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It is well-known that a thin sheet held in a rigid circular clamp has a larger flexural strength than when
it is flat. Here, we report that the flexural strength of curved sheets is further increased with a softening of the
clamping condition. This unexpected compliance effect relates to the geometrical properties of curvature-induced
rigidity that we observe in controlled experiments and further analyze with numerical simulations. In addition,
we identify another compliance effect in which opened curved sheets can be more resistant to bending than
closed cylinders of same dimensions.
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Thin sheets are mechanical structures presenting a rich
phenomenology [1–8] due to the geometrical effects arising
from the large mismatch between small thicknesses and com-
paratively large sizes. For a rectangular sheet of length L,
width W , and thickness t , the scaling relations t � W and
t � L make that the sheet naturally favors bending deforma-
tions over stretching deformations [9]. A consequence of this
is the possibility to induce stiffening of floppy sheets [10]:
by imposing a curvature in a given direction, the bending in
the other direction becomes energetically expensive because
it requires stretching. Curvature-induced rigidity is found in
different contexts such as tape springs [11], folded strips [12],
plant leaves [13–15], egg geometry [16], fins [17] and wings
[18] stiffening, actuators [19], wavy walls [20] and pizza slice
manipulation [21].

When thin sheets are curved, the structural failure [22,23]
under loads usually follows a different phenomenology than
the bulk material failure. The failure of shells under bending
or compression loads is often not a failure of the material itself
but the result of the growth of a buckling mode predicted by a
linear stability analysis [24–29]. In the post-buckling regime,
curved sheets exhibit some form of crumpling [30,31], which
takes the form of a more or less complex network of singular-
ities [32–37] and ridges [38–43]. The formation of this type
of structure was studied for compaction [44–51], indentation
[52–54] or in other situations [55,56].

The question we address in this work is illustrated in
Fig. 1(a): what is the optimal structure that can support a static
load F at a horizontal distance L of a rigid wall? With the
classical Euler-Bernoulli beam theory as a starting approach,
it seems that, first, there is no need for the structure to expand
beyond the distance L and, second, the anchoring of an opti-
mal structure with the rigid wall should be as rigid as possible.
We will show that these two intuitive ideas are wrong for
model structures in the nonlinear regime of curvature-induced
rigidity.

We consider a simple mechanical structure obtained by
curving a piece of rectangular thin sheet, as shown in Fig. 1(b).
The sheets are initially flat and rectangular with thickness

t = 0.2 mm and width W . The circular clamp is a rigid cylin-
der of radius R = 25 mm and the curved sheet configuration is
obtained by pressing the sheet against the rigid cylinder with
a hose clamp. The distance Lcl denotes the shift in position
between the hose clamp and the cylinder. Lcl = 0 mm is the
rigid clamping condition for which the sheet is forced to lie
on a circle at the end of the clamp. Lcl > 0 mm is a soft clamp
condition in which the sheet is circular without applied load
but in the presence of loads, the sheet can slightly move away
from the inner cylinder. The free-standing length of the sheet
is L + Lend where Lend is the distance between the position of
the applied force and the free edge of the sheet. The distance
L is the effective length between the end of the clamp and the
location of the applied force. The load is applied by hanging a
mass to a hook passing through a small hole. For long sheets,
the persistence length [57–62] of the transverse curvature
scales as Lp ∼ W 2/

√
Rt . Here, we are interested in the regime

of curvature-induced stiffening L < Lp, which means that, in
the absence of applied forces, the sheets are sufficiently short
for the transverse curvature to be strictly positive for the whole
sheet.

In Fig. 1(c), we represent the measured collapse force
Fc as a function of the width normalized by the perimeter
W/2πR for 3 sets of data. The reference set of data with
triangle symbols is for the force applied through a hole placed
as close as possible to the end of the sheet (Lend = 1 mm)
and a rigid clamp Lcl = 0 mm. The first data point is for
W/2πR = 0.16. Below this value, the sheet is floppy be-
cause W is not large enough for the sheet to be curved at a
distance L. The region L < Lp is defined by the persistence
length [59] is Lp = W 2/

√
70Rt or equivalently W/2πR =

Lp
1/2(70Rt )1/4/2πR = 0.138 with Lp = 25 mm, R = 25 mm

and t = 0.2 mm. In the region W/2πR ∼ 0.2, the sheet rigid-
ity increases and reaches a plateau at about 6 N for the
reference sheet with rigid clamping (Lcl = 0 mm) and the
force applied as close as possible to the end of the sheet
(Lend = 1 mm). The two other data sets are for the same
length L but with a longer sheet L + Lend with Lend = 10 mm.
For a rigid clamping Lcl = 0 mm, the plateau is higher than
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FIG. 1. (a) Question addressed in this work: what is the optimal
structure to support a force F a distance L? (b) Rectangular sheet
of width W and thickness t held in a circular clamp of radius R =
25 mm. Lcl is the distance between the inner circular cylinder and
the external part of the clamp. L = 25 mm is the distance between
the clamp and the applied force. Lend is the distance between the
applied force and the free end of the sheet. n points to the location
of the stress focusing singularities for collapsed sheets. (c) Collapse
forces as a function of the normalized width W/2πR that quantifies
the portion of the circular clamp covered by the sheet. The forces are
applied by masses hanging under gravity. Lcl = 0 mm corresponds to
a rigid clamp, and Lcl = 6 mm is for a compliant clamp.

for Lend = 1 mm. This is a first surprising result because the
length L involved in the bending moment was unmodified.
In the classical Euler-Bernoulli beam theory, the mechanical
stiffness of beams is local. Here, the modification of Lend has
an effect on the buckling nucleation process that takes place
close to the cylinder (indicated by n in the figure). The last
set of data with square symbol is the compliant clamping
obtained by moving backward the clamping hose of a distance
Lcl = 6 mm without changing any other parameters. We find
that the collapse force Fc is even larger. Again, this increased
rigidity is surprising here because the bending length was
increased from L = 25 mm to L + Lcl = 31 mm.

To analyze in more detail the peculiar regimes observed in
experiments, we numerically solved a spring-network model
[56] of curved sheets under loads (see movie M1 for an an-
imation of the simulation results of a collapse event and the
supplemental material [63] for a description of the model). In
Fig. 2, we compute the critical force Fc to collapse a sheet
of reduced length L/t = 170 maintained on a circular clamp
of radius R/t = 175. The varied parameter in the simulation
are W , Lcl and Lend but with fixed L. W is normalized by the
clamp perimeter W/2πR. We identify the 3 regimes found
in the experiments with a vanishing Fc for small W/2πR, a
rapid increase for W/2πR of the order of 0.2 and a plateau
reached at W/2πR ∼ 0.3. As in the experiments, we find that
an increase of Lend and an increase of Lcl results in a larger
collapse force in the plateau region W/2πR > 0.3.

The configuration of the sheet obtained by simulation of
the spring model is represented in Fig. 2 for W/2πR = 0.27

FIG. 2. Spring model simulation for the collapse forces Fc for
rectangular sheets of length L = 170×t held in a circular clamped
of radius R = 175×t . The width is varied between W = 160×t
(W/2πR ≈ 0.145) and W = 1100×t (W/2πR ≈ 1, full circle cov-
ering at the clamp). Two simulated sheets (W/2πR = 0.3) are
represented with F below and above the collapse force Fc. The
collapse is characterized by a splitting of the compression pattern in
two locations symmetrically to the longitudinal centerline. A buckle
of the centerline is also visible in the collapsed sheet F > Fc.

with Lcl/t = 30 and Lend/t = 50 for F < Fc (no collapse)
and F > Fc (collapsed). The color contour represented on the
sheet’s surface is the value of the longitudinal strain with the
hot regions corresponding to positive stretching and the cold
regions corresponding to the regions under compression. For
a noncollapsed sheet, the axial compression is maximal on
the sheet centerline. The collapse for F > Fc corresponds to a
buckling event with two stress-focusing singularities appear-
ing symmetrically of the centerline and connected by a small
ridge that is visible by a bump forming on the centerline.

From the results of the simulation of the sheet profile, we
can compute the sheet’s transverse curvature on the centerline.
The local curvature of the sheet is an important quantity be-
cause the buckling instability under global bending is ruled by
a mechanical stability criterion [25]:

σc(u) ∼ −E
t

R(u)
, (1)

in which E is the Young modulus, t is the sheet thickness,
c(u) = 1/R(u) is the sheet curvature at position u and σc(u)
the critical in-plane stress. The minus sign stipulates that the
buckling occurs in the regions of compression.

Figure 3 represents the transverse curvature c(u) on the
centerline of the curved sheet for the 4 boundary conditions
with Lend/t equals to 0 or 50 and Lcl/t equals 0 or 30 and the
same L/t = 170. The curvature is normalized by the curvature
cR = 1/R imposed by the circular clamp and it is represented
in dimensionless unit u/L. u/L = 0 is the position of the end
of the inner cylinder. For Lcl/t = 0, u/L is defined in a nega-
tive range. u/L = 1 is the position of the applied force F . The
4 plots on Fig. 3 are for a half-circular sheet W/2πR = 0.5
and a force F = 0.116 below the collapse value Fc. Without
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FIG. 3. Transverse curvature c(u) in the middle of the sheet as
a function of the normalized distance to the clamp u/L for different
values of the boundary conditions Lend/t and Lcl/t with F = 0.12
(uncollapsed sheet F < Fc). The curvature is normalized by the im-
posed curvature cR = R−1. The point force F applies at u/L = 1. The
clamp radius is R = 175×t and the length of the sheet is L = 170×t .
The dashed line is the post-buckling curvature for Lcl/t = 30 and
Lend/t = 50. A collapsed sheet is represented in the figure with the
variable u and the color indicates the longitudinal strain (hot: positive
stretching, cold: compression).

applied force F = 0 (unloaded), the dimensionless curvature
c(u)/cR remains close to 1. For u/L ∼ 1, c(u)/cR gets very
large because the force is applied locally on the sheet and
forms a cusp.

The important point in Fig. 3 is that the local curvature
c(u)/cR is larger than its unloaded value when a force F is
applied. Because the bending resistance of the sheet increases
with the transverse curvature c(u), there is a competition
between the global bending moment that tends to flatten the
sheet in the region u/L ∼ 0.3 and the effect of the load that
locally deforms the sheet by increasing its transverse cur-
vature. Either when Lend/t = 50 and/or Lcl/t = 30, we can
notice that the curvature decays on a longer scale than for
the reference Lend/t = 0, Lcl/t = 0. Concerning the clamping
condition with Lcl/t , we can say that the effect of the soft
clamp Lcl/t = 30 is to let the sheet have a more pronounced
curvature by a release in the absence of the external part of the
clamp.

In the last part of this paper, we would like to provide
another illustration of enhanced curvature-induced rigidity by
effect of compliance. In Fig. 4, we show the simulation results
for the collapse forces for two type of geometries: first, close
circular sheets with perimeter Wcyl in circular clamp and, sec-
ond, opened sheets of width W with the clamping conditions
for W/2πR = 1. The figure represents the collapse force Fc

as a function of the dimensionless length L/t in the case
Lend/t = 0 (applied force at the end point of the curved sheet)
and Lcl/t = 0 (rigid clamping condition). For the 3 sets of data
for W/t = 100, 200 and 300, we find that the closed cylinders
have larger collapse forces for small L/t but a crossover is
observed at L/t = 153, 447 and 800 respectively in which the

FIG. 4. Simulated collapse forces Fc for opened and closed cir-
cular sheets with the same clamping conditions with R = W/2π . Fc

is represented as a function of the sheet’s normalized length L/t . For
the 3 sets of tests with W/t = 100, 200, and 300, a square symbol
identifies the crossover between stronger cylinders at small L/t and
stronger opened sheets at large L/t . Wcyl is the perimeter of the closed
sheets.

opened sheet configurations can support larger loads than the
equivalent closed sheets. In a practical situation, this means
that a clamped long cylinder can be made more resistant under
bending if a longitudinal cut is made on the whole length of
the cylinder, which is reminiscent of the mechanical version of
the Braess paradox [64]. The origin of this enhanced rigidity
for opened curved sheets is again related to curvature-induced
rigidity. In supplemental material [63], we plot the transverse
curvature c(u) for the closed cylinder and the opened curved
sheet and we find that the opening of the curved sheet goes
against the flattening of the cylinder at the origin of buckling
under global bending.

In this paper, we showed that thin sheets held curved in
circular clamps of radius R can show unexpected strengthen-
ing regimes under bending. For short sheets with L ∼ R, we
found both in experiments and simulations that a soft clamps
can lead to more resistant structures under global bending.
The softness of the clamp is controlled by a length Lcl that
measures the shift between the internal and the external parts
of the circular clamp. We also showed that having a sheet
longer than position of the applied force by a quantity Lend

also leads to a stronger structure. We also found in simulations
that for long sheets L > R, a regime of stronger opened sheets
exists for which opened curved sheets have a larger bending
strength than their equivalent closed cylinder.

The origin of the surprising regimes reported in this paper
comes from two competing effects associated to the applied
bending force. On the one hand the bending force induces a
longitudinal compression stress at the bottom of the curved
sheet that favors the buckling of the curved sheet but on
the other hand, the point force induces a deformation of the
curved sheet and reinforces the sheet by locally increasing its
transverse curvature. These results are of a significant impor-
tance for the design and the understanding of the resilience of
soft minimal structures.
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