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Abstract

In order to improve the financial performance of a company, we must classify all
their commercialized products according to their interests using financial criteria.
The criteria and the final classification can be modeled using permutations. We
consider Mallows’ models defined in the space of permutations. We are particularly
interested in the question of dependence in Mallows’ models. Here, we introduce
new machine learning approaches based on a cost function minimizing the impact
of the dependence between criteria. In the multi criteria aggregation model, we
consider some of the criteria as a permutation generated using a Mallows’ model, in
which the modal permutation is the permutation we want to find, while some other
criteria are simulated using other criteria. Finally, the methodology is illustrated
with a simulation study that compares the performances of the approaches.

Keywords : Computational statistics, Kendall distance, Machine learning, Mallows’
models, Permutations.

1 Introduction

Imagine we want to rank bikes in an interest order based on different criteria. Then,
we use as criterion the color as a ranking based on preferences of the user. Except this
ranking, we have no clue on how much favorable a color is against another. We can also
use as criterion the number of gear ratios, the saddle size, the stem shape, the wheel
resilience, the whole weight of the bicycle, the price and many other criteria. Some
variables are quantitatives as the price or the weight and some others are qualitatives
as the color or the number of gear ratios.

All of those criteria can help to lead to the best quality bike, but some of those
variables are correlated. We know that for sure the weight depends on the weight of
all the components of the bike, including some information we already have thanks to
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some other criteria. For example, a higher number of gear ratios will inevitably lead to
a heavier bike, as well as a bigger saddle or an higher wheel resilience. Another example
is the price of the bike which is correlated with a lower weight, the color, the stem shape
and all the elements of the bike. However, this variable, also includes some unknown
information. We can not ignore this information brought by those variables. That is
why we cannot remove them from the analysis.

We can also imagine to use the difference between the real price and the expected
price from the customers. The expected price will probably be correlated to the real
price of the bike, but we do not really know how the costumer values each component
of the bike.

Another problem to not be robust on dependent data is when somebody uses twice
the same criterion. In this case, as we evaluate the parameter in total independence
between each criterion, when we will determine the consensus, we will count twice the
same criteria. This will lead to an unjust favor to this criterion.

We can also see that as the price and the weight of the bike both depend on the
number of gear ratios, they also have a dependence link between them.

The first example of dependence, the real link between two criteria due to their
formulas is what we will call the redundancy dependence. We can, by changing the link
between initial variable and the built variable, for example the number of gear ratios
and the price of the bike, see what happen to the built one.

There is a lot of multi-criteria aggregation models, such as the use of the Choquet
integral [11], [5] or the Shapley value [14], the methods based on the comparison of
elements by pairs as ELECTRE, [8], [18] or PROMETHEE [4], [16], [3] and the methods
based on the utility theory [19], [7], among others. In this paper, we have chosen the
permutations based models. We are particularly focused on the Mallows’ model [15],
but we can also think about the Coset Permutation Space model (CPS) [17].

In [10], we developed a new model based on the Mallows’ model to take into account
the real value of the indicator meaning that for some criterion the gap between their
real values had an impact on the result. However, we did not take into account the
fact that some variables are, by construction, dependent. We also saw that with the
Mallows’ model, the maximum likelihood estimator, compared to the Borda method [2]
and a quadratic estimator, less likely to have a dictatorship, is the most robust when
we add some low informative criteria. It even gained some precision looking for the best
consensus.

The Mallows’ model is described by the probability of a permutation to be at some
distance of a modal permutation π. The decay rate of the probability based on the
distance to the modal permutation is modeled by the parameter θ.

In this paper, we are interested to study the effect of dependence in the Mallows’
model. Then, we propose an alternative approach to be more robust in the presence of
dependent data. The objective here is to construct an easy way to adjust the estimations
of the parameters in a case where some of the criteria are correlated.

This paper is organized as follows. In Section 2, the Mallows’ model is described and
the Mallows’ model simulation using the Kendall distance is given. The way to simulate
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dependent data for our approach is described. In Section 3, the process to construct
new variables to explain the redundancy dependence between our criteria is described.
In Section 4 the correction applied on the parameters in order to correct the effect of
the dependence on the estimates are given along with a method to estimate it directly.
Finally, in Section 5 we compare the results on simulations studies. Lastly, concluding
remarks are given is Section 6.

2 Data Simulation

2.1 Simulation of the Mallows’ model

The Mallows’ model [15] is defined as the probability to select randomly a permutation
σ, in the set of all the permutations Sn, based on the permutation π with a dispersion
parameter θ. We have

Pθ(σ) =
exp(−θ d(σ, π))

Z(θ)
(1)

with θ ≥ 0, d(., .) a right invariant distance between two permutations of Sn and

Z(θ) =
∑
σ∈Sn

exp(−θ d(σ, π)), (2)

the normalization term which is not influenced by π, thanks to the right invariant prop-
erty. A distance d(., .) is right invariant [6] if d(π, σ) = d(πτ, στ) for every π and σ in
Sn. The normalization term Z(θ) only varies with θ.

The Mallows’ model is based on the distances between the permutations of a set of
n items to order. A permutations is a one to one application from {1, ..., n} to itself.
The set of all the permutations of n items is denoted by Sn. We write π(i) the position
associated to the item i in the permutation named π for i ∈ {1, ..., n} and π−1(i) the
item associated to the ith position of the permutation named π for i ∈ {1, ..., n}. The
cardinal of Sn is equal to n!.

Using the Mallows’ model, or the generalized version, we can simulate an order,
knowing the real value of π and θ.

In this framework, we consider the permutation π as the perfect theoretical ranking.
This permutation π is the one we want to determine.

We recall that the definition of the Kendall distance given in [13].

Definition 1. The Kendall distance represents the minimal number of adjacent trans-
positions to transform a permutation σ into a permutation π, both from the set of per-
mutations Sn.

dk(π, σ) =

n−1∑
i=1

∑
j>i

1 ((π(i) > π(j) ∩ σ(i) < σ(j)) ∪ (π(i) < π(j) ∩ σ(i) > σ(j))) (3)

where 1(P) takes the value 1 or 0 depending on whether the condition P is satisfied or
not. This distance is right invariant.
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Considering the Kendall distance (3) in the Mallows’ model and the generalized
Mallows’ model, [9] and [10], we generate permutations using the product of probabilities
to move each item of π with their followings, we can find a R package in [12] based on
ideas in [1].

Theorem 1. For each item of π, the movement of this item with a number of following
elements is independent of the previously moved items. We denote by ζ(π−1(i)) the
number of displacements of the ith item of the permutation π with the following items.
The probability to move an item of a number x ≤ (n− i) of following items is given by

Pθ

(
ζ(π−1(i)) = x

)
=

exp(−θ x)∑n−i
j=0 exp(−θ j)

. (4)

Proof. Rewriting the Kendall distance (3) using π−1 and σ−1, we obtain

dk(π, σ) =
n−1∑
i=1

∑
j>i

1
(
σ(π−1(i)) > σ(π−1(j))

)
. (5)

We can split the equation over each element of π. Also, we can consider a permutation
σ ∈ Sn as a sequence of transposition of each element i of π. Then the distance between
π and σ can be expressed as the sum of this sequence.

So, we have

exp(−θ d(π, σ)) = exp

(
−θ

n−1∑
i=1

ζ
(
π−1(i)

))

=

n−1∏
i=1

exp(−θ ζ(π−1(i))),

(6)

where ζ(π−1(i)) is the number of following items the ith item of π needs to be
transposed with. And ζ(π−1(i)) is an integer and takes its possibilities in [0, 1, . . . , n− i].

If we want to sum all the possibles σ ∈ Sn then we can reduce it to a product of
sum. By recurrence, we have for n = 2,

Z(θ) = exp(−θ × 0) + exp(−θ × 1), (7)

and for n items, we have

Z(θ) = (exp(−θ × 0) + exp(−θ × 1))× . . .× (exp(−θ × 0) + . . .+ exp(−θ × (n− 1)) .
(8)

Then for n+1 elements, for all of the possibilities of the n last elements of π we need to
multiply every possibility of movement of the first element, leading to

Z(θ) = ((exp(−θ × 0) + exp(−θ × 1))× . . .× (exp(−θ × 0) + . . .+ exp(−θ × (n− 1)))

× (exp(−θ × 0) + . . .+ exp(−θ × n)) .
(9)
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So finally, we can write

Z(θ) =
n−1∏
i=1

n−i∑
j=0

exp(−θ j). (10)

Then, the probability of moving the ith item independently of any other movement,
is given by

Pθ(ζ(π
−1(i)) = x) =

exp(−θ x)×
∏n−1

k=1,k ̸=i

∑n−k
j=0 exp(−θ j)∏n−1

k=1

∑n−k
j=0 exp(−θ j)

. (11)

We deduce

Pθ(ζ(π
−1(i)) = x) =

exp(−θ x))∑n−i
j=0 exp(−θ j)

, (12)

where the denominator can be rewritten using the property of the sum of a geometric
suite.

Using the probability given in (4), we can represent the number of transposition with
the following elements of each element in the permutation π. Then, we build the unique
permutation associated with those movements.

As an example in Figure 1, we represent an heatmap in the space of permutations
S5 of the simulation of 10, 000 permutations with a parameter θ = 0.5 around the per-
mutation π the identity permutation. In this representation, each point represent a
permutation. The numbers [1 2 3 4 0] mean that the first element, denoted by 0 is in fifth
position while the second element denoted by 1 is in first position. It is a representation
of π−1.

We recall that the generalized Mallows’ model for the Kendall distance is given by

Pθ(σ) =
1

Z(θ)
exp

(
n−1∑
k=1

−θk ζσ(π
−1(k))

)
, (13)

where

Z(θ) =
∑
σ∈Sn

exp

(
n−1∑
k=1

−θk ζσ(π
−1(k))

)
(14)

corresponds to the normalization term not influenced by π and ζσ(π
−1(k)) is the number

of following items the ith item of π needs to be transposed with to match the σ permuta-
tion. Finally, θ is the vector of parameters θk for k = 1, . . . , n− 1. The Mallows’ model
is a particular case of the generalized Mallows’ model with θ = θk, for k = 1, . . . , n− 1
when all θk are the same.

The second example in Figure 2 represents an heatmap in the space of permutation
S5 of the simulation of 10, 000 permutations with a generalized Mallows’ model (13) with
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Figure 1: Simulation of 10, 000 permutations using the Mallows’ model. Each link
indicates a value of the Kendall distance of 1 between 2 permutations. The gradient of
color is between green and dark blue. The green color represents the lowest probabilities
while the dark blue represents the highest probabilities.

a parameter θ = [0.1, 0.5, 1, 1] around the permutation π the modal permutation. With
those values of θ, we observe that the first element is easy to move backward, the second
slightly less and the lasts are really difficult to move backward.

2.2 Simulating chained Mallows’ models

We define the chain Mallows’ models as a succession of Mallows’ models. We consider
the model (1) given by

Pθ(σ) =
exp(−θ d(σ, π))

Z(θ)

where the parameter π is given by the permutation σ obtained using the same equation
(1) at the previous step. This process is repeated. Consequently, the chained Mallows’
model is a repetition of Mallows’ models centered on the result of the previous link of
the chain. The chained Mallows’ model of two Mallows’ models is given by

Pθ0,θ1(σ1) =
∑

σ0∈Sn

exp(−θ1 d(σ1, σ0))

Z(θ1)
× exp(−θ0 d(σ0, π))

Z(θ0)
. (15)

We are interested in chains of any length. Here we represent graphically what happens
in the case of a chained Mallows’ model and the influence of the parameters θ at each
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Figure 2: Simulation of 10, 000 permutations using the generalized Mallows’ model.
Each link indicates a value of the Kendall distance of 1 between 2 permutations. The
gradient of color is between green and dark blue. The green color represents the lowest
probabilities while the dark blue represents the highest probabilities.

step of the chain. For example, with a dispersion parameter θ at any link chain set to
0, the influence of the first π, the modal permutation will have no importance at all.
Meaning that the last simulated σ could be any permutation with the same probability.
However, if any dispersion parameter θ at any link of the chain goes to infinity, then
the link chain associated would be completely useless in the chain. Now, the question
remains of the importance of every θ that are not a special case, the importance of their
value, their position in the chain and obviously, the length of the chain. It seems that
the longer the chain, the more random the final permutation σ.

By calculation of each possible permutation’s probability for a chained Mallows of
two successive Mallows, the chained Mallows does not lead to a Mallows’ model. We
compute the chained Mallows for each possibility when n = 3 with different values of θ
for each step of the chain. As the Kendall distance is right invariant, the initial modal
permutation π of the first step of the chain does not matter, so we will use the identity
permutation [0 1 2].

Using Table 1, we can find all the distances to go from a permutation π to another
permutation σ. When we only have one intermediate state, we have for n = 3 six path to
go to each possible outcome. Indeed, the intermediate permutation can be any of the six
permutations of length n = 3. For example, to go from the identity permutation π [0 1 2]
to the final permutation σ [1 2 0], we can go through the intermediate permutation [1 0 2]
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Permutations [0 1 2] [0 2 1] [1 0 2] [1 2 0] [2 0 1] [2 1 0]

[0 1 2] 0 1 1 2 2 3

[0 2 1] 1 0 2 3 1 2

[1 0 2] 1 2 0 1 3 2

[1 2 0] 2 3 1 0 2 1

[2 0 1] 2 1 3 2 0 1

[2 1 0] 3 2 2 1 1 0

Table 1: Kendall distances between permutations.

obtained with probability

Pθ0([1 0 2]) =
exp(−θ0)

Z(θ0)

where Z(θ0) =
∑

σ∈Sn
exp(−θ0 d(σ, [0 1 2])). Then, the probability of the permutation

σ [1 2 0], knowing the intermediate state [1 0 2], is given by

Pθ1([1 2 0]) =
exp(−2θ1)

Z(θ1)

where Z(θ1) =
∑

σ∈Sn
exp(−θ1 d(σ, [1 0 2])).

0 1 2 3

(0, 0) (0, 1) (0, 2) (0, 3)

(1, 1) (1, 0) (2, 0) (3, 0)

(1, 1) (1, 2) (1, 1) (1, 2)

(2, 2) (2, 1) (2, 2) (1, 2)

(2, 2) (2, 3) (3, 1) (2, 1)

(3, 3) (3, 2) (1, 3) (2, 1)

Table 2: List of Kendall distances by step for each possible distance outcome given in
first row. Each row represents a different intermediate permutation.

For n = 3 and only one intermediate step, we have in Table 2 the exhaustive list of
distances for each possible outcome distance.

Finally, the probabilities of each permutation after a chain of only one intermediate
step and permutations of length n = 3 are given by

Pθ0,θ1([0 1 2]) =
1

Z
(1 + 2 exp(−θ0 − θ1) + 2 exp(−2θ0 − 2θ1) + exp(−3θ0 − 3θ1)) , (16)

Pθ0,θ1([0 2 1]) = Pθ0,θ1([1 0 2]) =
1

Z
(exp(−θ0) + exp(−θ1) + exp(−2θ0 − θ1)

+ exp(−θ0 − 2θ1) + exp(−2θ0 − 3θ1) + exp(−3θ0 − 2θ1)) ,
(17)
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Pθ0,θ1([1 2 0]) = P ([2 0 1])θ0,θ1 =
1

Z
(exp(−2θ0) + exp(−2θ1) + exp(−θ0 − θ1)

+ exp(−2θ0 − 2θ1) + exp(−θ0 − 3θ1) + exp(−3θ0 − θ1))
(18)

and

Pθ0,θ1([2 1 0]) =
1

Z
(exp(−3θ0) + exp(−3θ1) + 2 exp(−2θ0 − θ1) + 2 exp(−θ0 − 2θ1)) ,

(19)
where

Z =
∑

π1∈Sn

∑
σ∈Sn

exp(−θ0 d(π, π1)) exp(−θ1 d(π1, σ)) (20)

is the sum of all the numerators of the different possibilities of σ.
The probabilities given in (16), (17), (18) and (19) do not depend on the order of θ0

and θ1. We have the same property as the Mallows’ model, we can invert π and σ and
the probability will still be the same.

It appears that two successive Mallows’ models do not lead to a Mallows’ model.
However, simulation study of a chain Mallows’ model leads us to approximate the results
by a Mallows’ model. Using this approximation, we study the parameter of dispersion
of the permutations probabilities, given by the parameters θ0 and θ1 in every step of the
chained Mallows’ model.

Figure 3: Estimation of θ considering the Mallows’ model on σ simulated by a chained
Mallows’ model with different values of θ0 and θ1 on [0.1; 0.8]. The gradient of color is
between white and black. The white color represents the lowest values of θ̂ while the
black represents the highest values of θ̂.
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In Figure 3, we represent the values of estimator θ̂ of θ in the case of an approximation
of a chained Mallows’ model using a Mallows’ model. The values of θ0 and θ1 used to
simulate the chained Mallows are given in the two axis. We observe in this Figure 3 that
the decrease of the estimated θ̂ is not linear with the orginal values of θ’s. In fact, the θ̂
value converges quickly to 0 with a chained Mallows. We conclude that the result tends
to be equiprobable for each possible permutation after only a few iterations of Mallows’
models.

Figure 4: Goodness-of-fit of a Mallows’ model on simulated chained Mallows’ data.

We simulate 500 different replicates of parameters θ0 and θ1 for the chained Mallows’
models. The parameters θ0 and θ1 are each uniformly distributed on [0.1; 0.8]. The chain
is composed of two consecutive Mallows’ models. For each set of parameters, we carry
out 50 iterations of 10, 000 permutations of size n = 5. We do not reject the null
hypothesis ”H0 : σ follows Mallows’ model of parameters θ and π” (p-value > 5%, χ2

goodness-of-fit test). For instance in Figure 4, the p-value is equal to 0.96 > 0.05. In
this Figure, the blue curve represents the theoretical number of permutations at each
distance of π in the case of a Mallows’ model of dispersion parameter θ adjusted to
the values we have simulated. The boxplot represents the real values obtained for the
considered iteration.
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2.3 Simulation of criteria

To simulate the value of a secondary criterion using a set of the primary criteria simulated
earlier, we use a known function f

Xd = f(X1, . . . , XN ), (21)

where Xd is the value of the secondary criterion simulated and N is the number of
primary criteria. For example, we can consider f(X1, . . . , XN ) = X1 + X2 + XN or
f(X1, . . . , XN ) = X1 ×X2. We can also consider f(X1, . . . , XN ) = −X2 which will give
the exact inverse order.

The values of the primary criteria X1, . . . , XN , are simulated according to the lognor-
mal distribution. The simulated values are set to match the order given by the Mallows’
model.

2.4 Choice of the length of the permutations

We evaluate the differences between bootstrapping m in n elements and simulating n
elements. As a constraint of our data, we only have one permutation of each criteria
σj , j in 1, . . . , J each month. To bypass the problem and add some variations in the
results, we made a bootstrap of 5 values in the n values of σj . The normalized Kendall
distance of 5 randoms elements out of n, between two rankings, tends to be the same
as the normalized distance of the n elements. This distance however, is not the same as
the distance obtained when we simulate permutations of 5 elements using the Mallows’
model with the same value of parameter θ. In the Figure 5, we represent the normalized
Kendall distances of the 3 possibilities. We simulate with the Mallows’ model M = 100
permutations σm, for m = 1, . . . ,M , using a parameter θ = 0.1 and π the identity
permutation for n = 100 elements. In black, we plot the average values of the normalized
Kendall distance between σm and π for m in {1, . . . ,M}. In those permutations σm, we
chose randomly n elements k = 100 times and compute the Kendall distance between
the identity permutation of those n elements and the permutation σm with only those n
elements. In red dashed, we plot the average values of the normalized Kendall distance
for a selection of n elements. Finally, in blue dashed and dotted, we simulate for n ∈
{5, . . . , 100} M = 100 permutations σm, for m = 1, . . . ,M , using a parameter θ = 0.1
and π the identity permutation, and plot the average values of the normalized Kendall
distances between π and σm.

The Figure 5 implies that, while using the bootstrap of a permutation, we must keep
in mind the real value of n to keep the same θ.

3 Indicators of Proximity

As we want to adjust our Mallows’ model for useless dependent criteria, we need to
determine how to define the proximity between two criteria on the permutation space.
To this end, as we know the construction of the secondary criterion value Xd based on
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Figure 5: Normalized Kendall distance for θ = 0.1.

the values of the primary criteria Xi for i ∈ {1, . . . , N} using (21), we made the values
Xi change by a factor, and determine in which way the two permutations will differ
one from the other. Our method also allows the comparison of two secondary criteria
linked by the same primary criterion. By altering the primary criterion, the two derived
criteria will change. They can change differently so we collect data on how they differ.

Theoretically for i ∈ {1, . . . , N} and for the comparison between a primary and a sec-
ondary criterion, if the factor applied to the primary criterion value Xi is strong enough,
then, the permutation associated to the secondary criterion value Xd becomes the same
as the permutation associated to the primary criterion value Xi. By opposition, if this
factor is weak enough, and Xd is not identical to Xi then the permutation associated to
Xd should differ from the permutation associated to Xi.

We want to describe the effects between two dependent criteria by construction when
we apply a change to the primary criterion which link them. To this end, we collect some
information. We choose to use 11 factors to apply to our primary criterion value Xi.

For each of the 11 factor, from 10−5 to 105, applied to the primary criterion, we
compute for a bootstrap of sub-sample of 5 elements the distance between the original
permutation of both criteria and the permutation modified by the alteration of the
primary criterion and the new distance between them. We also compute the movement
of each element with its following from the beginning and the ending of the permutation.
As we compute the movement of the elements with their followings, we have, for 5
elements, 4 variables. Starting from the beginning and the ending with both of the
criteria, this count as 16 variables for each sample.

Then we consolidates the results by calculating the mean and standard deviations
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of all those distances. We also compute, over the permutations found for the movement
of both secondary criteria to themselves and the one found for the movement between
them, the modal permutation of those. With this modal permutation, we compute its
distance to the identity permutation to see if it goes somewhere else or if it stays around
the same position. The most likely of the 3 to go somewhere else is the movement
between the two criteria. We also computes the mean and standard deviation of the
distance between the modal permutation found and each permutation found for every
iteration. Those are the consolidation of the last 3 variables given in the last paragraph.

We do not forget that we have only a few iterations of the rankings but with n really
large. That’s why we computes the results on a bootstrap of 5 elements, to have some
diversity.

With all those information, we have created for bootstrap of n = 5 elements 4× 8 +
3× 2 + 3 = 41 indicators on the dependence for each of the 11 factor applied. Meaning,
for our simulation, we have a total of 451 variable to understand the modification to
apply to our parameters to get rid of the dependence. This is by far too much. In
our modelisation, we use the mean distance and standard deviation of the 3 compared
movement, but, about the movement of each element, we chose to only keep the mean
distance and to not use the standard deviation. Moreover, we reduce for each of the 16
distances from 11 observations to 4 parameters to model those observations by a logit
modelisation based on the modification of the primary criterion.

With those reduction, we keep only, if we can say so, 130 variables to describe the
dependence of our data. With those computed variables, we want to produce only J
value, a redundancy coefficient to apply to the maximum likelihood estimator of θj
with j ∈ 1, . . . , J , J the number of criteria, computed as if we were on an independent
modelisation. In the future, we will call these 130 variables : proximity indicators, PI.

4 Methods to adjust dispersion parameters with dependent permuta-
tions

For the Kendall distance (3), we showed in [9], [10] that the maximum likelihood esti-
mator θ̂j of θj is solution in θj of the following equation

n exp(−θj)

1− exp(−θj)
−

n∑
k=1

k exp(−kθj)

1− exp(−kθj)
=

1

T

T∑
t=1

d(σjt, πt), (22)

with j ∈ {1, . . . , J} a criterion and t ∈ {1, . . . , T} our observations of the criteria and
the real modal permutation πt. As Kendall distance is right invariant, we do not need
to have the same πt for each t.

Then, the estimator π̂t of πt is solution of the maximization problem

π̂t = argmax
π∈Sn

J∑
j=1

−θ̂j d(σjt, π) (23)
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where Sn is the set of all possible permutations of n elements, see [10], Section 3.1, page
6 for a way to compute π̂t.

4.1 Correction procedure

We propose a correction procedure based on the maximum likelihood estimation. The
new estimator θ̃j of θj is

θ̃j =
θ̂j

1 +
∑J

k=1 c(Xj , Xk)
(24)

where θ̂j is solution of equation (22) and c(Xj , Xk) is the redundancy coefficient
between the criterion j and the criterion k. This coefficient takes its values in [0; 1].
If the two criteria are identical, then c(Xj , Xk) = 1. If they are independent then
c(Xj , Xk) = 0.

When one of the two criteria is a primary criteria, the computation of c(Xj , Xk) is
quite straightforward as we have only one source of variables describing the dependence.
When both the criteria are secondary, we need to take the information coming from all
the primary sources used to determine those criteria.

In the case of multiple primary criteria, the redundancy coefficient can be written

c(Xj , Xk) = 1−
∏
p∈P

ĉp(Xj , Xk) (25)

where P is the set of primary criteria and ĉp(Xj , Xk) is the estimated value of the
coefficient due to the proximity coming from the primary criterion value Xp. Here,
ĉp(Xj , Xk) is equal to 1 if the two criteria are independent and 0 if they are the same.

The estimation ĉp(Xj , Xk) of cp(Xj , Xk) can be modeled by

ĉp(Xj , Xk) = κ(PI) (26)

where PI are the proximity indicators. To learn this model κ, we need to have a priori
good estimations of ĉp(Xj , Xk). Here we use a random forest model for κ.

To find those a priori, the objective is to minimize for all j, k ∈ {1, . . . , J} and p ∈ P,
the following cost function

Ψ(ĉp(Xj , Xk)) =
T∑
t=1

d(π̂t, πt) (27)

where π̂t is the maximum likelihood estimator given in (23) replacing θ̂j by θ̃j .
It is not possible to evaluate Ψ by a gradient descent method as it is a stair function.

The cost remains constant until the consensus permutation π̂t changes. We then propose
to improve the learning by giving directions for the minimization. This creates an
artificial slope on the stairs. For each time t, our new cost is based on the likelihood
function used to estimate π̂t.
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We know that π̂t is a permutation maximizing
∑J

j=1 θ̃j d(σjt, π̂t) so minimizing
the weighted distance to each σjt. There is no necessity for πt to maximize this sum.

Thus, we add to our cost function Ψ the difference between
∑J

j=1 θ̃j d(σjt, π̂t) and∑J
j=1 θ̃j d(σjt, πt). This has as a consequence to force the weighted distance of the

theoretical permutation πt with σjt to be closer to the weighted distance of the estimated
permutation π̂t with σjt. We consider for all j, k ∈ {1, . . . , J}2 and p ∈ P the cost
function

Ψ̃(ĉp(Xj , Xk)) =

T∑
t=1

 d(π̂t, πt) +

 J∑
j=1

−θ̃j d(σjt, π̂t) −
J∑

j=1

−θ̃j d(σjt, πt)

 .
(28)

For the computation, the gradient descent method can be used to optimize the cost
function Ψ̃.

With the best ĉp(Xj , Xk) computed for a bunch of simulated data, we learn the link
κ between it and the proximity indicators PI. The aim is to have a model κ that we do
not need to recompute for different kinds of link between the criteria. This model has to
be the more general possible. Also, as we can not compute easily ĉp(Xj , Xk) with real
data, in contrast to the proximity indicators. It is then really interesting for us to be
able to compute κ on simulated data and to use it on real data.

4.2 Dispersion parameters corrections on estimators

To have a point of comparison, we also learn all the estimators θ̌j of the parameters θj
for j ∈ {1, . . . , J} where J is the number of criteria, at the same time. To achieve this,
we use the cost given in (28) without the correction on the θj . Instead, we learn directly
θ̌j . We can rewrite the expression (28) as

Ψ̌(θ̌1, . . . , θ̌J) =
T∑
t=1

 d(π̂t, πt) +

 J∑
j=1

θ̌j d(σjt, π̂t) −
J∑

j=1

θ̌j d(σjt, πt)

 . (29)

For j ∈ {1, . . . , J}, this new expression offers a more general framework for each esti-
mator θ̌j of θj but we need to use a lot of information from the past. With the method
described in Section 4.1, we use the Proximity’s Indicators PI to escape the difficult
learning phase with a smaller model to connect those to the corrections to apply.

With this method however, we are able to compute more accurate estimations of
(θ1, . . . , θJ) the vector of dispersion parameter of all criteria. At the end, this method
must lead to better results. The method with the proximity indicators PI goes one step
further trying to compute a simpler model. This method assumes that we have inde-
pendence between the primary criteria, but those primary variables could be dependent.
This is in particular the case when we measure the primary criteria. For the sake of
example, we can think of a company that have as a criterion the revenue of a product
in January and February. Those two criteria could be considered as primary variables
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as we can only measure them. However, we can say that those two values are similarly
impacted by the product and differently impacted by its seasonality. In this case, we
could say that the only primary variables are the product and the seasonality.

5 Comparisons by simulation

In order to evaluate the performance of our methods correcting the dependence in the
Mallows’ model, we generate some data. We want first to generate independent criteria,
called primary criteria, the only criteria related to π, the consensus we want to find.
All the dependent criteria, the secondary criteria, are then determined on those criteria
related to π.

For the simulation, we generate 12 criteria. Among those criteria, we simulate only
3 primary criteria, denoted by s1, s2 and s3, using a Mallows’ model. We generate
respectively according to the criteria the dispersion parameters θ1, θ2 and θ3, using an
uniform law in the interval [0.1; 0.8]. We generate also an useless criteria s0. This useless
criteria is just a random permutation in the set Sn.

We simulate 5 of the secondary criteria using a chained Mallows’ model, as seen
in Section 2.2. For those criteria, we generate a dispersion parameter θ4 to θ8 using
an uniform law in the interval [0.8; 1.5]. Among those 5 criteria, 2 are simulated using
the primary criteria s1 as intermediate modal permutation and θ4 and θ5 as dispersion
parameters. We call them s1c4 and s1c5. The 3 other criteria are simulated using the
primary criteria s2 as intermediate modal permutation and θ6, θ7 and θ8 as dispersion
parameters. We call them s2c6, s2c7 and s2c8. Then, we simulate the 3 last secondary
criteria. Those are a combination of the other criteria. We then have s12 that is the
permutation resulting of the sum of the latent variables of s1 and s2, s2 4 that is the
permutation resulting of the difference of the latent variables of s2 and s1c4 and s2 4a
which is the permutation resulting of the absolute value of the latent variable of s2 4.

The latent variables of each of the primary and chained Mallows’ criteria are simu-
lated using a lognormal distribution of parameters generated uniformly in [0.5; 3.5] for
the mean parameter and [0.5; 1.5] for the standard deviation parameter.

We generate 500 sets of parameters. For each set, we generate a total of T = 500
replicates of 5 items.

As we have seen in Section 2.2, the sequence of Mallows’ models tends to over disperse
the permutations in Sn. That is why, we have chosen to use quite big values for the
dispersion parameters of the chained Mallows’ criteria.

In this Section, we evaluate the different possibilities introduced in Section 4. To this
end, we compare the results when we assume every criteria is independent from each
other with the results we found when we apply our corrections. We also compare them
to the results we found when we use only the primary criteria.

As a comparison between the different models, we use the Kendall distance between
π̂t the estimation of the modal permutation and and πt the real value of this modal
permutation with t ∈ {1, . . . , T}.

Those models only estimate the values of the dispersion parameters. However, we
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want to estimate their value on the localization parameter. To this end, we consider the
estimators

π̂t = argmax
πt∈Sn

J∑
j=1

−θj d(σjt, πt) (30)

where θj is replaced by the estimator θ̂j , θ̃j or θ̌j and Sn is the set of all permutations
of length n and J is the number of criteria.

For the model with the redundancy coefficients, we use 360 of the parameters sets to
learn the function κ of equation (26). This function is estimated using a random forest.
Then, for the 140 remaining parameters sets, we use TTr = 300 replicates of 5 items to
learn the independent values of θj for j ∈ {1, . . . , J}. Finally, we test on the TTe = 200
remaining replicates of 5 items the differences between π̂t and πt.

We evaluate the model with the direct estimation θ̌ of θ on 360 parameters sets. For
each parameter set, we consider T = 500 replicates of 5 items. Among those sets, we
use TTr = 300 replicates for the training and TTe = 200 replicates for the tests.

To recapitulate, we represent in Figure 6 the links between the criteria in this simu-
lation. In blue and first column, we have the primary criteria, in red and second column,
we have the secondary criteria obtained by a chained Mallows’ model and in purple and
third and fourth columns, we have the secondary criteria obtained as a combination of
the latent variables of other criteria.

Figure 6: Hierarchy of criteria.

5.1 Comparison using the Proximity Indicators

In Figure 7, we represent the 3 possibilities to compare in terms of the Kendall distance
between π̂t and πt on the test set. To make the Figure more readable, we have sorted the
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elements by an increasing Kendall distance in the first model, the case where we consider
every criteria as independent. This case is represented in blue square. The case where
we only use the 3 primary criteria is represented in green circle and the interest case,
when we use our proximity indicators, is represented in orange diamond. We observe
that even if the model using only the primary criteria (green circle) is clearly better than
any other model, our model can be slightly better than the independent case.

Figure 7: Comparisons of Kendall distances between π̂t and πt.

Model M1 M2 M3 M4 M5 M6

Mean 2.652 2.591 2.578 2.585 2.579 2.395

Variance 0.151 0.137 0.144 0.146 0.149 0.167

First quartile 2.364 2.335 2.319 2.321 2.315 2.093

Median 2.593 2.519 2.485 2.506 2.482 2.345

Third quartile 2.891 2.853 2.842 2.838 2.819 2.664

Minimum 1.780 1.716 1.634 1.722 1.560 1.402

Maximum 3.684 3.698 3.648 3.608 3.594 3.546

Table 3: Comparisons of Kendall distances between π̂t and πt. In the model M1 we
consider every θj as independent. In the model M2 we consider every redundancy
coefficient as 1. In the model M3 we learn each redundancy coefficient as a function
of the 130 Proximity indicators. In the model M4 we set every redundancy coefficient
randomly between 0 and 1. In the model M5 we consider each θj independent but we
are limited to the primary and the secondary created with the chained Mallows’ criteria.
In the model M6, we consider each θj independent but we are limited to the primary
criteria.

In Table 3, we compare 6 different possibilities. Among them, the model M1 using
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all criteria and assuming the θj independent is the worst while the model M6 using only
the primary criteria is clearly the best. Using the testing set, the Kruskal-Wallis test
between the the models M1, assuming every θj is independent and M3, our interest
model, can not reject the null hypothesis, with a p-value of 0.20 > 0.05, saying that the
median are equal. We can’t conclude that the model M4 when we set each redundancy
coefficient randomly is different than our interest model M3 either as the p-value is
0.98 > 0.05.

Using the training set however, we have a significant difference between M1 and M3
with a p-value of 0.036 < 0.05. But we still cannot say that the model of interest M3 is
different to the random values M4 with the p-value equal to 0.83 > 0.05.

The method is interesting in the aim to find a general coefficient to apply to the
parameters of dispersion independently computed. This coefficient can help to have
a lower computing time. The computational time gain is due to the lower number of
computations of the consensus. Its computation time is exponential with the number
of items with the algorithm developed in [10] as it is done in this article, but linear
considering Borda approach [2].

5.2 Comparison with a direct estimation of θ

In this Section, we want to estimate the value of θ̌j , for j ∈ {1, . . . , J}, without using

the estimation of θ̂j .

Figure 8: Comparisons of Kendall distances between π̂t and πt.

In Figure 8, we compare the distance between π̂t and πt for the model with every
criteria assumed independent in blue square, the model with only the primary criteria
in green circle and in orange diamond our new estimations θ̌j of θj optimized with the
equation given in (29).
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In Figure 8, we notice that in the test, even thought the estimation θ̌j of θj looks
better than the original model with every criteria assumed independent, it may be worse
for some cases, which is not the case of the model containing only the primary criteria.

Model M1 M7 M8 M5 M6

Mean 2.766 2.676 2.639 2.693 2.494

Variance 0.221 0.237 0.233 0.220 0.236

First quartile 2.384 2.325 2.310 2.345 2.140

Median 2.690 2.600 2.573 2.610 2.413

Third quartile 3.106 3.006 2.928 3.016 2.760

Minimum 1.845 1.640 1.680 1.645 1.505

Maximum 4.200 4.135 4.125 4.015 4.095

Table 4: Comparisons of Kendall distances between π̂t and πt. In the model M1 we
consider every θj as independent. In the model M7 we consider an optimization of the
θj with as initialization, the θj obtained with the model M1. In the model M8 we
consider an optimization of the θj with as initialization, a random value between 0 and
1. In the model M5 we consider each θj independent but we are limited to the primary
and the secondary created with the chained Mallows’ criteria. In the model M6, we
consider each θj independent but we are limited to the primary criteria.

In Table 4, we compare the 2 new models M7 and M8 and 3 previous models de-
scribed in Section 5.1, especially in Table 3. Here, we explore the possibility to strengthen
the learning of the dispersion parameters θj by learning all of them directly. We espe-
cially consider 2 possibles initialization of the learning algorithm. First, in model M7,
we initialize with the values of the parameters obtained as if all the criteria were inde-
pendent θ̂j . Then, in model M8, we launch 10 random initialization and keep the best
one during the training.

If we compare the results globally on the testing set, with Table 4 we notice that
both models M7 and M8 are significantly better in term of the median than the initial
assuming every criteria independent model (M1). We have for the model M7 a p-
value for the Kruskal-Wallis test at 0.01 < 0.05 and for the model M8, a p-value of
3.20 × 10−4 < 0.05. We conclude that they are both better than the model M1. The
model M8 looks better than the model M7, however the p-value of 0.30 > 0.05 does not
let us conclude to a significant difference. Considering the model M5 in which we only
use the primary criteria and the secondary criteria obtained using a chained Mallows’
model, we cannot say that the models M7 nor M8 are significantly better due to a
p-value of respectively 0.61 > 0.05 and 0.12 > 0.05. In the training set however, we can
say that models M7 and M8 are significantly better than model M5 with respectively a
p-value of 0.01 < 0.05 and 3.45× 10−5 < 0.05. The model M6, using only the primary
criteria is better than any other.

The Figure 9 shows the values of the θj used to simulate the primary criteria. In
blue square, we have θ1 used to simulate the criterion of permutation s1. This criterion
is directly associated to the criteria s1c4, s1c5 and s12. It is also included in the criteria
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Figure 9: Values of θ for each of the primary criteria by Kendall distances between
π̂t and πt for the model M1, assuming every criteria independent, and the model M8,
θ optimized by (29). In blue square, θ1 applied to the primary criteria s1, in orange
diamond, θ2 applied to the primary criteria s2 and in green circle, θ3 applied to the
primary criteria s3.

s2 4 and s2 4a via the criterion s1c4. In orange diamond, we have the value of θ2, the
parameter used to simulate the criteria of permutation s2. This criterion is associated
directly to the criteria s2c6, s2c7, s2c8, s12, s2 4 and s2 4a. Finally, we have in green
circle the value of θ3, used to simulate the criterion of permutation s3.

This Figure 9, reflects the fact that the criterion independent s3 does not partici-
pate enough in the choice of π̂t when we assume every criteria is independent. This is
particularly clear on the left figure using the model M1. In this figure, we observe green
circle points associated to a high value of θ3 also associated to a high distance between
π̂t and πt. We do not experience this with θ1 and θ2 because they are over represented
due to their secondary criteria associated. In the right graphic, we observe that with
our function to estimate the better values θ̌j of θj , none of the parameters associated to
the primary criteria are under or over represented.

A high value of θj in the Mallows’ model means that the simulated permutations are
closer to the modal permutation πt. Then a high value is more reliable than 10 times
a low value. For example in the model M1 if we imagine θ2 = 0.25 and the dispersion
parameters of the chained Mallows associated with s2 at 3.5, the maximum value, then
we can easily imagine to have 4 times the permutation s2. In this case, we will have
4 times the same permutation associated with a θj around 0.25. In the estimation of
π̂t, we will have the cost associated to the distance to the permutation s2t equal to
0.25 × 4 × dK(s2t, π̂t). At the same time, we have θ3 = 0.8. As this criterion does not
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have any associated criterion and is totally independent to the others, we have as cost of
divergence between π̂t and s3t, 0.8×dK(s3t, π̂t). Finally, the permutation s2t will weight
more on the estimation of π̂t than the permutation s3t. This is an issue but is reduced
thanks to the learning of all θj simultaneously with the cost function we introduced.

Figure 10: Differences between the Kendall distances between π̂t and πt for the new
estimation of the θj and the case we assume all of the θj independent.

Finally, with the Figure 10, we compare the difference of Kendall distance between π̂t
and πt for the model M8 in which we applied our estimation of the dispersion parameters
θj and the model M1 in which we assume each criteria is independent. Then, a negative
difference means that M8 performs better and a positive difference means that the
model M1 performs better. In the top left quarter of Figure 10, we show the values
of the dispersion parameters of the 3 primary criteria by the value of the difference.
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The blue square dots represent the parameter θ1 associated to s1, the orange diamond
dots represent the parameter θ2, associated to s2 and the green circle dots represent the
parameter θ3 associated to s3. The left part of the graph shows the sets of parameters
where the new model M8 performs highly better. This side is notably composed of high
values of θ3 and low or intermediate values of θ1 and θ2. At the same time, we see on the
right part of the graphic the sets of parameters where the new model performs worse.
This side is notably composed of low values of θ3 and higher values of θ1 and θ2.

Then, still in Figure 10, we have the 3 other graphics that shows the interactions
between the values of the dispersion parameters of the primary criteria. If the interaction
between θ1 and θ2, in the bottom left quarter of the Figure 10, does not lead to any
information, we remark in the top right quarter, with the interaction between θ1 and
θ3, and in the bottom right quarter, with the interaction between θ2 and θ3, that high
values of θ3 leads to a better benefice of the model M8 and it’s even more noticeable
when the values of θ1 and θ2 are low. For those 3 sub-figures, the black value is quite
bad and the best for us is the white which correspond to a great improvement in the
distance between π̂t and πt.

Coefficient Estimate Std. Error p-value

Intercept 0.3596 0.1440 0.0130

θ1 −0.5224 0.2941 0.0766

θ2 −0.2093 0.2874 0.4671

θ3 −1.9905 0.3044 2.17× 10−10

θ1 : θ2 0.5301 0.5697 0.3528

θ1 : θ3 2.9714 0.6230 2.71× 10−6

θ2 : θ3 2.4150 0.6037 7.72× 10−5

θ1 : θ2 : θ3 −5.0436 1.2064 3.67× 10−5

Table 5: Results of the linear regression to predict the difference between the models
M8 and M1.

After running a linear regression to predict the difference with the values of those 3
θj , we obtain the results seen in Table 5. With this linear regression, we can confirm that
the impact on distance between π̂t and πt of our new method to evaluate the parameters
θj in the dependent case and particularly in this simulation is strongly impacted by the
value of θ3 and its interaction with the smallest possible values of θ1 and θ2.

With this simulation, we are not able to find a configuration of parameters where
we clearly see that our models of interest with the proximity indicators nor with the
direct estimation of the θj is better than the estimation using only the primary criteria.
However, the direct estimation of θj is the better to approximate the best model for this
simulation.
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6 Concluding remarks

We can ask ourselves that if the primary criteria alone can lead to better results, why
do we try to compensate for the dependence ? The first point is that those proximity
indicators can help to understand how the different secondary criteria are correlated
between them. The second point is about the meaning of the secondary indicators.
Their definitions can help to understand what’s important in the consensus. At the end,
we do not want a black box. We want to be able to say why an item is above another
in the consensus. Then we also have the problematic with the chained Mallows that we
do not know which criterion is the primary. For example, in the case of the revenues of
a set of items, we can understand that the criterion is correlated to the criterion of the
expected revenue of this set of items, but it is difficult to know which one is the primary.

In this paper, we were particularly interested in the degradation of the results due
to secondary criteria only derived from the primary criteria. However, we do not try to
understand what happens when those secondary criteria also include information. This
may lead to gains against the model based on the primary criteria only.

Another point of future investigation concern the generalized Mallows’ models. Here,
we were limited by the Mallows’ models but its generalized version may have some links
to our proximity indicator and let the models based on them have some better results.
We may also try to change the model used to predict the redundancy coefficients.

In [10], we used an approximation and the generalized Mallows’ model to estimate
the dispersion parameter. A future work could be to apply the direct estimation of θ to
estimate this parameter without the approximation.

Finally, we can also compare the parametric Mallows’ model with non parametric
modeling approaches by simulations studies.

References

[1] Jörg Arndt. Matters Computational: ideas, algorithms, source code. Springer Sci-
ence & Business Media, 2010.
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