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SOLUTION METHODS FOR A CLASS OF FINITE-HORIZON1

VECTOR-VALUED MARKOV DECISION PROCESSES2

ANAS MIFRANI*, PHILIPPE SAINT-PIERRE, NICOLAS SAVY3

Abstract. This paper investigates and develops solution methods for a class of finite-

horizon Markov decision processes characterized by additive or multiplicative vector rewards.

Two concepts of optimality are treated: (1) optimality in the space of return vectors, whereby

a policy is optimal if it delivers a maximal total reward from any initial state; and (2)

optimality in the space of return functions, whereby a policy is optimal if its total reward

function is maximal among all total reward functions. The paper elucidates the relation

between the two concepts, proposes a procedure for utilizing this relation to determine the

set of optimal policies under concept (1), and formulates a dynamic programming approach

to calculating optimal policies under concept (2). The paper demonstrates that dynamic

programming yields all optimal policies under concept (2). The paper’s results are illustrated

with numerical experiments and a multi-objective stochastic inventory control problem.

Keywords: Multi-objective Markov decision processes; vector maximization; dynamic program-4

ming; multiple-criteria decision analysis.5
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1. Introduction7

Markov decision processes offer a mathematical framework for modeling and solving sequen-8

tial decision making problems where outcomes are uncertain. There are three components to9

such a process: a stochastic dynamical system to be controlled over a period of N ≥ 1 epochs;10

real-valued rewards accrued between consecutive epochs as a result of decisions taken at epochs;11

and a control policy that prescribes actions such that the total expected reward (or cost) for12

(of) operating the system is maximized (minimized). Viewed in this way, a Markov decision13

process defines a single-objective, discrete-time optimal control problem.14

However, a number of decision making problems are inherently multi-objective. In admin-15

istering chemotherapy, for instance, an oncologist wants to maximize the probability of cure16

while minimizing damage to normal cells (Coldman & Murray, 2000). A logistics manager17

looks for measures that simultaneously minimize the costs of warehousing and transportation18
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2 1 INTRODUCTION

over the coming year (Burns, Hall, Blumenfeld, & Daganzo, 1985). And in planning periodic1

pavement rehabilitation, the local government wants to ensure the highest quality roads for2

its citizens with minimal maintenance expenditures (Golabi, Kulkarni, & Way, 1982). While3

the dynamics of such problems may lend themselves to Markov decision process formulation4

(Puterman, 2014), it is sometimes unclear how the various objectives involved – e.g., probabil-5

ity of cure versus damage to normal cells, warehousing versus transportation costs, and road6

quality versus maintenance expenses – can be condensed into a single scalar-valued reward (or7

cost) function (Brown & Strauch, 1965; Zadeh, 1963). Interest in overcoming this issue, and8

therefore in expanding the use of Markov decision processes to multi-objective decision making,9

led to the introduction of vector-valued Markov decision processes.10

In a vector-valued Markov decision process, rewards take values in Rm, m ≥ 1, with each11

reward component representing an optimization objective. The standard formulation is as12

follows. Let S denote the set of states the system can occupy throughout its lifetime. For any13

state s, let As be the set of actions available in s; Rt(s, a) = (rt(s, a)1, ..., rt(s, a)m) the reward14

for choosing a ∈ As in s at time t = 1, ..., N − 1, and RN (s) the reward for occupying state15

s at the terminal epoch; pt(j|s, a) the transition probability from s to j ∈ S if a ∈ As was16

chosen at time t; and uπ
t (s) = Es

π[
∑N−1

i=t Ri(Xi, di(Xi)) + RN (XN )] ∈ Rm the expected total17

reward for using a Markovian deterministic policy π from t onward given Xt = s, where Xi18

represents the (random) state at time i and di(Xi) the action prescribed by π for Xi at time19

i. The last expectation is called a policy return. In particular, the vector uπ
1 (s) represents the20

return of a policy π over the entire decision making horizon. When m = 1, this model reduces21

to a Markov decision process.22

Roughly speaking, the reward structure just described induces a partial order on the set23

of policies whereby a policy π may be superior to a policy π′ in some respects but inferior24

to π′ in others. For example, taking m = 2 and a common initial state s, we may have25

uπ
1 (s)1 ≥ uπ′

1 (s)1 yet uπ
1 (s)2 < uπ′

1 (s)2, so that, componentwise, we neither have uπ
1 (s) ≥ uπ′

1 (s)26

nor uπ′

1 (s) ≥ uπ
1 (s). In a standard Markov decision process (m = 1), this situation obviously27

never arises.28

Though Brown and Strauch (1965) were the first to consider a Markov decision process29

with partially ordered rewards, namely rewards in multiplicative lattices, the chief theoret-30

ical developments concerning vector-valued Markov decision processes as presented here oc-31

curred in papers published between the 1970s and 1980s (Furukawa, 1980; Henig, 1983; White,32

1982). To the best of our knowledge, D. J. White’s seminal paper (White, 1982) contains the33

first attempt at formulating an exact dynamic programming approach to solving a class of34

vector-valued Markov decision processes. This approach has been cited by a recent survey of35

multi-objective reinforcement learning (Hayes et al., 2022), and numerous authors have used36

it either to compare it experimentally with their own approaches (Roijers, Röpke, Nowe, &37
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Radulescu, 2021; Wiering & De Jong, 2007) or as a point of departure for the development of1

new algorithms (Chen, Trevizan, & Thiébaux, 2023; Mandow, Pérez-de-la Cruz, & Pozas, 2022;2

Ruiz-Montiel, Mandow, & Pérez-de-la Cruz, 2017; Van Moffaert & Nowé, 2014). It is based3

on the following vector analogue of the Bellman equations of a finite-horizon Markov decision4

process (Puterman, 2014, Chapter 4):5

Ut(s) = e

( ⋃
a∈As

(
{Rt(s, a)}

⊕∑
j∈S

pt(j|s, a)Ut+1(j)

))
; t < N (1)

6

Ut(s) = {RN (s)}; t = N (2)

for all s ∈ S and t = 1, ..., N , where e(X) denotes the Pareto efficient subset of a set X ⊆ Rm
7

(see Section 2 for a formal definition), A
⊕

B = {a+b : ∀a ∈ A, ∀b ∈ B} for any two nonempty8

sets A and B, and where the unknowns are the Ut(s)’s, s ∈ S, t = 1, ..., N .9

White claims that the solutions of Equations (1) and (2) are the Pareto efficient sets of policy10

returns for all epochs and initial states, i.e Ut(s) = e
(⋃

π{uπ
t (s)}

)
for all t ≤ N and s ∈ S11

(White, 1982, Theorem 2). In fact this claim is generally false (Mifrani, 2023), notwithstanding12

its coincidence, for m = 1, with the correct observation that the solutions of the Bellman13

equations are the maxπ u
π
t (s)’s (Puterman, 2014, Proposition 4.3.3.).14

We might note, in passing, that such issues do not arise in infinite horizon models (N = ∞).15

Furukawa (1980) has proved that the fixed-point characterization of a Markov decision process’s16

optimal infinite horizon value (Puterman, 2014, Theorem 6.2.6.) extends mutatis mutandis to17

vector-valued processes. In short, the infinite horizon counterparts of White’s equations are18

valid. Here we shall confine our analysis to finite horizon models.19

In this paper, we take the position of a decision maker who has to select a V-optimal (V20

for vector-based) Markovian deterministic policy, that is, a policy which generates an efficient21

return from any initial state. We develop an approach to computing such a policy that does22

not involve dynamic programming on the space of return vectors. The key role in this approach23

is played by an auxiliary optimality criterion that we call F-optimality (F for function-based).24

The difference between the two criteria lies in that, to compare a pair of policies π and π′,25

F-optimality focuses on the policies’ return functions, uπ
t and uπ′

t , t = 1, ..., N , rather than on26

the return vectors uπ
t (s), u

π′

t (s) achieved in individual states s. The subtlety of this distinction27

will be illustrated in Example 1 of Section 3.28

We establish the following: (1) V-optimality is subsumed under F-optimality; (2) F-optimality29

is susceptible to dynamic programming; (3) the solutions to the dynamic programming equa-30

tions can be leveraged to construct F-optimal policies; and (4) provided there is a finite number31

of F-optimal policies, a computationally useful characterization of V-optimal policies within the32

set of F-optimal policies can be implemented to find all policies of the former kind. Thus, in33

particular, we shall see that all V-optimal policies can be calculated without evaluating the34
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e
(⋃

π{uπ
1 (s)}

)
’s, a potentially intractable task in the absence of a valid recurrence relation1

between e
(⋃

π{uπ
t (s)}

)
and e

(⋃
π{uπ

t+1(j)}
)
for all s, j ∈ S and t = 1, ..., N − 1.2

The hypotheses and notation underpinning this paper are presented in greater detail in Sec-3

tion 2. In Section 3, we shall substantiate, and discuss the implications of, points (1)-(4) as4

outlined above. In particular, we shall devise algorithms for computing policies according to5

each criterion. A numerical analysis of the algorithms is undertaken in Section 3. Section 46

reports implementation results for a multi-objective stochastic inventory management prob-7

lem. In Section 5, we consider the ramifications of our results for models with multiplicative8

– rather than additive – rewards, make some general comments on the algorithms, and close9

with a discussion of potential applications of these results.10

11

2. Model Assumptions and Notation12

At each epoch t ≤ N , the system occupies a state st. The set of all states, S, is finite. The13

decision maker has at their disposal a set of actions, A, which they must choose from at each14

epoch. If only certain actions are allowed in a state, let As be the set of permissible actions in15

s ∈ S, from which it follows A = ∪s∈SAs. Suppose As is a compact subset of R for all s ∈ S.16

Assuming a ∈ A was selected at time t < N , the probability that the system will occupy state17

j ∈ S at t + 1 depends only on the present state s ∈ S, and is denoted by pt(j|s, a). For18

choosing action a ∈ A in state s at time t < N , the decision maker receives a vector reward19

Rt(s, a) ∈ Rm, m ≥ 2. Suppose that transition probabilities and rewards are continuous on20

As for all s ∈ S. A (Markovian, deterministic) decision rule dt dictates the action to be taken21

in each state at epoch t < N , and is viewed therefore as a mapping from S to A. The set22

of all decision rules, D, is considered to be compact. For any t < N and any dt ∈ D, let23

P dt = (pt(j|s, dt(s))s,j∈S be the transition probability matrix induced by dt. No decision is24

taken at epoch N , but a state-dependent reward RN (s) is generated. A policy specifies the25

decision rule that should be used at each epoch, and shall be identified with its corresponding26

sequence of decision rules (d1, ..., dN−1). Let Π = DN−1 be the set of all policies. For any27

π ∈ Π and t < N , π̄(t) = (dt, ..., dN−1) shall denote the portion of decision rules used by π28

from t onward.29

For any policy π = (d1, ..., dN−1) and any t < N , we have the recurrence relation30

uπ
t (s) = Rt(s, dt(s)) +

∑
j∈S

pt(j|s, dt(s))uπ
t+1(j) (3)

where we let31

uπ
N (s) = RN (s). (4)
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Expanding the sum in (3) over all future epochs and states yields the expression1

uπ
t (s) = Rt(s, dt(s)) +

N−2∑
i=t

∑
j∈S

( i∏
k=t

P dk

)
s,j

Ri+1(j, di+1(j)) +
∑
j∈S

(N−1∏
k=t

P dk

)
s,j

RN (j). (5)

The terms “policy return” and “return”, where time and state are omitted for brevity, shall2

refer to any vector u ∈ Rm for which there is a policy π, a time t = 1, ..., N and an s ∈ S with3

u = uπ
t (s). Where a distinction must be drawn between the function uπ

t , and the values uπ
t (s)4

it takes at particular states s ∈ S, the phrases “(policy) return function” and “(policy) return5

vector” shall be used instead, with time and state also omitted for brevity.6

For any partially ordered set (X,≥), let e(X) be the efficient (or admissible, or noninferior,7

or Pareto optimal) subset of X, to wit:8

e(X) = {x ∈ X : ∀y ∈ X, y ≥ x =⇒ y = x }. (6)

Let F (S,Rm) denote the set of all Rm-valued functions on S. In Section 3 we shall be concerned9

with efficiency in subsets of (Rm,≥) and (F (S,Rm),⪰), where:10

∀x, y ∈ Rm, x ≥ y ⇐⇒ ∀i = 1, ...,m, xi ≥ yi, (7)
11

∀u, v ∈ F (S,Rm), u ⪰ v ⇐⇒ ∀s ∈ S, u(s) ≥ v(s). (8)

The partial orders thus defined provide a means for comparing, respectively, return vectors12

and return functions. A strict partial order > can also be defined on (X,≥) as ∀x, y ∈ X,x >13

y ⇐⇒ x ≥ y ∧ x ̸= y. When X ⊆ Rm and Rm is equipped with (7), the elements of e(X)14

are sometimes referred to as “vector maxima” (Geoffrion, 1968), though for consistency with15

previous work on vector-valued Markov decision processes the generic adjective “efficient” shall16

be used instead. When X has a maximum, such as is the case with
⋃

π∈Π{uπ
t (s)} for m = 117

(Puterman, 2014, Proposition 4.4.3), we have e(X) = {max(X)}.18

19

3. Theoretical Results20

As stated in the Introduction, we shall study two related concepts of optimality as regards21

policies. In the first concept, a policy is optimal if, whatever the state in which it was first22

implemented, it delivers a maximal return over the N epochs:23

Definition 1 (V-optimality). A policy πV is V-optimal if and only if uπV

1 (s) ∈ e
(⋃

π{uπ
1 (s)}

)
24

for all states s ∈ S.25

Here “V” stands for “vector”, and
⋃

π{uπ
1 (s)} is endowed with ≥ as defined in (7). For m = 1,26

maxπ u
π
1 (s) exists for all s ∈ S (Puterman, 2014, Proposition 4.3.3.), and Definition 1 reads27

“πV is V-optimal if and only if uπV

1 (s) = maxπ u
π
1 (s) for all s ∈ S”, which is the standard28

optimality criterion across a wide range of Markov decision process applications (Borrero &29

Akhavan-Tabatabaei, 2013; Goedhart, Haijema, Akkerman, & de Leeuw, 2023; Mason, Denton,30
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Shah, & Smith, 2014; Puterman, 2014; Ramirez-Nafarrate, Hafizoglu, Gel, & Fowler, 2014;1

Schlosser & Gönsch, 2023).2

One of the aims of this section is to supply a procedure for determining all V-optimal3

policies under the hypotheses of Section 2. This will be achieved by leveraging the connection4

between V-optimality and a neighboring optimality concept of which return functions, rather5

than return vectors, are the core ingredient.6

Definition 2 (F-optimality). A policy πF is F-optimal if and only if uπF

1 ∈ e
(⋃

π∈Π{uπ
1}
)
,7

where “F” stands for “function”, and where it is implicit that
⋃

π∈Π{uπ
1} is ordered by ⪰ as8

defined in (8).9

In brief, a policy π∗ is V-optimal if for each state s there exists no other policy πs ̸= π∗ with10

uπs
1 (s) ≥ uπ∗

1 (s), and is F-optimal if there is no other π such that uπ
1 ⪰ uπ∗

1 .11

Example 1. The distinction is illustrated by the following situation. Suppose these policies12

were available in a two-state model with m = 2: a policy π1 yielding uπ1
1 (s1) = (3, 1) and13

uπ1
1 (s2) = (5,−2), and a policy π2 yielding uπ2

1 (s1) = (2, 1) and uπ2
1 (s2) = (12 , 0). Then uπ1

1 and14

uπ2
1 are incomparable with respect to ⪰; uπ1

1 (s2) and uπ2
1 (s2) are incomparable with respect to15

≥; and uπ1
1 (s1) > uπ2

1 (s1). By definition, π2 is not V-optimal, for uπ1
1 (s1) > uπ2

1 (s1) implies the16

existence of a state s (s1 here) for which there is a policy πs ̸= π2 (π1 here) with uπs
1 (s) ≥ uπ2

1 (s).17

It may still be F-optimal, however, as we have uπ1
1 (s2) ̸≥ uπ2

1 (s2) and therefore uπ1
1 ̸⪰ uπ2

1 . If18

some third policy π3 satisfied uπ3
1 (s1) ≥ uπ2

1 (s1) and uπ3
1 (s2) ≥ uπ2

1 (s2), then π2 would not be19

F-optimal.20

In the succeeding development, we will find it convenient to focus on the latter concept for21

four key reasons, all of which will be demonstrated in due course: (1) we are able to guarantee22

the existence of F-optimal policies; (2) the problem of finding F-optimal policies is susceptible23

to dynamic programming; (3) F-optimal policies satisfy the Principle of Optimality (Bellman,24

1954); and (4) a V-optimal policy must be F-optimal, that is, given π ∈ Π, efficiency of uπ
125

in F (S,Rm) is a necessary condition for efficiency of uπ
1 (s) in Rm for all s ∈ S. These obser-26

vations have important practical implications. First, the fact that the Principle of Optimality27

holds means that all F-optimal – and therefore all V-optimal – policies will be found through28

dynamic programming. Second, if we can determine which policies are not F-optimal, we will29

immediately recognize those that are not V-optimal. Third, if e(
⋃

π∈Π{uπ
1}) is finite and can be30

computed in a finite number of steps, it will be possible to obtain the set of V-optimal policies,31

thereby solving both optimization problems simultaneously. This last point will be illustrated32

in the next section.33

Proposition 1. Let π∗ ∈ Π. If π∗ is V-optimal, then it is F-optimal.34
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Proof. Suppose that π∗ ∈ Π is V-optimal. Let π′ ∈ Π be a policy such that uπ′

1 ⪰ uπ∗

1 . Then for1

any s ∈ S, uπ′

1 (s) ≥ uπ∗

1 (s). Therefore, since π∗ is V-optimal, it follows that uπ′

1 (s) = uπ∗

1 (s)2

for any s ∈ S. Thus, uπ′

1 = uπ∗

1 . This shows that uπ∗

1 ∈ e(
⋃

π{uπ
1}), and hence that π∗ is3

F-optimal. □4

Lemma 1 formalizes a useful intuition about return functions that will be invoked repeatedly5

throughout this section.6

Lemma 1. Let π = (d1, ..., dN−1), π
′ = (d′1, ..., d

′
N−1) ∈ Π, dt ∈ D and t = 1, ..., N−2. Suppose7

uπ
t+1 ⪰ uπ′

t+1. Then for any two policies π1 and π2 such that π̄1(t) = (dt, dt+1, ..., dN−1) and8

π̄2(t) = (dt, d
′
t+1, ..., d

′
N−1), u

π1
t ⪰ uπ2

t .9

Proof. Suppose uπ
t+1 ⪰ uπ′

t+1, and let s ∈ S. Let π1, π2 ∈ Π be policies such that π̄1(t) =10

(dt, dt+1, ..., dN−1) and π̄2(t) = (dt, d
′
t+1, ..., d

′
N−1). For all j ∈ S, uπ1

t+1(j) = uπ
t+1(j) ≥11

uπ′

t+1(j) = uπ2
t+1(j), hence

∑
j∈S p(j|s, dt(s))uπ1

t+1(j) ≥
∑

j∈S p(j|s, dt(s))uπ2
t+1(j) due to the12

nonnegativity of probabilities. Thus,13

Rt(s, dt(s)) +
∑
j∈S

p(j|s, dt(s))uπ1
t+1(j) ≥ Rt(s, dt(s)) +

∑
j∈S

p(j|s, dt(s))uπ2
t+1(j).

This establishes uπ1
t (s) ≥ uπ2

t (s) for each s ∈ S. Ergo, uπ1
t ⪰ uπ2

t . □14

Example 2. Consider a vector-valued Markov decision process with S = {1, 2}, A1 = {a, b},15

and A2 = {a}. Suppose that at a decision epoch t we had pt(1|1, a) = .75; pt(2|1, a) = .25;16

pt(1|1, b) = pt(2|1, b) = .5; pt(1|2, a) = 1; pt(2|2, a) = 0; Rt(1, a) = (1, 0); Rt(2, a) = (0, 0);17

and Rt(1, b) = (0, 1).18

For the purposes of this example, let us assume that there exist policies π and π′ with19

returns uπ
t+1(1) = (0, 0), uπ

t+1(2) = (−2, 2), uπ′

t+1(1) = (−0.5, 0), uπ′

t+1(2) = (−6, 1). Clearly,20

uπ
t+1 ⪰ uπ′

t+1.21

Now let dt ∈ D denote the decision rule that chooses b in state 1, i.e dt(1) = b and dt(2) = a.22

Choose π1 to be any policy that selects dt at time t then pursues π from time t + 1 onward.23

Similarly, let π2 select dt at time t then pursue π′ at all future epochs. In our notation,24

this translates to π̄1(t) = (dt, π) and π̄2(t) = (dt, π
′). Through simple calculations, we will25

demonstrate the assertion in Lemma 1 that uπ1
t ⪰ uπ2

t . From Equation (3) we have that26

uπ1
t (1) = Rt(1, dt(1)) +

∑
j∈S

pt(j|1, dt(1))uπ
t+1(j)

= (0, 1) + 0.5 · (0, 0) + 0.5 · (−2, 2)

= (−1, 2),
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and1

uπ2
t (1) = Rt(1, dt(1)) +

∑
j∈S

pt(j|1, dt(1))uπ′

t+1(j)

= (0, 1) + 0.5 · (−0.5, 0) + 0.5 · (−6, 1)

= (−3.25, 1.5).

Thus, uπ1
t (1) ≥ uπ2

t (1). The reader can easily replicate this method of calculation to verify that2

uπ1
t (2) = (0, 0) and uπ2

t (2) = (−0.5, 0). This means that uπ1
t (2) ≥ uπ2

t (2), hence uπ1
t ⪰ uπ2

t .3

Fundamental to the proof of Lemma 1 is the fact that for any π = (d1, ..., dN−1) ∈ Π, s ∈ S4

and t = 1, ..., N − 1, uπ
t (s) = Rt(s, dt(s)) +

∑
j∈S pt(j|s, dt(s))uπ

t+1(j). That is, policy returns5

are separable and additive. The scope of the lemma, however, covers a broader category of6

separable returns. Following Morin (1982), we can make this generalization: any vector-valued7

Markov decision process such that uπ
t (s) = Rt(s, dt(s)) ◦

∑
j∈S pt(j|s, dt(s))uπ

t+1(j), where8

◦ is an isotonic symmetric binary operator, i.e a symmetric binary operator that preserves9

inequalities (with respect to ≥), satisfies the lemma. To prove this generalization, we may10

proceed in exactly the same fashion as above, concluding from the isotonicity of ◦ that11

Rt(s, d(s)) ◦
∑
j∈S

p(j|s, d(s))uπ1
t+1(j) ≥ Rt(s, d(s)) ◦

∑
j∈S

p(j|s, d(s))uπ2
t+1(j)

for all s ∈ S, and therefore that uπ1
t ⪰ uπ2

t . Incidentally, Morin points out that a strictly12

isotonic associative ◦, of which addition in Rm and componentwise multiplication in (0,∞)m13

would be examples, ensures the validity of the Bellman equations in Markov decision processes.14

However, Mifrani (2023) has recently shown that this is not true for all vector-valued Markov15

decision processes with regard to the vector extension of those equations.16

It will later prove desirable, especially for the purpose of justifying optimality equations, to17

have a property that enables us to assert that each inefficient point in
⋃

π∈Π{uπ
t } is dominated18

by an efficient one. Notice that this is not entailed by the definition of efficiency, because in19

general, all we can say about an inefficient point is that it is dominated by another point, which20

may or may not be efficient. Berge (1985) calls “absorbent” a partially ordered set S ⊆ (X,≥)21

such that for every x ∈ X, there exists s ∈ S satisfying s ≥ x. We wish then an absorbent22

e(
⋃

π∈Π{uπ
t }) for all t = 1, ..., N , so that in addition to the aforementioned property, we may23

conclude that e(
⋃

π∈Π{uπ
1}) ̸= ∅, and therefore that F-optimal policies exist. The following24

lemma from Henig (1985) implies that a nonempty partially ordered set is absorbent if it meets25

the conditions of Zorn’s lemma (Zorn, 1935).26

Lemma 2. (Henig, 1985) Let (U,≥) be a nonempty partially ordered set, and K a nonempty27

subset of U . Suppose that for every u ∈ U and every v ∈ K, u ≥ v implies u ∈ K. Suppose28

further that every totally ordered subset (chain) of U has an upper bound in U . Then e(U)∩K ̸=29

∅.30
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For fixed u ∈
⋃

π∈Π{uπ
t } and t = 1, ..., N , let K(u) denote the set {v ∈

⋃
π{uπ

t } : v ⪰ u}. We1

claim that there is an efficient v ∈ e(
⋃

π∈Π{uπ
t }) such that v ⪰ u. Our proof rests on Lemma2

2. First of all, K(u) is nonempty, as u ⪰ u. Moreover, as will be shown below,3

(1) for every v in K(u) and every v′ ∈
⋃

π{uπ
t }, v′ ⪰ v implies v ∈ K(u), and;4

(2) every chain of
⋃

π∈Π{uπ
t } is bounded above in

⋃
π∈Π{uπ

t }.5

The proof of point (2) involves studying the convergence of certain sequences in D and in6

Π = DN−1. For convergence to be meaningful on either set, a topology must be introduced. The7

most widely assumed topology in the analysis of Markov decision processes is that of uniform8

(or sup-norm) convergence. But because uniform convergence implies pointwise convergence,9

and because our proof does not use properties of the former which are not true of the latter, it10

suffices to endow D with the topology of pointwise convergence and, by extension, Π with the11

associated product topology.12

Theorem 1. Equip D with the topology of pointwise convergence and Π = DN−1 with the13

product topology. Then points (1) and (2) as enunciated above are true.14

Proof. We divide the proof into two parts.15

(1) Let v ∈ K(u) and v′ ∈
⋃

π{uπ
t }. If v′ ⪰ v, then, since v ⪰ u and ⪰ is transitive, we have16

that v′ ⪰ u, hence v′ ∈ K(u).17

(2) Notice first that Π, being the product of compact sets, is compact. For all π ∈ Π, let18

ft(π) = uπ
t . According to (Birkhoff, 1940, Theorem 16), it suffices to show that ft, viewed as19

a mapping from Π to F (S,Rm), satisfies the following property: whenever e ∈ F (S,Rm) and20

for every sequence (πn)n with values in Π, πn → π◦ and ft(πn) ≥ e for all n imply ft(π
◦) ≥ e.21

Accordingly, let e ∈ F (S,Rm) and (πn)n a sequence of policies converging to a π0 ∈ Π, with22

ft(πn) ⪰ e for all n. Let s ∈ S. From (5), we have that23

ft(πn)(s) = Rt(s, d
πn
t (s)) +

N−2∑
i=t

∑
j∈S

( i∏
k=t

P dπn
k

)
s,j

Ri+1(j, d
πn
i+1(j))

+
∑
j∈S

(N−1∏
k=t

P dπn
k

)
s,j

RN (j) ≥ e(s)

for all n. Now, in view of D’s topology, we have that for all i = 1, ..., N , dπn
i (s) → dπ

0

i (s) in A.24

This, together with the continuity of the transition probabilities and of each reward component25

on A, yields ft(π
n)(s)p → ft(π

0)(s)p in R and hence ft(π
0)(s)p ≥ e(s)p for all p = 1, ...,m.26

Thus, by definition, ft(π
0)(s) ≥ e(s). Since s was chosen arbitrarily, it follows that ft(π

0) ⪰ e,27

again by definition of ⪰. By virtue of this and the compactness of Π, it follows from Theorem28

1 that every chain in ft(P ) =
⋃

π{uπ
t } has an upper bound in

⋃
π{uπ

t }. □29
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Theorem 1 relies on the fact that Π is compact, which in turn relies on the fact that D is1

compact. Considering that many Markov decision process applications use a finite A (Borrero2

& Akhavan-Tabatabaei, 2013; Goedhart et al., 2023; Mason et al., 2014; Ramirez-Nafarrate et3

al., 2014; Schlosser & Gönsch, 2023; Wang, Demeulemeester, Vansteenkiste, & Rademakers,4

2024; White, 1993), and therefore a compact D, this is not as restrictive an assumption as it5

may seem at first glance.6

Corollary 1. For all t = 1, ..., N , if u ∈
⋃

π∈Π{uπ
t }, there is an efficient return function7

v ∈ e(
⋃

π∈Π{uπ
t }) such that v ⪰ u.8

Example 3. We illustrate part (2) of Theorem 1 in tandem with Corollary 1. In a certain9

model with state space S = {1, 2} and m = 2, the return functions generated by all policies10

from time t = 1 onward were found to be given by11 ⋃
π∈Π

{uπ
1} = {u1, u2, u3, u4, u5, u6, u7, u8} ⊂ F (S,R2),

where, for example, u1(1) = (1.64, 12.6); u1(2) = (2.44, 8.56); u4(1) = (3.44,−2.44); u4(2) =12

(1.62,−7.62); u8(1) = (−4.62,−6.37); u8(2) = (−3.75,−10.25). The exact values are immate-13

rial to the purposes of this example; what is important here are the relations among the points14

in the above set. We can see that u1 ⪰ u8, u4 ⪰ u8, and that no comparison is possible be-15

tween u1 and u4. The full network of relations is summarized in the diagram of Figure 1. For16

example, the diagram indicates that u1 ⪰ u3, but also that u1 ⪰ u7, as u3 ⪰ u7 and ⪰ is tran-17

sitive. Such drawings are known in set theory as Hasse diagrams, and are particularly useful18

for determining chains and antichains (subsets of which no distinct points are comparable) in19

a partially ordered set.20

We shall verify the assertion in Theorem 1(2) that every totally ordered subset of
⋃

π∈Π{uπ
1}21

is upper bounded in
⋃

π∈Π{uπ
1} relative to ⪰. According to Figure 1, the totally ordered subsets22

in this example comprise:23

(1) eight singletons {ui}, i = 1, ..., 8, which are bounded above by virtue of ⪰ being reflexive;24

(2) fifteen two-point sets including {u1, u5}, {u4, u8}, {u1, u8}, and {u2, u8}, all of which25

are bounded above by the element from which the arrow (or arrows) originates (origi-26

nate);27

(3) and six three-point sets {u1, u3, u8}, {u1, u3, u7}, {u2, u4, u8}, {u2, u3, u8}, {u2, u4, u7},28

and {u2, u3, u7}, all of which are bounded above either by u1 or by u2.29

On the same diagram we can observe that e(
⋃

π∈Π{uπ
1}) = {u1, u2}, since u1 and u2 are the30

only points towards which no arrows are directed. If the claim in Corollary 1 is correct, then31

each ui, i = 1, ..., 8, should satisfy u1 ⪰ ui, or u2 ⪰ ui, or both. A simple inspection of Figure32

1 reveals that this is indeed the case.33
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u^1u^2

u^3u^4 u^5u^6

u^7 u^8

Figure 1. A Hasse diagram of the set
⋃

π∈Π{uπ
1} in Example 3, ordered by

⪰. An outward-pointing arrow from ui to uj indicates that ui ⪰ uj .

A byproduct of Corollary 1 is that the sets e(
⋃

π{uπ
1}), ..., e(

⋃
π{uπ

N}) are nonempty. In1

particular, there is at least one F-optimal policy.2

Theorem 2. Let Π∗
F be the set of all F-optimal policies. Then Π∗

F ̸= ∅.3

This existence result can also be obtained in a different way. Puterman (2014) has shown4

that a scalar-valued Markov decision process satisfying the assumptions of this work – namely,5

a finite S, a compact A, and rewards and transition probabilities which are continuous on A6

– has at least one optimal policy, that is, a π∗ such that uπ∗

1 (s) = maxπ∈Π uπ
1 (s) for all states7

s. Take now any m positive scalars λ1, ..., λm, and write λ = (λ1, ..., λm). Recalling that8

Rt(s, a) = (rt(s, a)1, ..., rt(s, a)m), Puterman’s result implies that the Markov decision process9

with rewards ⟨λ, Rt(s, a)⟩ ∈ R has a policy π∗ such that ⟨λ, uπ∗

1 (s)⟩ ≥ ⟨λ, uπ
1 (s)⟩ for all π ∈ Π10

and s ∈ S. It is a straightforward exercise to prove that such a π∗ must be V-optimal, and11

therefore F-optimal, for the vector-valued process.12
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We now propose dynamic programming equations that yield an algorithm for enumerating1

the set of F-optimal policies. Our proof of the equations’ validity will employ the following2

observation.3

Lemma 3. For all t = 1, ..., N − 1,4 ⋃
dt∈D

{
S ∋ s 7→ Rt(s, dt(s)) +

∑
j∈S

pt(j|s, dt(s))v(j) : v ∈
⋃
π

{uπ
t+1}

}
=
⋃
π

{uπ
t }

Proof. Let t = 1, ..., N − 1. Let w ∈ F (S,Rm) such that5

∀s ∈ S, w(s) = Rt(s, dt(s)) +
∑
j∈S

pt(j|s, dt(s))v(j)

for some dt ∈ D and v ∈
⋃

π{uπ
t+1}. We may write v = uπ

t+1 for some π = (d1, ..., dN−1) ∈ Π.6

Let π′ ∈ Π be any policy such that π̄′(t) = (dt, dt+1, ..., dN−1). Then for all s ∈ S, w(s) =7

uπ′

t (s). Thus, w = uπ′

t , whence8 ⋃
dt∈D

{
S ∋ s 7→ Rt(s, dt(s)) +

∑
j∈S

pt(j|s, dt(s))v(j) : v ∈
⋃
π

{uπ
t+1}

}
⊆
⋃
π

{uπ
t }.

The converse inclusion can readily be obtained from (3); as a result, the lemma is established.9

□10

Recall that D, the set of all decision rules, is the set of all mappings from S into A. We11

may now state the relation between e(
⋃

π∈Π{uπ
t }) and e(

⋃
π∈Π{uπ

t+1}) for all t = 1, ..., N − 1.12

From it we will deduce a dynamic programming algorithm that finds all F-optimal policies by13

leveraging the structure of the equations.14

Theorem 3. For all t = 1, ..., N , e(
⋃

π∈Π{uπ
t }) is the unique solution Ut to either of the15

following equations:16

Ut = e

( ⋃
dt∈D

{
S ∋ s 7→ Rt(s, dt(s)) +

∑
j∈S

pt(j|s, dt(s))v(j) : v ∈ Ut+1

})
; t < N (9)

17

Ut = {RN}; t = N (10)

Proof. For greater legibility we set, for all t = 1, ..., N ,18

Gt =
⋃

dt∈D

{
S ∋ s 7→ Rt(s, dt(s)) +

∑
j∈S

pt(j|s, dt(s))v(j) : v ∈ Ut+1

}
.

We proceed by induction on t. For any policy π ∈ Π, uπ
N = RN . Thus,

⋃
π{uπ

N} is the19

singleton {RN}, and e(
⋃

π{uπ
t }) = {RN} = UN . The property then holds for t = N . Assume20

it is true for t+ 1, for some t < N . Let u ∈ e(
⋃

π{uπ
t }). There exists a π = (d1, ..., dN−1) ∈ Π21

such that u = uπ
t . By Corollary 1, there exists a v ∈ e(

⋃
π{uπ

t+1}) such that v ⪰ uπ
t+1. Let22
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w ∈ F (S,Rm) be the function such that w(s) = Rt(s, dt(s)) +
∑

j∈S pt(j|s, dt(s))v(j) for all1

s ∈ S. Then w ∈
⋃

π{uπ
t } by Lemma 3, and w ⪰ u by Lemma 1. But u is efficient in

⋃
π{uπ

t };2

therefore, u = w. Appealing to the induction hypothesis for v then to Lemma 3 proves u ∈ Ut.3

This establishes e(
⋃

π{uπ
t }) ⊆ Ut.4

To show the converse inclusion, let v ∈ Ut. We have v ∈
⋃

π{uπ
t }. Consider now some5

u ∈
⋃

π{uπ
t } such that u ⪰ v. We shall show that we necessarily have v = u. Applying6

Corollary 1 then Lemma 1, there is a u′ ∈ e(
⋃

π{uπ
t+1}) such that w := s 7→ Rt(s, dt(s)) +7 ∑

j∈S pt(j|s, dt(s))u′(j)) ⪰ u. Then w ⪰ v. By our induction hypothesis, u′ ∈ Ut+1, and thus8

w ∈ Gt. But v being efficient in Gt, we must have v = w and therefore v ⪰ u. Consequently,9

v = u. The requisite inclusion then follows, and the property holds for all t = 1, ..., N . □10

Although Equations (9) and (10) bear a striking resemblance to the White equations (see11

Section 1), the two sets of equations differ in crucial respects. In the first place, the unknowns in12

(9) and (10) are subsets of F (S,Rm), whereas in White’s case they are subsets of Rm. White’s13

equations involve a total of N · |S| unknowns; ours involve N unknowns. In the second place,14

the solution of (9) or (10) at an epoch t must be a subset of
⋃

π∈Π{uπ
t } by virtue of, inter alia,15

Lemma 3, the key argument in the proof above. In contrast, we cannot guarantee in general16

that White’s solution sets are contained in the
⋃

π∈Π{uπ
t (s)}’s, s ∈ S, except in conditions17

like those expatiated in (Mifrani, 2023). Incidentally, two of the conditions – namely, that18

the dynamics of the model be deterministic, and that the decision making horizon be short of19

three epochs – are special cases of this paper’s hypotheses, and thus ensure the validity of both20

White’s and our equations.21

It is clear that by construction each member of Ut, t = 1, ..., N − 1, is characterized by some22

sequence of decision rules (dt, ..., dN−1). Thus, if Lt is the mapping from DN−t into Ut defined23

by Lt(dt, ..., dN−1) = uπ
t , where π is any policy with π̄(t) = (dt, ..., dN−1), then Lt is onto. This24

mapping need not be one-to-one, as distinct policies may well have the same return function.25

Theorem 3 and the remarks of the previous paragraph naturally give rise to the following26

algorithm for calculating F-optimal policies, an algorithm that also solves Equations (9) subject27

to (10).28

Algorithm 1. Solution of Equations (9) subject to (10) and calculation of Π∗
F .29

(1) Set t = N − 1 and30

UN−1 = e

( ⋃
dt∈D

{
S ∋ s 7→ RN−1(s, dt(s)) +

∑
j∈S

pN−1(j|s, dt(s))RN (j)

})
(11)

31

P ∗
N−1 = {dt ∈ D : S ∋ s 7→ RN−1(s, dt(s)) +

∑
j∈S

pN−1(j|s, dt(s))RN (j) ∈ UN−1} (12)
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(2) Substitute t− 1 for t and set1

Ut = e

( ⋃
dt∈D

{
S ∋ s 7→ Rt(s, dt(s)) +

∑
j∈S

pt(j|s, dt(s))v(j) : v ∈ Ut+1

})
(13)

2

P ∗
t = {(dt, dt+1, ..., dN−1) ∈ DN−t : (dt+1, ..., dN−1) ∈ P ∗

t+1

and S ∋ s 7→ Rt(s, dt(s)) +
∑
j∈S

pt(j|s, dt(s))uπ
t+1(j) ∈ Ut} (14)

where π ∈ Π is any policy such that π̄(t+ 1) = (dt+1, ..., dN−1).3

4

(3) If t = 1, stop. Otherwise, go to (2).5

Proposition 2. The sets Ut returned by Algorithm 1 are the solutions to Equations (9) and6

(10), and therefore satisfy Ut = e(
⋃

π∈Π{uπ
t }) for each t = 1, ..., N .7

At termination, P ∗
1 contains every policy satisfying uπ

t ∈ Ut for all t = 1, ..., N . By Theorem8

3, such policies are F-optimal, but one might ask whether these include all or only a subset of9

F-optimal policies. It turns out from Lemma 1 that if π is F-optimal, then the subpolicy π̄(t′),10

1 < t′ ≤ N , is also F-optimal with respect to the portion of the decision making horizon that11

begins at t′, i.e uπ
t′ ∈ U ′

t . Phrased loosely, an F-optimal policy π is “F-optimal” at every stage of12

decision making: not only does it achieve an efficient return function uπ
1 over the N epochs, but13

it also achieves an efficient return function uπ
t from any epoch t onward. Specifically, if for each14

epoch t we let Et denote the efficient set e(
⋃

π∈Π{uπ
t }), we have the sequence of implications15

uπ
1 ∈ E1 =⇒ uπ

2 ∈ E2 =⇒ · · · =⇒ uπ
N−1 ∈ EN−1,

or, viewed from another, logically equivalent angle,16

uπ
N−1 /∈ EN−1 =⇒ uπ

N−2 /∈ EN−2 =⇒ · · · =⇒ uπ
1 /∈ E1.

A formal statement and proof of this structural property follow.17

Proposition 3. For any π ∈ Π, π ∈ Π∗
F implies uπ

t ∈ e(
⋃

π∈Π{uπ
t }) for all t = 1, ..., N .18

Proof. Let π = (d1, ..., dN−1) ∈ Π∗
F . We proceed by induction on t. By definition of Π∗

F ,19

uπ
1 ∈ e(

⋃
π∈Π{uπ

1}). Let t = 2, ..., N − 1 such that uπ
t ∈ e(

⋃
π∈Π{uπ

t }). We will show that20

uπ
t+1 ∈ e(

⋃
π∈Π{uπ

t+1}). Assume to the contrary that uπ
t+1 /∈ e(

⋃
π∈Π{uπ

t+1}). There then exists21

a π′ ∈ Π such that uπ′

t+1 ≻ uπ
t+1. Therefore, s 7→ Rt(s, dt(s)) +

∑
j∈S pt(j|s, dt(s))uπ′

t+1(j) ≻ uπ
t22

by Lemma 1. However, Lemma 3 tells us that s 7→ Rt(s, dt(s)) +
∑

j∈S pt(j|s, dt(s))uπ′

t+1(j) ∈23 ⋃
π∈Π{uπ

t }, which contradicts the fact that uπ
t ∈ e(

⋃
π∈Π{uπ

t }) and completes the proof. □24

The argument of this proof is very straightforward. Suppose a policy π = (d1, ..., dt+1, ..., dN−1)25

does not achieve an efficient return function over the period t + 1, ..., N . This means we can26
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find a policy π′ whose return function for the same period is better, i.e uπ′

t+1 ≻ uπ
t+1. Obviously,1

because decisions taken prior to epoch t + 1 cannot influence how well a policy does between2

t+1 and N , we may write, with a slight abuse of notation, uπ
t+1 = u

π̄(t+1)
t+1 and uπ′

t+1 = u
π̄′(t+1)
t+1 ,3

so that u
π̄′(t+1)
t+1 ≻ u

π̄(t+1)
t+1 . Now suppose we extended both π̄(t+1) and π̄′(t+1) by the decision4

rule dt, giving rise to two (partial) policies (dt, π̄(t+1)) and (dt, π̄′(t+1)). Since both policies5

employ the same decision rule at time t, and since u
π̄′(t+1)
t+1 ≻ u

π̄(t+1)
t+1 , we deduce from Equation6

(3) that (dt, π̄′(t + 1)) has a superior return function, that is, u
(dt,π̄′(t+1))
t ≻ u

(dt,π̄(t+1))
t . But7

dt being the t-th decision rule in π, we have (dt, π̄(t + 1)) = π̄(t) by construction, so that8

u
(dt,π̄(t+1))
t = uπ

t , and thus π does not achieve an efficient return function over the period t, ...,9

N . What we have just shown, in summary, is that if π is not “F-optimal” from some epoch10

t + 1 onward, it is not “F-optimal” from epoch t onward either, no matter what actions are11

prescribed at epoch t.12

Example 4. For each ui in
⋃

π∈Π{uπ
1} of Example 3, write ui = uπi

1 . Therefore,13 ⋃
π∈Π

{uπ
1} = {uπ1

1 , ..., uπ8
1 }.

Recall that e(
⋃

π∈Π{uπ
1}) = {uπ1

1 , uπ2
1 }. The set of return functions for the period t = 2, ..., N14

for this model was found to be equal to15 ⋃
π∈Π

{uπ
2} = {uπ1

2 , uπ3
2 , uπ5

2 , uπ7
2 },

with uπ2
2 = uπ1

2 , uπ4
2 = uπ3

2 , uπ6
2 = uπ5

2 , and uπ8
2 = uπ7

2 . The relations within this set are16

depicted by the diagram in Figure 2. As is obvious from this diagram,17

e

(⋃
π∈Π

{uπ
2}

)
= {uπ1

2 } = {uπ2
2 },

so that uπi
1 ∈ e(

⋃
π∈Π{uπ

1}) does indeed imply uπi
2 ∈ e(

⋃
π∈Π{uπ

2}). To provide further confir-18

mation of Proposition 3, similar calculations were carried out for the period 3, ..., N , yielding19

the result in Figure 3 that20

e

(⋃
π∈Π

{uπ
3}

)
= {uπ1

3 } = {uπ2
3 } = {uπ3

3 } = {uπ4
3 }.

Again, this shows that uπi
1 ∈ e(

⋃
π∈Π{uπ

1}) implies uπi
3 ∈ e(

⋃
π∈Π{uπ

3}). Observe that the21

converse implication fails: for example, π4 achieves an efficient return function between epochs22

3 and N , yet between epochs 1 and N its return function is inefficient.23

As a result of Proposition 3, we are assured that Algorithm 1 will discover all F-optimal24

policies, since the policies that satisfy uπ
1 ∈ U1 = e(

⋃
π∈Π{uπ

1}) are precisely those that satisfy25

uπ
t ∈ Ut = e(

⋃
π∈Π{uπ

t }) for all t = 1, ..., N .26



16 3 THEORETICAL RESULTS

u^1 u^2

u^3 u^4 u^5 u^6

u^7 u^8

Figure 2. A Hasse diagram of the set
⋃

π∈Π{uπ
2} in Example 4, ordered by

⪰. The arrows carry the same significance as in Figure 1. Elements occupying

the same rectangle are equal. For example, the uppermost rectangle means

that uπ1
2 = uπ2

2 .

Corollary 2. Algorithm 1 is guaranteed to locate all F-optimal policies at termination, i.e1

P ∗
1 = Π∗

F , where P ∗
t is defined by Equation (14) for each t = 1, ..., N − 1.2

Recall that part of the motivation for introducing F-optimality was that it is a necessary3

condition for V-optimality. Hence, if Π∗
V denotes the set of all V-optimal policies, then Π∗

V ⊆4

Π∗
F . As a preliminary to an algorithm for the determination of Π∗

V , we show that given an5

initial state s ∈ S, each efficient policy return vector accrued over the decision making horizon is6

attained by at least an F-optimal policy. For any state s, the efficient elements in
⋃

π∈Π{uπ
1 (s)}7

are therefore a subset of
⋃

π∈Π∗
F
{uπ

1 (s)}. This has the practical effect of reducing the task of8

“maximizing” return vectors over the whole of Π to the less onerous task of “maximizing”9

return vectors over Π∗
F .10

Theorem 4. Let s ∈ S. Then e

(⋃
π∈Π{uπ

1 (s)}

)
= e

(⋃
π∈Π∗

F
{uπ

1 (s)}

)
.11
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u^1 u^2 u^3 u^4

u^5 u^6 u^7 u^8

Figure 3. A Hasse diagram of the set
⋃

π∈Π{uπ
3} in Example 4, ordered by

⪰. The arrows and rectangles have the same interpretation as in Figure 2

.

Proof. Decompose
⋃

π∈Π{uπ
1 (s)} as follows:1 ⋃

π∈Π

{uπ
1 (s)} = F1 ∪ F2,

where2

F1 =
⋃

π∈Π\Π∗
F

{uπ
1 (s)}

and3

F2 =
⋃

π∈Π∗
F

{uπ
1 (s)}.

We shall first prove that e
(⋃

π∈Π{uπ
1 (s)}

)
⊆ e(F2). Pick a policy π∗ ∈ Π such that uπ∗

1 (s) ∈4

e
(⋃

π∈Π{uπ
1 (s)}

)
. It shall be established that uπ∗

1 (s) ∈ F2, which, given that F2 is a subset5

of
⋃

π∈Π{uπ
1 (s)}, implies that uπ∗

1 (s) is efficient in F2. Suppose, for the sake of contradiction,6

that uπ∗

1 (s) /∈ F2. Then π∗ /∈ Π∗
F , and there is therefore, applying Theorem 1, a π′ ∈ Π∗

F with7
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uπ′

1 ≻ uπ∗

1 . Thus uπ′

1 (s) ≥ uπ∗

1 (s). Since uπ∗

1 (s) is efficient in
⋃

π∈Π{uπ
1 (s)}, it follows that1

uπ∗

1 (s) = uπ′

1 (s) ∈ F2: a contradiction. Therefore, uπ∗

1 (s) ∈ F2, hence uπ∗

1 (s) ∈ e(F2). This2

concludes the demonstration of the fact that e
(⋃

π∈Π{uπ
1 (s)}

)
⊆ e(F2).3

Consider now an F-optimal policy π∗ ∈ Π∗
F satisfying uπ∗

1 (s) ∈ e(F2). To show that uπ∗

1 (s)4

is also efficient in
⋃

π∈Π{uπ
1 (s)}, let π ∈ Π be some policy such that uπ

1 (s) ≥ uπ∗

1 (s). Either5

π ∈ Π∗
F or π /∈ Π∗

F . If π ∈ Π∗
F , then uπ

1 (s) ∈ F2 and consequently uπ
1 (s) = uπ∗

1 (s). Otherwise,6

invoking Theorem 1 again, there exists a π′ ∈ Π∗
F such that uπ′

1 (s) ≥ uπ
1 (s). Due to the7

transitivity of ≥ and given that uπ′

1 (s) ∈ F2, this implies uπ′

1 (s) = uπ∗

1 (s). It follows that8

uπ∗

1 (s) ≥ uπ
1 (s), which when combined with the fact that uπ

1 (s) ≥ uπ∗

1 (s) yields uπ
1 (s) = uπ∗

1 (s).9

In both cases, we have that uπ
1 (s) = uπ∗

1 (s). This proves the efficiency of uπ∗

1 (s) in
⋃

π∈Π{uπ
1 (s)}10

and concludes the proof of the theorem. □11

A characterization of V-optimal policies follows at once from this theorem, namely that a12

policy π∗ ∈ Π is V-optimal if and only if uπ∗

1 (s) ∈ e

(⋃
π∈Π∗

F
{uπ

1 (s)}

)
for each state s ∈ S. We13

therefore have an alternate – and, as will now be shown, useful – representation of Π∗
V :14

Π∗
V =

{
π ∈ Π∗

F : ∀s ∈ S, uπ
1 (s) ∈ e

( ⋃
π∈Π∗

F

{uπ
1 (s)}

)}
.

Example 5. Let us pursue Examples 3 and 4in the light of Theorem 4. For the particular15

model under consideration, it was found that16

e

(⋃
π∈Π

{uπ
1 (1)}

)
=

{
(1.64, 12.6), (3.84, 5.66)

}
and17

e

(⋃
π∈Π

{uπ
1 (2)}

)
=

{
(2.44, 8.56)

}
.

It was established earlier that e(
⋃

π∈Π{uπ
1}) = {uπ1

1 , uπ2
1 } for two policies π1 and π2. By18

definition, then, π1 and π2 are F-optimal, and for each state s ∈ S = {1, 2} we have that19 ⋃
π∈Π∗

F

{uπ
1 (s)} = {uπ1

1 (s), uπ2
1 (s)}.

It was also found that20 ⋃
π∈Π∗

F

{uπ
1 (1)} =

{
(1.64, 12.6), (3.84, 5.66)

}
,

hence21

e

( ⋃
π∈Π∗

F

{uπ
1 (1)}

)
=

{
(1.64, 12.6), (3.84, 5.66)

}
,
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and that for s = 2,1 ⋃
π∈Π∗

F

{uπ
1 (2)} =

{
(2.44, 8.56)

}
= e

( ⋃
π∈Π∗

F

{uπ
1 (2)}

)
,

because uπ1
1 (2) = uπ2

1 (2) = (2.44, 8.56). Thus, Theorem 4 holds.2

Write S = {s1, ..., s|S|}. Supposing Algorithm 1 was used to generate Π∗
F = {π1, ..., πn},3

which we assume here to be finite, Theorem 6 suggests and justifies the following procedure4

for the calculation of V-optimal policies.5

Algorithm 2. Calculation of Π∗
V .6

Set T = Π∗
F .7

For i ∈ {1, ..., |S|} do:8

For j ∈ {1, ..., n} do:9

For k ∈ {1, ..., n}\{j} do:10

If uπk
1 (si) > u

πj

1 (si), drop πj from T .11

Proposition 4. Algorithm 2 terminates with T = Π∗
V .12

Proof. At termination, a policy π is in T if and only if ∀s ∈ S, ∀π′ ∈ Π∗
F , uπ′

1 (s) ≯ uπ
1 (s).13

Thus, π ∈ T if and only if ∀s ∈ S, uπ
1 (s) ∈ e(

⋃
π∈Π∗

F
{uπ

1 (s)}). Consequently, T = Π∗
V by the14

latter set’s alternate representation. □15

4. Numerical Experiments16

The algorithms that have been developed were tested on randomly-generated instances of17

a three-state, two-action model with six epochs and varying numbers of criteria (m). In each18

instance, the rewards and transition probabilities associated with an epoch t were sampled from19

exponential distributions then, in the case of the probabilities, scaled to [0, 1].20

Algorithm 1 was used to locate the efficient return functions in
⋃

π∈Π{uπ
1}, in addition to21

the corresponding F-optimal policies, through solving Equations (9) and (10) for UN = U6, U5,22

U4, U3, U2 then U1. Algorithm 2 was used afterwards to determine which of the F-optimal23

policies were V-optimal.24

To implement steps (1) and (2) of Algorithm 1, full search was used given the finite number25

of decision rules available. The experiments were programmed in C and run on a quadcore26

Intel Core i5-1145G7 laptop with 16GB of RAM.27

The results are collected in Table 1, where the experiments are grouped by m into ten28

groups of a hundred experiments each. Bearing in mind that U1 = e(
⋃

π∈Π{uπ
1}) (Proposition29

2), the column |U1| reports the minimum and maximum value observed in a single group of30

experiments of the number of efficient points in
⋃

π∈Π{uπ
1}. Similarly, the column |Π∗

F | contains31

the range of values taken by the number of F-optimal policies for a single group. Immediately32
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to the right is a column indicating the range of CPU time expended on Algorithm 1. The last1

two columns provide analogous statistics for Algorithm 2, with |Π∗
V | indicating the minimum2

and maximum number of V-optimal policies identified in a group.3

m |U1| |Π∗
F | Algorithm 1 (seconds) |Π∗

V | Algorithm 2 (seconds)

1 1-2 1-2 0 1 0

2 11-253 11-253 0-0.0280 1-85 0

3 217-3903 217-3903 0.0120-2.4238 70-874 0-0.0040

4 853-7580 853-7580 0.2199-5.8955 249-6496 0

5 1259-7159 1259-7159 0.1440-6.7715 790-3345 0-0.0040

6 3817-21701 3817-21701 1.5478-39.5032 1726-18190 0-0.0040

7 2230-18169 2230-18169 0.4879-27.0269 1174-15611 0-0.0040

8 5668-21874 5668-21874 3.5077-56.9811 5123-14579 0-0.0040

9 2972-25937 2972-25937 1.8531-60.5031 2395-25937 0-0.0080

10 8005-27636 8005-27636 10.0394-93.4665 6558-27636 0-0.0079

Table 1. Results for randomly-generated problems grouped by m. The data

is presented in minimum-maximum format.

As one would have predicted, the sizes of U1, Π∗
F and Π∗

V ⊆ Π∗
F tended to grow as m4

increased. The number of F-optimal policies ranged from one policy for a scalar-valued problem5

to 27 636 policies for a problem with ten objectives. The fraction of F-optimal policies that6

were V-optimal rose together with m, although V-optimal policies accounted in the majority7

of experiments for less than half of Π∗
F .8

The computational demands for solving Equations (9) and (10) then finding every policy in9

Π∗
F and Π∗

V also tended to grow with m. For m ≦ 4, CPU time ranged from zero to six seconds10

for the two algorithms combined. Given that a typical multi-objective decision making problem11

seldom exceeds four objectives (Stewart, Palmer, & DuPont, 2021), these results suggest that12

the algorithms possess the potential for being effective solution methods in a wide array of real13

world applications.14

It should be noted that, relative to Algorithm 1, Algorithm 2 required negligible amounts15

of time due to the alternate representation of Π∗
V arrived at in the previous section. Recall16

that a policy π is V-optimal by definition if for all states s the vector uπ
1 (s) is efficient in17 ⋃

π{uπ
1 (s)}. This is equivalent, as we have seen, to efficiency of each uπ

1 (s) merely in the18

subset
⋃

π∈Π∗
F
{uπ

1 (s)}. To fully appreciate the practicality of this alternate representation, we19

measured, during each of the previous experiments, the time needed to locate all V-optimal20

policies through an exhaustive search of the sets
⋃

π{uπ
1 (s)}, s ∈ S. In Table 2 we juxtapose21

the results against those already reported for Algorithm 2.22
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m Exhaustive search (seconds) Algorithm 2 (seconds)

1 10.4838-11.0478 0

2 15.5674-30.9460 0

3 26.7423-39.8178 0

4 31.0000-53.0195 0

5 54.9910-84.9934 0-0.0040

6 50.0692-98.9275 0-0.0040

7 79.7329-121.6538 0-0.0040

8 91.9299-146.0090 0-0.0040

9 94.4560-126.2161 0-0.0080

10 148.1788-186.5719 0-0.0079

Table 2. Comparison of the execution times of two methods of enumerating

the set of V-optimal policies: exhaustive search of Π and Algorithm 2. The

problems considered here are those summarized in Table 1.

It is clear from the table that Algorithm 2, which relies on the alternate representation of1

Π∗
V , was consistently and substantially faster than a strategy based on direct optimization over2

Π. The gap between the two methods became more pronounced as m increased. More impor-3

tantly, whereas the time required by exhaustive search multiplied more than tenfold between4

m = 1 and m = 10, Algorithm 2 ran at a comparatively stable speed.5

6

5. Application to Inventory Control7

As a further illustration of our theoretical results, we consider the stochastic inventory8

control problem described in (Puterman, 2014, p. 38). The problem will be restated here9

for completeness. We take the position of a warehouse manager overseeing the inventory on10

hand of a particular product. Based on the inventory level at the beginning of each month,11

the manager may elect to order additional stock so long as it does not exceed the warehouse’s12

capacity, M . The manager must keep sufficient inventory to meet external demand, but must13

also avoid overordering stock so as to minimize storage and ordering costs.14

During each month, the events unfold as follows: (1) the decision is made to purchase (or15

not) additional stock; (2) the order is instantly fulfilled; (3) customer demand for the product16

arrives; then (4) if inventory is sufficient, all the demand is met on the last day of the month.17

External demand in month t, Dt, follows a time-homogeneous distribution pj = P (Dt = j),18

for all non-negative integers j. The cost of ordering u units in any month is O(u) = K + c(u)19

if u > 0 and 0 if u = 0, where K > 0 is a fixed cost and c a nondecreasing function of u. The20

cost of holding u units between delivery of additional stock and sale of inventory at the end21
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of a month is h(u), h being a nondecreasing function of u. If the demand is for j units and1

sufficient inventory is available, then the revenue from selling those j units is f(j), where f is2

nondecreasing in j.3

Puterman proposes the following Markov decision process formulation. States represent the4

inventory level on the first day of a month, and actions represent the amount of stock the5

manager can order each month. In our notation,6

S = {0, ...,M} (15)

and7

As = {0, ...,M − s} (16)

for all s ∈ S. Thus, for example, if there are 3 units in the inventory for a warehouse capacity8

of 5, the manager can order up to two units of stock.9

Let st be the state of the inventory in month t, and at the amount of stock ordered in that10

month. Clearly, st+1 depends only on st, at and the random demand Dt. Then for any month11

t and state j ∈ S:12

pt(j|st, at) =


0 if M ≥ j > st + at

pst+at−j if M ≥ st + at ≥ j > 0

qst+at
if M ≥ st + at and j = 0

(17)

where qst+at
= 1 −

∑st+at−1
k=0 pk. Details of the derivation of (17) are supplied in (Puterman,13

2014, p. 40).14

The manager’s objective in the original formulation is to maximize the difference between the15

expected revenue made over N months and the expected holding and ordering costs incurred in16

that period. Consequently, the reward received in month t is taken to be F (st + at)−O(at)−17

h(st + at), where F (u) is the expected monthly revenue when the stock level prior to demand18

is u. Details of the derivation of F from f and the pj ’s are also provided in (Puterman, 2014,19

p. 39). We assume that the value of the inventory at the start of month N is nil.20

Our only difference with the formulation above is that we treat revenue and costs as com-21

peting optimization objectives. Thus, we define the reward accrued in month t as:22

Rt(st, at) = (F (st + at),−O(at)− h(st + at)) (18)

with RN (sN ) = (0, 0). States, actions and transition probabilities are unaffected.23

For comparative purposes, we take the same parameter values as (Puterman, 2014, p. 38):24

N = 4 months, M = 3, K = 4, c(u) = 2u, h(u) = u, and f(u) = 8u. Demand is distributed25

according to p0 = 1
4 , p1 = 1

2 , p3 = 1
4 and ∀j > 3, pj = 0. Revenue is 8 per unit sold, inventory26

holding cost is 1 per unit, placing an order costs 4, and additional stock costs 2 per unit. The27

warehouse’s capacity is 3 units at a time, and the planning horizon is of 4 months.28
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There is a total of (M + 1)! = 24 decision rules in this model. Over three decision epochs,1

this gives rise to 13824 policies. Algorithm 1 returned 1506 F-optimal policies, one of which is2

given in Table 3. Column one represents the inventory level at the beginning of a month, s.3

Columns two through four represent, respectively, d1(s), d2(s) and d3(s). Column five reports4

the value of uπ
1 (s). For example, if we start the first month with one item in stock, this policy5

recommends that two items be ordered at the end of the first and second months, then no item6

be ordered at the end of the third month. This would guarantee, in expectation, a revenue of7

16 against a total cost of 12.7.8

A subsequent comprehensive search of the policy space confirmed equality between the set9

of F-optimal policies, Π∗
F , and the set generated by Algorithm 1. This fact agrees with the10

conclusion that was drawn in Corollary 2 as to the ability of Algorithm 1 to identify all F-11

optimal policies.12

Table 3. Example of an F-optimal policy π = (d1, d2, d3) for the stochastic

inventory problem.

Start of month inventory Order 1 Order 2 Order 3 (Exp. Revenue, - Exp. Costs)

0 1 2 0 (16.0, -14.7)

1 2 2 0 (16.0, -12.7)

2 0 1 0 (16.0, -6.7)

3 0 0 0 (22.0, -11.9)

As a test of the validity of Algorithm 2, we compared its output, T = SΠ∗
V
, with the set13

of all V-optimal policies, Π∗
V , obtained after a full search. Of the 1506 F-optimal policies14

mentioned earlier, 61 were V-optimal. The 61 matched the policies in T , thus corroborating15

the characterization of Π∗
V provided at the end of the previous section. Unsurprisingly, the16

“never order” strategy, which incurs minimal costs over the 4 months, was V-optimal.17

It is instructive to compare the V-optimal policies constructed by solving the problem in18

its original scalar-valued formulation (Puterman, 2014, p. 96) with those obtained here. In19

fact, Puterman solves his problem under the same set of parameters (N , M , K, f , g, h, c)20

as ours, and concludes that the unique V-optimal policy is a nonstationary (Σ, σ) strategy,21

namely a policy of the form: “if units in the inventory are below σ at the start of the month,22

order enough stock to reach Σ units; otherwise, do not order” (Puterman, 2014, p. 38). We23

make three comments in this connection. First, whereas the optimal policy is unique in the24

scalar setting, there are 61 such policies in the vector setting. Second, Π∗
V contains both (Σ, σ)25

and non-(Σ, σ) policies, only one of which is stationary (the “never order” policy). Third,26

Puterman’s optimal policy, which was selected to maximize the difference between revenue and27

cost, is also V-optimal. To see this, recall our comment in the discussion following Theorem 228
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Figure 4. Graphical depiction of
⋃

π∈Π∗
V
{uπ

1 (s)}, s = 0, 1, 2, 3. A point rep-

resents one or several V-optimal policies. Sixty-one policies are represented in

each plot. Table 1’s policy is highlighted in green, while Puterman’s optimal

(Σ, σ) policy is indicated in red.

that a policy optimal with respect to a positive linear combination of the reward components,1

i.e a π∗ satisfying
∑m

i=1 λiu
π∗

1 (s)i ≥
∑m

i=1 λiu
π
1 (s)i for some positive weights λ1, ..., λm > 0,2

is V-optimal for the vector-valued model. In Puterman’s case, λ1 = λ2 = 1 > 0, and the3

conclusion follows (note that the cost component of our rewards is given by the negative of4

the physical cost, so that the sum of the two components equals, in real terms, the difference5

between revenue and cost).6

For each stock level s ∈ S, Figure 4 portrays the returns achieved by the V-optimal policies7

over the N = 4 months if the initial inventory level is s units; that is, each plot depicts8 ⋃
π∈Π∗

V
{uπ

1 (s)} for some s ∈ S. A point corresponds to one or several V-optimal policies. It9

should be stressed here that
⋃

π∈Π∗
V
{uπ

1 (s)}, s ∈ S, is an efficient set by construction. This10

means that given two V-optimal policies π1 and π2 yielding different returns from an inventory11

level s, either π1 generates a higher revenue while incurring greater costs than π2, or vice versa.12
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Therefore, each policy represented in
⋃

π∈Π∗
V
{uπ

1 (s)} expresses a particular tradeoff between1

costs and revenue. This is clearly reflected in all four plots.2

Some final remarks on such plots as those of Figure 4 seem in order. When a decision is to3

be made as to what policy should be enacted among those supplied by such plots, the fact that4 ⋃
π∈Π∗

V
{uπ

1 (s)} is an efficient set means the decision maker has some latitude. For example, if5

among the m objectives there is a high priority objective, the decision maker will prefer policies6

that realize most gains in that objective. If, for example, the system has to operate under con-7

straints, the decision maker will, when feasible, discard policies that violate these constraints.8

Moreover, access to such plots allows the decision maker to locate policies where small con-9

cessions in one objective produce considerable improvements in others. Thus, for instance, a10

car manufacturer may learn that a slight increase in costs allows for substantial reduction in11

tailpipe emissions, or a call center may realize that throughput may be greatly enhanced by12

hiring one additional employee. Examples such as these suggest that better informed decisions13

can be made when plots of
⋃

π∈Π∗
V
{uπ

1 (s)} are available.14

15

6. Conclusions and Discussion16

To summarize, this paper endeavored to solve a class of vector-valued Markov decision pro-17

cesses within two frameworks: (1) a policy is V-optimal if it delivers a maximal return from any18

initial state; and (2) a policy is F-optimal if its return function over the total decision making19

horizon is maximal among all return functions. An exact dynamic programming algorithm20

was proposed for the second framework, which helped provide the basis for a procedure for21

calculating all V-optimal policies. Fundamental to the procedure were, first, the insight that22

framework (1) is subsumed under (2), and second, that a computationally useful representation23

of the set of V-optimal policies can be derived from this connection. Investigation of the set24

of F-optimal policies revealed that it satisfies a certain property which ensures the discovery25

of all such policies by the exact algorithm. The algorithms were illustrated with numerical26

experiments and a bi-objective variant of a stochastic inventory management problem.27

In an effort to simplify the exposition, we have restricted ourselves to models with additive28

rewards, but our results extend to the multiplicative case provided that the rewards meet29

further assumptions. Specifically, let x◦y = (xiyi)1≤i≤m denote the componentwise product of30

x and y for any x, y ∈ Rm, and let uπ
t (s) = Es

π[Rt(Xt, dt(Xt))◦...◦RN−1(XN−1, dN−1(XN−1))◦31

RN (XN )] be the expected total reward for using π = (d1, ..., dN−1) ∈ Π from t onward assuming32

the state at this epoch is s. Supposing then that Rt(s, a) (resp., RN (s)) has only nonnegative33

components for all s ∈ S, a ∈ A and t = 1, ..., N − 1 (resp., for all s ∈ S), every proposition in34

Section 3, except Lemma 3 and Theorem 3, follows without changes. A formal proof does not35

seem befitting at this stage of the paper, but the key points are these: (1) it is straightforward to36

check that uπ
t (s) = Rt(s, dt(s))◦

∑
j∈S pt(j|s, dt(s))uπ

t+1(j) for all s ∈ S, π = (d1, ..., dN−1) ∈ Π,37
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t = 1, ..., N − 1; (2) expanding the sum in the previous expression yields the analogue of1

Equation (5) where “◦” is substituted for “+”; and (3) with nonnegative reward components,2

◦ preserves inequalities with respect to ≥. Points (1) and (3) suffice to prove Lemma 1. The3

resulting expression in point (2) suffices to show, as in the original proof of Theorem 1, that ft4

is upper semicontinuous for all t ≤ N , and therefore that Theorem 1 is correct. Proposition 1,5

Lemma 2, Birkhoff’s theorem, Theorem 4 and Proposition 4 are unrelated to whether rewards6

are multiplicative or additive, and thus follow independently. The alternate representation of7

Π∗
V follows from Proposition 1 and Theorem 4. Corollary 1 is a consequence of Theorem 1.8

Theorem 2 follows from Corollary 1. The analogue of Lemma 3 where “◦” replaces “+” on9

the left-hand side of the equality can be proven without difficulty, using the same arguments10

as the original proof. From this follows Proposition 3. Theorem 3 follows from the analogue11

of Lemma 3 of Theorem 1, with Equation (9) modified to reflect the change in Lemma 3. As12

Algorithm 1 and Proposition 2 are based entirely on Theorem 3, they remain valid mutatis13

mutandis. From the validity of Algorithm 1 follows that of Algorithm 2, and Proposition 414

holds. Finally, that Algorithm 1 is capable of finding all F-optimal policies, a result stated in15

Corollary 2, is an immediate consequence of Proposition 3.16

A difficulty to be encountered when implementing Algorithm 1 is in the computation of17

efficient sets. In the numerical experiments as well as in the inventory problem, we used18

enumeration because the number of actions, and therefore the number of decision rules, was19

finite. If there is an infinity of actions, then analytic methods for determining the efficient20

return functions in Algorithm 1 may be required. As regards Algorithm 2, the requirement21

that Π∗
F be finite may be fulfilled even under a finite action space. However, an infinite Π∗

F22

would mean that an analytic alternative to Algorithm 2 would be in order. These questions23

will be the object of a future paper.24

Finally, it remains to consider potential applications of these results in areas beyond inven-25

tory management. The operations research literature is replete with decision making problems26

that can be treated as instantiations of the model studied here. For example, Chanson, Puter-27

man, and Wong (1989) look at the problem of controlling the number of jobs that are processed28

at any given moment by a computer system. Allowing too many jobs in memory can cause ex-29

cessive competition for resources and hence considerable deterioration of system performance.30

Just how many and which jobs are admitted to memory, where execution occurs, is determined31

by what the authors call a “load control” policy. They assume two classes of jobs, batch and32

interactive, and seek policies which minimize a weighted sum of the number of batch jobs and33

the number of interactive jobs in the system. They formulate the problem as a Markov decision34

process, taking as their concept of state the number of jobs in each class present in the system35

as well as the fraction of those jobs occupying memory. The actions permissible at any given36

time for any given state are either to admit batch jobs or interactive jobs to memory. The37
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transition probabilities are derived from a simple queueing model, and the instantaneous cost1

of an action is defined as a weighted sum of the current number of jobs in each class. Assigning2

a greater weight to either class places greater emphasis on it during minimization.3

Chanson, Puterman and Wong’s approach to this essentially multi-objective problem is4

sometimes called the weighting factor approach. A different approach, which we might call the5

vector maximization approach, would be to change their formulation slightly, defining costs6

not as weighted combinations of the two classes of jobs but as unweighted two-dimensional7

vectors (one component per class). In our notation, shifting the point of view from costs to8

rewards, this would translate to Rt(s, a) = (−N1(t),−N2(t)) for each (t, s, a), where Ni(t)9

equals the number of class i = 1, 2 jobs in the system at time t. Optimal load control policies10

could then be calculated by the algorithms presented here and submitted to a decision maker11

for consideration. To aid the decision maker in selecting an appropriate policy, it would be12

advisable to supply them with plots like those of Figure 4.13

Similar problems abound elsewhere. In medicine, for example, Denton, Kurt, Shah, Bryant,14

and Smith (2009) study the question whether and when to begin administering statins (drugs)15

for the treatment of lipid abnormalities in diabetes patients. The promise of increased life16

expectancy resulting from statin therapy encourages the initiation of such therapy at an early17

age. On the other hand, the sheer cost of treatment may discourage taking statins at an18

early age. In choosing the statin start time, therefore, a tradeoff is to be found between two19

competing criteria: “[the] expected future quality-adjusted time...and the annual cost of statin20

treatment and the cost associated with the treatment of cardiovascular events” (Denton et al.,21

2009, p. 2). In light of these aims and of the probabilistic aspects of the problem, a Markov22

decision process is used.23

The decision whether to initiate treatment is based on such changing risk factors as blood24

pressure, cholesterol and high-density lipoprotein. Those factors define the state of the patient25

at any given time. The patient is observed at periodic, discrete times at which the decision26

maker may elect to initiate statins or delay treatment by one period. Transitions between states27

depend on the particular states, the stage of treatment, and whether the patient is on statins.28

A longitudinal medical record obtained from a clinic treating diabetes was used in conjunction29

with cardiovascular risk models to estimate the probabilities of these transitions. Given a30

patient, the study seeks policies which maximize the expected long-term quality-adjusted life31

years minus therapy costs over the patient’s future. The rewards are expressed accordingly as32

the difference between a current estimate of quality-adjusted life years (in monetary value),33

which is a function of the state, and a cost component, which is a function both of the state34

and whether therapy has been initiated. Costs are broken down into the cost of statins and the35

costs associated with the treatment and follow-up of patients after a stroke or coronary heart36

disease event.37
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An alternative formulation – one which stems naturally from the authors’ premise that the1

two criteria are “competing” – would be to treat quality-adjusted life years and cost as two2

components of a vector-valued reward function. We might also refine this formulation by sep-3

arating statin costs from stroke- or coronary heart disease-related costs, thus obtaining three4

(or four) rather than two concurrent objectives. Under either formulation, we have finite state5

and action spaces and a finite horizon, so that the basic assumptions of this work are met. This6

means the algorithms could be employed to recommend for each patient a series of options for7

when to start taking statins. The physician would compare these options then select the one8

that is most representative of the tradeoffs they are prepared to make between the criteria.9
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Ruiz-Montiel, M., Mandow, L., & Pérez-de-la Cruz, J.-L. (2017). A temporal difference method38

http://modem2021.cs.nuigalway.ie/


30 6 CONCLUSIONS AND DISCUSSION

for multi-objective reinforcement learning. Neurocomputing , 263 , 15–25.1
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