sizes and multiple items
produced at the same time, resulting in complex scheduling problems
688
that are inadequately approximated with a single sequence. In this
case, machine learning approaches forecast a more accurate capacity
consumption on average, leading to better solutions for medium and
large instance sizes. The models trained to reach 95% of feasibility
provide the production plans with the lowest cost at the expense of
a small decrease in feasibility ratio. Finally, machine learning based
approaches are much less demanding in terms of computational efforts
than lot-sizing models that integrate the full scheduling decisions.

The gap Gap𝑀 𝐴𝐸 between capacity consumption approximation and
real makespan varies drastically between instance types and models.
Most of the solutions of ILS-CLSP and ILS-CLSP75 models com-
ute capacity consumptions that slightly underestimate or overestimate
he real makespan, leading to low Gap𝑀 𝐴𝐸 when compared to other
pproaches. ILS-Exact and ILS-Fixed compute the capacity con-
umption by solving the scheduling problem and only feasible sched-
les are necessary. Therefore, these models may find optimal solutions
t the lot-sizing level computed with nonoptimal schedules, resulting
n a high Gap𝑀 𝐴𝐸 between the capacity consumption found at the
ot-sizing level and the optimal makespan of the resulting scheduling
roblems. Machine learning models predict bad capacity consumptions
or small scheduling sizes, but outperform the Fixed approach on large
cheduling sizes.

6.4. Performance on different parameters

Lot-sizing parameters significantly impact the solution quality of
the optimal plans. This subsection evaluates the performance of the
proposed approach on different metrics. For this set of experiments,
we vary three standard parameters of the lot-sizing problems: demand
variations, setup times, and backlog costs as well as the non-allowance
of backlog.

D. Tremblet et al.

o
b
d
i

s
d
t
s

European Journal of Operational Research 322 (2025) 679–692
Table 3
Results for lot-sizing models by varying backlog costs, setup times, and demand.

Metrics Backlog costs Setup times Demand

Forbidden 1 3 None ×3 ×5 [4,8] [10,50] [10,100]

ILS-Exact

Gap𝐵 (%) 0.04 0.02 0.12 0.99 0.19 0.03 0.04 0.12 0.05
Feasibility (%) 49.7 45.2 70.1 89.2 53.8 41.7 44.6 89.2 90.0
Gap𝑀 𝐴𝐸 (%) 28.0 15.4 30.2 34.4 27.6 24.8 22.5 60.6 59.8
Time (s.) 2232.4 2858.1 2272.7 2113.5 2627.6 2954.4 3173.3 987.0 945.3

ILS-CLSP

Gap𝐵 (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Feasibility (%) 33.6 (4.2) 2.3 (9.6) 33.6 (4.4) 46.7 (3.6) 18.9 (5.2) 10.4 (5.8) 2.3 (7.6) 100.0 100.0
Gap𝑀 𝐴𝐸 (%) 11.2 10.7 11.2 9.2 14.9 18.3 14.3 10.5 9.0
Time (s.) 0.1 0.3 0.1 0.2 0.2 0.4 0.3 0.1 0.1

ILS-CLSP75

Gap𝐵 (%) 0.16 0.14 0.14 0.15 0.44 0.18 1.11 0.02 0.01
Feasibility (%) 97.9 (2.1) 49.0 (3.1) 96.8 (1.7) 99.0 (1.3) 91.8 (2.6) 49.0 58.7 (2.5) 100.0 100.0
Gap𝑀 𝐴𝐸 (%) 16.5 15.2 16.5 19.2 12.4 15.0 13.0 19.5 21.4
Time (s.) 0.6 3.0 0.7 0.4 800.1 0.1 440.2 0.1 0.1

ILS-Fixed

Gap𝐵 (%) 0.25 0.37 0.24 0.22 0.32 0.67 1.29 0.02 0.01
Feasibility (%) 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Gap𝑀 𝐴𝐸 (%) 22.8 23.0 22.8 24.3 19.0 15.5 25.4 26.3 27.5
Time (s.) 1182.8 1776.6 1193.2 1150.6 1359.2 1510.8 1845.9 0.2 0.2

ILS-CLR

Gap𝐵 (%) 0.28 0.31 0.26 0.29 0.38 0.58 1.33 0.02 0.02
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Gap𝑀 𝐴𝐸 (%) 27.0 23.0 27.0 29.9 26.6 22.6 23.6 31.2 32.2
Time (s.) 449.8 1903.0 443.5 227.8 1217.1 1404.5 2112.1 0.1 0.2

ILS-CPLR

Gap𝐵 (%) 0.19 0.24 0.17 0.17 0.21 0.23 1.24 0.02 0.01
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Gap𝑀 𝐴𝐸 (%) 25.0 22.5 25.0 26.1 23.1 20.2 24.9 22.9 22.8
Time (s.) 970.0 2400.3 970.2 794.8 1890.8 2292.8 2400.2 0.2 0.2

ILS-CLR95

Gap𝐵 (%) 0.29 0.33 0.28 0.29 0.38 0.58 1.44 0.03 0.03
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Gap𝑀 𝐴𝐸 (%) 27.8 23.8 27.7 29.9 26.5 22.5 25.3 30.4 31.1
Time (s.) 165.3 1801.5 144.5 246.8 1225.6 1415.7 2138.7 0.2 0.2

ILS-CPLR95

Gap𝐵 (%) 0.2 0.23 0.19 0.16 0.21 0.23 1.21 0.02 0.01
Feasibility (%) 100.0 99.9 (0.6) 100.0 99.6 (2.1) 99.7 (1.5) 99.4 (1.6) 99.7 (1.0) 100.0 100.0
Gap𝑀 𝐴𝐸 (%) 23.0 19.5 22.9 24.6 23.0 20.2 23.3 24.4 25.0
Time (s.) 1059.1 2369.4 1074.6 847.2 1971.0 2306.6 2400.2 0.2 0.2
f
p

Table 3 reports the results aggregated on the three considered
parameters. While the performance of classical models (ILS-CLSP,
ILS-CLSP75, ILS-Exact) varies with the parameters, the machine
learning-based approaches are robust, and their performances are com-
petitive with the fixed scheduling approach for all types of instances.
For example, reducing the backlog costs drastically reduces the number
f feasible plans found by both ILS-CLSP and ILS-CLSP75 . When
acklog cost is low, the lot-sizing solutions are likely to postpone pro-
uction to reduce setups, and thus the estimated capacity consumption
n a period is closer to capacity.

Similarly, when no setup times are considered, ILS-Exact can
find a large number of feasible plans. However, the solutions found for
large-size instances remain bad compared to the other approaches con-
sidered in this work. Note that the feasibility increases with the demand
ince the capacity calculation takes demands into account. For small
emands, the capacity is reduced and it becomes difficult to respect
he capacity constraints. Similarly, increasing the setup times leads to
chedules with high makespans, which reduces the Gap between the

optimal makespan and the approximated one.

6.5. Iterative lot-sizing and scheduling approach

In this subsection, we investigate an iterative procedure to solve
the integrated lot-sizing and scheduling problem by repeatedly solving
the scheduling problem obtained from the lot-sizing decisions. Each
iteration of this algorithm consists of solving the lot-sizing problem
with safety capacities for each period and computing the schedules
of the resulting solution to adjust each safety capacity. If the capacity
constraints are violated for at least one period, the available capacity
is further reduced to limit the capacity consumption. Similarly, in the
case of a feasible production plan, the capacity is increased in the hope
of reaching better solutions. We describe the iterative procedure as
follows:
689
1. Set a percentage of available capacity 𝜎𝑡 and decay 𝜇𝑡 for each
period 𝑡 ∈ 𝑇 .

2. Solve the lot-sizing model for 300 seconds, with capacity 𝐶𝑡 =
𝜎𝑡 ⋅ 𝐶𝑡, ∀𝑡 ∈ 𝑇 .

3. If the problem is infeasible or no feasible solution is reached,
increase 𝜎𝑡 = 𝜎𝑡 + 𝜇𝑡, decrease 𝜇𝑡 = 0.5𝜇𝑡 and go to Step 1.

4. If a feasible solution is obtained, solve the scheduling problems
based on the lot sizes obtained for each period.

5. If the schedules respect the capacity in all periods, increase the
available capacity 𝜎𝑡 = 𝜎𝑡 + 𝜇𝑡 and decrease 𝜇𝑡 = 0.5𝜇𝑡 and go to
Step 1.

6. If the capacity is violated for a set of periods 𝑇 , reduce the
available capacity 𝜎𝑡 = 𝜎𝑡 − 𝜇𝑡 and decrease 𝜇𝑡 = 0.5𝜇𝑡 for each
period 𝑡 ∈ 𝑇 and go to Step 1.

In our experiments, the procedure stops after a time limit of 3600 s
or if 𝜇𝑡 is smaller than 0.001 for any 𝑡 ∈ 𝑇 , and the best feasible plan
obtained so far is returned as the final solution. To solve the lot-sizing
problems, we considered ILS-CLSP, ILS-Fixed and ILS-CLR95
models, denoted respectively by H-CLSP, H-Fixed and H-CLR95 in
the experiments. The latter model leads to the best trade-off between
feasibility, solution quality, and computational time among all other
machine learning models.

Parameters 𝜎𝑡 and 𝜇𝑡 were defined for each model based on pre-
liminary experiments. For H-CLSP, we started with 𝜎𝑡 = 0.8 and
𝜇𝑡 = 0.1, since most of the solution obtained with this model results
in infeasible production plans. On the contrary, H-CLR95 achieved a
large number of feasible plans, so we considered 𝜎𝑡 = 1.0 and 𝜇𝑡 = 0.15
or ILS-CLR95. For ILS-Fixed, we considered a slightly different
rocedure similar to the one proposed by Dauzère-Pérès and Lasserre

(1994). Instead of adjusting the available capacity in Step 5 and 6, the
fixed sequence of operations in the lot-sizing model is replaced by the

D. Tremblet et al.

p
p

p
i
f
c
w
p
l
p
t
w
H
c
t

d

a
l
t

1

European Journal of Operational Research 322 (2025) 679–692
Table 4
Aggregated results for heuristical approach.

Metrics Scheduling Period Setup costs

6 × 6 10 × 10 20 × 5 5 30 50 15 50 100

H-CLSP
Gap𝐵 (%) 2.13 0.67 1.26 0.84 1.23 2.17 0.01 0.72 3.8
Feasibility (%) 98.7 92.0 89.1 99.9 96.1 83.8 100.0 97.7 82.1
Time (s.) 854.3 1266.8 1914.2 89.9 1664.8 2280.6 410.2 1278.6 2346.4

H-Fixed
Gap𝐵 (%) 0.03 2.53 6.25 0.25 2.32 6.24 0.04 0.98 7.79
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Time (s.) 892.4 1274.9 2271.9 260.4 1945.6 2233.1 927.3 1887.0 1624.8

H-CLR95
Gap𝐵 (%) 2.44 0.23 2.0 0.46 1.21 3.0 0.02 0.66 3.99
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Time (s.) 1601.1 1731.9 2208.8 277.3 2519.0 2745.5 478.4 2419.7 2643.8

ILS-CLR
Gap𝐵 (%) 3.37 1.14 2.06 2.91 2.08 1.57 0.32 2.54 3.7
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Time (s.) 1606.5 1681.7 2190.3 208.8 2440.9 2828.8 468.8 2401.2 2608.5
l
f
f
n
r
m
t

c

i
A

p
c

i

O
p
i

1

l
l
a

solutions of the scheduling problems found in Step 4. Similarly, this
rocedure is stopped after a time limit of 3600 s or if the cost of the
roduction plan has not improved after 3 iterations.

Table 4 provides the results of the iterative approach when the main
arameters of the lot-sizing problems vary. The results show that even
n the iterative framework, H-CLSP does not reach 100% feasibility
or most instances. This finding shows that ensuring a feasible plan is a
omplex task, and the machine learning method provided in our work
ill strongly benefit the manufacturing industry. Similarly, H-Fixed
erforms well on small-size instances, but it leads to large costs on
arge-size instances. Although H-Fixed guarantees feasible production
lans, this approach generally fall into weak local optima. On the con-
rary, embedding CLR95 in the iterative framework reaches solutions
ith 100% feasibility and lower costs than the standalone version.
owever, for large-size instances and for instances with large setup
osts, H-CLSP outperforms H-CLR95. As the probability of violating
he capacity for one period increases for large horizon instances, the

procedure struggles to find feasible plans in the first iterations.

6.6. Consideration of uncertainty

This section evaluates the effectiveness of embedding machine
learning models to deal with uncertainty on the shop floor. We consider
the case where the duration of the operations is uncertain. More specif-
ically, after solving the lot-sizing problem, the production schedule to
be executed on the shop floor during each period corresponds to the
solution 𝜋 of the scheduling subproblems. This scheduling is optimized
based on the estimated processing time 𝑝𝑖𝑗 𝑘 of each operation 𝑂𝑖𝑗 on
machine 𝑘. However, variations in processing durations are common
in practice. To account for this, we calculate the actual makespan
based on the schedule 𝜋, but using actual processing times generated
from a uniform distribution

(

𝑝𝑖𝑗 𝑘 − 𝜔 ⋅ 𝑝𝑖𝑗 𝑘, 𝑝𝑖𝑗 𝑘 + 𝜔 ⋅ 𝑝𝑖𝑗 𝑘
)

, where 𝜔 ∈
[0, 1] represents the level of uncertainty. This methodology is used to
simulate the execution of processes that are generally uncertain and
differ from their estimated processing time when executed on the shop
floor. The gap between the expected makespan and the observed one
often leads to an infeasible schedule in practice.

For this set of experiments, we compare ILS-Fixed and ILS-
CLR, as these models yielded the highest percentage of feasible pro-
uction plans in deterministic lot-sizing problems. For ILS-CLR, the

linear model is trained using the ILS-KP method, following the same
pproach as previously described, but accounting for scheduling prob-
ems with uncertain processing times. The features are computed using
he processing times 𝑝𝑖𝑗 𝑘 from deterministic scheduling problems, while

the makespan in the training dataset is calculated based on actual
processing times generated randomly with the procedure presented
above. Note that we consider one trained model for each value of 𝜔.

Table 5 shows the results of these two models for scheduling size
0 × 10 and setup costs of 15. For the experiments, we evaluated
 s

690
the models with parameter 𝜔 taking values 0.05, 0.15, and 0.3. The
table shows that the ILS-Fixed model returns production plans with
ower costs, but with very few feasible production plans, especially
or 𝜔 = 0.3. On the other hand, the ILS-CLR model returns 100%
easible production plans for 𝜔 = 0.05 and 𝜔 = 0.15, and finds a larger
umber of feasible plans compared to the ILS-Fixed approach. These
esults show that the capacity consumption calculation from embedded
achine learning models deals efficiently with task time uncertainty in

he scheduling part.

7. Conclusions and discussions

This paper presents innovative lot-sizing models that rely on ma-
hine learning to improve the approximation of capacity consumption.

The resulting model is interesting for application in the manufactur-
ng industry since it leads to lower production costs, and it ensures
PS systems provide plans that are executable in the workshop. We

have investigated machine learning models based on linear regressions,
iecewise linear regressions, and decision trees to predict capacity
onsumption. As we incorporate these machine learning models into

optimization approaches, they must be appropriately trained to avoid
underestimating capacity consumption. Therefore, we constrain the
learning process to avoid underestimating the capacity of training
samples. In addition, we propose an iterative training sample generator
that helps to train the machine learning model efficiently. For large-
scale instances, the resulting approach outperforms the state-of-the-art
lot-sizing models considered for comparison in this paper, including the
ntegrated approach proposed by Dauzère-Pérès and Lasserre (1994)

and the fixed scheduling model proposed by Wolosewicz et al. (2015).
ur approach provides solutions with lower total costs, in short com-
utational time, and these solutions are feasible for each period taking
nto account the scheduling constraints.

In addition, constrained machine learning models trained with the
iterative procedure result in small final datasets, that are less than
200 samples. Also, since the large-size scheduling instances used to

train the models include a relative gap of around 15%, the models
perform well even when trained with nonoptimal schedules or with
few available data samples from scheduling. We observed that machine
earning models underestimate capacity consumption when trained on
arge-size datasets (more than 100,000 samples) with classical training
pproaches. The iterative training approach we propose in our paper

alleviates this issue. Therefore, we recommend practitioners use all
the available data samples when training the models and, if possible,
employ procedures to enhance the prediction, rather than relying on
large datasets. While we only consider offline learning in our paper,
in practice, the model could be retrained whenever an infeasible plan
occurs. More generally, we can retrain the machine learning model
regularly to account for the schedule implemented in the last periods.

Many extensions of lot-sizing problems include parameters such as
etup carryover or overtime, and our formulation may be easily adapted

D. Tremblet et al.

e

p
b

w

i

i
a
n
i
m
n
c
s
T
w

European Journal of Operational Research 322 (2025) 679–692
Table 5
Results for lot-sizing and scheduling with uncertain processing times.
𝜔 0.05 0.15 0.3

Period 5 30 50 5 30 50 5 30 50

ILS-Fixed

UB 2652.6 15 677.7 26 118.6 2652.6 15 677.7 26 118.6 2652.6 15 677.7 26 118.6
LB 2652.6 15 677.7 26 110.1 2652.6 15 677.7 26 110.1 2652.6 15 677.7 26 110.1
Gap (%) 0.0 0.0 0.0003 0.0 0.0 0.0003 0.0 0.0 0.0003
Feasibility (%) 98.0 (0.3) 91.0 (1.2) 80.0 (1.7) 93.0 (2.6) 56.0 (4.1) 36.0 (4.0) 71.0 (6.4) 4.0 (6.3) 0.0 (6.8)
Time (s.) 0.1 425.5 3204.1 0.1 427.5 3202.1 0.1 424.5 3200.7

ILS-CLR

UB 2656.2 15 694.4 26 146.2 2658.3 15 708.3 26 169.1 2661.3 15 727.9 26 201.8
LB 2656.2 15 694.4 26 146.2 2658.3 15 708.3 26 163.6 2661.3 15 727.9 26 189.0
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0002 0.0 0.0 0.0005
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 97.0 (2.1) 78.0 (2.1) 54.0 (2.2)
Time (s.) 0.0 20.9 779.8 0.1 87.7 2262.5 0.1 271.7 3361.2
t

(

a

by involving the corresponding variables in the training process. As
xplained in Section 4.1, many features related to the lot-sizing param-

eter can be included in the training process, and the prediction may
differ from one value to another. For example, setup carryover can be
considered by adding binary variables indicating information about the
sequencing of the resources, as well as additional constraints to allow
the carryover of a setup if the conditions are met. This information can
then be easily retrieved from production schedules and integrated as
features in the training. As shown in the experiments, integrating ma-
chine learning models into lot-sizing can help to deal with uncertainty
if the schedules used to train the models are built on uncertain envi-
ronments, such as uncertain processing times or machine breakdown.
Also, we restrict our work to single-level lot-sizing problems, where
all the operations related to the same item have identical lot sizes.
However, the consideration of a bill of materials for products, such as in
multi-level lot-sizing problems, provides a more detailed representation
of the operations on the shop floor and would be highly beneficial
for our approach. In addition, the inventory level can be added as a
feature for our machine learning models to express the consumption of
components for the immediate production of successors, leading to a
more accurate approximation of capacity consumption.

The proposed approach aims to complement MRP software by pro-
viding more accurate capacity consumption, but not to replace ad-
vanced planning and scheduling systems. The machine learning and
lot-sizing models do not provide any information on the sequencing
decisions. Our approaches only benefit at the lot-sizing level where
quantities are determined, and not at the scheduling level to sequence
the operations on the shop floor, although the approximation of the
makespan of such approaches can help in approximating the scheduling
roblem. The proposed approach aims to complement MRP software
y providing more accurate capacity consumption, but not to replace

advanced planning and scheduling systems.
This initial work was conducted in a controlled environment, where

e checked if the plans were feasible by solving a scheduling prob-
lem. Future work must investigate the possibility of learning capacity
consumption from real data collected from manufacturing execution
systems (MES), which is one of the objectives of our current Euro-
pean Project ASSISTANT (Castañé et al., 2022). An intermediate step
might study the case where feasibility on the shop floor is checked
n a detailed simulation. Such a detailed simulation will provide data

for complex shop floors with many machines and jobs, and it may
ncorporate the instability commonly encountered in workshops, where
 given production load may be feasible in one week but not in the
ext one (because of machine breakdown, or other uncertainties). Other
nteresting avenues for future research include the generalization of
achine learning tools to other machine learning models such as neural
etworks. The models are also specifically trained to predict capacity
onsumption in a unique scheduling environment, and each model
hould be retrained when changing the configuration of the shop floor.
he generalization of makespan prediction to each scheduling size

ould be highly beneficial.

691
CRediT authorship contribution statement

David Tremblet: Writing – review & editing, Validation, Software,
Methodology. Simon Thevenin: Writing – review & editing, Valida-
ion, Supervision, Methodology. Alexandre Dolgui: Writing – review

& editing, Validation, Supervision, Methodology.

Acknowledgments

The present work was conducted within the project ASSISTANT
https://assistant-project.eu/) funded by the European Commission,

under grant agreement number 101000165, H2020 – ICT-38-2020,
Artificial intelligence for manufacturing. The authors would also like
to thank the region Pays de la Loire for their financial support.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.ejor.2024.11.039.

References

Almeder, C., Klabjan, D., Traxler, R., & Almada-Lobo, B. (2015). Lead time consid-
erations for the multi-level capacitated lot-sizing problem. European Journal of
Operational Research, 241(3), 727–738.

Atamtürk, A., & Hochbaum, D. S. (2001). Capacity acquisition, subcontracting, and lot
sizing. Management Science, 47(8), 1081–1100.

Axsäter, S. (1986). Technical Note—On the feasibility of aggregate production plans.
Operations Research, 34(5), 796–800.

Badejo, O., & Ierapetritou, M. (2022). Integrating tactical planning, operational plan-
ning and scheduling using data-driven feasibility analysis. Computers & Chemical
Engineering, 161, Article 107759.

Begnaud, J., Benjaafar, S., & Miller, L. A. (2009). The multi-level lot sizing problem
with flexible production sequences. IIE Transactions, 41(8), 702–715.

Beykal, B., Avraamidou, S., & Pistikopoulos, E. N. (2022). Data-driven optimization of
mixed-integer bi-level multi-follower integrated planning and scheduling problems
under demand uncertainty. Computers & Chemical Engineering, 156, Article 107551.

Biggs, M., Hariss, R., & Perakis, G. (2022). Constrained optimization of objective
functions determined from random forests. Production and Operations Management.

Bish, E. K., & Wang, Q. (2004). Optimal investment strategies for flexible resources,
considering pricing and correlated demands. Operations Research, 52(6), 954–964.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1983). Classification and
regression trees. Wadsworth International Group.

Casazza, M., & Ceselli, A. (2019). Heuristic data-driven feasibility on integrated
planning and scheduling. In Advances in optimization and decision science for society,
services and enterprises: ODS, genoa, Italy, September 4-7, 2019 (pp. 115–125). Cham:
Springer International Publishing.

Castañé, G., Dolgui, A., Kousi, N., Meyers, B., Thevenin, S., Vyhmeister, E., &
Östberg, P.-O. (2022). The ASSISTANT project: AI for high level decisions in
manufacturing. International Journal of Production Research, 1–19.

Chod, J., & Zhou, J. (2014). Resource flexibility and capital structure. Management
Science, 60(3), 708–729.

Copil, K., Wörbelauer, M., Meyr, H., & Tempelmeier, H. (2016). Simultaneous lotsizing
and scheduling problems: a classification and review of models. OR Spectrum, 39(1),
1–64.

Cozad, A., Sahinidis, N. V., & Miller, D. C. (2014). Learning surrogate models for
simulation-based optimization. AIChE Journal, 60(6), 2211–2227.

https://assistant-project.eu/
https://doi.org/10.1016/j.ejor.2024.11.039
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb1
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb1
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb1
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb1
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb1
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb2
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb2
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb2
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb3
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb3
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb3
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb4
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb4
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb4
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb4
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb4
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb5
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb5
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb5
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb6
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb6
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb6
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb6
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb6
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb7
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb7
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb7
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb8
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb8
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb8
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb9
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb9
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb9
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb10
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb10
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb10
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb10
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb10
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb10
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb10
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb11
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb11
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb11
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb11
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb11
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb12
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb12
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb12
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb13
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb13
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb13
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb13
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb13
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb14
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb14
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb14

D. Tremblet et al. European Journal of Operational Research 322 (2025) 679–692
Dauzère-Pérès, S., & Lasserre, J.-B. (1994). Integration of lotsizing and scheduling
decisions in a job-shop. European Journal of Operational Research, 75(2), 413–426.

Dauzère-Pérès, S., & Lasserre, J.-B. (2002). On the importance of sequencing decisions
in production planning and scheduling. International Transactions in Operational
Research, 9(6), 779–793.

Dias, L. S., & Ierapetritou, M. G. (2019). Data-driven feasibility analysis for the
integration of planning and scheduling problems. Optimization and Engineering,
20(4), 1029–1066.

Dias, L. S., & Ierapetritou, M. G. (2020). Integration of planning, scheduling and control
problems using data-driven feasibility analysis and surrogate models. Computers &
Chemical Engineering, 134, Article 106714.

Drexl, A., & Kimms, A. (1997). Lot sizing and scheduling — Survey and extensions.
European Journal of Operational Research, 99(2), 221–235.

Fajemisin, A. O., Maragno, D., & den Hertog, D. (2023). Optimization with constraint
learning: A framework and survey. European Journal of Operational Research.

Filho, O. S. S., Cezarino, W., & Ratto, J. (2010). Aggregate production planning:
Modeling and solution via excel spreadsheet and solver. IFAC Proceedings Volumes,
43(17), 89–94, 5th IFAC Conference on Management and Control of Production
Logistics.

Fischetti, M., & Jo, J. (2018). Deep neural networks and mixed integer linear
optimization. Constraints, 23(3), 296–309.

Fleischmann, B., & Meyr, H. (1997). The general lotsizing and scheduling problem.
Operations-Research-Spektrum, 19(1), 11–21.

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing
adversarial examples.

Hu, X., Duenyas, I., & Kapuscinski, R. (2008). Optimal joint inventory and
transshipment control under uncertain capacity. Operations Research, 56(4),
881–897.

Hurink, J., Jurisch, B., & Thole, M. (1994). Tabu search for the job-shop scheduling
problem with multi-purpose machines. OR Spektrum, 15, 205–215.

Hwang, H.-C. (2021). Subcontracting and lot-sizing with constant capacities.
Mathematical Programming, 193(1), 271–314.

Jun, S., Lee, S., & Chun, H. (2019). Learning dispatching rules using random forest in
flexible job shop scheduling problems. International Journal of Production Research,
57(10), 3290–3310.

Larroche, F., Bellenguez, O., & Massonnet, G. (2021). Clustering-based solution
approach for a capacitated lot-sizing problem on parallel machines with
sequence-dependent setups. International Journal of Production Research, 60(21),
6573–6596.

Lasserre, J. B. (1992). An integrated model for job-shop planning and scheduling.
Management Science, 38(8), 1201–1211.

Lee, C.-Y., Piramuthu, S., & Tsai, Y.-K. (1997). Job shop scheduling with a genetic
algorithm and machine learning. International Journal of Production Research, 35(4),
1171–1191.

Liu, J.-L., Wang, L.-C., & Chu, P.-C. (2019). Development of a cloud-based advanced
planning and scheduling system for automotive parts manufacturing industry.
Procedia Manufacturing, 38, 1532–1539.

Maragno, D., Wiberg, H., Bertsimas, D., Birbil, Ş. İ., den Hertog, D., & Fajemisin, A. O.
(2023). Mixed-integer optimization with constraint learning. Operations Research.

Mckay, M. D., Beckman, R. J., & Conover, W. J. (2000). A comparison of three methods
for selecting values of input variables in the analysis of output from a computer
code. Technometrics, 42(1), 55–61.

Meyr, H. (2002). Simultaneous lotsizing and scheduling on parallel machines. European
Journal of Operational Research, 139(2), 277–292.

Mirshekarian, S., & Šormaz, D. N. (2016). Correlation of job-shop scheduling problem
features with scheduling efficiency. Expert Systems with Applications, 62, 131–147.

Mišić, V. V. (2020). Optimization of tree ensembles. Operations Research, 68(5),
1605–1624.

Ou, J., & Feng, J. (2019). Production lot-sizing with dynamic capacity adjustment.
European Journal of Operational Research, 272(1), 261–269.
692
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Raaymakers, W., & Weijters, A. (2003). Makespan estimation in batch process indus-
tries: A comparison between regression analysis and neural networks. European
Journal of Operational Research, 145(1), 14–30.

Rebennack, S., & Krasko, V. (2020). Piecewise linear function fitting via mixed-integer
linear programming. INFORMS Journal on Computing, 32(2), 507–530.

Rohaninejad, M., Janota, M., & Hanzálek, Z. (2023). Integrated lot-sizing and schedul-
ing: Mitigation of uncertainty in demand and processing time by machine learning.
Engineering Applications of Artificial Intelligence, 118, Article 105676.

Rohaninejad, M., Kheirkhah, A., & Fattahi, P. (2014). Simultaneous lot-sizing and
scheduling in flexible job shop problems. International Journal of Advanced
Manufacturing Technology, 78(1–4), 1–18.

Schneckenreither, M., Haeussler, S., & Gerhold, C. (2020). Order release planning
with predictive lead times: a machine learning approach. International Journal of
Production Research, 59(11), 3285–3303.

Seeanner, F., & Meyr, H. (2012). Multi-stage simultaneous lot-sizing and scheduling for
flow line production. OR Spectrum, 35(1), 33–73.

Şenyiğit, E., Düğenci, M., Aydin, M. E., & Zeydan, M. (2013). Heuristic-based neural
networks for stochastic dynamic lot sizing problem. Applied Soft Computing, 13(3),
1332–1339.

Shang, C., Huang, X., & You, F. (2017). Data-driven robust optimization based on kernel
learning. Computers & Chemical Engineering, 106, 464–479.

Shinichi, N., & Taketoshi, Y. (1992). Dynamic scheduling system utilizing machine
learning as a knowledge acquisition tool. International Journal of Production
Research, 30(2), 411–431.

Stadtler, H. (2005). Supply chain management and advanced planning—-basics,
overview and challenges. European Journal of Operational Research, 163(3),
575–588.

Tenhiälä, A. (2010). Contingency theory of capacity planning: The link between process
types and planning methods. Journal of Operations Management, 29(1–2), 65–77.

Thevenin, S., Zufferey, N., & Glardon, R. (2017). Model and metaheuristics for a
scheduling problem integrating procurement, sale and distribution decisions. Annals
of Operations Research, 259(1), 437–460.

Tremblet, D., Thevenin, S., & Dolgui, A. (2022). Predicting makespan in flexible job
shop scheduling problem using machine learning. IFAC-PapersOnLine, 55(10), 1–6,
10th IFAC Conference on Manufacturing Modelling, Management and Control MIM
2022.

Tremblet, D., Thevenin, S., & Dolgui, A. (2023). Makespan estimation in a flexible
job-shop scheduling environment using machine learning. International Journal of
Production Research, 1–17.

Trigeiro, W. W., Thomas, L. J., & McClain, J. O. (1989). Capacitated lot sizing with
setup times. Management Science, 35(3), 353–366.

Urrutia, E. D. G., Aggoune, R., & Dauzère-Pérès, S. (2014). Solving the integrated lot-
sizing and job-shop scheduling problem. International Journal of Production Research,
52(17), 5236–5254.

Wolosewicz, C., Dauzère-Pérès, S., & Aggoune, R. (2015). A Lagrangian heuristic for an
integrated lot-sizing and fixed scheduling problem. European Journal of Operational
Research, 244(1), 3–12.

Yang, L., Liu, S., Tsoka, S., & Papageorgiou, L. G. (2016). Mathematical programming
for piecewise linear regression analysis. Expert Systems with Applications, 44,
156–167.

Yu, K., Yan, P., Kong, X. T., Yang, L., & Levner, E. (2024). Sequential auction for
cloud manufacturing resource trading: A deep reinforcement learning approach to
the lot-sizing problem. Computers & Industrial Engineering, 188, Article 109862.

Zhang, C., Zhang, D., & Wu, T. (2021). Data-driven branching and selection for
lot-sizing and scheduling problems with sequence-dependent setups and setup
carryover. Computers & Operations Research, 132, Article 105289.

http://refhub.elsevier.com/S0377-2217(24)00930-5/sb15
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb15
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb15
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb16
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb16
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb16
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb16
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb16
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb17
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb17
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb17
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb17
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb17
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb18
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb18
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb18
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb18
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb18
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb19
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb19
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb19
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb20
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb20
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb20
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb21
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb21
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb21
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb21
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb21
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb21
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb21
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb22
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb22
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb22
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb23
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb23
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb23
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb24
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb24
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb24
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb25
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb25
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb25
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb25
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb25
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb26
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb26
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb26
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb27
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb27
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb27
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb28
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb28
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb28
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb28
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb28
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb29
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb29
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb29
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb29
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb29
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb29
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb29
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb30
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb30
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb30
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb31
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb31
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb31
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb31
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb31
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb32
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb32
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb32
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb32
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb32
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb33
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb33
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb33
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb34
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb34
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb34
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb34
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb34
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb35
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb35
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb35
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb36
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb36
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb36
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb37
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb37
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb37
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb38
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb38
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb38
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb39
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb39
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb39
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb39
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb39
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb39
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb39
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb40
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb40
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb40
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb40
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb40
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb41
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb41
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb41
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb42
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb42
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb42
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb42
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb42
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb43
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb43
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb43
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb43
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb43
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb44
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb44
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb44
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb44
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb44
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb45
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb45
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb45
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb46
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb46
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb46
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb46
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb46
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb47
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb47
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb47
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb48
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb48
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb48
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb48
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb48
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb49
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb49
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb49
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb49
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb49
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb50
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb50
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb50
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb51
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb51
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb51
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb51
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb51
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb52
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb52
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb52
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb52
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb52
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb52
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb52
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb53
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb53
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb53
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb53
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb53
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb54
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb54
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb54
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb55
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb55
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb55
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb55
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb55
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb56
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb56
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb56
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb56
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb56
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb57
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb57
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb57
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb57
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb57
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb58
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb58
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb58
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb58
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb58
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb59
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb59
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb59
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb59
http://refhub.elsevier.com/S0377-2217(24)00930-5/sb59

	Constraint learning approaches to improve the approximation of the capacity consumption function in lot-sizing models
	Introduction
	Literature review
	Constraint Learning framework for production planning
	Approximation of capacity consumption in lot-sizing models
	Machine learning for scheduling applications

	Problem description
	Capacitated Lot-sizing Problem (CLSP)
	Flexible Job-Shop Scheduling Problem (FJSP)

	Machine Learning based method
	Features Selection
	Model of capacity consumption with machine learning
	Linear Regression
	Piecewise linear regression
	Regression Tree

	Prediction improvement
	Training procedure to prevent infeasible solutions
	Data generation procedure
	Random procedure
	Iterative training procedure

	Numerical experiments
	Instance definition
	Machine learning models comparison
	Performance of the proposed approach
	Performance on different parameters
	Iterative lot-sizing and scheduling approach
	Consideration of uncertainty

	Conclusions and discussions
	CRediT authorship contribution statement
	Acknowledgments
	Supplementary data
	Appendix A. Supplementary data
	Supplementary data
	Appendix A. Supplementary data
	References

