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Abstract

This article studies the problem of estimating the state variable of non-smooth sub-
differential dynamics constrained in a bounded convex domain given some real-time obser-
vation. On the one hand, we show that the value function of the estimation problem is a
viscosity solution of a Hamilton Jacobi Bellman equation whose sub and super solutions have
different Neumann type boundary conditions. This intricacy arises from the non-reversibility
in time of the non-smooth dynamics, and hinders the derivation of a comparison principle
and the uniqueness of the solution in general. Nonetheless, we identify conditions on the drift
(including zero drift) coefficient in the non-smooth dynamics that make such a derivation
possible. On the other hand, we show in a general situation that the value function appears
in the small noise limit of the corresponding stochastic filtering problem by establishing a
large deviation result. We also give quantitative approximation results when replacing the
non-smooth dynamics with a smooth penalised one.
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1 Introduction
Sequential estimation aims to combine a dynamical system with some measurements as they
become available, to reduce potential uncertainties in the dynamics and thus produce a
model prediction that is more consistent with available data. Such a goal can be pursued for
a wide range of dynamical systems: finite dimensional (ODE) or infinite dimensional (PDE),
linear or non-linear dynamics, unconstrained (smooth dynamics) or constrained (non-smooth
dynamics combined with variational inequality), deterministic (observer theory) or stochastic
(filtering theory). In the present paper, we focus on constrained dynamics in finite dimension,
and we link the framework of stochastic filtering with the deterministic framework aiming
at defining observer dynamics. Stochastic filtering for unconstrained ODEs has been known
since the 1960s with the seminal work of [KB61] for linear dynamics, and then generalized for
nonlinear dynamics, see [Kus67; Dun67; Zak69; Jaz70]... These results were then extended
to some constrained dynamics, in particular for the Skorokhod problem with the series of
works by [Par78b; Par78a; Huc90]. As for the deterministic view, the observer theory based
on Minimum Energy Estimation has been known since the pioneering work of [Mor68], see
also the presentation proposed by [Fle97]. While the unconstrained case has been well
understood since [JB88a], with an asymptotic connection to stochastic filtering introduced
in [Hij84] and further justified in [Fle97], the case of constrained dynamics was not studied
until a recent attempt [Cha+23] for a simple one-dimensional dynamics. The constraint
is there introduced using the formalism of non-smooth sub-differential dynamics [Mor71;
Tyr70]. A main difficulty of this setting is the loss of time reversibility: in contrast with
smooth dynamics, the non-smooth dynamics is well-posed in forward time only, making
the connection harder between stochastic filtering and deterministic estimation. However,
[Cha+23] was able to make a few strides to reconcile both points of view.

In this paper, we generalize the works of [Wil04; JB88a; Cha+23] to non-smooth dynamics
associated with trajectories that must remain in a bounded domain. In particular, we fully
connect the deterministic representation to stochastic filtering by extending the results of
[JB88a] in a suitable way: we show that the deterministic view corresponds to the small
noise limit of the stochastic framework by proving a large deviation result. Following [JB88a;
Fle97], we rely on a viscosity solution setting to deal with the underlying Hamilton-Jacobi-
Bellman (HJB) equations. However, due to the non-reversibility of non-smooth dynamics,
our approach differs from them. In particular, the sub-solution and the super-solution satisfy
different Neumann-type boundary conditions in the viscosity sense, and the comparison
principle is unknown to our knowledge. To circumvent this difficulty, the small noise limit is
established using a dual formulation. We also show how the penalized estimator developed
in [Cha+23] to deal with the constraint converges to the fully constrained estimator in a
quantitative way, and we provide numerical illustrations.

1.1 Problem statement
Let G ⊂ Rn be a bounded open domain that is convex with C2 boundary. We consider a
class of non-smooth dynamical systems of the form

ẋω(s) + ∂χG(xω(s)) ∋ b(s, xω(s)) + σ(s, xω(s))ω(s), s > 0, (1)

with an initial condition xω(0) ∈ G.
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Here, the state variable at time s is denoted xω(s) ∈ Rn, while the functions b : R+×G→
R
n and σ : R+×G→ R

n×r are Lipschitz-continuous functions. Thus, these functions can be
extended in a Lipschitz-continuous manner to the entire space, and we use the same notation
for the extensions. The term ω(s) ∈ Rr represents the state disturbance, χG : Rn → {0,+∞}
is the characteristic function of the domain G, and ∂χG(xω(s)) is the subdifferential of the
convex function χG at xω(s). Recall that this subdifferential corresponds to the normal cone
NG(xω(s)) to G at xω(s). This means that when the state xω(s) reaches the boundary of G,
the dynamics are reflected, ensuring that xω(s) remains withinG. In particular, the dynamics
are driven by the vector field b(s, xω(s)) + σ(s, xω(s))ω(s), but whenever xω(s) approaches
the boundary of G, the normal cone prevents it from leaving the domain, reflecting the
trajectory back into the domain in the sense of Skorokhod.

In the sequel, we assume that the disturbance belongs to the Lebesgue space L2(0,+∞;Rr)
that consists of all measurable functions w : (0,+∞) −→ R

r that are square integrable, i.e.
the norm

∥w∥L2(0,+∞;Rr) :=

(∫ +∞

0

∥w(s)∥2 ds
) 1

2

,

is finite, and where functions which agree almost everywhere are identified.
The controlled system is well posed. Indeed, following similar arguments as in [ET05,

Theorem 1], one can prove that for any square-integrable disturbances ω, for any initial data
xω(0) ∈ G, the system (1) admits a unique absolutely continuous solution xω such that the
differential inclusion (1) holds for almost every s ≥ 0.

We consider a measurement procedure h : R+×G→ R
m, so that observations associated

with a trajectory of the dynamics (1) are given by

∀t ≥ 0, ẏ(t) = h(t, xω(t)) + η(t), (2)

where η(t) ∈ Rm is the observation disturbance, which is assumed to be square-integrable.
Our purpose is to build an estimator at time t for the state of a dynamics described by
(1) given the measurement (ẏ(s))0≤s≤t produced by (2). We want this estimator to be
causal in the sense of [Kre98], meaning that the computed state only depends on the past
measurements.

Remark 1.1. In most deterministic observation problems, the observation is usually denoted
by y. Here, we denote by y a primitive of the observation for consistency with the stochastic
filtering setting. As in practice, only ẏ will appear in the estimator equations, and defining
the observation with a time-derivative is a mere notation convention.

An iconic case of non-smooth dynamics in an unbounded domain is G = R+, studied in
the context of estimation in [Cha+23].

Before describing our results, we briefly review some existing methods in linear and non-
linear estimation.

1.2 Unconstrained linear dynamics: Kalman filter
In the linear case, the system is characterized by the following dynamics:

b(t, x) = Ax, σ(t, x) = Σ, h(t, x) = Hx, ψ(x) =
1

2
[x− x̂0]

⊤P−1
0 [x− x̂0],

where A ∈ Rn×n, Σ ∈ Rn×r, H ∈ Rm×n, P0 ∈ S++
n (R) is a positive-definite matrix, and

x̂0 ∈ Rn. The unconstrained linear dynamics, with a linear observation operator, serves as
a classical example for defining a sequential estimator in both deterministic and stochastic
systems. This was first introduced by [KB61], and a full treatment of stochastic filtering in
this case can be found in [Jaz70; DD77]. For a deterministic perspective, we refer to [Wil04].
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Essentially, both approaches lead to the definition of the estimator given by{
˙̂x(t) = Ax̂(t) + P (t)H⊤[ẏ(t)−Hx̂(t)], t > 0,

x̂(0) = x̂0,
(3)

where the symmetric positive matrix P ∈ S+
n (R) is a solution of the following Riccati

equation {
Ṗ (t) = AP (t) + P (t)A⊤ +ΣΣ⊤ − P (t)⊤HH⊤P (t), t > 0,

P (0) = P0.
(4)

Equation (3) provides a recursive estimator that can be computed in real time, the matrix
P (t) being pre-computed beforehand.

1.3 Non-linear dynamics: Mortensen observer
If we now consider a general non-linear unconstrained dynamics of the form

ẋω(s) = b(s, xω(s)) + σ(s, xω(s))ω(s), s > 0,

the Mortensen estimator [Mor68] generalises the Kalman estimator in the deterministic set-
ting. Given an observation ẏ ∈ L2((0, t);Rm), we introduce a value function called cost-to-
come as the function defined by

U (t, x) ≜ inf
ω∈L2((0,t);Rr)

xω(t)=x

ψ(xω(0)) +

∫ t

0

ℓ(s, xω(s), ω(s)) ds, (5)

where ψ : Rn → R+ is Lipschitz and such that ψ(x) → +∞ as |x| → +∞,

ℓ(s, x, ω) ≜
1

2
|ω|2 + 1

2
|ẏ(s)− h(s, x)|2. (6)

The Mortensen observer x̂ is defined as a minimiser of x 7→ U (t, x). If uniqueness holds
for this minimiser, we simply define

∀t ≥ 0, x̂(t) ≜ argmin
x∈Rn

U (t, x). (7)

For a well-posedness result in a non-linear setting, we refer to [BS23]. If moreover U (t, x) is
C2 at (t, x̂(t)) with invertible Hessian, the optimality conditions for x̂(t) yield

˙̂x(t) = b(t, x̂(t)) + [∇2U (t, x̂(t))]−1∇h(t, x̂(t))[ẏ(t)− h(t, x̂(t))], t > 0. (8)

This recursive feed-back structure extends the one of the Kalman estimator. Indeed, (8)
precisely corresponds to (3) in the linear setting of Section 1.2. In this linear setting, the
cost-to-come reads

U (t, x) =
1

2
[x− x̂(t)] · P−1(t)[x− x̂(t)] +

∫ t

0

1

2
|ẏ(s)−Hx(s)|2ds,

enabling us to recover the Kalman estimator.

1.4 Outline of the article
In this paper, we aim at adapting Mortensen’s approach to the framework of non-smooth
dynamics as described in (1). In this setting, the normal cone to G is involved, and the
system dynamics belongs to the class of problems known as sweeping dynamics. This class
has attracted considerable interest in recent years within the optimal control community, as
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it models systems with state constraints that evolve along trajectories governed by set-valued
dynamics, see for example [CMN19] and the references therein. Notable contributions to the
study of sweeping dynamics include works on the Pontryagin Maximum Principle (PMP),
such as those in [CM17; PFS19; NZ22], and on the characterization of the value function
through HJB approach, as investigated in [HPV24] and the references therein.

Despite this progress, a major challenge in this domain arises from the irreversible nature
of sweeping process trajectories. Unlike classical dynamical systems, these trajectories do
not allow for direct and backward time evolutions to be treated symmetrically. This tem-
poral asymmetry complicates both the theoretical analysis and the practical computation of
solutions, particularly in the context of backward reachability or filtering problems.

To the best of our knowledge, the analysis of sweeping processes within the context
of filtering has yet to be fully explored. By extending Mortensen’s framework to such non-
smooth dynamics, we aim to address this gap and provide some new insights into the interplay
between set-valued dynamics and optimal filtering techniques.

The paper is organized as follows. The cost-to-come function for the constrained setting
is defined in Section 2.1 and characterised as a viscosity solution with intricate boundary
conditions. An approximation procedure is further introduced to bring the problem back
to the setting of Section 1.3, the sub-differential being replaced by a penalisation term that
pulls the dynamics back in G when it escapes. A quantitative rate of convergence is obtained,
the proof being done in Section 3.1. We then describe the link with non-smooth stochastic
filtering. Existing links between stochastic filtering and deterministic estimation are recalled
in Sections 2.3.1-2.3.2. Our results for the non-smooth setting are stated in Section 2.3.3
and proved in Section 4. A numerical illustration is given in the supplementary materials.

2 Description of the results
Throughout the paper, we assume σ(x)⊤σ(x) to be uniformly invertible, meaning that there
exists a constant γ0 > 0 such that for every x ∈ G, the following condition holds:

σ(x)⊤σ(x) ≥ γ0 Id, (9)

where Id denotes the identity matrix of appropriate dimension. This condition ensures that
the matrix σ(x)⊤σ(x) is uniformly positive definite, implying that σ(x) has full column rank
for all x ∈ G.

Following [JB88b; RW00], we introduce the following value function.

Definition 2.1 (Cost-to-come). The cost-to-come to the point x ∈ G at time t ≥ 0, given
an observation ẏ ∈ L2((0, t);Rm), is the function defined by

V (t, x) ≜ inf
(xω(0),ω)∈AG

t,x

ψ(xω(0)) +

∫ t

0

ℓ(s, xω(s), ω(s)) ds, (10)

where ℓ(s, x, ω) is defined as in (6) and the admissible set is defined by

AG
t,x ≜ {(xω(0), ω) ∈ G× L2((0, t);Rr) : xω follows (1) with xω(t) = x}.

The uniform invertibility of σ⊤σ, as stated in assumption (9), is a sufficient condition
for At,x to be non-empty, because the convexity of G allows connecting any pair of points
in G by a straight line without escaping G. Note also that for any (xω(0), ω) ∈ AG

t,x, there
exists a unique trajectory xω that is absolutely continuous on [0, T ] for every T > 0 (and by
definition of AG

t,x, xω(t) = x).
Before studying V itself, we describe an approximating procedure that brings the problem

back to smooth unconstrained dynamics. The continuity of V will be a consequence of this
approximation as shown in Theorem 2.2 below.
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Remark 2.1 (Inward pointing drift). Let us assume that b(x) · n(x) ≤ 0 for every x ∈ ∂G,
n(x) being the outward normal vector at x. For simplicity, we further assume that n = r
and σ ≡ Id. In this setting, the control problem (10) of the differential inclusion (1) reduces
to a standard control problem for a differential equation under state constraints. Indeed,
introducing the solution zω of

żω(s) = b(s, zω(s)) + ω(s), (11)

we notice that

V (t, x) = inf
ω, zω(t)=x

∀s∈[0,t], zω(s)∈G

ψ(zω(0)) +

∫ t

0

ℓ(s, zω(s), ω(s)) ds.

The ≤ inequality stems from the fact that any trajectory of (11) that stays in G is a trajectory
of (1). The ≥ inequality results from the fact that any trajectory of (1) can be realised by a
trajectory of (11) for a ω that has a lower L2-norm, using that b · n ≤ 0.

2.1 Penalisation approach
In this section, we introduce an estimation problem for an approximation of (1) defined in the
whole space Rn. With a slight abuse of notations, we assume that our coefficients b, σ, ψ and
h are defined and Lipschitz-continuous on Rn. Let πG denote the orthogonal projection on
the closed convex setG. For κ > 0, we introduce the penalisation fκ : G→ R

n of ∂χG defined
by fκ(x) ≜ κ[x− πG(x)]. Since G is convex, we can follow the Moreau-Yosida regularisation
[Mor71], which was extended to more general domains in [Thi08; JV17]. We also refer to
[PFS19] for an alternative smooth exponential penalization method. This approach has been
successfully employed to derive optimality conditions for control problems involving sweeping
processes. In our context, we introduce the penalised dynamics as follows

ẋκω(t) + fκ(x
κ
ω(t)) = b(t, xκω(t)) + σ(t, xκω(t))ω(t), t > 0. (12)

The penalised cost-to-come is defined as

V κ(t, x) ≜ inf
ω∈L2(0,t),
xκ
ω(t)=x

ψ(xκω(0)) +

∫ t

0

ℓ(s, xκω(s), ω(s)) ds. (13)

By standard arguments in control theory [FS06, Section II.10], V κ is a continuous function.
Our first main results are the following.

Theorem 2.2 (Quantitative convergence of V κ). For every t > 0,

sup
(s,x)∈[0,t]×G

|V κ(s, x)− V (s, x)| ≤ Cκ−1/4,

for some constant C > 0 that only depends on t.

Corollary 2.3 (Convergence of observers). For every t > 0, any limit point of a family
(x̂κ(t))κ>0 of minimisers for x 7→ V κ(t, x) is a minimiser of x 7→ V (t, x).

Theorem 2.2 and its corollary are proved in Section 3.1. These consistency results show
that the estimation problem for (12) is indeed a good approximation of the estimation prob-
lem for (1), and provide the convergence of Mortensen observers.
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2.2 Hamilton-Jacobi-Bellman equation
Since our estimation procedure is based on the functions V κ and V , we need a way to
characterise them. Using the standard dynamic programming approach, the cost-to-come is
the unique viscosity solution of a HJB equation. The notion of viscosity solution is standard
to deal with the lack of regularity of solutions to HJB equations, see [CL83; BL91]. For the
sake of simplicity, we assume in this subsection that

n = r and σ ≡ Id.

The following result corresponds to [JB88a, Theorem 3.1]. It is proved in [Fle97, Section 2],
under the additional assumption that h is bounded. However, the result still holds under our
running assumptions, an appropriate comparison principle for unbounded viscosity solutions
being provided by [DL06].

Theorem 2.4 (Viscosity solution). V κ is the unique viscosity solution in (0, T ]×Rn of the
HJB equation

∂tV
κ(t, x) + (b(t, x)− fκ(x)) · ∇V κ(t, x) +

1

2
|∇V κ(t, x)|2 − 1

2
|ẏ(t)− h(t, x)|2 = 0,

with the initial condition V κ(0, x) = ψ(x).

Formally taking the κ → +∞ limit, we prove that this equation still holds for V within
the open domain G,

∂tV (t, x) + b(t, x) · ∇V (t, x) +
1

2
|∇V (t, x)|2 − 1

2
|ẏ(t)− h(t, x)|2 = 0. (14)

However, intricate boundary conditions now appear.

Theorem 2.5 (Viscosity solution). The value function V satisfies the HJB equation (14)
in the sense described in [BL91, Section 2],

(i) V is a viscosity sub-solution of the HJB equation (14) with the boundary condition

b(t, x) · n(x) + ∂V

∂n
(t, x) = 0, x ∈ ∂G. (15)

(ii) V is a viscosity super-solution of the HJB equation (14) with the different boundary
condition

b(t, x) · n(x) + 1

2

∂V

∂n
(t, x) = 0, x ∈ ∂G. (16)

(iii) If b·n ≤ 0 on ∂G, then V is the unique viscosity solution of the HJB equation (14)-(16),
and the comparison principle holds for (14)-(16).

In the boundary conditions (15)-(16), n(x) denotes the outward normal vector at the
point x ∈ ∂G. Theorem 2.5 is proved in Section 3.2. The used notion of solution is the
standard notion of viscosity solution with Neumann boundary condition [Lio85; BL91], in
which the boundary condition is relaxed by allowing the equation to hold at the boundary.
In general, the boundary conditions (15) and (16) do not coincide. Up to our knowledge,
proving a comparison principle for this setting is an open question, which will be the subject
of future works.

However, if b · n ≤ 0 on ∂G, the definition of sub-solution shows that any viscosity
sub-solution of (14) with the boundary condition (15) is also a viscosity sub-solution of
(14) with the boundary condition (16). The comparison principle is then proved in [BL91,
Theorem 3] and uniqueness holds for the viscosity solution of the HJB equation (14)-(16).
Furthermore, Remark 3.5 shows in this case that V is a viscosity super-solution of (14) on
the closed domain [0, T ]×G, with no further boundary condition. This recovers the notions
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of constrained viscosity solution introduced in [Son86; IK96]. This was expected, since the
assumption b ·n ≤ 0 reduces the control problem (10) to the standard control problem of (11)
under state constraints using Remark 2.1, and (11) satisfies the inward pointing condition
from [Son86]. The related comparison principle is proved in [CL90, Theorem III.2].

Note also that, in the case of optimal control for sweeping processes, a HJB equation
was derived in [HPV24] characterizing a value function for forward-in-time optimal control
problems. It is worth noting that this work considers a general process with an admissible
set G(t) that evolves over time. The HJB equation is formulated with different boundary
conditions for sub- and supersolutions, which account for the time-dependent evolution of the
set G. In contrast, in our setting, the set G is fixed, but the state process evolves backward
in time.

2.3 Links with stochastic filtering
In general, viscosity solutions of HJB equations lack regularity; this may hinder an efficient
computation of their minimisers. To circumvent this, a standard approach is to smooth
them by adding a (small) laplacian term. Interestingly, [Hij84; JB88a; Fle97] proved that
this smoothing procedure is connected to the renowned stochastic filtering problem [KS68;
Kus67; Jaz70]... In our constrained setting, this amounts to replacing the model dynamics
(1) by the stochastic reflected dynamics

dXε
t + ∂χG(X

ε
t )(dt) ∋ b(t,Xε

t )dt+
√
εσ(t,Xε

t )dBt, (17)

on a filtered probability space (Ω,F ,P, (Ft)t≥0), the law of Xε
0 being qε0(x)dx. The integral

of the deterministic model noise ω in (1) has been replaced by an adapted Brownian motion
(Bt)0≤t≤T in Rr. Under our current Lipschitz assumptions, well-posedness for (17) is proved
in [PR14, Section 4.2.2]. We complement (17) with the observation process defined by

dY εt = h(t,Xε
t )dt+

√
εdB′

t, Y ε0 = 0, (18)

where (B′
t)0≤t≤T is an adapted Brownian motion in Rm independent of (Bt)0≤t≤T . Equation

(18) is the stochastic analogous of (2). The purpose of stochastic filtering is to compute the
law πεt of Xε

t knowing the observation up to time t, i.e. the law of Xε
t conditionally to the

filtration σ(Y εs , 0 ≤ s ≤ t):

∀φ ∈ Cb(G,R),

∫
G

φdπεt = E
[
φ(Xε

t )|σ(Y εs , 0 ≤ s ≤ t)
]
.

Hence,
∫
G
φdπεt is the optimal estimator in the least-square sense of φ(Xε

t ) given (Y εs )0≤s≤t.
From [Par78b, Section 3], πεt is expected to have a density w.r.t. the Lebesgue measure,
and thus πεt does not charge the boundary ∂G. We are now interested in the asymptotic
behavior of πεt when ε goes to 0 . In particular, we show that πεt concentrates on minimisers
of x 7→ V (t, x) as ε → 0, corresponding to the Mortensen observer x̂(t) when it is uniquely
defined. Note that for each t ≥ 0, there exists at least one minimiser for the function
x 7→ V (t, x) since it is continuous on the compact set G. We first review the existing results
for non-constrained systems in Sections 2.3.1-2.3.2, before stating our new results for the
non-smooth case in Section 2.3.3.

2.3.1 Kalman-Bucy filter

We go back to the linear setting of Section 1.2,

b(t, x) = Ax, σ(t, x) = Σ, h(t, x) = Hx,

and we initialise Xε
0 from the Gaussian law N (x̂0, εP0). The processes defined by (17) and

(18) are then Gaussian at each time, so that the same goes for the conditioned process: it is
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thus sufficient to compute the conditional mean and covariance matrix (X̂ε
t , P

ε
t ). Classically

[KB61; Jaz70; DD77], the covariance P εt = εP (t) is deterministic, and

dX̂ε
t = AX̂ε

t dt+ P (t)H⊤[dY εt −HX̂ε
t dt], X̂ε

0 = x̂0, (19)

where P (t) is the solution to the Riccati equation (4). As a consequence,

πεt (dx) = Z−1
ε exp

[
− [x− X̂ε

t ] · P−1(t)[x− X̂ε
t ]

2ε

]
dx,

where Zε is a normalisation constant. As ε → 0, this density concentrates on the solution
x̂(t) of the deterministic equation (3). If we freeze a C1 realisation (y(t))t≥0 of the process
(Y εt )t≥0, Equation (19) exactly correspond to (3), and the related quadratic cost-to-come
corresponds to the logarithm of the density of πεt . The Mortensen observer in this linear
setting thus appears as a maximum-likelihood estimator.

2.3.2 Small noise filtering for the penalised dynamics

Let us apply the results of [JB88a] to (a variation of) the penalised dynamics (12) from
Section 2.1, in the case n = r and σ ≡ Id. In this setting, the analogous of (17)-(18) reads{

dXκ,ε
t = b(t,Xκ,ε

t )dt− fκ(X
κ,ε
t )dt+

√
εdBt,

dY κ,εt = h(t,Xκ,ε
t )dt+

√
εdB′

t,

where (Xκ,ε
t )t≥0 is a diffusion process in Rn with initial law qκ,ε0 . The results of [JB88a]

assume that the coefficients are smooth bounded functions with bounded derivatives, and
we assume the same for b, fκ and h in this sub-section, up to replacing the penalisation fκ
from Section 2.1 by a suitable regularisation. Since the present sub-section is mainly here
for illustration and comparison purposes, we did not try to extend these assumptions.

The filtering density πκ,εt can be computed as the solution of a non-linear stochastic
PDE known as the Kushner-Stratonovich equation [Kus67]. Alternatively, πκ,εt (dx) can be
computed by normalising the positive (random) measure qκ,εt (x)dx that solves the Zakai
equation [Zak69; Par80]:

dqκ,εt (x) = (Lκ,εt )⋆qκ,εt (x)dt+
1

ε
qκ,εt h(t, x) · dY κ,εt , (20)

where (Lκ,εt )⋆ is the formal L2-adjoint of the infinitesimal generator Lκ,εt of the Markov
process (Xκ,ε

t )t≥0, which is given on C2 test functions φ : Rn → R by

Lκ,εt φ(x) = [b(t, x)− fκ(x)] · ∇φ(x) +
ε

2
∆φ(x).

Following the theory of pathwise filtering [Dav81], we introduce the random function pκ,εt
defined by

pκ,εt (x) ≜

[
− 1

ε
Y κ,εt h(t, x)

]
qκ,εt (x), (21)

which solves the robust Zakai equation

∂tp
κ,ε
t (x) = −[b(t, x)− fκ(x)−∇h(t, x)Y κ,εt ] · ∇pκ,εt +

ε

2
∆pκ,εt − 1

ε

{
1

2
|h(t, x)|2

+ Y κ,εt · [∂t + Lκ,εt ]h(t, x)− 1

2
|∇h(t, x)Y εt |2 + ε∇ · [b(t, x)− fκ(x)−∇h(t, x)Y εt ]

}
. (22)

For each continuous realisation y = (y(t))t≥0 of the process (Y κ,εt )t≥0, equation (22) has a
unique (deterministic) solution pκ,ε which continuously depends on y [FP82, Lemma 3.2].
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This allows us to recover the random function pκ,εt by solving (22) for each continuous path
y. This result motivates the approach of [JB88a]: they freeze a C1 realisation (y(t))t≥0 of
the process (Y κ,εt )t≥0, before to study the related solution pκ,ε of (22) to make a connection
with V κ as ε → 0. Alternatively, Equation (21) gives a meaning to qκ,ε from pκ,ε for each
continuous realisation y = (y(t))t≥0 of (Y κ,εt )t≥0: qκ,ε is now a continuous function of y.
[Fle97, Section 5] then freezes a C1 realisation y to obtain that

∂tq
κ,ε(t, x) = (Lκ,εt )⋆qκ,ε(t, x)dt− 1

ε

[
1

2
|h(t, x)|2 − ẏ(t) · h(t, x)

]
qκ,ε(t, x),

which corresponds to the Stratonovich form of (20) where (Y κ,εt )t≥0 was replaced by (y(t))t≥0.
Now, let us introduce

q̃κ,ε(t, x) ≜ exp

[
− 1

2ε

∫ t

0

|ẏ(s)|2ds
]
qκ,ε(t, x), V κ,ε(t, x) ≜ −ε log q̃κ,ε(t, x).

The exponential factor is a normalisation term that does not affect the minimisation of
x 7→ V κ,ε(t, x). The following result [Fle97, Lemma 5.1] makes the connection with the
penalised cost-to-come V κ defined in (5).

Theorem 2.6 (Small noise limit). For every compact set K ⊂ Rn, if

sup
x∈K

|−ε log qκ,ε0 (x)− ψ(x)| ≤ CKε
1/2, (23)

for some CK > 0 independent of ε, then for every t > 0,

sup
(s,x)∈[0,t]×K

|V κ,ε(s, x)− V κ(s, x)| ≤ C ′
Kε

1/2,

for some constant C ′
K > 0 that only depends on (t, κ,K).

As a consequence (see e.g. [JB88a, Lemma 6.1]), we get the following large deviation
result.

Corollary 2.7 (Laplace principle). If (23) holds for every compact set, then for every
bounded continuous Φ : Rn → R,

∀t ≥ 0, −ε log
∫
Rn

e−Φ(x)/εq̃κ,ε(t, x)dx −−−→
ε→0

inf
x∈Rn

Φ(x) + V κ(t, x).

This statement is equivalent to a large deviation principle for q̃κ,ε(t, x)dx, see e.g. [Dem09;
FK06]. As ε→ 0, this tells that the non-normalised density qε,κt concentrates on the minimis-
ers of x 7→ V κ(t, x). When uniqueness holds for this minimiser, this precisely corresponds
to the Mortensen observer (7) as defined in Section 1.3. This extends the observation that
we made in the Gaussian setting of Section 2.3.1. A stronger large deviation result for the
conditional density qκ,εt given y is proved in [Hij84].

2.3.3 Small noise filtering for reflected dynamics

Still in the setting n = r and σ ≡ Id, we now extend the previous results to the reflected
dynamics: {

dXε
t + ∂χG(X

ε
t )(dt) ∋ b(t,Xε

t )dt+
√
εdBt,

dY εt = h(t,Xκ,ε
t )dt+

√
εdB′

t,

the initial law of x being qε0(x)dx. As previously, the filtering density πεt (dx) can be computed
by normalising the solution qεt (x)dx of the Zakai equation. In this setting, the Zakai equation
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was studied in [Par78b; Par78a; Huc90]. Equation (20) is now completed with a “no-flux”
boundary condition:{

dqεt (x) = ∇ · [−qεt (x)b(t, x) + ε
2∇q

ε
t (x)] +

1
εq
ε
t (x)h(x) · dY εt , x ∈ G,

−qεt (x)b(t, x) · n(x) + ε
2
∂qεt
∂n (x) = 0, x ∈ ∂G,

As previously, we freeze a C1 realisation y = (y(t))t≥0 to bring the study back to a deter-
ministic function qε that continuously depends on y. After normalising

q̃ε(t, x) ≜ exp

[
− 1

2ε

∫ t

0

|ẏ(s)|2ds
]
qε(t, x),

we end up with the following equation:{
∂tq̃

ε(t, x) = ∇ · [−q̃εt (x)b(t, x) + ε
2∇q̃

ε
t (x)]− 1

2ε |ẏ(t)− h(t, x)|2q̃ε(t, x),
−q̃ε(t, x)b(t, x) · n(x) + ε

2
∂q̃
∂n (t, x) = 0, x ∈ ∂G.

(24)

We assume that qε0 is defined and C1 in a neighbourhood of ∂G, so that existence and
uniqueness for a solution of (24) in C([0, T ]×G)∩C1,2((0, T ]×G) stems from [Fri08, Chapter
5, Corollary 2]. If we define V ε ≜ −ε log q̃ε as previously, we obtain the boundary condition

b(t, x) · n(x) + 1

2

∂V ε

∂n
(t, x) = 0, x ∈ ∂G,

which differs from the one of the sub-solution in Theorem 2.5. This suggests that the anal-
ogous of Theorem 2.6 is no more true in the present setting (except if b · n ≤ 0 on ∂G).
However, we still managed to prove the large deviation result corresponding to Corollary
2.7.

Theorem 2.8 (Laplace principle). If

sup
x∈G

|−ε log qε0(x)− ψ(x)| −−−→
ε→0

0,

then for every continuous Φ : G→ R,

∀t ≥ 0, −ε log
∫
G

e−Φ(x)/εq̃ε(t, x)dx −−−→
ε→0

inf
x∈G

Φ(x) + V (t, x).

As ε→ 0, this tells that the non-normalised density qεt concentrates on the minimisers of
x 7→ V (t, x), recovering the desired Mortensen observer. Theorem 2.8 is proved in Section 4.

Remark 2.9 (Loss of the boundary condition). Interestingly, the boundary condition for V ε

differs from the one of the sub-solution in Theorem 2.5. This reminds us of a fundamental
difference between Xε and xω around the boundary ∂G. Indeed, the time spent by Xε on ∂G
has 0 Lebesgue-measure, whereas xω can have a continuous dynamics on ∂G. This is also
related to the non-reversibility of non-smooth dynamics.

3 Study of the value function
This section is devoted to the proofs of Theorems 2.2 and 2.5, i.e. the uniform convergence
of V κ and the viscosity solution description of V .
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3.1 Convergence of the penalised problem
Lemma 3.1 (Control of the penalisation). For all (xω(0), ω) ∈ G× L2((0, t),Rr):

(i) supκ>0 sup0≤s≤t|xκω(s)| ≤ C,

(ii) supκ>0 sup0≤s≤t
∫ t
0
|fκ(xκω(s))|ds ≤ C,

(iii) sup0≤s≤t dist(x
κ
ω(s), G) ≤ Cκ−1/2,

for a constant C > 0 that only depends on (t, ∥ω∥L2).

Proof. First, we write that

|xκω(t)| ≤ |xω(0)|+
∫ t

0

|fκ(xκω(s))|+ |b(s, xκω(s)) + σ(s, xκω(s))ω(s)|ds. (25)

We define p(x) ≜ 1
2dist(x,G)

2 = 1
2 (x− πG(x))

2. Since G is closed and convex, p is C1 with
∇p = κ−1fκ, so that

p(xκω(t)) + κ

∫ t

0

|∇p(xκω(s))|2ds =
∫ t

0

∇p(xκω(s)) · [b(s, xκω(s)) + σ(s, xκω(s))ω(s)]ds,

and then(∫ t

0

|∇p(xκω(s))|2ds
)1/2

≤ κ−1

(∫ t

0

|b(s, xκω(s)) + σ(s, xκω(s))ω(s)|2ds
)1/2

, (26a)

p(xκω(t)) ≤ κ−1

(∫ t

0

|b(s, xκω(s)) + σ(s, xκω(s))ω(s)|2ds
)1/2

. (26b)

Plugging the square of (26a) into the square of (25), the Gronwall lemma yields (i) using
that coefficients are Lipschitz. Plugging (i) into (26a)-(26b) then yields (ii)-(iii).

Lemma 3.2 (Convergence of penalised curves). For every (xω(0), ω) in G× L2((0, t),Rr),

sup
0≤s≤t

|xκω(s)− xω(s)| ≤ Cκ−1/4,

for a constant C > 0 that only depends on (t, ∥ω∥L2).

Proof. We define the curves y, yκ and yκ by

y(t) ≜ xω(0) +

∫ t

0

b(s, xω(s)) + σ(s, xω(s))ω(s)ds,

yκ(t) ≜ xω(0) +

∫ t

0

b(s, xκω(s)) + σ(s, xκω(s))ω(s)ds,

yκ(t) ≜ πG(x
κ
ω(t))− xκω(t) + yκ(t),

together with the correction terms

φ(t) ≜ xω(t)− y(t), φκ(t) ≜ −
∫ t

0

fκ(x
κ
ω(s))ds.

We then apply [Tan79, Lemma 2.2] to πG(x
κ
ω) = yκ + φκ and xω = y + φ:

|πG(x
κ
ω(t))− xω(t)|2 ≤ |yκ(t)− y(t)|2 + 2

∫ t

0

[yκ(t)− y(t)− yκ(s) + y(s)]d(φk − φ)(s)

≤ |yκ(t)− y(t)|2 + 2

∫ t

0

[yκ(t)− yκ(t)− yκ(s) + yκ(s)]d(φk − φ)(s)

+ 2

∫ t

0

[yκ(t)− y(t)− yκ(s) + y(s)]d(φk − φ)(s).

12



The first integral is bounded by

2 sup
0≤s≤t

|πG(x
κ
ω(s))− xκω(s)|

∫ t

0

d|φκ|(s) + d|φ|(s) ≤ Cκ−1/2,

where we used Lemma 3.1-(iii), and Lemma 3.1-(ii) to bound∫ t

0

d|φκ|(s) =
∫ t

0

|fκ(xκω(s))|ds

uniformly in κ. Integrating by parts, the second integral becomes∫ t

0

[φk(s)− φ(s)]d(yκ − y)(s) =

∫ t

0

[xκω(s)− xω(s)− yκ(s) + y(s)]d(yκ − y)(s)

=

∫ t

0

[xκω(s)− xω(s)]d(y
κ − y)(s)− 1

2
|yκ(t)− y(t)|2.

We now notice that yκ − y is absolutely continuous w.r.t. the Lebesgue measure, and we
bound the remaining integral by

2

∫ t

0

|xκω(s)− xω(s)|2 + |b(s, xκω(s)) + σ(s, xκω(s))ω(s)− b(s, xω(s))− σ(s, xω(s))ω(s)|2ds,

where we also used that ab ≤ 2(a2 + b2). Lemma 3.1-(iii) gives C ′ > 0 such that

|xκω(s)− xω(s)| ≤ C ′κ−1/2 + |πG(x
κ
ω(s))− xω(s)|.

Gathering all the terms and using that coefficients are Lipschitz, the Gronwall lemma gives
the desired result.

Corollary 3.3 (Time-regularity). For every (xω(0), ω) in G× L2((0, t),Rr),

(i) ∀s ∈ [0, t],
∫ t
s
|ẋω(r)|2dr ≤ C(t− s) +

∫ t
s
|ω(r)|2dr,

(ii) ∀r, s ∈ [0, t], |xω(r)− xω(s)| ≤ C|r − s|1/2,
for a constant C > 0 that only depends on (t, ∥ω∥L2).

Proof. Starting from the penalised dynamics:

ẋκω(r) = −fκ(xκω(r)) + b(r, xκω(r)) + σ(r, xκω(r))ω(r).

We now take the square and we integrate. Using Lemma 3.1-(i) and (26a) to bound the
penalisation, we obtain a bound on xκω in H1((s, t),Rn) that does not depend on κ. Since
xκω uniformly converges towards xω, this bound implies weak convergence towards xω in
H1((s, t),Rn). The H1-norm being lower semi-continuous w.r.t. weak convergence, this
proves (i). Using the Cauchy-Schwarz inequality, (ii) is a consequence of (i).

Proof of Theorem 2.2. From Lemma 3.2-(i), V κ can be bounded by a constant M > 0
uniformly in κ. As a consequence, we can restrict the minimisation (13) to controls ω with
square L2-norm lower than 2M . We then plug the result of Lemma 3.2 into the minimisation
(13): since ψ and h are Lipschitz-continuous, this completes the proof.

Proof of Corollary 2.3. Let (x̂κ(t))κ>0 be a family of minimisers for x 7→ V κ(t, x). As in the
above proof, we restrict the minimisation (13) to controls ω with square L2-norm lower than
2M . The coefficients being Lipschitz, it is standard to show that V κ(t, x̂κ(t)) is realised by
some ωκ ∈ L2(0, t) with ∥ωκ∥2L2(0,t) ≤ 2M . Lemma 3.1-(i) then shows that (x̂κ(t))κ>0 is
bounded, hence pre-compact. Since uniform convergence implies Γ-convergence, the result
follows.
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3.2 Viscosity solution
The key-ingredient is the following dynamic programming principle.

Lemma 3.4 (Bellman principle). For any x in G and 0 ≤ t − τ ≤ t ≤ T , the dynamic
programming holds:

V (t, x) = inf
(xω(0),ω)∈AG

t,x

V (t− τ, xω(t− τ)) +

∫ t

t−τ
ℓ(s, xω(s), ω(s))ds.

Proof. The proof relies on classical arguments; however, given that we are working with
backward processes and that the trajectory does not necessarily admit a unique backward
solution for each control, we prefer to provide the proof here.

Let (xω(0), ω) belong to AG
t,x. For any (xω′(0), ω′) ∈ At−τ,xω(t−τ), we define

ω̃(s) ≜

{
ω′(s) if 0 ≤ s ≤ t− τ,

ω(s) if t− τ < s ≤ t.

By construction, (xω′(0), ω̃′) belongs to AG
t,x, and according to [ET05], there exists a unique

trajectory xω′ emanating from xω′(0) with the control ω̃. Hence, xω̃ ≡ x′ω on [0, t − τ ] and
xω̃ ≡ xω on [t− τ, T ], and we have

V (x, t) ≤ ψ(xω′(0)) +

∫ t−τ

0

ℓ(s, xω′(s), ω′(s)) +

∫ t

t−τ
ℓ(xω(s), ω(s), s)ds.

This inequality being true for every (xω′(0), ω′) ∈ At−τ,xω(t−τ), we get that

V (t, x) ≤ V (t− τ, xω(t− τ)) +

∫ t

t−τ
ℓ(s, xω(s), ω(s))ds.

Moreover, for every ε > 0, some (xω(0), ω) ∈ AG
t,x exists such that

V (t, x) + ε

≥ ψ(xω(0)) +

∫ t−τ

0

ℓ(s, xω(s), ω(s)) +

∫ t

t−τ
ℓ(s, xω(s), ω(s))ds

≥ V (t− τ, xω(t− τ)) +

∫ t

t−τ
ℓ(s, xω(s), ω(s))ds,

using that (xω(0), ω|[0,t−τ ]) ∈ AG
t−τ,xω(t−τ). Since such a (xω(0), ω) exists for every ε > 0,

this completes the proof.

We now turn to the proof of Theorem 2.5.

Proof for the sub-solution part. Given t > 0 and x ∈ G, let φ : R+ × G → R be a C1

test function such that V − φ has a local maximum at (t, x). We now use that the control
additively enters the dynamics (σ ≡ Id). If x ∈ G, for every every ω̃ ∈ Rn we can find
(xω(0), ω) ∈ AG

t,x such that ω is continuous, ω(t) = ω̃ and xω(s) ∈ G for s < t. If x ∈ ∂G,
this is still possible provided that [b(t, x)+ ω̃] ·n(x) ≥ 0. From the local maximum condition,

φ(t, x)− φ(t− τ, xω(t− τ)) ≤ V (t, x)− V (t− τ, xω(t− τ))

≤
∫ t

t−τ
ℓ(s, xω(s), ω(s))ds,

where the second inequality stems from Lemma 3.4. By construction of ω, s 7→ xω(s) is
differentiable at t. Dividing by τ and taking the τ → 0+ limit gives that

∂tφ(t, x) + [b(t, x) + ω̃] · ∇φ(t, x)− 1

2
|ω̃|2 − 1

2
|ẏ(t)− h(t, x)|2 ≤ 0.

14



If x ∈ G, maximising over ω̃ ∈ Rn gives the sub-solution property; moreover, the maximum
is realised by ω̃ = ∇φ(t, x). If x ∈ ∂G, from the definition of sub-solution [BL91, Section 2],
we can assume that [b(t, x) + ∇φ(t, x)] · n(x) ≥ 0. This allows us to take ω̃ = ∇φ(t, x) to
realise the maximum. In both cases, we obtained the sub-solution property.

Proof for the super-solution part. Given (t, x) in R+ × G, we consider a C1 test function
φ : R+ ×G → R such that V − φ has a local minimum at (t, x). Positive numbers δ, h > 0
exist such that

|t− t′| ≤ δ and |x− x′| ≤ h⇒ V (t′, x′)− φ(t′, x′) ≥ V (t, x)− φ(t, x). (28)

Fix now ε > 0. Since V is bounded on G by some M > 0, we can restrict the minimisation
(10) to controls ω with square L2-norm lower than 2M . From Corollary 3.3-(ii), s 7→ xω(s) is
continuous on [0, t] uniformly in (xω(0), ω) ∈ AG

t,x such that ∥ω∥2L2(0,t) ≤ 2M . This provides
η > 0 such that for every (xω(0), ω) ∈ AG

t,x with ∥ω∥2L2(0,t) ≤ 2M ,

0 ≤ τ ≤ η ⇒ |xω(t− τ)− x| ≤ h.

Let (τk)k≥1 be a sequence that converges to 0 with 0 < τk ≤ min(δ, η). In Lemma 3.4, it
is sufficient to minimise over (xω(0), ω) ∈ AG

t,x with ∥ω∥2L2(0,t) ≤ 2M . By definition of the
infimum, there exists (xωk

(0), ωk) ∈ AG
t,x such that ∥ωk∥2L2(0,t) ≤ 2M and

V (t, x) + ετk ≥ V (t− τk, xωk
(t− τk)) +

∫ t

t−τk
ℓ(s, xωk

(s), ωk(s))ds. (29)

Using (28), we get that

φ(t, x)− φ(t− τk, xωk
(t− τk)) ≥ V (t, x)− V (t− τk, xωk

(t− τk))

≥ −ετk +
∫ t

t−τk
ℓ(s, xωk

(s), ωk(s))ds.

Since φ is C1 and s 7→ xωk
(s) is absolutely continuous, this yields∫ t

t−τk
∂sφ(s, xωk

(s)) + ẋωk
(s) · ∇φ(s, xωk

(s))− ℓ(s, xωk
(s), ωk(s))ds ≥ −ετk. (30)

We now carefully handle the boundary.

Case x ∈ G: the uniform in k continuity of xωk
provides that for large enough k,

∀s ∈ [t− τk, t], xωk
(s) ∈ G, hence ẋωk

(s) = b(s, xωk
(s)) + ωk(s).

Moreover,

b(s, xωk
(s)) · ∇φ(s, xωk

(s)) +
1

2
|∇φ(s, xωk

(s))|2

≥ [b(s, xωk
(s)) + ωk(s)] · ∇φ(s, xωk

(s))− 1

2
|ωk(s)|2,

hence from (30),∫ t

t−τk

[
∂sφ(s, xωk

(s)) + b(s, xωk
(s)) · ∇φ(s, xωk

(s)) +
1

2
|∇φ(s, xωk

(s))|2

− 1

2
|ẏ(s)− h(s, xωk

(s))|2
]
ds ≥ −ετk. (31)
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Using again that s 7→ xωk
(s) is continuous at s = t uniformly in k, we divide by τk and we

take the k → +∞ limit to obtain that

∂tφ(t, x) + b(t, x) · ∇φ(t, x) + 1

2
|∇φ(t, x)|2 − 1

2
|ẏ(t)− h(t, x)|2 ≥ −ε.

Since this holds for every ε > 0, this gives the super-solution property.

Case x ∈ ∂G and ∇φ(t, x) · n(x) > 0: since G has a C2 boundary, there exists a
neighbourhood U of x in Rn such that

G ∩ U = {y ∈ U , γ(y) < 0}, ∂G ∩ U = {y ∈ U , γ(y) = 0},

for a C2 function γ : U → R with n(x) = ∇γ(x). We now decompose

ẋωk
(s) · ∇φ(s, xωk

(s)) = [ẋωk
(s) · ∇γ(xωk

(s))][∇φ(s, xωk
(s)) · ∇γ(xωk

(s)]

+ π⊥
∇γ(xωk

(s))(ẋωk
(s)) · π⊥

∇γ(xωk
(s))(∇φ(s, xωk

(s))),

where π⊥
∇γ denotes the orthogonal projection on the hyperplane with normal vector ∇γ. To

alleviate notations, we write ∇γ instead of ∇γ(xωk
(s)). We have π⊥

∇γ(ẋωk
(s)) = π⊥

∇γ(b(s, xωk
(s)))+

π⊥
∇γ(ωk(s)) hence

π⊥
∇γ(b(s, xωk

(s))) · π⊥
∇γ(∇φ(s, xωk

(s))) +
1

2
|π⊥

∇γ(∇φ(s, xωk
(s)))|2

≥ [π⊥
∇γ(b(s, xωk

(s))) + π⊥
∇γ(ωk(s))] · π⊥

∇γ(∇φ(s, xωk
(s)))− 1

2
|π⊥

∇γ(ωk(s))|2. (32)

On the other hand, the uniform in k continuity guarantees that for large enough k,

∀s ∈ [t− τk, t], ∇φ(s, xωk
(s)) · ∇γ(xωk

(s)) ≥ 0,

so that, for almost every s ∈ [t− τk, t],

[ẋωk
(s) · ∇γ][∇φ(s, xωk

(s)) · ∇γ] ≤ [b(s, xωk
(s)) · ∇γ + ωk(s) · ∇γ][∇φ(s, xωk

(s)) · ∇γ],

and we can reason as in (32). Gathering all the terms in (30) gives (31), and we conclude as
before.

Case x ∈ ∂G and ∇φ(t, x) · n(x) = 0: the Cauchy-Schwarz inequality yields∣∣∣∣ ∫ t

t−τk
[ẋωk

(s) · ∇γ][∇φ(s, xωk
(s)) · ∇γ]ds

∣∣∣∣
≤

(∫ t

t−τk
[ẋωk

(s) · ∇γ]2ds
)1/2(∫ t

t−τk
[∇φ(s, xωk

(s)) · ∇γ]2ds
)1/2

, (33)

where we write ∇γ instead of ∇γ(xωk
(s)) as in the previous case. From Corollary 3.3-(i),

the first integral on the r.h.s can be bounded in terms of
∫ t
t−τk |ωk(s)|

2ds. From (29), using
the continuity of V together with the continuity of xωk

uniformly in k, this integral goes to
0 as k → +∞.

In the current viscosity setting, we can always assume that φ is C2. Moreover, γ is C2 too.
Using ∇φ(t, x) ·∇γ(x) = 0 and Corollary 3.3-(ii), this yields |∇φ(s, xωk

(s)) ·∇γ(xωk
(s))|2 ≤

Cτk, for C > 0 independent of (s, k). From (33), this implies

τ−1
k

∫ t

t−τk
[ẋωk

(s) · ∇γ(xωk
(s))][∇φ(s, xωk

(s)) · ∇γ(xωk
(s))(xωk

(s))]ds −−−−−→
k→+∞

0.

From (30)-(32) and ∇φ(t, x) · n(x) = 0, reasoning as in the previous case concludes.
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Case x ∈ ∂G and ∇φ(t, x) · n(x) < 0: we notice that∫ t

t−τk
ẋωk

(s)∇γ(xωk
(s))ds = γ(x)− γ(xωk

(t− τk)) ≥ 0,

hence∫ t

t−τk
[ẋωk

(s) · ∇γ(xωk
(s))][∇φ(xωk

(s)) · ∇γ(xωk
(s)]ds

≤
∫ t

t−τk
[ẋωk

(s) · ∇γ(xωk
(s))][∇φ(xωk

(s)) · ∇γ(xωk
(s))−∇φ(t, x) · ∇γ(x)]ds.

The integral on the r.h.s. can be handled as we did for (33) to get that

lim sup
k→+∞

τ−1
k

∫ t

t−τk
[ẋωk

(s) · ∇γ(xωk
(s))][∇φ(xωk

(s)) · ∇γ(xωk
(s))]ds ≤ 0.

Going back to (30)-(32), we reason as before, we send k → +∞ and then ε→ 0. This gives
the incomplete property:

∂tφ(t, x) + π⊥
n(x)(b(t, x)) · π

⊥
n(x)(∇φ(t, x)) +

1

2
|π⊥
n(x)(∇φ(t, x))|

2 − 1

2
|ẏ(t)− h(t, x)|2 ≥ 0.

The boundary condition being imposed in the viscosity sense [BL91, Section 2], we can
assume that b(t, x) · n(x) + 1

2∇φ(t, x) · n(x) ≤ 0, so that

[b(t, x) · n(x)][∇φ(t, x) · n(x)] + 1

2
|∇φ(t, x) · n(x)|2 ≥ 0,

because ∇φ(t, x) · n(x) ≤ 0. Adding this to the incomplete property concludes.

Remark 3.5 (Super-solution property at the boundary). When b · n ≤ 0 on ∂G, we deduce
from the last case of the above proof that V is actually a viscosity super-solution of

∂tV (t, x) + b(t, x) · ∇V (t, x) +
1

2
|∇V (t, x)|2 − 1

2
|ẏ(t)− h(t, x)|2 = 0,

on the full [0, T ]×G for every T > 0 (no more boundary condition). The related comparison
principle then enters the scope of [CL90, Theorem III.2].

4 Small noise filtering for reflected dynamics
This section is devoted to the proof of Theorem 2.8. Our approach is a simple instance of
the general machinery developed in [FK06]. Let us a fix a continuous Φ : G → 0 and t > 0.
By regularisation and density, we can assume that Φ is defined and C1 on a neighbourhood
of G. This allows us to apply [Fri08, Chapter 5, Corollary 2] to get that

∂sΦ
ε(s, x) + b(s, x) · ∇Φε(s, x) + ε

2∆Φε(s, x)− 1
2ε |ẏ(s)− h(s, x)|2Φε(s, x) = 0,

Φε(t, x) = e−Φ(x)/ε, x ∈ G,
∂Φε

∂n (s, x) = 0, (s, x) ∈ [0, t)× ∂G.

has a unique solution Φε in C([0, t] × G) ∩ C1,2([0, t) × G). From [Huc90, Lemma 3.2], we
get the duality relation∫

G

Φε(0, x)q̃ε(t, x)dx =

∫
G

Φε(t, x)q̃ε(0, x)dx. (34)
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The log-transform V εΦ ≜ −ε log Φε then satisfies
∂sV

ε
Φ(s, x) + b(s, x) · ∇V εΦ(s, x) + ε

2∆V
ε
Φ(s, x)− 1

2 |∇V
ε
Φ(s, x)|2

+ 1
2 |ẏ(s)− h(s, x)|2 = 0, (s, x) ∈ [0, t)×G,

V εΦ(t, x) = Φ(x), x ∈ G,
∂V ε

Φ

∂n (s, x) = 0, (s, x) ∈ [0, t)× ∂G.

From this, we proceed as in [Fle97, Section 5] to give a control representation for V εΦ. On a
filtered probability space (Ω,F ,P, (Fs)0≤s≤t), let (Bs)0≤s≤t be an adapted Brownian motion.
For 0 ≤ s ≤ t, x ∈ G and any square-integrable adapted process (αr)s≤r≤t, we define the
controlled reflected dynamics

dY ε,αr + χG(Y
ε,α
r )(ds) ∋ b(s, Y ε,αr )dr + αrdr +

√
εdBr, s ≤ r ≤ t,

with initial condition Y ε,αs = x. Since V εΦ is C1,2, a standard verification argument now gives
that

V εΦ(s, x) = inf
x,α

Y ε,α
s =x

E

[ ∫ t

s

1

2
|αr|2 +

1

2
|ẏ(r)− h(r, Y ε,αr )|2dr +Φ(Y ε,αt )

]
. (35)

The next result is the analogous of [Fle97, Lemma 5.1] or Theorem 2.6.

Lemma 4.1. There exists C > 0 independent of ε such that

sup
(s,x)∈[0,t]×G

|V εΦ(s, x)− V 0
Φ(s, x)| ≤ Cε1/4.

Proof. Since G is bounded, choosing e.g. α = 0 in (35), we get that V εΦ is uniformly bounded
by some M > 0 independent of ε. Thus, we can restrict the minimisation to control processes
(αr)s≤r≤t with square L2-norm lower than 2M . From [PR14, Proposition 4.16-I] we get that

E
[
sup
s≤r≤t

|Y ε,αr |2
]
≤ CM ,

and from [PR14, Proposition 4.16-II] that

E
[
sup
s≤r≤t

|Y ε,αr − Y 0,α
r |2

]
≤ CMε

1/2,

for CM > 0 independent of ε. We then plug this into the minimisation (35): since Φ and
h are Lipschitz-continuous, we conclude by using the Cauchy-Schwarz inequality for the
1
2 |ẏ(r)− h(r, Y ε,αr )|2 term.

Proof of Theorem 2.8. Going back to (34), the assumption on qε0(x) = q̃ε(0, x) and Lemma
4.1 give that

−ε log
∫
G

e−Φ(x)/εqε(t, x)dx = −ε log
∫
G

e−[V 0
Φ(0,x)+ψ(x)+rε(x)]/εdx,

for some continuous rε that uniformly converges to 0 as ε → 0. The standard Laplace
principle (see e.g. [JB88a, Lemma 6.1]) now shows that the r.h.s. converges towards
infx∈G V

0
Φ(0, x) + ψ(x). However,

inf
x∈G

V 0
Φ(0, x) + ψ(x)

= inf
xω(0),ω

Φ(xω(t)) + ψ(xω(0)) +

∫ t

0

1

2
|ω(s)|2 + 1

2
|ẏ(s)− h(s, xω(s))|2ds

= inf
x∈G

Φ(x) + V (t, x),

concluding the proof.
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