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Not too little intervals for quantum mechanics

Damien Calaque∗

August 2024

Abstract

This short paper illustrates the general framework introduced in the paper “Not
too little discs”, joint with Victor Carmona, on yet another one dimensional exam-
ple. It exhibits a discrete model for the free scalar field on the real line, adapting
the treatment from the book of Costello–Gwilliam to the discrete setting.
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1 Introduction

This is a companion paper to [1], where Victor Carmona and the author introduce a
general method for constructing algebras over the little discs operad from discrete models.
We provide a detailed study of a one dimensional example that can be seen as a discrete
version of the free scalar field on the real line. Our treatment is an adaptation of [3, Ch. 4
Sect. 3] to the discrete setting.

Factorization algebras in quantum field theory In [3, 4], Costello and Gwilliam
developped a formalism for quantum field theory where the notion of a factorization
algebra plays a central role, as encoding both the algebraic and local-to-global structure
of quantum observables. Additionally, they made it compatible with (a version of) the
Batalin–Vilkovisky formalism and renormalization techniques based on parametrices. In
the case of topological quantum field theories, factorization algebras are locally constant
and thus reduce to algebras over the little disc operad.

∗IMAG, Univ Montpellier, CNRS, Montpellier, France
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Not too little discs In [1], an approach for constructing topological quantum field
theories on flat space without using parametrices, and based on discretization methods,
is proposed. It relies on a new result (the main one of [1]) showing that local constantness
above a given scale R > 0 is enough to reconstruct an algebra over the little disc operad:
one can then simply ignore the inaccurate information that comes from what happens at
too small scale (compared the discretization mesh). As a proof of concept, [1, Section 4]
gives a one dimensional example where a discrete version of the first order formulation
of topological quantum mechanics allows to quantize constant Poisson structures and to
recover Weyl-type algebras.

New example In this paper, we provide another one dimensional example (hence the
name not too little intervals), that is a discrete version of the second order formulation
of topological quantum mechanics, also known as the free scalar field in 1d. We discuss
both the massless and massive cases, show that it also recovers the Weyl algebra, that
the information about the mass appears in the translation symmetries, and that one can
recover the Fock space using time reversal symmetry.

Organization of the paper Section 2 is the most abstract one, recollecting everything
one needs to know about the algebraic and operadic aspects of not too little intervals in
order to deal with the example of interest in this paper. Subsection 2.1 provides a quick
summary of the main result of [1] in dimension 1, saying that locally constant algebras
over the colored operad of intervals of length > 2 (shortly, locally constant D1

1-algebras)
are associative algebras. Subsection 2.2 discusses equivariance, under translations on the
one hand, and under the time/orientation reversion automorphism of the real line on the
other hand.

In Section 3 we construct a locally constant D1
1-algebra of quantum observables for

the discrete free massless scalar field in 1d. We recall the discrete Laplace operator in
Subsection 3.1, compute the cohomology of its associated complex in Subsection 3.2,
construct the locally constant not too little discs algebras of classical and quantum ob-
servables in Subsections 3.3 and 3.4. For the quantum observables, we show in Subsection
3.5 that the corresponding associative algebra indeed coincides with the Weyl algebra,
together with its natural time evolution automorphism (Subsection 3.6) and its natural
time reversal anti-involution (Subsection 3.7).

We repeat the above in Section 4 for the free massive scalar field1. Classical observ-
ables are constructed in Subsection 4.1 and their cohomology is computed in Subsection
4.2. Quantum observables are constructed in Subsection 4.3, where the identification with
the Weyl algebra is also given. Equivariance under symmetries is discussed in Subsections
4.4 (discrete time evolution) and 4.5 (time reversal). As one could expect the value of the
mass only “matters” in the expression of the (discrete) time evolution automorphism.

Notation All along the paper, K is a field of characteristic zero. For any set S, we
write

Map(S,K) := KS

for the K-vector space of K-valued functions on S. If S ⊂ T , then the restriction mor-
phism Map(T,K) ↠ Map(S,K) has a canonical section Map(S,K) ↪→ Map(T,K), which is

1In fact, Section 4 also encompasses the massless case. But, for exposition purpose and clarity, we
think it is helpful to first discuss the massless case in Section 3.

2



the extension by 0; this allows to identify functions S → K with functions T → K having
support in S (we always implicitly do so without specific notation or warning).

The category of cochain complexes (with differential being of degree +1) of K-vector
spaces is denoted Cpx. Results from the paper [1] are stated within the framework of∞-
categories and ∞-operads, and heavily rely on homotopy theory. This means that Cpx
in fact denotes the∞-category of cochain complexes, that is obtained from their genuine
1-category by inverting quasi-isomorphisms. Nevertheless, all our examples carry strict
(i.e. 1-categorical) algebraic structures, and it is only when we discuss local constantness
that we use a tiny bit of homotopy theory (we only request that certain maps are quasi-
isomorphisms, rather than plain isomorphisms, and we make everything very explicit).
Therefore, the reader can safely ignore “∞-technicalities”.

2 Not too little intervals

2.1 Localization of not too little intervals and associative alge-
bras

Let R > 0, and let DR
1 be the colored operad of bounded intervals in the real line, of

length greater than 2R. Colors of DR
1 are open intervals (a, b), with a, b ∈ R such that

|b− a| > 2R, and sets of operations are defined as follows:

DR
1 (I1, . . . , In; J) =

{
∗ if I1 ⊔ · · · ⊔ In ⊂ J

∅ otherwise

Symmetry group action and composition are obvious (note that to get a right action of
Σn, a permutation σ must send I1 ⊔ · · · ⊔ In ⊂ J to Iσ(1) ⊔ · · · ⊔ Iσ(n) ⊂ J).

There is a morphism γ : DR
1 → As, where As is the operad encoding unital associa-

tive algebras. Recall that the operad As has only one color and set of n-ary operations
As(n) = Σn the set of permutations on n elements (i.e. As(n) is the right regular repre-
sentation of Σn). The morphism γ sends

• any open interval I to the only color of As;

• a pairwise disjoint inclusion I1⊔· · ·⊔In ⊂ J to the unique permutation σ such that

Iσ−1(1) < Iσ−1(2) < · · · < Iσ−1(n) .

Notice that all unary operations in DR
1 are sent to identities, so that γ factors through

the operadic localization DR
1 [W

−1] of DR
1 at its subcategory W = DR

1 (1) of unary oper-
ations.

Remark 2.1. There is a choice here: we could consider the strict (1-)operadic localization
or the ∞-operadic one. We go for the ∞-operadic localization, but in dimension 1 it
doesn’t matter so much as it is a direct consequence of the next result that they are
actually equivalent as ∞-operads (see next Remark below).

Theorem 2.2 ([1, Theorem 2.4]). The induced morphism of ∞-operads DR
1 [W

−1]→ As
is an equivalence.
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Remark 2.3. In [1] the result is proven for the little intervals operad E1, which is equiv-
alent to As via the equivalence E1 → π0(E1) = As.

The main interesting consequence (see [1, Theorem 2.3]) of the above Theorem is that
pulling-back along γ provides an equivalence of ∞-categories between unital associative
algebras and locally constant DR

1 -algebra (in any symmetric monoidal ∞-category V).
Here aDR

1 -algebra A is called locally constant if, for every abstract unary operation I ⊂ J
in DR

1 , the corresponding operation morphism AI → AJ is an equivalence (in V). In all
our examples, equivalences will be quasi-isomorphisms (and V = Cpx).

In this paper we deal with an example of a locally constant D1
1-algebra in cochain

complexes Oq whose cohomology is concentrated in degree 0. In this case, the associative
algebra A one gets (i.e. the associative algebra A such that γ∗A ≃ Oq) can be described
in the following way: pick a < b ≤ c < d such that |b − a| > 2 and |d − c| > 2, define

A := H0
(
Oq

(
(a, d)

))
and endow it with the following product ⋆:

A ←̃− H0
(
Oq

(
(a, b)

))
⊗ ⊗ factorization−−−−→

product
H0

(
Oq

(
(a, d)

))
= A .

A ←̃− H0
(
Oq

(
(c, d)

))
Here the “factorization product” is the operation morphism coming from the abstract
binary operation (a, b)⊔(c, d) ⊂ (a, d) (the name is borrowed from factorization algebras).

2.2 Symmetries

Equivariance under translations The group (R,+) acts on DR
1 by translations (note

that we consider R as a discrete group): an element r ∈ R sends an interval I to the
interval I+r, and the operation I1⊔· · ·⊔In ⊂ J to the operation (I1+r)⊔· · ·⊔(In+r) ⊂
J + r. For any subgroup T ⊂ R we can therefore perform the semi-direct product
DR

1 ⋊T . The morphism γ is invariant under this action, hence it gives rise to a morphism
DR

1 ⋊ T → As⋊ T between semi-direct products, where T acts trivially on As.

Time reversal equivariance Let C2 be the group with two elements, and denote by
τ ∈ C2 the element that is not the identity. It acts on DR

1 in the following way: on colors
τ · I = −I and on operations

τ · (I1 ⊔ · · · ⊔ In ⊂ J) =
(
(−I1) ⊔ · · · ⊔ (−In) ⊂ −J

)
.

For obvious reasons, we call this action the time reversal action. The group C2 also acts
on As: on As(n) = Σn it acts by left multiplication by the permutation (nn− 1 . . . 2 1).
We let the reader check that γ is C2-equivariant, inducing a morphismDR

1 ⋊C2 → As⋊C2

between semi-direct product operads.

A C2-equivariant structure on an As-algebra A (that is by definition a lift of the As-
algebra structure on A to an As⋊C2-algebra structure) is the data of an anti-involution
τ : A→ Aop. One can extract a left A-module of coinvariants A/τ from this data, given
as the quotient of A by the left ideal generated by a− τ(a) for all a ∈ A.
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Remark 2.4. The 2-colored operad LMod, that encodes pairs (A,M) of a unital as-
sociative algebra A and a pointed left A-module M , can also be obtained by localizing a
certain operad DR

0,1 along a subcategory of its unary operations (we refer to [1, §3.2] for
the details, where DR

0,1 is defined as a version of DR
1 with boundary defect). It would be

interesting to understand if the coinvariant module functor AlgAs⋊C2
→ AlgLMod can be

lifted to a functor AlgDR
1 ⋊C2

→ AlgDR
0,1
.

Remark 2.5. Elaborating on the previous remark, one can observe that an algebra with
a module is precisely the structure of observables of a one dimensional topological field
theory with a boundary defect. The way we address such a defect using C2-equivariance
seems a bit ad hoc and it would be interesting to rather have something along the lines
of [5, 2].

3 Discrete free massless scalar field in 1d

Let a < b be real numbers.

3.1 The discrete Laplace operator and its associated 2-term
complex

Let Q be the endomorphism of Map(Z,K) given by the standard discrete Laplace operator
in 1d: for every f : Z→ K, and every x ∈ Z,

(Qf)(x) := f(x− 1)− 2f(x) + f(x+ 1) .

Observe that if f is supported in (a, b) then Qf is supported in (a− 1, b+ 1).
We let V(a, b) be the cone of

Map
(
Z ∩ (a+ 1, b− 1),K

) Q−→ Map
(
Z ∩ (a, b),K

)
.

Note that the assignement (a, b) 7→ V(a, b) naturally defines a DR
1 -algebra with values

in the symmetric monoidal category (Cpx,⊕), for every R > 0. Indeed, given and
abstract operation I1 ⊔ · · · ⊔ In ⊂ J of DR

1 , the associated operation morphism

V(I1)⊕ · · · ⊕ V(In)→ V(J)

sends (f1, . . . , fn) to
∑n

j=1 fj.

3.2 Cohomology: local constantness

For every function f : Z → K having support in [m,n], with m,n ∈ Z, (Qf)(m − 1) =
f(m) and (Qf)(n + 1) = f(n). Hence if Qf = 0 then f(m) = f(n) = 0, and thus f
has support in [m + 1, n − 1]. Hence, by induction, if f has finite support and Qf = 0,
then f = 0: in other words, Q is injective on finitely supported maps. Therefore, the
cohomology of V(a, b) is concentrated in degree 0.

Moreover, if we assume that b− a > 2, then the cohomology has dimension 2 (by the
rank theorem). In fact, the map

f 7−→
∑
x∈Z

f(x)q+
∑
x∈Z

xf(x)p (1)
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provides an isomorphism between the cohomology of V(a, b) and Kq⊕Kp, showing that
V is a locally constant D1

1-algebra with values in (Cpx,⊕). Actually, (1) gives a quasi-
isomorphism V →̃ γ∗(Kq⊕Kp), where the As-algebra structure on Kq⊕Kp in (Cpx,⊕)
is the sum +.

Remark 3.1 (basis of cohomology). Assuming 0 ∈ (a, b), every y ∈ Z∩(a, b−1) provides
us with a section of (1), given by q 7→ δ0, p 7→ δy+1 − δy.

3.3 Classical observables: the 1-shifted symmetric pairing

Let us first introduce some piece of notation: we use overlined symbols g : Z → K[1]
to denote the suspension of functions g : Z → K, for which we use plain symbols. In
particular, with this notation, the differential d on V(a, b) is given by dg = Qg.

We define
⟨⟨f, g⟩⟩ =

∑
x∈Z

f(x)g(x) .

This completely characterizes a degree 1 symmetric pairing on V(a, b), that we also denote
⟨⟨-,-⟩⟩. It is compatible with the differential (recall that df = Qf):

⟨⟨df, g⟩⟩ − ⟨⟨f, dg⟩⟩ = ⟨⟨Qf, g⟩⟩ − ⟨⟨f,Qg⟩⟩

=
∑
x∈Z

((
f(x− 1)− 2f(x) + f(x+ 1)

)
g(x)

−f(x)
(
g(x− 1)− 2g(x) + g(x+ 1)

))
= 0

Moreover, it is also compatible with the D1
1-algebra structure. Therefore V is pro-

moted to a locally constant D1
1-algebra with values in the category of complexes equipped

with a degree 1 symmetric pairing.

Now recall (see e.g. [1, §4.1] and references therein) that the symmetric algebra
construction Sym defines a symmetric monoidal functor going from cochain complexes
equipped with a degree 1 symmetric pairing (with monoidal structure the direct sum ⊕)
to unital P0-algebras in cochain complexes (with monoidal structure the tensor product
⊗). We therefore have a locally constantD1

1-algebra in P0-algebras of classical observables

Ocℓ : (a, b) 7−→ Sym
(
V(a, b)

)
.

Forgetting the 1-shifted bracket, Ocℓ defines a locally constant D1
1-algebra in commu-

tative algebras (in (Cpx,⊗)) that is quasi-isomorphic to γ∗K[q,p] (the quasi-isomorphism
is given by the map (1)), where K[q,p] is viewed as an As-algebra in commutative alge-
bras with both products being the standard multiplication of polynomials.

3.4 Quantum observables: the odd laplacian

As explained in [1, §4.2], quantizing constant 1-shifted Poisson structures is rather easy, as
the odd laplacian (that has nothing to do with our discrete Laplace operator) is somehow
the pairing itself. In our situation it is given by

∆ =
∑
x∈Z

∂2

∂δx∂δx
,
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acting on Sym
(
V(a, b)

)
. We actually don’t need to know anything about quantization

of P0-algebra, and just see the above as a deformation term for the differential on
Sym

(
V(a, b)

)
: the new differential is dℏ = d+ ℏ∆.

Remark 3.2. Here we have two possibilities. Either ℏ ∈ K× and we work over K, or ℏ
is a formal parameter and we work over K[ℏ] or K[[ℏ]]. In what follows, we systematically
extend scalars to the ring K, which will be, depending on the context, K, K[ℏ] or K[[ℏ]].
We let the reader figure out the details of each specific case.

We have the following properties (see [1, §4.2.2]):

1. The quantization of constant 1-shifted Poisson structures is a symmetric monoidal
functor from cochain complexes equipped with a degree 1 symmetric pairing (with
monoidal structure the direct sum) to (Cpx,⊗). Hence the assignment

Oq : (a, b) 7−→
(
Sym

(
V(a, b)

)
, d+ ℏ∆

)
defines a D1

1-algebra in (Cpx,⊗).

2. The quantization of constant 1-shifted Poisson structures preserves quasi-isomorphisms
(this follows from a spectral sequence, or a deformation theoretic, argument).
Therefore, Oq defines a locally constant D1

1-algebra in (Cpx,⊗).

Remark 3.3. In fact, Oq defines a D1
1-algebra in BD0-algebras (following Costello–

Gwilliam [3], as recalled in [1, §4.2])

3.5 Some computations: recovering the Weyl algebra

Observe that, since ∆ vanishes on generators, then for every x ∈ Z,

dℏδx = δx−1 − 2δx + δx+1 .

As a consequence

[δx+1] = [2δx − δx−1] and [δx+1 − δx] = [δx − δx−1] ,

where [f ] denotes the class of f : Z ∩ (a, b)→ K in H0
(
Oq(a, b)

)
.

Now recall the product ⋆ defined on A = H0
(
Oq(J)

)
, where J = (−3, 3), in Subsection

2.1: it is given as the composition

A ←̃− H0
(
Oq(I1)

)
⊗ ⊗ factorization−−−−→

product
H0

(
Oq(J)

)
= A ,

A ←̃− H0
(
Oq(I2)

)
where I1 = (−2, 1/2) and I2 = (1/2, 3).

Lemma 3.4. The following equality holds: [δ2 − δ1] ⋆ [δ0]− [δ0] ⋆ [δ2 − δ1] = ℏ.
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Proof. On the one hand,

[δ0] ⋆ [δ2 − δ1] = [δ0] · [δ2 − δ1] = [δ0 · δ2 − δ0 · δ1] .

Actually, the above identity is even true at the cochain level (for functions with well-
ordered disjoint supports, the factorization product is just the usual product).

On the other hand,

[δ2 − δ1] ⋆ [δ0] = [δ0 − δ−1] ⋆ [2δ1 − δ2]

= [δ0 − δ−1] · [2δ1 − δ2]

= [2δ0 · δ1 − 2δ−1 · δ1 − δ0 · δ2 + δ−1 · δ2] .

The difference of these two gives

[δ2 − δ1] ⋆ [δ0]− [δ0] ⋆ [δ2 − δ1] = [3δ0 · δ1 − 2δ−1 · δ1 − 2δ0 · δ2 + δ−1 · δ2] = ℏ ,

because

3δ0 · δ1 − 2δ−1 · δ1 − 2δ0 · δ2 + δ−1 · δ2 = ℏ+ dℏ(δ1 · δ−1 − δ0 · δ0 − 2δ1 · δ0) .

Indeed:

• dℏ(δ1 · δ−1) = δ0 · δ−1 − 2δ1 · δ−1 + δ2 · δ−1.

• dℏ(δ0 · δ0) = δ−1 · δ0 − 2δ0 · δ0 + δ1 · δ0 + ℏ.

• 2dℏ(δ1 · δ0) = 2δ0 · δ0 − 4δ1 · δ0 + 2δ2 · δ0.

As a consequence, the assignment q 7→ [δ0], p 7→ [δ2 − δ1] defines a morphism

K⟨q,p⟩⧸(pq− qp = ℏ) −→ (A, ⋆) ,

that is actually an isomorphism; this last claim can be checked either by passing to the
associated graded (when ℏ is a scalar) or by sending ℏ to 0 (when it is a parameter).

3.6 Discrete time evolution automorphism

We consider the action of Z on D1
1 by translations (see Subsection 2.2), and observe that

the D1
1-algebra Oq is actually Z-equivariant: for every n ∈ Z and every open interval

I ⊂ R, we have an isomorphism

Oq(I) −→ Oq(I + n)

f 7−→
(
x 7→ f(x− n)

)
.

In particular, 1 ∈ Z acts by sending δx to δx+1 and δx to δx+1.

Hence, the induced generating automorphism of (A, ⋆) sends q to q+p, and p to itself.
This coincides with the automorphism given by exponentiating the (inner) derivation

[ 1
2ℏp

2,−] (or, equivalently, conjugating with e
1
2ℏp

2
), and thus gives back the automorphism

of the continuous model.
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3.7 Time reversal anti-involution and quantum states

Let us now consider the time reversal action of C2 on D1
1 from Subsection 2.2. The D1

1-
algebra Oq carries a C2-equivariant structure: for every open interval I ⊂ R we have an
isomorphism

τ : Oq(I) −→ Oq(−I)
f 7−→

(
x 7→ f(−x)

)
.

In particular, τ(δx) = δ−x and τ(δx) = δ−x; therefore,

τ([δ0]) = [δ0] and τ([δ2 − δ1]) = [δ−2 − δ−1] = [δ1 − δ2] .

Hence the induced anti-involution on the Weyl algebra is given by q 7→ q and p 7→
−p, and the left module of coinvariants is its quotient by the left ideal generated by
p− (−p) = 2p. We thus obtain K[q] with left action given by

q · qn = qn+1 and p · qn = nqn−1 .

4 Discrete free massive scalar field in 1d

Let α ∈ K×, and consider the endomorphism

Qα : Map(Z,K) −→ Map(Z,K)

defined as follows: for every h : Z→ K and every x ∈ Z,

(Qαh)(x) := h(x− 1)− (α + α−1)h(x) + h(x+ 1) .

Remark 4.1. Whenever K = R and α > 0, α + α−1 ≥ 2 could be thought as 2 + m2,
where m = |α1/2 − α−1/2| is the mass. Then we observe that Qα = Q1 +m2id, where Q1

coincides with the discrete Laplace operator Q from the previous section (massless case).

4.1 Classical observables

Let a < b be real numbers. If f : Z→ K is supported in (a, b) then Qαf is supported in
(a− 1, b+ 1); therefore Qα defines a morphism

Map
(
Z ∩ (a+ 1, b− 1),K

) Qα−→ Map
(
Z ∩ (a, b),K

)
,

whose cone we denote by Vα(a, b).

We can upgrade the assignment (a, b) 7→ Vα(a, b) to a DR
1 -algebra with values in

(Cpx,⊕) for every R > 0: the operation

Vα(I1)⊕ · · · ⊕ Vα(In)→ Vα(J)

is given by the sum, as in Subsection 3.1.

Applying the symmetric algebra functor Sym, that is a symmetric monoidal functor
from (Cpx,⊕) to

(
AlgCom(Cpx,⊗),⊗

)
, we get aDR

1 -algebra Ocℓ
α := Sym(Vα) with values

in differential graded commutative algebras.

Remark 4.2 (shifted pairing and shifted Poisson structure). In fact, Vα(a, b) carries an
additional structure: a degree 1 symmetric pairing ⟨⟨-,-⟩⟩. The definition is exactly the
same as in Subsection 3.3, as well as the proof that it is compatible with the differential
(just replace 2 by α+α−1) and the fact that it is compatible with the DR

1 -algebra structure.
As a consequence, Ocℓ

α becomes a DR
1 -algebra in P0-algebras.
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4.2 Cohomology

Everything works exactly as in Subsection 3.2. For every function f : Z → K having
support in [m,n], with m,n ∈ Z, (Qαf)(m − 1) = f(m) and (Qαf)(n + 1) = f(n).
Hence if Qαf = 0 then f(m) = f(n) = 0, and thus f has support in [m + 1, n − 1].
Hence, by induction, if f has finite support and Qαf = 0, then f = 0: in other words,
Qα is injective on finitely supported maps. Therefore, the cohomology of Vα(a, b) is
concentrated in degree 0. By the rank theorem, if |b− a| > 2 then H0

(
(Vα(a, b)

)
is two

dimensional.

Let us introduce four functions u, v, A,B : Z → K that will hopefully ease later
calculations:

• u(x) := αx.

• v(x) := u(−x) = α−x.

• A(x) :=
u(x) + v(x)

2
.

• B(x) :=
u(x)− v(x)

α− α−1
=

x

|x|

(
α|x|−1 + α|x|−3 + · · ·+ α3−|x| + α1−|x|

)
.

In particular, B(x) = x whenever α = 1.

Observe that all these functions belong to the kernel of Qα: for instance

(Qαu)(x) = αx−1 − (α + α−1)αx + αx+1 = 0 .

We therefore have a morphism

φ : H0
(
Vα

)
−→ Kq⊕Kp

[f ] 7−→
∑
x∈Z

f(x)A(x)︸ ︷︷ ︸
=⟨⟨f,A⟩⟩

q+
∑
x∈Z

f(x)B(x)p .

This is well-defined thanks to A,B ∈ ker(Qα) and the compatibility between the pairing
and the differential2:

⟨⟨Qαg, A⟩⟩ =
∑
x∈Z

(
g(x− 1)− (α + α−1)g(x) + g(x+ 1)

)
A(x)

=
∑
x∈Z

g(x)
(
A(x+ 1)− (α + α−1)A(x) + A(x− 1)

)
= ⟨⟨g,QαA⟩⟩ = 0 .

We let the reader check that φ is an isomorphism whenever |b− a| > 2.

As a consequence, we get that, as a D1
1-algebra taking values in (Cpx,⊕) (or even

complexes equipped with a degree 1 symmetric pairing, see Remark 4.2), Vα is locally
constant: the isomorphism φ provides an equivalence Vα →̃ γ∗(Kq⊕Kp).

This implies that Ocℓ
α = Sym(Vα) is also a locally constant D1

1-algebra (taking values
in differential graded commutative algebras – or even P0-algebras, see Remark 4.2): φ
gives an equivalence Ocℓ

α →̃ γ∗K[q,p].

2Remember the notation from Subsection 3.3: an overlined symbol is used to denote the suspension
of the element given by the original symbol.
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4.3 Quantum observables

We now deform the differential of Ocℓ
α by adding the odd laplacian

∆ =
∑
x∈Z

∂2

∂δx∂δx

as in Subsection 3.4: the new differential is dℏ = d+ ℏ∆, where:

• The original differential d is defined on generators by dg := Qαg and extended by
the Leibniz rule.

• The symbol ℏ can either be understood as a non-zero scalar (ℏ ∈ K×) or as a formal
parameter, as explained in Remark 3.2.

We therefore define quantum observables Oq
α :=

(
Sym(Vα), dℏ

)
.

The following properties can be checked in an ad hoc way, and are particular instances
of more general facts about the quantization of constant 1-shifted Poisson structures (see
e.g. [1, §4.2.2], or Subsection 3.4 above):

1. Quantum observables Oq
α still form a D1

1-algebra, but with values in (Cpx,⊗). In-
deed, the new differential contains an order 2 operator, that is no longer a derivation
for the commutative product unless the functions that we multiply have disjoint
supports. This can be checked by hand, or deduced from the functoriality of the
quantization procedure explained in [1, §4.2.2] (note that this quantization proce-
dure actually takes values in BD0-algebras, hence so does Oq

α.

2. The D1
1-algebra is locally constant (using a spectral sequence argument, or a defor-

mation theoretic one, this follows from that Ocℓ
α is locally constant).

We now recall from Subsection 2.1 the description of an associative algebra Aα such
that Oq

α ≃ γ∗Aα:

• Let Aα := H0
(
Oq

α(J)
)
, with J := (−4, 4).

• The product ⋆ on A is defined as

Aα ←̃− H0
(
Oq

α(I1)
)

⊗ ⊗ factorization−−−−→
product

H0
(
Oq

α(J)
)
= Aα ,

Aα ←̃− H0
(
Oq

α(I2)
)

for any I1, I2 ⊂ J such that |I1| > 2, |I2| > 2 and I1 < I2.

Lemma 4.3. Let q := [δ0] and p := 1
2
[δ1 − δ−1]. Then p ⋆ q− q ⋆ p = ℏ.

Remark 4.4. Observe that φ(q) = q and φ(p) = p.

Proof. First observe that

δ0 − dℏ
(
δ1 + (α + α−1)δ2

)
= δ0 −Qα

(
δ1 + (α + α−1)δ2

)
=

(
(α + α−1)2 − 1)δ2 − (α + α−1)δ3

11



is supported in {2, 3} (we have used that ∆ sends generators to 0). Therefore, by picking
I1 = (−2, 3/2) and I2 = (3/2, 4), we obtain

[δ1 − δ−1] ⋆ [δ0] = [δ1 − δ−1] ⋆
[
δ0 − dℏ

(
δ1 + (α + α−1)δ2

)]
=

[
(δ1 − δ−1) ·

(
δ0 − dℏ

(
δ1 + (α + α−1)δ2

))]
Similarly, δ0 − dℏ

(
δ−1 + (α + α−1)δ−2

)
is supported in {−3,−2}. Thus, picking I1 =

(−4,−3/2) and I2 = (−3/2, 2), we get

[δ0] ⋆ [δ1 − δ−1] =
[(

δ0 − dℏ
(
δ−1 + (α + α−1)δ−2

))
· (δ1 − δ−1)

]
.

We now compute the commutator:

[δ1 − δ−1] ⋆ [δ0]− [δ0] ⋆ [δ1 − δ−1] =
[
dℏ
(
(α + α−1)δ−2 + δ−1 − δ1 − (α + α−1)δ2

)
· (δ1 − δ−1)

]
= −ℏ

〈〈
(α + α−1)δ−2 + δ−1 − δ1 − (α + α−1)δ2 , δ1 − δ−1

〉〉
= 2ℏ .

Here we have used the following general fact: for finitely supported f, g : Z → K,
dℏ(f · g) = dℏ(f)g + ℏ⟨⟨f, g⟩⟩ and thus

[
dℏ(f)g

]
= −ℏ⟨⟨f, g⟩⟩.

As a consequence of the above Lemma, we obtain an algebra morphism

K⟨q,p⟩⧸(pq− qp = ℏ) −→ (Aα, ⋆) ,

that can be shown to be an isomorphism: again, this can be checked by passing to
associated graded (whenever ℏ is a scalar) or by reasoning modulo ℏ (whenever ℏ is a
variable).

It is remarkable to notice that our algebra of quantum observables in fact doesn’t
depend on the mass. We will see in the next Subsection that the mass “matters back”
when time evolves (in a similar way as in [3, Ch. 4 Sect. 3]).

4.4 Time evolution

As in Subsection 3.6, we consider the action of Z on the D1
1-algebra Oq

α: for every n ∈ Z
and every open interval I ⊂ R, we have an isomorphism

Oq(I) −→ Oq(I + n)

f 7−→
(
x 7→ f(x− n)

)
.

In particular, 1 ∈ Z acts by sending δx to δx+1 and δx to δx+1.

Lemma 4.5. The induced automorphism of the Weyl algebra

K⟨q,p⟩⧸(pq− qp = ℏ)

is given by

q 7−→ α + α−1

2
q+ p and p 7−→

(
α− α−1

2

)2

q+
α + α−1

2
p .
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Proof. The automorphism sends q = [δ0] to [δ1] and p = 1
2
[δ1 − δ−1] to

1
2
[δ2 − δ0]. Recall

that on generators both differentials (the original and the deformed one) coincide, hence
we can use φ to compute what their classes gives in the Weyl algebra:

φ([δ1]) =
α + α−1

2
q+ p and φ([δ2 − δ0]) =

(α− α−1)2

2
q+ (α + α−1)p .

Remark 4.6. According to [3, Ch. 4 Sect. 3] the (inner) derivation given by infinitesimal
translation of the continuous model is 1

2ℏ [p
2−m2q2,−], sending q to p and p to m2q. A

simple calculation shows that, after exponentiation, this gives the following automorphism
of the Weyl algebra:

q 7−→ cosh(m)q+
sinh(m)

m
p and p 7−→ m sinh(m)q+ cosh(m)p .

This doesn’t quite coincide with the automorphism given by the discrete model (see Lemma
4.5). However, in the context of Remark 4.1 and very informally, for α→ 1+,

m = |α1/2 − α−1/2| ∼ log(α) and m ∼ sinh(m) .

Therefore,

cosh(m) ∼ α + α−1

2
,

sinh(m)

m
∼ 1 and m sinh(m) ∼

(
α− α−1

2

)2

.

This means that the discrete time evolution is “close” to the continuous one whenever
α→ 1+.

Nevertheless, unlike with the algebra of observables (that we obtain without taking a
continuum limit), it seems that if one wants to recover the time evolution of the continuous
model then one should probably take an appropriate continuum limit.

4.5 Fock module

The C2-equivariant structure on the D1
1-algebra Oq

α is exactly the same as the one in
Subsection 3.7: for every open interval I ⊂ R we have an isomorphism

τ : Oq
α(I) −→ Oq

α(−I)
f 7−→

(
x 7→ f(−x)

)
.

The induced anti-involution of (A, ⋆), that we still denote τ , therefore satisfies τ(q) = q
and τ(p) = −p. Hence, through the isomorphism constructed in Subsection 4.3, we get
the anti-involution of the Weyl algebra defined by q 7→ q and p 7→ −p.

The associated coinvariant left module of the Weyl algebra, that is the quotient of
the Weyl algebra by the left ideal generated by p, is K[q] equipped with the following
module structure: for every n ∈ N,

q · qn = qn+1 and p · qn = nqn−1 .
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