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Abstract

By the introduction of locally constant prefactorization algebras at a fixed scale, we
show a mathematical incarnation of the fact that observables at a given scale of a topo-
logical field theory propagate to every scale over euclidean spaces. The key is that these
prefactorization algebras over ℝn are equivalent to algebras over the little n-disc operad.
For topological field theories with defects, we get analogous results by replacing ℝn with
the spaces modelling corners ℝp ×ℝq

≥0. As a toy example in 1d, we quantize, once more,
constant Poisson structures.
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1 Introduction

Algebraic structure of observables of a QFT
According to Costello–Gwilliam [8, 9], observables of a Quantum Field Theory (QFT) should
provide the following assignment, known as a factorization algebra:

• To every open region U of a space-time manifold M , it assigns an object OU of observ-
ables located/supported in U ;

• For a finite number of pairwise disjoint open regions U1, . . . , Un sitting in a bigger open
region V , there is a product-expansion map OU1 ⊗ · · · ⊗ OUn → OV (that one can view
as an open analog of the point supported operator product expansion).

The above shall satisfy natural axioms:

1. Symmetry and associativity.

2. Multiplicativity: if U1 ⊔ U2 = V then OU1 ⊗OU2 → OV is an equivalence.

3. Descent/glueing with respect to nice enough covers.

Several observations are in order. Condition 1 states that O is an algebra over a certain
operad Disj(M) whose colors are open subsets of M (and which comes with an operation
(U1, . . . , Un) → V whenever U1 ⊔ · · · ⊔ Un ⊂ V ). Condition 2 ensures that one can restrict
to connected open subsets. Condition 3 allows one to restrict to a nice enough basis of the
topology; in the case when M = ℝn (that is the situation of interest in this paper) one can
consider the basis consisting of open (euclidean) discs. We write Disc(ℝn) for the full sub-
operad of Disj(ℝn) spanned by open (euclidean) discs.

One says that a QFT is topological if it does not really depend on any geometric data (such
as a metric, or the size of open regions) but only on the shape of the region where we are
“making measurements”. For our observables, this means that the map OU → OV associated
with an inclusion of two open discs U ⊂ V is an equivalence. Algebras over the operad
Disc(ℝn) that satisfy the above property are called locally constant, and are known to be the
same as 𝔼n-algebras (see [18, Theorem 5.4.5.9], or [13, Corollary 5.2.11]). We refer to [16] for
the details and subtleties concerning condition 3, that is essentially automatically satisfied in
the locally constant case (this is the case we are interested in). See also [6] for this last claim; in
particular, Theorem 6.14 in loc.cit.. In a similar spirit as the result of Lurie, let us also mention
a result [10, Theorem 2.29] by Elliott–Safronov identifying 𝔼n-algebras with locally constant
algebras over an operad whose colors are radii of discs (note that, contrary to us, they don’t
impose any lower bound on the radius of discs, which is the main source of difficulty in the
present paper).

Renormalization
Concrete examples of QFTs in the physics literature frequently involve a priori ill-defined
mathematical operations, e.g. integrating over infinite-dimensional spaces or discarding di-
vergences to extract meaningful values. A mathematical treatment of these renormalization
problems was proposed by Costello in [7], where an axiomatic framework for the ideas of
low-energy effective field theory, developed by Kadanoff, Wilson and others, is proposed for
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the lagrangian formalism. An oversimplified summary of this approach is: first, due to natu-
ral physical limitations, we can only describe phenomena that can be observed in a bounded
range of energies; second, if our description works for some energy bound, it should restrict to
lower bounds; finally, relating the family of these descriptions for different bounds approaches
a meaningful quantum field theory, describing phenomena at arbitrarily high-energies, if renor-
malization applies. A major breakthrough in the work of Costello–Gwilliam [8, 9] is to make
the renormalization framework of [7] compatible with their factorization algebra formalism.
This requires a considerable amount of efforts to make the analysis “get along well” with the
homological and homotopical algebra.

Despite tremendous technicalities, the idea is relatively simple, at least in the case M = ℝn

that we explain now. Let R be a positive real parameter that controls length scale (i.e. inverse
energy scale), and consider the family of operads DR

n whose operations correspond to the alge-
braic structure that observables defined at scale bigger than R > 0 have (in other words, DR

n is
the full sub-operad of Disc(ℝn) spanned by discs of radius bigger than R)i. Given a factoriza-
tion algebra O on ℝn, by restricting it to discs of radius bigger than R, for every R, one gets a
compatible family {O(R)}R>0, where O(R) is a DR

n -algebra. Conversely, one can ask whether
such a family admits a meaningful limit when R→ 0 (i.e. when we approach arbitrarily small
scale, or equivalently arbitrarily high energy).

The goal of this paper is to describe an interesting phenomenon occurring in the topological
(meaning, locally constant) case: if O is a locally constant (pre)factorization algebra on ℝn,
then O can be reconstructed from the data O(R) of its observables at scale bigger than R, for
any choice of R > 0. In other words, if we are given an effective theory at a fixed scale R0 that
is already topological (meaning that O(R0) is locally constantii), then O(R0) produces an 𝔼n-
algebra (or equivalently a locally constant factorization algebra over ℝn); in loose terms, for
topological field theories it suffices to provide a description of observables (as a locally constant
DR

n -algebra) for a fixed scale because it canonically propagates to every scale. This seems to
be an incarnation of the claim that renormalization is “easy” for topological field theories.

Main results and organization of the paper
The main result of the paper, that is the mathematical incarnation of the fact observables at a
given scale of a topological field theory propagate to every scale, is stated and proven in Sec-
tion 2, as Theorem 2.3. It says that there is an equivalence between the∞-category of locally
constant DR

n -algebras and the∞-category of 𝔼n-algebras. As we already mentioned above in
this introduction, a similar result had been proven (by Lurieiii) for locally constant Disc(ℝn)-
algebras; it is a consequence of a more fundamental result claiming that the morphism of op-
erads Disc(ℝn) → 𝔼n exhibits 𝔼n as the localization of Disc(ℝn) at all unary operations (see
[18, Lemma 5.4.5.11], or [13, Proposition 5.2.4]). In the case of DR

n this is also true: Theorem
2.4 says that the morphism of operads DR

n → 𝔼n exhibits 𝔼n as the localization of DR
n at all

unary operations. Nevertheless, the strategy of proof is different from the one of Lurie [18] and
Harpaz [13]. In fact, their strategy, that uses weak approximations, cannot work in our case:
indeed, we show in Appendix A that the morphism DR

n → 𝔼n is not a weak approximation.

iIn principle, condition 3 shall still be enforced but we are going to ignore it.
iiNote that O(R0) will not be a priori defined on small enough regions.

iiiHowever, our proof is orthogonal to Lurie’s. Ultimately, his result follows from a shrinking argument and it
works for any manifold M while our approach is very specific to euclidean spaces ℝn: for instance, it partly relies
on the fact that one can move discs far away enough from each other.
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In Section 3, we extend the results from Section 2 to generalizations of 𝔼n-algebras such
as, for example, algebras over higher dimensional Swiss-cheese operads (see Theorems 3.10
and 3.25). The physical importance of these extensions is that it also works for various types
of topological field theories with defects.

Section 4 is devoted to an application of our main result: given a constant Poisson struc-
ture, we construct its Weyl algebra quantization using locally constant DR

1 -algebras for R = 1
2
.

This toy example is meant to indicate the potential of Theorem 2.3 when combined with dis-
crete models. Our strategy is inspired by the discussion of quantum mechanics in [8] and 1d
Chern-Simons theory from [12, §3], but strongly differs from both approaches, since ours does
not rely on any analytical technique. In fact, we use a discretized version of the compactly
supported de Rham complex, allowing us to avoid the traditional infinite-dimensional analy-
sis. As a counterpart, we loose the locally constant property when the scale is smaller than the
discretization mesh, but this is resolved using our main result.

Appendix B contains useful results about localization of (∞-)operads, that we needed in
Section 2 and couldn’t find in the literature.

The whole paper makes a crucial use of∞-categories (see [19]) and∞-operads (see [18]).
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2 Little discs at large scale

We recall the colored operad Disc(ℝn) whose colors are (euclidean bounded) open discs of ℝn,
and having a (unique) multimorphism (U1, . . . , Uk) → U0 if and only if U1 ⊔ · · · ⊔ Uk ⊂ U0.
Let V be a symmetric monoidal (sm) ∞-category. Recall that a prefactorization algebra in
V is a Disc(ℝn)-algebra in V. A prefactorization algebra is locally constant if it sends unary
operations (that are inclusions of discs) to weak equivalences.

Lurie proved that locally constant prefactorization algebras are the same as 𝔼n-algebras.
More precisely, the functor γ∗ : Alg𝔼n

(V)→ AlglcDisc(ℝn)(V) is an equivalence of∞-categories.
The latter functor is induced by the morphism of operads γ : Disc(ℝn) → 𝔼n, that sends the
multimorphism associated with an inclusion of discs U1 ⊔ · · · ⊔ Uk ⊂ U0 to the following
configuration of discs in the unit disc 𝔻n: it is the image of the configuration U1 ⊔ · · · ⊔ Uk

through the unique affine bijection U0
∼= 𝔻n.

Definition 2.1. Let R > 0. The R-truncated n-discs operad, denoted DR
n , is the full suboperad

of Disc(ℝn) spanned by open discs of radii strictly bigger than R.

Definition 2.2. Let R > 0 and V be a symmetric monoidal∞-category.
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• A prefactorization algebra at scale R over ℝn is a DR
n -algebra (in V), i.e. it is a prefac-

torization algebra over ℝn but only defined over euclidean discs of radii > R.

• A prefactorization algebra (possibly at a fixed scale) is locally constant if it sends inclu-
sions of discs to equivalences in V.

There is an obvious map γ : DR
n → 𝔼n from the R-truncated n-discs operad into the little

n-discs operad. The pullback functor γ∗ : Alg𝔼n
(V) → AlgDR

n
(V) factors through the full∞-

subcategory AlglcDR
n
(V) ⊂ AlgDR

n
(V) spanned by locally constant prefactorization algebras at

scale R over ℝn.

Theorem 2.3. For any symmmetric monoidal∞-category V, the functor

γ∗ : Alg𝔼n
(V) −→ AlglcDR

n
(V)

is an equivalence of∞-categories, between 𝔼n-algebras and locally constant prefactorization
algebras at scale R over ℝn.

This follows from the more abstract result concerning the∞-operads themselves:

Theorem 2.4. The morphism γ : DR
n → 𝔼n exhibits 𝔼n as the ∞-localization of DR

n at all
unary operations as an∞-operad.

We will focus on Theorem 2.4 and its proof will take the remainder of this section. It will
require some detours: (i) a topological discussion about configuration spaces inℝn (Subsection
2.1) and (ii) a technically convenient variation of the operads DR

n and 𝔼n (Subsection 2.2).

Remark 2.5. In this document, we will focus on the unital side of the story, e.g. 𝔼n is considered
to have 𝔼n(0) ≃ pt and DR

n contains nullary operations. However, our results, and proofs, are
valid for the obvious non-unital variants. In practice, this means restricting to operations of
arity strictly bigger than 0 in DR

n and taking 𝔼nu
n =

(
𝔼n(k)

)
k≥1

.

2.1 Fattened configurations in euclidean space
Fattened configurations. We now provide a brief discussion of fattened configurations spaces
and their remarkable property of being equivalent to ordinary configuration spaces in ℝn. This
last property is key to prove Theorem 2.4.

Definition 2.6. Let m be a non-negative integer. We define the space of configurations of
R-fattened m-points in ℝn to be the subspace of rectilinear embeddings of closed discs iv

DR Confm(ℝn) ⊆ Embrect(𝔻1 ⊔ · · · ⊔ 𝔻m;ℝn)

spanned by embeddings f : 𝔻1 ⊔ · · · ⊔ 𝔻m ↪→ ℝn such that f(𝔻j) is a closed disc with radius
strictly bigger than R for any j. By convention, we set DR Conf0(ℝn) = pt.

Notice that the previous definition makes sense for R = 0.
One fundamental feature about these configuration spaces is that, working on ℝn, they are

homotopy equivalent to genuine configurations spaces of points. .

Remark 2.7. Before proving that this is the case, we recall the following obvious facts: a dila-
tion sends discs to discs, and is bijective (in particular it preserves disjointness and inclusions).

ivIntersections of boundaries are not allowed.
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Lemma 2.8. Evaluation at centers of discs determines homotopy equivalences

DR Confm(ℝn) ≃ D0 Confm(ℝn) ≃ Confm(ℝn) ,

where Confm(ℝn) = Emb({1, . . . ,m};ℝn) denotes the space of configurations of m (ordered)
points in ℝn.

Proof. Let us fix a number ϵ > R in the rest of this proof. We have a diagram of spaces

DR Confm(ℝn) D0 Confm(ℝn) Confm(ℝn) ,
inc

infl

ev

where ev denotes evaluation at centers of discs, inc is the canonical inclusion and infl is the
continuous map described as follows:(

f : 𝔻1 ⊔ · · · ⊔ 𝔻m ↪→ ℝn
)
7−→

(
𝔻1 ⊔ · · · ⊔ 𝔻m

f−−−→ ℝn λ(f)·−−−−−→ ℝn
)
,

where λ(f)· : ℝn → ℝn is the dilation by λ(f) := ϵ
min(ϵ,r1,...,rm)

with ri the radius of the ith-disc
f(𝔻i). In other words, infl sends the ith-closed ball f(𝔻i) = 𝔻(xi, ri) in the configuration to
𝔻(λ(f)xi, λ(f)ri). Remark 2.7 ensures that the inflation map infl is well-defined.

The map ev is a homotopy equivalence by a classical shrinking argument. It remains to
see that infl is a homotopy inverse of inc. The composition inc ◦ infl ≃ id is homotopic to the
identity via the following h : D0 Confm(ℝn)× [0, 1]→ D0 Confm(ℝn):(

f : 𝔻1 ⊔ · · · ⊔ 𝔻m ↪→ ℝn, t
)
7−→

(
𝔻1 ⊔ · · · ⊔ 𝔻m

f−−−→ ℝn λ(f,t)·−−−−−→ ℝn
)
,

with λ(f, t) = 1− t+ λ(f)t. The other composition infl ◦ inc ≃ id is analogous.

In the proof of Theorem 2.4, we will need a more general version of this where we allow
for nested configurations of discs in ℝn. For this reason, it is better to focus on the homotopy
equivalence DR Confm(ℝn) ≃ D0 Confm(ℝn) rather than DR Confm(ℝn) ≃ Confm(ℝn).

Nested configurations. To keep track of the amount of closed discs conforming the configu-
ration and how nested they are, we use a k-chain α ∈ Fun([k],Fin∗), i.e.

α :
[
⟨m0⟩

α1−−−→ ⟨m1⟩
α2−−−→ · · · αk−−−→ ⟨mk⟩

]
.

Our goal is to define the space of α-nested configurations DR Confα(ℝn) and to show that it
is homotopy equivalent to D0 Confα(ℝn). A direct definition of such a space for a general α is
far from enlightening, and so we present a definition in two steps for the sake of visualization.

Let us start by assuming that all the components of α are active maps in Fin∗, i.e. the pointed
function αr : ⟨mr−1⟩ → ⟨mr⟩ satisfies |α−1

r (∗)| = 1 for any 1 ≤ r ≤ k, and that mk = 1. In
this case, α represents a leveled-tree, see Picture 1.

Definition 2.9. Assume α ∈ Fun([k],Fin∗) is a k-chain of active maps and that its target is
⟨mk⟩ = ⟨1⟩. We define the space of α-nested configurations of R-fattened points in ℝn to be
the subspace

DR Confα(ℝn) ⊆
∏

1≤ir≤m

Embrect(𝔻;ℝn),

with m = m0 + · · · +mk−1 and where we label the factors corresponding to mr by indices of
the form ir, spanned by collections of rectilinear embeddings

(
fir : 𝔻 ↪→ ℝn

)
ir

such that:
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• fir(𝔻) is a closed disc with radius strictly bigger than R for any ir.

• fir(𝔻) ∩ fjr(𝔻) = � for any pair of distinct indices 1r ≤ ir, jr ≤ mr (equivalently
(f1r , . . . , fmr) : 𝔻1r ⊔ · · · ⊔ 𝔻mr ↪→ ℝn is an element of DR Confmr(ℝn))

• fir−1(𝔻) ⊆ fjr(𝔻) for any ir−1 ∈ α−1
r (jr) (equivalently (fα−1

r (jr)
) : 𝔻 ⊔ · · · ⊔ 𝔻 ↪→ ℝn

factors through fjr(𝔻)). Moreover, either the equality is met, fir−1(𝔻) = fjr(𝔻), in
which case α−1

r (jr) = {ir−1}, or fir−1(𝔻) ⊂ fjr(𝔻) for any ir−1 ∈ α−1
r (jr).

See Picture 1 to visualize a point in this space. The conditions are just the natural nesting
rules associated to the k-chain α plus mild point-set impositions that we need in the proof of
Theorem 2.4.

Figure 1: On the right hand side, a k = 3 chain α : [3]→ Fin∗ of active maps. On the left hand
side, a point in DR Confα(ℝn) for the previous α.

If we consider more generally that α is a k-chain of active maps, but ⟨mk⟩ is arbitrary, the
definition is the same, but replacing the second condition by fir(𝔻)∩fjr(𝔻) = � for any pair of
distinct indices 1r ≤ ir, jr ≤ mr such thatα(ir) = α(jr), i.e.αk · · ·αr+1(ir) = αk · · ·αr+1(jr)
in ⟨mr⟩◦.

In the general case, i.e. α ∈ Fun([k],Fin∗) is arbitrary, we have to also modify the amount
of discs conforming the configuration, since the functions αr : ⟨mr−1⟩ → ⟨mr⟩ might throw
away some of them.

Definition 2.10. Let α ∈ Fun([k],Fin∗) be an arbitrary k-chain of pointed functions. We define
the space of α-nested configurations of R-fattened points in ℝn to be the subspace

DR Confα(ℝn) ⊆
∏

1≤ir≤m

Embrect(𝔻;ℝn),

with m = m0−|α−1
1 (∗)|+ · · ·+mk−1−|α−1

k (∗)| and where we use labels ir for the factors cor-
responding to ⟨mr⟩\α−1

r+1(∗) in the product, spanned by collections of rectilinear embeddings(
fir : 𝔻 ↪→ ℝn

)
ir

such that:

• fir(𝔻) is a closed disc with radius strictly bigger than R for any ir.

• fir(𝔻) ∩ fjr(𝔻) = � for any pair of indices 1r ≤ ir, jr ≤ mr such that α(ir) = α(jr),
i.e. αt · · ·αr+1(ir) = αt · · ·αr+1(jr) ̸= ∗ for some t ≤ k.
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• fir−1(𝔻) ⊆ fjr(𝔻) for any ir−1 ∈ α−1
r (jr). Moreover, either the equality is met,

fir−1(𝔻) = fjr(𝔻), in which case α−1
r (jr) = {ir−1}, or fir−1(𝔻) ⊂ fjr(𝔻) for any

ir−1 ∈ α−1
r (jr).

Lemma 2.11. Let α ∈ Fun([k],Fin∗) be any k-chain of pointed functions. Then, the canonical
inclusion of spaces of α-nested configurations

DR Confα(ℝn) ↪−−−→ D0 Confα(ℝn)

is a homotopy equivalence.

Proof. As in the proof of Lemma 2.8, we construct a homotopy inverse to the inclusion map

DR Confα(ℝn) D0 Confα(ℝn)
inc

infl

using appropriate dilations. In this case, fix a number ϵ > R and define infl as follows:(
fir : 𝔻 ↪→ ℝn

)
ir
7−→

(
𝔻 fir−−−−→ ℝn

λ(f)·
−−−−−→ ℝn

)
ir
,

where λ(f)· : ℝn → ℝn is the dilation by λ(f) := ϵ
min(ϵ,r1,...,rm)

with ri the radius of the ith-disc
fi(𝔻) and m = m0 − |α−1

1 (∗)| + · · · + mk−1 − |α−1
k (∗)|. This map is well-defined due to

Remark 2.7.
Let us check that infl is a homotopy inverse of inc. The composition inc ◦ infl ≃ id is

homotopic to the identity via the following h : D0 Confα(ℝn)× [0, 1]→ D0 Confα(ℝn):(
fir : 𝔻 ↪→ ℝn, t

)
ir
7−→

(
𝔻 fir−−−−→ ℝn

λ(f,t)·
−−−−−→ ℝn

)
ir
,

with λ(f, t) = 1− t+ λ(f)t. The other composition infl ◦ inc ≃ id is analogous.

We also need to compare α-nested configurations in the open unit n-disc D0 Confα(𝔻)v

with nested configurations in euclidean space ℝn.

Lemma 2.12. Postcomposition with the canonical inclusion 𝔻 ↪→ ℝn induces a homotopy
equivalence

D0 Confα(𝔻)
∼

↪−−−−→ D0 Confα(ℝn).

Proof. Let us construct a homotopy inverse for this map between nested configurations. Fix an
arbitrary number ϵ > 0 and let (fi : 𝔻 ↪→ ℝn)i be a point in D0 Confα(ℝn). Define

di = ||z(fi(𝔻))||+ ri = ||fi(0)||+ ||fi(1, 0, . . . , 0)− fi(0)||

as the sum of the distance of the center of fi(𝔻) to the origin and the radius of fi(𝔻). This
measures the maximum distance from fi(𝔻) to the origin. Using these numbers, we can set

λ(f) =
1

max(d1, . . . , dm) + ϵ

and consider the composition 𝔻 fi−−−→ ℝn
λ(f)·
−−−−−→ ℝn. By our choices, this composite fac-

tors through the canonical inclusion 𝔻 ↪→ ℝn. Thanks to Remark 2.7, we obtain a (dashed)
continuous map

D0 Confα(𝔻) D0 Confα(ℝn)

Using homotopies similar to those of Lemma 2.11, one checks that these two maps are homo-
topy inverses.

vThe definition of this space is an obvious modification of Definition 2.10.
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Remark 2.13. Notice that, since there is no rectilinear isomorphism𝔻 ∼= ℝn, we cannot directly
find a homeomorphism D0 Confα(𝔻) ∼= D0 Confα(ℝn). In the same spirit, one cannot use the
diffeomorphism

φ : 𝔻 ℝn

x 1√
1−||x||2

x

≃

in an obvious way to produce a homeomorphism D0 Confα(𝔻) ∼= D0 Confα(ℝn) for a general
k-chain α. For instance, postcomposition with φ does not preserve euclidean discs. On the
other hand, it is possible to produce a homeomorphism as above for 1-chains using φ, but the
construction fails for general k-chains.

2.2 Operads of closed discs
Due to point-set considerations we need to address later on, it will be more convenient for us
to work with closed variants of DR

n and 𝔼n.

Definition 2.14. Let R > 0. The R-truncated closed n-discs operad, denoted DR
n , is the

operad with colors closed euclidean bounded discs in ℝn of radii strictly bigger than R, and
multimorphisms:

DR
n

[
D1, . . . , Dm

D

]
=


pt if

⊔
iDi ⊂ int(D),

{id} if m = 1 and D1 = D,

� otherwise.

Definition 2.15. The closed little n-discs operad 𝔼n is the uncolored operad whose space of
m-ary operations is the subspace

𝔼n(m) ⊆ Embrect
(
𝔻 ⊔m;𝔻

)
spanned by rectilinear embeddings f : 𝔻 ⊔m ↪→ 𝔻 that do not touch the boundary of the target
disc ∂𝔻, except for the identity embedding id : 𝔻 ↪→ 𝔻 for m = 1. Composition is given by
composition of rectilinear embeddings.

Remark 2.16. The closed variant of the little n-disc operad that we use is slightly different
from the classical one, since we do not allow for intersections of boundaries (except for identity
operations). This stems from a point-set issue we have to handle in the proof of Theorem 2.4.

There are natural maps of operads DR
n → DR

n and 𝔼n → 𝔼n determined respectively by

D 7−→ int(D) and (f : 𝔻 ⊔m ↪→ 𝔻) 7−→ (f |int : 𝔻⊔m ↪→ 𝔻).

There is also a morphism of operads γ : DR
n → 𝔼n constructed in the same way as its open

analogue γ : DR
n → 𝔼n. All these morphisms together fit into a commutative square

DR
n 𝔼n

DR
n 𝔼n

γ

γ

. (1)

9



Before further exploration of these morphisms, let us introduce a bit of notation that will
be used later on. First, recall that given a (simplicial) operad O, we can consider its fibrational
presentation O⊗ → Fin∗, also called (simplicial) operator category (see discussion above [13,
Proposition 4.1.13]). Additionally, we will use the following notation taken from [17, §3].

Notation 2.17. Let I and C = (C, W) be (small) relative categories. By [I,C] we will refer to
the category of relative functors and by weq [I,C] to its wide subcategory whose morphisms are
the W-natural transformations. Equipping the kth-simplex category [k] = {0 ≤ 1 ≤ · · · ≤ k}
with its minimal relative structure, we have in particular weq [[k],C] for any k ≥ 0.

We are ready to come back to our square of operads (1).

Lemma 2.18. The map 𝔼n → 𝔼n is an equivalence of operads.

Proof. By a simple shrinking argument, one observes that evaluation at the center of discs
induces homotopy equivalences 𝔼n(m)−̃→Confm(𝔻)←̃−𝔼n(m) making the obvious triangle
commute for any m ≥ 0.

Lemma 2.19. The map DR
n → DR

n induces an equivalence of ∞-operads between the ∞-
localizations at all unary operations of both operads. In particular, the forgetful functor
AlglcDR

n
(V) −→ Alglc

DR
n
(V) is an equivalence of∞-categories for any symmetric monoidal∞-

category V.

Proof. Let us consider the associated map between operator categories DR,⊗
n → DR,⊗

n . Also,
let us denote D (resp. D) the relative category (DR,⊗

n ,W•) (resp. DR,⊗
n ) obtained by considering

the wide subcategory W• of DR,⊗
n on the morphisms{

(φ, w) :
(
⟨m⟩, U

)
→

(
⟨m⟩, U ′) : φ : ⟨m⟩ ≃−→ ⟨m⟩ and wi : Uφ−1(i) ↪→ U ′

i in DR
n

}
.

Working at the level of quasioperads (or operator categories) allows us to combine Corollary
B.3 and Proposition B.5 to reduce the claim to: for any k ≥ 0 and any σ ∈ weq [[k],D], the
slice category weq

[
[k],D

]
/σ

is weakly contractible.
Let us start with the case k = 0. Then, σ ∈ weq [[0],D] is the same as choosing an object

(⟨m⟩, U) ∈ DR,⊗
n and the associated slice category weq

[
[k],D

]
/σ

can be identified with the

poset of m-tuples (D1, . . . , Dm) of discs in DR
n such that int(Di) ⊆ Ui for any i. Thus, it is

immediate to see that this poset is weakly contractible.
For k ≥ 1, the situation is similar, but one has to be more careful since the operad DR

n

contains a multimorphism (U1, . . . , Um) → V even if ∂Ui ∩ ∂Uj ̸= � for a pair of distinct
indices or if ∂Ui ∩ ∂V ̸= � for some i and Ui ⊊ V , in contrast to DR

n . Now, σ ∈ weq [[k],D]
corresponds to a k-chain of maps in DR,⊗

n

σ :

[(
⟨m0⟩, U0

) (α1,µ1)−−−−−→
(
⟨m1⟩, U1

) (α2,µ2)−−−−−→ · · ·
(αk,µ

k)
−−−−−→

(
⟨mk⟩, Uk

)]
.

Hence, the additional datum with respect to the case k = 0 is that the families of discs come
with inclusions

⊔
i∈α−1

r (j) U
r−1
i ⊆ U r

j whenever j ∈ ⟨mr⟩◦ and 1 ≤ r ≤ k. In this case, the slice
category weq

[
[k],D

]
/σ

is equivalent to the poset of tuples (D0
1, . . . , D

0
m0

, . . . , Dk
1, . . . , D

k
mk

)

of discs in DR
n , denoted D∗

•, subject to:

• int(Dr
i ) ⊆ U r

i for any i ∈ ⟨mr⟩◦ and 0 ≤ r ≤ k,
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•
⊔

i∈α−1
r (j) D

r−1
i ⊂ int(Dr

j) whenever j ∈ ⟨mr⟩◦ or Dr−1
i = Dr

j and α−1
r (j) = {i}.

We argue that this poset is weakly contractible by showing that for any finite poset K and any
functor K→ weq

[
[k],D

]
/σ

, there is a diagonal filler

K weq
[
[k],D

]
/σ

pt

up to a zigzag of natural transformations. The idea is to gently shrink the discs U r
i so that the

additional impositions for an object in weq
[
[k],D

]
/σ

are met; for instance, the shrunken discs
should have radii strictly bigger than R and they should satisfy ∂V r

i ∩ ∂V r
j = � whenever i, j

are distinct elements of ⟨mr⟩◦ such that αr(i) = αr(j).
Let us set some notation by observing that the functor ϕ : K → weq

[
[k],D

]
/σ

assigns

tuples of discs D∗
•(p) to elements p ∈ K and, on morphisms, it sends

q ≤ p 7−−−→ ϕqp : D
∗
•(q)→ D∗

•(p),

where ϕqp is comprised of unary morphisms Dr
i (q)→ Dr

i (p) in DR
n . We begin by considering

a natural transformation ϕ′ ⇒ ϕ obtained by shrinking the discs conforming ϕ (i.e. by consid-
ering discs with the same center, but smaller or equal radii) such that the resulting discs satisfy
D′,r

i (p) ⊂ U r
i for any triple (p, r, i), instead of the open condition int

(
D′,r

i (p)
)
⊆ U r

i . For each
triple (p, r, i), we have to ensure:

•
⊔

i∈α−1
r (j)

D′,r−1
i (p) ⊂ D′,r

j (p) when j ∈ ⟨mr⟩◦ or D′,r−1
i (p) = D′,r

j (p) where α−1
r (j) = {i},

• D′,r
i (q) ⊂ D′,r

i (p) or D′,r
i (q) = D′,r

i (p) whenever q ≤ p,

and these conditions will be satisfied exactly when they hold for the components of ϕ. For
example, D′,r

i (q) = D′,r
i (p) when Dr

i (q) = Dr
i (p).

To justify that such a natural transformation exists, we use a double induction over (p, r).
Being pedantic, the induction over p ∈ K requires choosing a well-ordering on K extending its
partial ordering ≤ or, as we prefer, noting that we can work inductively over the levels of the
Hasse diagram of K; the elements in level 0 are the minimal elements in K, level 1 is comprised
of elements p ∈ K not in level 0 such that ∄ q ∈ K : p0 ⪇ q ⪇ p for any p0 in level 0, and so on.

Start the induction at p ∈ K in level 0 (i.e. p is minimal in K) and r = 0. This case is
easy because most of the conditions are void, but it uses the fact that discs D0

i (p) have radii
strictly bigger than R. We just need to shrink the discs whose boundary touches the boundary
of the relevant components of σ. We continue by keeping p fixed and running an induction
over r. Having constructed the shrunken discs D′,t

i (p) for i ∈ ⟨mt⟩◦ and t < r, one notices
that it is possible to shrink Dr

j(p) to meet the previous conditions. There are two cases: (a) we
can set D′,r−1

i (p) = D′,r
j (p) when Dr−1

i (p) = Dr
j(p), or (b) we use that radii are strictly bigger

than R and that at most we have to make sure that a finite number of disjoint closed balls are
contained in D′,r

j (p) ⊆ Dr
j (p) (knowing that they sit inside Dr

j (p)). The remaining steps in the
induction over p follow the same lines, since the worst case requires to shrink Dr

i (p) so that
D′,r

i (q) ⊂ D′,r
i (p) for q < p in lower levels.

11



Using the new functor ϕ′ just constructed, we build a natural transformation ϕ′ ⇒ ctV ∗
•
,

where ctV ∗
•

is the constant functor K → weq
[
[k],D

]
/σ

associated to a tuple V ∗
•. The com-

ponents V r
i of such a tuple are constructed by shrinking U r

i . This is now possible since
D′,r

i (p) ⊂ U r
i for any triple (p, r, i). The formal construction applies an induction over r

similar to the one discussed above.vi

Recapping, for any functor ϕ : K→ weq
[
[k],D

]
/σ

, we have constructed a diagram

K weq
[
[k],D

]
/σ

pt

ϕ

ϕ′

!
V ∗

•

.

This shows that weq
[
[k],D

]
/σ

is weakly contractible, concluding the proof.

Remark 2.20. Using the notation from the proof of Lemma 2.19, notice that the slice category
weq

[
[k],D

]
σ/

might be empty and that weq
[
[k],D

]
/σ

is not filtered nor cofiltered for some
σ ∈ weq [[k],D]. See Figure 2. Therefore, our strategy to show weak contractibility of the
slices in the cited proof cannot be avoided easily.

Figure 2: On the left, components of two elements D∗
•, D

′,∗
• ∈ weq

[
[k],D

]
/σ

which admit no
upper nor lower bound in that poset, i.e. the slice is not filtered nor cofiltered. On the right,
components of an element σ ∈ weq [[k],D] such that weq

[
[k],D

]
σ/

is empty.

2.3 Proof of Theorem 2.4
First notice that the commutative square (1) together with Lemmas 2.18 and 2.19 reduce the
question about γ : DR

n → 𝔼n to its analogue for γ : DR
n → 𝔼n. To prove this claim, we

work with quasioperads and we show the following equivalent statement (see Corollary B.3):
N(DR,⊗

n ) → N∞(𝔼⊗
n ) exhibits N∞(𝔼⊗

n ) as the∞-localization of N(DR,⊗
n ) at N(W•) as an∞-

category. We apply Proposition B.5 and Remark B.6 to see that this is the case.
Recycling the notation D = (DR,⊗

n ,W•) from the proof of Lemma 2.19, we must show that
for any k ≥ 0

γ∗ : weq
[
[k],D

]
−−−−−−−→ weq

[
[k],𝔼⊗,♯

n

]
≡ Fun([k],𝔼⊗

n )
≃

viThe case K = � is also covered by the argument.
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is a weak homotopy equivalence. Making use of the commutative triangle

weq
[
[k],D

]
weq

[
[k],𝔼⊗,♯

n

]
weq

[
[k],Fin♯∗

] ,

we can further reduce the claim to show that the horizontal map induces weak homotopy equiv-
alences between homotopy fibers of the diagonal arrows over k-chains α ∈ Fun([k],Fin∗).
Hence, let us fix α and look at the mentioned homotopy fibers, denoted weq

[
[k],D

]
α

and
weq

[
[k],𝔼⊗,♯

n

]
α

respectively.
For k = 0, the right diagonal map becomes an equivalence and hence, we must check that

for any ⟨m⟩ ∈ Fin∗, the category weq
[
[0],D

]
⟨m⟩ is weakly contractible. It is clearly so because

it is filtered.
For k ≥ 1, since weq

[
[k],𝔼⊗,♯

n

]
is the kth-level of the complete Segal space NR

∞(𝔼⊗,♯
n )•,

weq
[
[k],𝔼⊗,♯

n

] ≃−−−−→
∐

⟨m0⟩,...,⟨mk⟩

Map𝔼⊗
n
(⟨mk−1⟩, ⟨mk⟩)× · · · ×Map𝔼⊗

n
(⟨m0⟩, ⟨m1⟩).

Taking the homotopy fiber over α, and using the definition of 𝔼n (where we only allow for recti-
linear embeddings whose image do not intersect the boundary, except for identity embeddings),
we get an identification weq

[
[k],𝔼⊗,♯

n

]
α
∼= D0 Confα(𝔻). Notice that we use the obvious vari-

ant of Definition 2.10 where the α-nested configurations live in the open n-dimensional unit
disc 𝔻. On the other hand, observe that weq

[
[k],D

]
α

can be identified with the poset of tuples
U∗ =

(
U0, . . . , Uk

)
, where each U r =

(
U r
ir

)
ir∈⟨mr⟩◦

is again a tuple of euclidean open discs in
ℝn with radii strictly bigger than R, subject to:

• U r
ir ∩ U r

jr = � if αt · · ·αr+1(ir) = αt · · ·αr+1(jr) ̸= ∗ for some t ≤ k,

• either U r−1
ir−1
⊂ U r

jr or U r−1
ir−1

= U r
jr if ir−1 ∈ α−1

r (jr).

The rest of the proof exploits the following (homotopy) commutative diagram

weq
[
[k],D

]
α

weq
[
[k],𝔼⊗,♯

n

]
α

w̃eq
[
[k],D

]
α

D0 Confα(𝔻)

DR Confα(ℝn) D0 Confα(ℝn)

(5) (1)

(4) (2)

(3)

,

where w̃eq
[
[k],D

]
α

is the poset of tuples U∗ defined as above, with the only difference that
the components U r =

(
U r
ir

)
are indexed by ir ∈ ⟨mr⟩\α−1

r+1(∗) and r runs through 0 ≤ r < k.
By 2-out of-3, we will be done if we show that (1)− (5) are weak homotopy equivalences.

The map (1) is the previous identification and (2)− (3) were shown to be homotopy equiv-
alences in Lemmas 2.11 and 2.12. An application of Quillen’s Theorem A shows that the
projection functor (5) is a weak homotopy equivalence. More concretely, one can observe that
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for any U∗ ∈ w̃eq
[
[k],D

]
α
, the slice

(
weq

[
[k],D

]
α

)
/U∗ is filtered, essentially because the

components indexed by ir ∈ α−1
r+1(∗) ∩ ⟨mr⟩◦ can be taken as big as needed.

It remains to see that (4) is a weak homotopy equivalence to conclude the proof. The idea is
to apply Lurie–Seifert–van Kampen’s Theorem [18, A.3.1] and for that purpose, we must inter-
pret elements in P := w̃eq

[
[k],D

]
α

as open subsets of DR Confα(ℝn). Let us define a functor
ζ : P → Open

(
DR Confα(ℝn)

)
by sending each U∗ to the subspace ζ(U∗) of DR Confα(ℝn)

spanned by embeddings whose image is contained in U∗, i.e.

ζ(U∗) = DR Confα(ℝn) ∩
∏

1≤ir≤m

Embrect
(
𝔻, U r

ir

)
,

with m = m0 − |α−1
1 (∗)| + · · · +mk−1 − |α−1

k (∗)| and where we use labels ir for the factors
corresponding to ⟨mr⟩\α−1

r+1(∗) in the product. With this functor at hand, the map (4) can be
seen as

w̃eq
[
[k],D

]
α
≃ hocolim

(
P

ζ−→ Spc
)
−→ DR Confα(ℝn),

where the map on the left is an equivalence since ζ(U∗) is contractible for any U∗ ∈ P. To see
that the right map is an equivalence we apply Lurie–Seifert–vanKampen’s Theorem. It suffices
to check that for every (fir)ir ∈ DR Confα(ℝn) the subposet {U∗ ∈ P : (fir)ir ∈ ζ(U∗)} ⊆ P
is cofiltered. It is non-empty since we assumed that embeddings in DR Confα(ℝn) do not
allow intersections of boundaries (see Figure 3). It remains to see that for any pair of distinct
elements of the poset ζ(U∗) ∋ (fir)ir ∈ ζ(V ∗), one can find a lower bound (fir)ir ∈ ζ(W ∗),
i.e. U∗ ← W ∗ → V ∗.

Constructing such a W ∗ amounts to build tuples of discs W r = (W r
ir)ir∈⟨mr⟩\α−1

r+1(∗)
for

0 ≤ r < k subject to the following conditions:

(a) fir(𝔻) ⊂ W r
ir for all ir ∈ ⟨mr⟩\α−1

r+1(∗) and 0 ≤ r < k,

(b) W r
ir ⊂ U r

ir ∩ V r
ir for all pairs (r, ir),

(c) either
⊔

t∈α−1
r (ir)

W r−1
t ⊂ W r

ir or W r−1
ir−1

= W r
ir with α−1

r (ir) = {ir−1} for all pairs (r, ir).

Notice that condition (a) implies that the radii of the discs are always strictly bigger than R.
Also, observe that U r

ir ∩ V r
ir is a convex open subset of ℝn containing the closed disc fir(𝔻).

We argue that this family can be built by working inductively over 0 ≤ r < k.
Starting at r = 0, we find the disc W 0

i0
for each i0 ∈ ⟨m0⟩\α−1

1 (∗) by “expanding” fi0(𝔻)
inside U0

i0
∩ V 0

i0
. This means that W 0

i0
shares its center with fi0(𝔻), i.e. the point fi0(0), and its

radius is strictly bigger than that of fi0(𝔻). At this level, this seems sufficient since condition
(c) is void for r = 0. However, to ensure that next steps in the construction are doable, we
additionally impose: W 0

i0
⊂ fit(𝔻) if fi0(𝔻) ⊂ fit(𝔻), where it is the first index of the form

it = αt · · ·α1(i0) ∈ ⟨mt⟩\α−1
t+1(∗) for which such an inclusion occurs. If there is no such

index, i.e.
fi0(𝔻) = fi1(𝔻) = · · · = fil(𝔻)

with is = αs · · ·α1(i0) for any 1 ≤ s ≤ l and either l = k − 1 or αl+2αl+1(il) = ∗, we impose
no further condition. The previous expansion can be performed because fi0(𝔻) is a closed disc
sitting inside the convex open subset U0

i0
∩ V 0

i0
and the open disc fit(𝔻).

For r = 1 and any i1 ∈ ⟨m1⟩\α−1
2 (∗), we want to do a similar process: find W 1

i1
by ex-

panding fi1(𝔻) inside U1
i1
∩ V 1

i1
and fit(𝔻), where it is the first index obtained by applying

components of α to i0 such that fi1(𝔻) ⊂ fit(𝔻). Now, we need to make sure that con-
dition (c) holds (which depends on the previous step r = 0). There are two cases: either
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⊔
t∈α−1

1 (i1)
ft(𝔻) ⊂ fi1(𝔻) or fi0(𝔻) = fi1(𝔻) for the unique i0 ∈ α−1

1 (i1). In the second case,
it suffices to set W 1

i1
:= W 0

i0
. Otherwise, we are allowed to perform the expansion of fi1(𝔻)

because W 0
t with t ∈ α−1

1 (i1) was selected so that it is contained in fi1(𝔻) and because of the
inclusion fi1(𝔻) ⊂ U1

i1
∩ V 1

i1
∩ fit(𝔻).

The general case follows by the same argument given for r = 1; just make the appropriate
index-modifications. Recapping, we have constructed a lower bound W ∗ in the subposet of P
for the pair of elements U∗, V ∗, showing that it is cofiltered, therefore weakly contractible.

2

Figure 3: A point (fir)ir ∈ DR Confα(ℝn) and U∗ ∈ P such that (fir)ir ∈ ζ(U∗).

Remark 2.21. The introduction of the modified poset w̃eq
[
[k],D

]
α

in the previous proof is
fundamental. If one just tries to apply Lurie–Seifert–van Kampen’s Theorem to the obvious
variation ζ′ : weq

[
[k],D

]
α
−→ Open

(
DR Confα(ℝn)

)
of the functor ζ, one faces the problem

that the subposets{
U∗ ∈ weq

[
[k],D

]
α
: (fir)ir ∈ ζ′(U∗)

}
⊆ weq

[
[k],D

]
α

are not always cofiltered. The issue arises when trying to find the ith
r -component of a “lower

bound” for a pair of distinct elements U∗, V ∗ where the index belongs to ir ∈ α−1
r+1(∗)∩⟨mr⟩◦.

It can happen that U r
ir ∩ V r

ir does not contain any disc of radius strictly bigger than R.

2.4 A cubical version
So far, we have chosen to work with euclidean discs in ℝn, but the arguments do not really use
anything special from the euclidean norm (except for convexity of intersections of balls). An
inspection of our proofs reveal that other norms on ℝn yield operads for which our main result
hold. We will focus on the∞-norm ||x||∞ = max{|xi| : 1 ≤ i ≤ n}. The practical difference
is that balls become cubes for || - ||∞, e.g.

□ := (−1, 1)n = {y ∈ ℝn : ||y||∞ < 1} =: B∞(0, 1),

and sometimes this has some advantages over working with euclidean discs.
It is fairly simple to modify our definitions replacing euclidean discs by cubes to get R-

truncated/little n-cubes operads:

DR
n DR

n 𝔼n 𝔼n

CR
n CR

n 𝔼□
n 𝔼□

n

.
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Notice that all 𝔼n, 𝔼□
n , 𝔼n and 𝔼□

n are equivalent operads. Moreover, locally constant alge-
bras over CR

n and CR
n can be defined in an obvious way (see Definition 2.2).

Following the proof strategy we wrote for Theorem 3.12, which summarizes our proof of
Theorem 2.4, one can check that the arguments we applied for euclidean discs work with cubes.
The final output is:

Theorem 2.22. For any symmmetric monoidal ∞-category V, restriction along the operad
maps CR

n → CR
n → 𝔼□

n establish equivalences of∞-categories

Alg𝔼n
(V) ≃ Alg𝔼□

n
(V)

∼−−→ AlglcCR
n
(V)

∼−−→ Alglc
CR
n
(V) .

To illustrate the potential of working with cubes, we refer to the recent work of Benini-
Fernández-Schenkel [3] where they have constructed a “rectangular prefactorization algebra
on ℤ2” modeling a version of lattice 2d Yang–Mills theory.

Let us reproduce their definition of rectangular prefactorization algebra.

Definition 2.23. The rectangular prefactorization operad Pℤn on the lattice ℤn is the colored
operad with:

Obj: its colors are rectangular subsets V =
∏

i[ai, bi] ⊆ ℤn where each side has length ≥ 2;vii

Mor: it has a (unique) multimorphism (V 1, . . . , V m)→ V if and only if V 1 ⊔ · · · ⊔ V k ⊆ V .

A Pℤn-algebra F is locally constant if F
(
V
)
→ F

(
V ′) is an equivalence for every inclu-

sion of rectangular subsets V ↪→ V ′.

Let us fix R > 3
2
. A ball of radius R > 3

2
for the∞-norm is a cube with sides having length

bigger than 2R > 3; hence each side contains an integer interval of length ≥ 2.

Proposition 2.24. Any Pℤn-algebra determines a CR
n -algebra. Furthermore, the last one is

locally constant if so is the original.

Proof. There is an obvious morphism of operads CR
n → Pℤn sending U to U ∩ ℤn. Pulling

back along this morphism provides the desired functor AlgPℤn (V) → AlgCR
n
(V), and clearly

preserves local constancy.

The consequence of this result is that the classical lattice Yang–Mills model on ℤ2 from [3,
Theorem 5.2] yields an 𝔼2-monoidal dg-category. Thus, we obtain an explicit 2d example to
complement the 1d examples from §4 below and [5].

3 Defects
The discussion in Section 2 aims to identify locally constant prefactorization algebras at a fixed
scale over ℝn, corresponding to plain topological field theories (TFTs), but the methods are
general enough to cover theories with defects. For such a purpose, we are going to introduce a
family of constructible prefactorization algebras at a fixed scale, controlled by suitable stratified
spaces, which encode TFTs with defects. We are not pursuing the maximum level of generality
here. Rather, we want to discuss two scenarios (working on ℝn and on ℝp × ℝq

≥0) which
hopefully illustrate the ideas.

viiNotice that their scale-restriction is closed, while our operads impose crucially a restriction of the form > R.
Of course, their choice of size limit is not fundamental.
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3.1 Linear defects
Let us first focus on euclidean spaces and “linear defects” on them.

Definition 3.1. A linear stratification on ℝn consists of a finite filtration

X0 ⊊ · · · ⊊ Xd = ℝn

such that Xj is a linear subspace of ℝn for all 0 ≤ j ≤ d. We will denote by ℝn
χ or simply χ

the data of such a linear stratification on ℝn. By convention we will consider X−1 = �.

It will be useful in the sequel to denote z(U) the center of a disc U .

Examples 3.2. The four linear stratifications on ℝ2:

ℝ2
� :

(
ℝ2

)
, ℝ2

� :
(
{0} ⊊ ℝ2

)
, ℝ2

⊟ :
(
L ⊊ ℝ2

)
, ℝ2

⊟• :
(
{0} ⊊ L ⊊ ℝ2

)
,

where L is a line in ℝ2 passing through the origin.

Given a linear stratification ℝn
χ , we can modify the operad DR

n to encode defects:

Definition 3.3. The R-truncated χ-discs operad, denoted DR
χ , is the full suboperad of DR

n

spanned by open (euclidean) discs U ⊆ ℝn satisfying:

if z(U) belongs to the j th-stratum, i.e. z(U) ∈ Xj\Xj−1, then U ∩Xj−1 = �.

Using the R-truncated closed n-discs operad DR
n (see Definition 2.14) instead of DR

n in the
previous definition, we find the R-truncated closed χ-discs operad DR

χ .

Definition 3.4. Let ℝn
χ be a linear stratification of ℝn and V a sm-∞-category.

• A prefactorization algebra at scale R over ℝn
χ is a DR

χ -algebra (in V).

• A prefactorization algebra F at scale R over ℝn
χ is constructible if for any inclusion

of discs U ⊆ V such that z(U), z(V ) lie in the same stratum Xj\Xj−1, the induced
morphism F(U)→ F(V ) is an equivalence in V.

Remark 3.5. If one forgets about scales, it is possible to adapt the former definitions to produce
constructible prefactorization algebras over ℝn

χ (for simplicity only defined on open discs of
ℝn): they are algebras over the operad Disc(ℝn

χ) := D0
χ.

In order to introduce the analog of 𝔼n-algebras when defects are allowed, we have to iden-
tify the objects/colors that the corresponding operad should have. For this purpose, consider
the minimal equivalence relation on ob(DR

χ ) generated by

U ∼
pre

V if U ⊆ V and both z(U) and z(V ) lie in the same stratum Xj\Xj−1.

One readily deduces:

Lemma 3.6. There is a one-to-one correspondence between ob(DR
χ )/∼ and the set of pairs

χ′ρ ≡ (χ′, ρ) where:

• χ′ is a linear stratification on ℝn obtained from ℝn
χ by forgetting some interval of steps

[0, t] for t ∈ {−1, . . . , d} in the filtration, and

• ρ represents a connected component of Xt+1\Xt for the previous t.
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Example 3.7. Consider the linear stratification ℝ2
⊟• :

(
{0} ⊊ L ⊊ ℝ2

)
. Since L\ {0} has two

connected components, say l and r, as well as ℝ2\L, namely u and d, the previous lemma
yields ob(DR

⊟• )/∼ = {□u,□d,⊟l,⊟r,⊟• }, where

□u =
[(
ℝ2

)
u

]
, □d =

[(
ℝ2

)
d

]
,

⊟l =
[(
L ⊊ ℝ2

)
l

]
, ⊟r =

[(
L ⊊ ℝ2

)
r

]
,

⊟• =
[(
{0} ⊊ L ⊊ ℝ2

)]
.

Note that the linear filtration ℝ2
� :

(
{0} ⊊ ℝ2

)
does not appear in this quotient set. The reason

is that it corresponds to forgetting the middle step in the linear filtration ℝ2
⊟• and not an interval

of steps of the form [0, t].

Now, we must define the spaces of admissible embeddings when defects are allowed. For
that purpose, we use the following partial order on ob(DR

χ )/∼ to control the admissibility of
embeddings: χ′ρ ≤ χ′′ψ if (i) χ′ can be obtained from χ′′ by forgetting some interval of steps
[0, t] in the filtration and (ii) ψ is contained in the closure of ρ in ℝn.

Definition 3.8. Let ℝn
χ :

(
X0 ⊊ · · · ⊊ Xd = ℝn

)
be a linear stratification and χ′ρ, χ

′′
ψ be two

equivalence classes in ob(DR
χ )/∼.

• If χ′ρ ≤ χ′′ψ, we define a χ-admissible rectilinear embedding χ′ρ ↪→ χ′′ψ to be a recti-
linear embedding 𝔻 ↪→ 𝔻 which preserves the induced stratifications. We denote by
Embrectχ (χ′ρ,χ

′′
ψ) ⊆ Embrect(𝔻,𝔻) the subspace of χ-admissible rectilinear embeddings.

By convention, Embrectχ (χ′ρ,χ
′′
ψ) = � if χ′ρ ≤ χ′′ψ does not hold, i.e. if χ′ cannot be

obtained from χ′′ by forgetting some interval of steps [0, t] in the filtration or ψ ⊈ ρ.
Admissible rectilinear embeddings can be composed and contain the identity map.

• The little (χ, n)-discs operad, denoted 𝔼χ, is given by:

Obj: its set of objects/colors is ob(𝔼χ) = ob(DR
χ )/∼;

Mor: its spaces of multimorphisms are defined by

𝔼χ
[
χ′ρ

χ′′ψ

]
=

∏
i

Embrectχ

(
χ′i,ρ(i),χ

′′
ψ

)
∩ Emb

(⊔
i

𝔻i,𝔻
)

with the obvious composition of rectilinear embeddings and identities. See Fig. 4.

Remark 3.9. One can modify the definition of 𝔼χ to get the closed little (χ, n)-discs operad 𝔼χ
as done in Definition 2.15 for the little n-discs operad 𝔼n. For instance, the operation depicted
in Figure 4 also belongs to 𝔼⊟• .

There is an obvious map γ : DR
χ → 𝔼χ from the R-truncated χ-discs operad into the little

(χ, n)-discs operad, sending 𝔼χ-algebras to constructible prefactorization algebras at scale R
over ℝn

χ . The triviality of renormalization for TFTs with defects in this case corresponds to:

Theorem 3.10. Constructible prefactorization algebras at scale R over ℝn
χ are the same as

𝔼χ-algebras. More concretely, the functor

γ∗ : Alg𝔼χ(V)→
{

constructible V-prefactorization
algebras at scale R over ℝn

χ

}
is an equivalence of∞-categories for any sm-∞-category V.
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Figure 4: An operation in 𝔼⊟•
[{⊟• ,□u,⊟l}

⊟•

]
, where 𝔼⊟• represents the little (χ, 2)-discs operad

associated to the linear stratification ℝ2
⊟• .

Remark 3.11. If one defines constructible factorization algebras over ℝn
χ in the obvious way,

Theorem 3.10 may be used to provide an equivalence of∞-categories{
constructible V-factorization

algebras over ℝn
χ

}
≃

{
constructible V-prefactorization

algebras at scale R over ℝn
χ

}
as in the locally constant case (no stratification on ℝn).

As expected, Theorem 3.10 follows from the analog of Theorem 2.4.

Theorem 3.12. The morphism of operads γ : DR
χ → 𝔼χ exhibits 𝔼χ as the∞-localization (as

an∞-operad) of DR
χ at the set of unary maps

W = {U ⊆ V where both z(U) and z(V ) lie in the same stratum Xj\Xj−1 for some j} .

The strategy to show Theorem 3.12 parallels that of Theorem 2.4. In fact:

1. Reduce the problem about the operad map DR
χ → 𝔼χ to its closed cousin DR

χ → 𝔼χ,
which is technically more convenient. Observe that the relevant results in §2.2, i.e. Lem-
mas 2.18 and 2.19, generalize to this more general situation with a similar proof. In
essence, the shrinking arguments we use only require inclusions of discs U ⊆ V where
both z(U) and z(V ) belong to the same stratum in the present case.

2. The formal arguments in §2.3 apply almost verbatim to our constructible case (note that
now 𝔼χ is a honest colored operad, unlike 𝔼n). The output is a (homotopy) commutative
diagram

weq
[
[k],Dχ

]
α

weq
[
[k],𝔼⊗,♯

χ

]
α

w̃eq
[
[k],Dχ

]
α

D0 Confα(𝔻,χ)

DR Confα(ℝn,χ) D0 Confα(ℝn,χ)

(5) (1)

(4) (2)

(3)

,

for which we should prove that (1) − (5) are weak homotopy equivalences. Again, (1)
and (5) are easy once we define the poset w̃eq

[
[k],Dχ

]
α

and α-nested configurations for
this situation. We will do this right after concluding this sketch of strategy.

19



3. The maps (2) and (3) are shown to be homotopy equivalences as in §2.1. See Lemmas
3.17 and 3.18.

4. For the remaining map, (4), we want to apply Lurie–Seifert–van Kampen’s Theorem
[18, A.3.1] as in the proof of Theorem 2.4. For that purpose, denote by Pχ the poset
w̃eq

[
[k],Dχ

]
α

and define the functor ζ : Pχ → Open
(
DR Confα(ℝn,χ)

)
by

U∗ 7−→ ζ(U∗) = DR Confα(ℝn,χ) ∩
∏
(r,ir)

Embrect
(
𝔻, U r

ir

)
.viii

We are reduced to check: (a) the space ζ(U∗) is weakly contractible for any U∗ ∈ Pχ,
and (b) the subposet {U∗ ∈ Pχ : (fir)ir ∈ ζ(U∗)} ⊆ Pχ is weakly contractible for any
(fir)ir ∈ DR Confα(ℝn

χ). The one which is not automatic is (b) and it is tackled in
Proposition 3.20. This concludes the proof of Theorem 3.12.

Fattened configurations in the presence of linear defects. Let us first define ordinary con-
figuration spaces of points in ℝn

χ :
(
X0 ⊊ · · · ⊊ Xd = ℝn

)
and later their fattened variants.

Definition 3.13. Let υ : I → {0, . . . , d} be an ordered finite set with labels in the set of levels
of the linear stratification ℝn

χ . Define the space of configurations of υ-points in ℝn
χ as

Confυ(ℝn
χ) =

∏
0≤j≤d

Conf |υ−1(j)|(Xj\Xj−1).

That is, the space of configurations of |I|-points in ℝn where i ∈ I belongs to the υ(i)th-
stratum. Adding a decoration ρ to χ, accounting for a connected component as in Lemma 3.6,
forces configurations of points to lie in that connected component.

Definition 3.14. Let υ : I → {0, . . . , d} be an ordered finite set with labels in the set of levels
of the linear stratification ℝn

χ . We define the space of configurations of R-fattened υ-points in
ℝn
χ to be the subspace of rectilinear embeddings of closed discs

DR Confυ(ℝn
χ) ⊆ Embrect

(⊔
i∈I

𝔻i;ℝn
)

spanned by rectilinear embeddings f :
⊔

i𝔻i ↪→ ℝn such that:

• f(𝔻i) is a closed disc with radius stricly bigger than R for any i ∈ I , and

• z(f(𝔻i)) = f(z(𝔻i)) belongs to Xυ(i)\Xυ(i)−1 and f(𝔻i) ∩Xυ(i)−1 = �.

As expected, both configuration spaces are homotopy equivalent since we are working on
the euclidean space, and this fact is again key to prove Theorem 3.12.

Lemma 3.15. Let υ : I → {0, . . . , d} be an ordered finite set with labels in the set of lev-
els of the linear stratification ℝn

χ . Then, evaluation at centers of discs determines homotopy
equivalences

DR Confυ(ℝn
χ) ≃ D0 Confυ(ℝn

χ) ≃ Confυ(ℝn
χ) ,

Proof. Analogous to the proof of Lemma 2.8. Note that dilations by positive scalars preserve
the strata of any linear stratification (see Definition 3.1).

viiiThis expression of ζ(U∗) is ambiguous, it is written in this form to draw the analogy with the original proof.
For the precise definition of the functor ζ, see the discussion after Definition 3.19.
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Nested configurations with linear defects. To define the space of α-nested configurations
of R-fattened points, denoted DR Confα(ℝn,χ), we first consider a preliminary notion. Given
χ′ψ ∈ ob(𝔼χ), the space DR C̃onfα

(
ℝn
χ ;χ

′
ψ

)
is obtained by slightly modifying Definition 2.10;

DR C̃onfα
(
ℝn
χ ;χ

′
ψ

)
is now a subspace of Embrect(𝔻;ℝn) ×

∏
ir
Embrect(𝔻;ℝn) given by col-

lections of rectilinear embeddings (e, (fir)ir) subject to the restrictions in Definition 2.10 over
the components (fir)ir plus:

• fir(𝔻) ∩Xs−1 = � if z(fir(𝔻)) belongs to Xs\Xs−1, and

• z(e(𝔻)) ∈ ψ ⊆ Xt+1\Xt and e(𝔻) ∩Xt = �, where t accounts for the interval of steps
[0, t] to pass from χ to χ′, together with

⋃
ir
fir(𝔻) ⊆ e(𝔻).

Then, we define DR Confα(ℝn,χ) by taking together all possible choices as follows

DR Confα(ℝn,χ) :=
∐
χkψ

∏
i∈⟨mk⟩◦

DR C̃onfα|i
(
ℝn
χ ;χ

k
i,ψ(i)

)
,

with χkψ = (χk1,ψ(1), . . . ,χ
k
mk,ψ(mk)

) running over ob(𝔼χ)×mk and α|i denoting the k-chain ob-
tained from α by taking successive preimages of i ∈ ⟨mk⟩◦, i.e.

α|i =
[
(αk · · ·α1)

−1({∗, i}) α1|−−−→ · · · αk−1|−−−−→ α−1
k ({∗, i}) αk|−−−→ {∗, i}

]
.

Remark 3.16. The first additional restriction on (fir)ir accounts for the admissibility of recti-
linear embeddings with respect to the linear stratification χ, while the second one imposes that
everything happens somehow in the connected componentψ ⊆ Xt+1\Xt. The technical reason
why we take disjoint unions and products to define DR Confα(ℝn,χ) stems from the discussion
about weq

[
[k],𝔼⊗,♯

χ

]
α

below.

Similarly to Lemma 3.15, an inspection of the proof of Lemma 2.11 yields:

Lemma 3.17. Let α ∈ Fun([k],Fin∗) be a k-chain of pointed functions. Then, the canonical
inclusion of spaces of α-nested configurations

DR Confα(ℝn,χ) ↪−−−→ D0 Confα(ℝn,χ)

is a homotopy equivalence.

Let us now move to the definition of D0 Confα(𝔻,χ). The goal is to identify the space
weq

[
[k],𝔼⊗,♯

χ

]
α

in a way that its connection to D0 Confα(ℝn
χ) is clearer. For example, for

k = 1, we have an identification

weq
[
[k],𝔼⊗,♯

χ

] ∼= ∐
(⟨m0⟩,χ′ρ), (⟨m1⟩,χ′′ψ)

Map𝔼⊗
χ

(
(⟨m0⟩,χ′ρ), (⟨m1⟩,χ′′ψ)

)
.

Fixing the pointed function α : ⟨3⟩ → ⟨3⟩ given by α(1) = 1 = α(2), α(3) = 2, it restricts to

weq
[
[k],𝔼⊗,♯

χ

]
α
∼=

∐
χ′ρ, χ

′′
ψ

𝔼χ
[
{χ′1,ρ(1),χ′2,ρ(2)}

χ′′1,ψ(1)

]
× 𝔼χ

[
{χ′3,ρ(3)}
χ′′2,ψ(2)

]
× 𝔼χ

[
�

χ′′3,ψ(3)

]
.
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For an arbitrary k, the Segal condition yields similar descriptions. Thus, one can observe that
it is mandatory to take a coproduct running over all possible targets. For this reason, given a
k-chain α : [⟨m0⟩ → · · · → ⟨mk⟩], we define

D0 Confα(𝔻,χ) :=
∐
χkψ

∏
i∈⟨mk⟩◦

D0 C̃onfα|i
(
𝔻χki

)
,

where the space D0 C̃onfα|i
(
𝔻χki

)
is the obvious modification of D0 C̃onfα|i

(
ℝχki

)
with rectilin-

ear embeddings landing in the unit n-disc 𝔻 equipped with the linear stratification χki . Notice
that there is no decoration with respect to connected components; this means that the additional
datum of e : 𝔻 ↪→ 𝔻 is not considered.

To homogenize the arguments in the sequel, let us fix a rectilinear embedding 𝔻χ′ ↪→ ℝn
χ

for any χ′ψ ∈ ob(𝔼χ). We will call these choices canonical in the next result, but essentially any
choice works equally well. If χ′ is obtained from χ by forgetting the interval of steps [0, t] in
the filtration, we choose a point z(χ′ψ) ∈ ψ ⊆ Xt+1\Xt ⊆ ℝn whose distance to the subspace
Xt is, let us say, 2. Therefore, we can consider the canonical inclusion of the unit disc around
z(χ′ψ). For χ′ = χ (equiv. t = −1), we take z(χ) = 0.

Lemma 3.18. Postcomposition with the canonical inclusions {𝔻χ′ ↪→ ℝn
χ : χ′ψ ∈ ob(𝔼χ)}

induces a homotopy equivalence

D0 Confα(𝔻,χ)
∼

↪−−−−→ D0 Confα(ℝn,χ).

Proof. The proof is similar to that of Lemma 2.12. In essence, the only difference is that, at
the component indexed by χ′ψ ≡ χki,ψ(i), we have to perform an additional translation to place
the α|i-nested configuration in the image of 𝔻χ′ ↪→ ℝn

χ associated to χ′ψ. More concretely,
the homotopy inverse D0 C̃onfα|i

(
ℝn
χ ;χ

′
ψ

)
−→ D0 C̃onfα|i

(
𝔻χ′

)
is given postcomposing each

rectilinear embedding in (e, f) with the rectilinear map

ℝn
λ(e,f)·
−−−−−−→ ℝn

v(e,f)+
−−−−−−→ ℝn,

where

λ(e, f) :=
1

||e(0)||+ ||e(1, 0, . . . , 0)− e(0)||+ ϵ
and v(e, f) := z(χ′ψ)−λ(e, f)·e(0)

with ϵ > 0 a fixed number. The relevant homotopies are just convex interpolations.

To close this subsection, let us justify the last step in the proof of Theorem 3.12 described
above. We start by defining the poset Pχ = w̃eq

[
[k],Dχ

]
α
.

Definition 3.19. We denote by Pχ the poset whose objects are tuples U∗ =
(
U0, . . . , Uk

)
,

where each U r =
(
U r
ir

)
ir

, indexed by ir ∈ ⟨mr⟩\α−1
r+1(∗)ix and 0 ≤ r ≤ k, is again a tuple of

euclidean open discs in ℝn with radii strictly bigger than R, subject to:

• U r
ir ∩Xs−1 = � if z(U r

ir) belongs to Xs\Xs−1,

• U r
ir ∩ U r

jr = � if αt · · ·αr+1(ir) = αt · · ·αr+1(jr) ̸= ∗ for some t ≤ k,

ixBy convention, αk+1 is the unique active map ⟨mk⟩ → ⟨1⟩.
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• either U r−1
ir−1
⊂ U r

jr or U r−1
ir−1

= U r
jr if ir−1 ∈ α−1

r (jr).

There is a unique morphism U∗ → V ∗ between elements of Pχ if:

• [Uk
ik
] = [V k

ik
] as elements in ob(𝔼χ) for any ik ∈ ⟨mk⟩◦,

• U r
ir ⊂ V r

ir or U r
ir = V r

ir for any ir ∈ ⟨mr⟩\α−1
r+1(∗) and r < k, and

• z(U r
ir), z(V

r
ir) lie in the same stratum Xs\Xs−1 for any pair (r, ir) with r < k.

At this point, it remains to specify which functor ζ is employed to apply Lurie–Seifert–van
Kampen’s theorem. We consider the functor ζ : Pχ → Open

(
DR Confα(ℝn,χ)

)
which sends

U∗ to the subspace of∏
i∈⟨mk⟩◦

DR C̃onfα|i
(
ℝn
χ ; [U

k
i ]
)
↪−−−→ DR Confα(ℝn,χ)

determined by the points whose factors (e, f) satisfy: (a) fjr(𝔻) ⊂ U r
jr , and (b) z(fjr(𝔻)),

z(U r
jr) live in the same stratum Xs\Xs−1, for any jr ∈ ⟨mr⟩\α−1

r+1(∗) and 0 ≤ r < k. In
other words, we consider the open subset ζ(U∗) of the component of DR Confα(ℝn,χ) in-
dexed by [Uk] ∈ ob(𝔼χ)×mk given by embeddings whose image is appropriately contained in
(U0, . . . , Uk−1).

Proposition 3.20. Let p ∈ DR Confα(ℝn,χ) be an α-nested configuration. Then, the subposet
{U∗ ∈ Pχ : p ∈ ζ(U∗)} ⊆ Pχ is cofiltered and hence weakly contractible.

Proof. Rearranging the factors of p, we can see the α-nested configuration as a list of rectilinear
embeddings

(
(eik)ik∈⟨mk⟩◦ , (fir)1≤ir≤m

)
with m = m0−|α−1

1 (∗)|+· · ·+mk−1−|α−1
k (∗)|. Since

the space DR Confα(ℝn,χ) is defined as a disjoint union, p lives in one of the components, let
us say indexed by χ′ψ. This determines [Uk] = χ′

ψ
and the strata where z(eik(𝔻)) lies on.

From here, to check that the subposet is cofiltered, we use the same argument we used in the
proof of Theorem 2.4. Just note that the constructive proof there handles the components of
U∗ = (U1, . . . , Uk) indexed by r < k with respect to the list (fir)ir and that types of discs with
respect to χ (equiv. their class in ob(𝔼χ)) are preserved along the construction.

3.2 Corner defects
For field theories defined over half euclidean spaces or other local models for manifolds with
corners, i.e. ℝp×ℝq

≥0, we may define defects for which our techniques apply. We will be more
sketchy in this part, since the ideas are simple adaptations of those in Subsection 3.1.

Let us fix once and for all in this subsection the space ℝp,q = ℝp ×ℝq
≥0.

Definition 3.21. The corner stratification of ℝp,q is the finite filtration Z0 ⊊ · · · ⊊ Zq = ℝp,q,
given by the subspaces

Zk = {(x, y) ∈ ℝp,q s.t. at least (q − k)-coordinates of y are null} .

Definitions 3.3 and 3.4 can be straightforwardly adapted to this situation, yielding the R-
truncated (p, q)-discs operad DR

p,q and the notion of constructible prefactorization algebras at
scale R over ℝp,q. Also, the corresponding little disc operad (see Definition 3.8), called little
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(p, q)-discs operad and denoted 𝔼p,q, is a generalization of the Swiss cheese operad (corre-
sponding to the case q = 1); see also [4, §3.1.1]. For concreteness, let us be more specific
about what 𝔼p,q is.

We obtain its set of objects ob(𝔼p,q) as the quotient of ob(DR
p,q) by the minimal equivalence

relation generated by

U ∼
pre

V if U ⊆ V and both z(U) and z(V ) lie in the same stratum Zj\Zj−1.

Lemma 3.22. There is a bijection between ob(DR
p,q)/∼ and the set of pairs tρ ≡ (t, ρ) where:

• t is a non-negative integer smaller or equal than q, and

• ρ represents a connected component of Zt\Zt−1 for the previous t.

Remark 3.23. We should think about tρ as a (r, t)-disc with r + t = p+ q, i.e. 𝔻r,t = 𝔻 ∩ℝr,t

within ℝr+t, for each index ρ. We use the notation 𝔻r,t
ρ to refer to this situation.

Definition 3.24. Let (r, t) and (s, l) be two pairs of non-negative integers satisfying t, l ≤ q
and r + t = p+ q = s+ l.

• A c-admissible rectilinear embedding 𝔻r,t ↪→ 𝔻s,l is a rectilinear embedding which pre-
serves the induced corner stratificationsx. We denote by Embrectc (𝔻r,t,𝔻s,l) the subspace
of c-admissible rectilinear embeddings. For ρ connected component of Zt\Zt−1 and ψ
connected component of Zl\Zl−1, set

Embrectc (𝔻r,t
ρ ,𝔻s,l

ψ ) =

 Embrect
c (𝔻r,t,𝔻s,l) if ψ is contained in ρ,

� otherwise,

where ρ denotes the closure of ρ as a subspace of ℝp,q.

• The little (p, q)-discs operad, denoted 𝔼p,q, is given by:

Obj: its set of objects/colors is ob(𝔼p,q) = ob(DR
p,q)/∼;

Mor: its spaces of multimorphisms are defined by

𝔼p,q

[
tρ

lψ

]
=

∏
i

Embrectc (𝔻ri,ti
ρ(i) ,𝔻

s,l
ψ ) ∩ Emb

(⊔
i

𝔻ri,ti ,𝔻s,l
)

with the obvious composition of rectilinear embeddings and identities.

There is a canonical map of operads γ : DR
p,q → 𝔼p,q, sending 𝔼p,q-algebras to constructible

prefactorization algebras at scale R over ℝp,q. As in the previous subsection, one shows:

Theorem 3.25. Constructible prefactorization algebras at scale R over ℝn
p,q are the same as

𝔼p,q-algebras. More concretely, the functor

γ∗ : Alg𝔼p,q
(V)→

{
constructible V-prefactorization

algebras at scale R over ℝp,q

}
is an equivalence of∞-categories for any sm-∞-category V.

xIn particular, there is no c-admissible rectilinear embedding if t > l.
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Remark 3.26. The interested reader may note that the stratifications isolated by Definition 3.1
and 3.21 are just simple choices to illustrate how our main result can be generalized. An
important requirement to look for generalizations is that one should consider stratifications
which are stable by inflations, e.g. those filtrations of ℝn or ℝp,q where p+ q = n such that for
any dilation λ : ℝn → ℝn with λ > 1, one has λ(Xj\Xj−1) ⊆ Xj\Xj−1 for any index j of the
filtration. This assumption is unavoidable for our purposes and it already implies that the levels
of the stratification must contain rays. In particular, the only point that may appear isolated in
a stratum is the origin.

4 Application: quantization of constant Poisson structures
From now on, we fix a field 𝕜 of characteristic 0. Let V be a 𝕜-vector space, or more generally
a cochain complex thereof, equipped with an antisymmetric pairing

⟨-, -⟩ : Λ2(V)→ 𝕜.

This is equivalent to the data of a constant Poisson structure on Sym(V) determined by

{v, w} := ⟨v, w⟩ ∈ 𝕜.

It is well-known that such a constant Poisson structure admits a quantization given by a kind of
“Weyl algebra”

Weylℏ(V⟨-,-⟩) := T(V)JℏK/(v ⊗ w − (−1)|v||w|w ⊗ v − ℏ⟨v, w⟩),

whose deformed product has no higher terms over linear generators and also the deformation
does not modify the underlying 𝕜JℏK-module, i.e. one has an isomorphism of 𝕜JℏK-modules

Weylℏ(V⟨-,-⟩) ∼= Sym(V)JℏK.

We are going to recover this algebra Weylℏ(V⟨-,-⟩) as global sections of a locally constant
DR

1 -algebra with R = 1
2
. Our approach shall be seen as a discrete (as opposed to continuous)

version of Costello–Gwilliam’s discussion of quantum mechanics in [8, §4.3].

4.1 Poisson additivity for constant Poisson structures
Let us start by recalling Safronov’s result [24] stating an equivalence of∞-categories

Algℙ1
(Mod⊗𝕜 ) ≃ Alg𝔼1

(
Algℙ0

(Mod⊗𝕜 )
)

that commutes with the forgetful functors to the ∞-category Mod𝕜 of cochain complexes of
𝕜-modules. Here ℙn denotes the algebraic operad encoding commutative algebras equipped
with a (1−n)-shifted Poisson bracket, that is a (1−n)-shifted biderivation satifying the Jacobi
identity.

Remark 4.1. In [24] there are two versions of the above statement: for unital and non-unital
Poisson algebras (𝔼1-algebras are unital by definition). All along Section 4, all algebras over
operads will be unital by convention.
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In this subsection we aim at giving explicit models realizing Poisson additivity in the case
of constant Poisson structures. Recall the usual identifications Ω1

Sym(V)
∼= Sym(V)⊗ V and

BiDer
(
Sym(V)

)
:= HomSym(V)

(
Λ2

Sym(V)(Ω
1
Sym(V)), Sym(V)

) ∼= Hom𝕜
(
Λ2
𝕜(V), Sym(V)

)
.

provided by the Leibniz rule and base change. A constant (0-shifted) Poisson structure on
Sym(V) is thus precisely determined by an antisymmetric pairing ⟨-, -⟩ : Λ2

𝕜(V)→ 𝕜 as above.
We also have the 1-shifted biderivations

1-shBiDer
(
Sym(V)

)
:= HomSym(V)

(
Λ2

Sym(V)(Ω
1
Sym(V)[−1]), Sym(V)

)
[−1]

∼= Hom𝕜
(
Λ2
𝕜(V[−1]), Sym(V)

)
[−1] ∼= Hom𝕜

(
Sym2(V), Sym(V)

)
[1] .

A constant 1-shifted Poisson structure on Sym(V) is therefore determined by a degree +1 sym-
metric pairing ⟨⟨-, -⟩⟩ : Sym2(V)→ 𝕜[1].

Poisson additivity for constant Poisson structures therefore goes as follows:

1. Using that Sym2(V[1])[−2] ∼= Λ2(V), we get that the degree 0 antisymmetric pairing
⟨-, -⟩ on V determines a degree +2 symmetric pairing on V[1].

2. Now, V ∼= 0×h
V[1] 0 is an 𝔼1-algebra in Mod⊕𝕜 , on which the pull-back of the degree +2

symmetric pairing vanishes up to homotopy in two different ways, leading to a degree
+1 symmetric pairing that is compatible with the 𝔼1-algebra structure.

4.1.1 The Costello–Gwilliam model

One can compute the homotopy fiber product V ∼= 0×h
V[1] 0 by considering the resolution

0 −̃→Ω•
0

(
(0, 1),V

)
[1]

ev1−→ V[1] ,

where “Ω•
0” indicates that 1-forms are compactly supported while functions vanish near 0 and

are constant near 1. The nullhomotopy for the pull-back of the degree +2 symmetric pairing
along ev1 is given by

α · β 7−→
∫
[0,1]

⟨α,β⟩ (2)

(the homotopy property is Stokes formula). Taking the fiber product with zero we get the
𝔼1-algebra Ω•

c

(
(0, 1),V

)
[1], in Mod⊕𝕜 , of V[1]-valued compactly supported forms on the open

interval (0, 1), that carries the degree +1 symmetric pairing given by (2). Applying Sym, one
thus gets an 𝔼1-algebra, in Mod⊗𝕜 , carrying a compatible (constant) 1-shifted Poisson structure.

Note that if one wants a version of the above that uses the language of factorization algebras,
one shall simply compose with the functor π∗ : Alg𝔼1

(V) → AlglcDisc(ℝ)(V). The idea is then to
apply some BD-quantization procedure (see §4.2 below) in a way that is compatible with the
factorization algebra structure.

Our aim is to do this with a smaller/discrete model.
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4.1.2 The discrete model

From now, and until the end of Section 4, we assume for simplicity that V is concentrated in
degree 0 (this just makes the exposition clearer, especially dealing with signs – we let the reader
check that everything still works in general).

Another way to compute the homotopy fiber product 0 ×h
V[1] 0 is to consider another reso-

lution
0

∼−−−−→ cone(idV) −−−−→ V[1] .

The nullhomotopy for the pull-back of the degree +2 symmetric pairing along the obvious map
cone(idV) → V[1] is given by

(a−1, a0) · (b−1, b0) 7−→
1

2

(
⟨a−1, b0⟩+ ⟨b−1, a0⟩

)
.

Then 0 ×h
V[1] 0

∼= cone(idV) ×V[1] cone(idV) can be identified with the cone of the anti-
diagonal map

Q : V −→ V⊕2 , v 7−→ (−v, v)

and the degree +1 symmetric pairing is given by

(a−1, a0, a
′
0) · (b−1, b0, b

′
0) 7−→

1

2

(
⟨a−1, b

′
0 + b0⟩+ ⟨b−1, a

′
0 + a0⟩

)
.

The above can be interpreted as a V[1]-valued discrete de Rham complex with finite sup-
port, and thus generalized to define a Disc(ℝ)-algebra with values in the symmetric monoidal
category of complexes equipped with a pairing.

Definition 4.2. For each bounded open interval (a, b) ⊆ ℝ we let 𝕍(a, b) be the cone of

Map
(
(a, b− 1) ∩ ℤ,V

) Q−→ Map
(
(a, b) ∩ ℤ,V

)
given by the finite difference function (Qg)(x) = g(x − 1) − g(x). By convention, g(x) def

= 0
whenever x /∈ (a, b− 1), and we set 𝕍(ℝ) := colim

r→∞
𝕍(−r, r).

Any cochain in 𝕍(a, b) can be viewed as a function ℤ → V with finite support (or the
suspension of such a function). The addition of functions with disjoint support turns 𝕍 into a
Disc(ℝ)-algebra with values in Mod⊕𝕜 .

Proposition 4.3. For every t ∈ (a, b) ∩ ℤ, the map V −→ 𝕍(a, b) sending v to δtv is a quasi-
isomorphism.

As a result, 𝕍 defines a locally constant D
1
2
1 -algebra (and thus an 𝔼1-algebra) in Mod⊕𝕜 .

Proof. We just observe that the sequence

0 −→ Map
(
(a, b− 1) ∩ ℤ,V

) Q−→ Map
(
(a, b) ∩ ℤ,V

) ∫
−→ V −→ 0 ,

where
∫
f :=

∑
n f(n), is exact whenever (a, b)∩Z ̸= �, and thus induces a quasi-isomorphism

𝕍(a, b)→ V. The result follows since the map v 7→ δtv is a section of
∫

.
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It follows from the proof that different choices of t ∈ (a, b) ∩ ℤ will lead to homotopic
quasi-isomorphisms.

For clarity, we use overlined symbols g : ℤ → V [1] to denote the suspension of functions
g : ℤ → V (for which we use plain symbols). Using the pairing ⟨-,-⟩ on V, we can define a
degree +1 symmetric pairing ⟨⟨-,-⟩⟩ on 𝕍(a, b):

⟨⟨f−1+f0 , g−1+g0⟩⟩ :=
1

2

∑
x∈ℤ

(
⟨f−1(x−1)+f−1(x), g0(x)⟩+⟨g−1(x−1)+g−1(x), f0(x)⟩

)
.

Note that this bracket is completely determined by its symmetry and the formula

⟨⟨f , g⟩⟩ := 1

2

∑
x∈ℤ

⟨f(x− 1) + f(x), g(x)⟩ .

The compatibility of ⟨⟨-,-⟩⟩ : 𝕍(a, b)⊗2 → 𝕜[1] with the differential follows from a simple cal-
culation (recall that the differential of f is Qf ):

⟨⟨Qf , g⟩⟩ − ⟨⟨f , Qg⟩⟩ =
1

2

∑
x∈ℤ

(
⟨g(x− 1) + g(x), f(x− 1)− f(x)⟩

−⟨f(x− 1) + f(x), g(x− 1)− g(x)⟩
)

=
1

2

∑
x∈ℤ

(
⟨g(x), f(x− 1)⟩ − ⟨g(x− 1), f(x)⟩

+⟨f(x− 1), g(x)⟩ − ⟨f(x), g(x− 1)⟩
)
= 0 .

This upgrades𝕍 to a locally constant D
1
2
1 -algebra (and thus an 𝔼1-algebra) in cochain complexes

equipped with a degree +1 symmetric pairing.
Recalling that Sym defines a symmetric monoidal functor

Sym :


complexes W ∈Mod⊕𝕜 with
degree +1 symmetric pairing

Sym2(W) −→ 𝕜[1]

 −−−−−−−→ Algℙ0
(Mod⊗𝕜 ),

we get that Sym(𝕍) is a locally constant D
1
2
1 -algebra (and thus an 𝔼1-algebra) in ℙ0-algebras.

This is our “discrete” model for the image of the ℙ1-algebra Sym(V) through the Poisson
additivity equivalence.

4.2 Deformation quantization
Given a (0-shifted) Poisson algebra (A0, ·, {-, -}), recall from [2] that a deformation quantiza-
tion of A is an (unital) associative 𝕜JℏK-algebra such that

1. A is a flat formal (1-parameter) deformation of (A0, ·);

2. For every f, g ∈ A, (
f · g − g · f

ℏ

)
ℏ=0

=
{
f |ℏ=0, g|ℏ=0

}
.

Remark 4.4. The above can be rephrased by saying that A is a 𝕜JℏK-flat algebra over the
Beilinson–Drinfeld operad 𝔹𝔻1 such that A ⊗𝕜JℏK 𝕜 ∼= A0 as a 𝔹𝔻1 ⊗𝕜[ℏ] 𝕜 ∼= ℙ1-algebra.
See [23, §.5.1].

The Weyl type algebra Weylℏ(V⟨-,-⟩) introduced in the beginning of this section is a deforma-
tion quantization of the algebra Sym(V) equipped with the constant Poisson structure induced
by the pairing ⟨-, -⟩ (which is given on generators v, w ∈ V by {v, w} = ⟨v, w⟩).
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4.2.1 BD quantization of 1-shifted Poisson structures

We now recall another Beilinson–Drinfeld operad, 𝔹𝔻0, that is relevant for the quantization of
ℙ0-algebras (see [8, §A.3.2], or [23, §5.1]):

• As a graded 𝕜JℏK-linear operad 𝔹𝔻0 = ℙ0JℏK (as such it is generated by a degree 0
binary operation ·, a degree 0 constant 𝟙 and a degree 1 binary operation {-, -});

• The differential is given on generating operations by d(·) = ℏ{-, -} and d(𝟙) = 0.

In more concrete terms, a (unital) 𝔹𝔻0-algebra is the following data:

• A cochain complex (A, d) of 𝕜JℏK-modules;

• A (degree 0, 𝕜JℏK-linear, unital) commutative and associative product A⊗ A
·−→ A;

• A (𝕜JℏK-linear) 1-shifted Poisson bracket A⊗ A
{-,-}−−−→ A[1] for the product;

• For every f, g ∈ A, d(f · g)− df · g − (−1)|f |f · dg = ℏ{f, g}.

Definition 4.5. A deformation quantization of a ℙ0-algebra A0 is a 𝕜JℏK-flat 𝔹𝔻0-algebra A
such that A⊗𝕜JℏK 𝕜 ∼= A0 as a 𝔹𝔻0 ⊗𝕜[ℏ] 𝕜 ∼= ℙ0-algebra.

A strategy for the quantization of ordinary Poisson structures is as follows:

1. First use Poisson additivity to view an unshifted Poisson algebra as an 𝔼1-algebra in
ℙ0-algebras.

2. Then quantize it as a 𝔹𝔻0-algebra in a way that is compatible with the 𝔼1-action.

3. Finally just remember the 𝔼1-algebra structure: it should provide the quantization of the
Poisson structure one started with.

This strategy was successfully applied to the quantization of symplectic manifolds in [12]
(where the relationship with Fedosov’s approach [11] through formal geometry was provided
as well). The following conjecture explains why this strategy must always work (recall from
Remark 4.1 that all algebras are unital by convention):

Conjecture 4.6 (BD additivity). There is an equivalence of∞-categories

Alg𝔹𝔻1
(Mod⊗𝕜JℏK) ≃ Alg𝔼1

(
Alg𝔹𝔻0

(Mod⊗𝕜JℏK)
)

that gives back Safronov’s Poisson additivity equivalence when tensoring with 𝕜 (i.e. when
taking ℏ = 0).

4.2.2 Quantization of constant 1-shifted Poisson structures

Recall that a constant 1-shifted Poisson structure on a cochain complex W is completely deter-
mined, thanks to the Leibniz rule, by a degree 1 symmetric pairing ⟨⟨-, -⟩⟩ : Sym2(W) → 𝕜[1],
that can be seen as a degree 1 differential operator of order 2, with constant coefficients, on
Sym(W). We call it the odd laplacian ∆ associated with ⟨⟨-, -⟩⟩. It terms of formula, on mono-
mials it is given by

∆(w1 · · ·wp) =
∑

1≤i<j≤p

(−1)ϵ⟨⟨wi, wj⟩⟩w1 · · · ŵi · · · ŵj · · ·wp ,

with ϵ = |wi|
∑

1≤s<i

|ws|+ |wj|
∑

1≤t̸=i<j

|wt|.
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Remark 4.7. Let us unravel the previous discussion in coordinates for a finite dimensional W.
Assume that W has coordinates {xi}i (this is a basis of W∗, whose dual basis of W is denoted
{ ∂
∂xi
}i). Then the pairing ⟨⟨-, -⟩⟩ is given by the 𝕜-linear combination

∑
i≤j cij

∂
∂xi
· ∂
∂xj

. The
induced 1-shifted Poisson bracket is

{f, g} = 1

2

∑
i≤j

cij

(
(−1)|f ||xj | ∂f

∂xi

∂g

∂xj

+ (−1)|xi|(|xj |+|f |) ∂f

∂xj

∂g

∂xi

)
,

the associated differential operator is ∆ = 1
2

∑
i≤j cij

∂2

∂xi∂xj
, or in other words,

∆(f) =
1

2

∑
i≤j

cij
∂2f

∂xi∂xj

.

Note that cij is non zero only if |xi|+ |xj| = −1.

Proposition 4.8. The tuple
(
Sym(W)JℏK, dW+ℏ∆, ·, {-, -}

)
defines a deformation quantization

of the (differential graded) ℙ0-algebra
(
Sym(W), dW, ·, {-, -}

)
in the sense of Definition 4.5.

Proof. First of all, the pairing ⟨⟨-, -⟩⟩ is cochain map, hence so is ∆, i.e. ∆dW + dW∆ = 0.
Then we prove the following: for every f, g ∈ Sym(W),

∆(f · g)− ∆(f) · g − (−1)|f |f · ∆(g) = {f, g} .

Since ∆ is of order 2 it is sufficient to prove this equality on generators, where this is obvious:
by definition, for w1, w2 ∈ W,

∆(w1 · w2) = ⟨⟨w1, w2⟩⟩ = {w1, w2} .

Finally, let us prove that ∆ squares to zero. This follows from the fact that the degree 1
symmetric pairing is scalar valued. Indeed, since ∆2 is order four, it is sufficient to check that
it vanishes on monomials of order four. For w1, w2, w3, w4 ∈ W,

∆2(w1 · w2 · w3 · w4) = ⟨⟨w1, w2⟩⟩⟨⟨w3, w4⟩⟩+ (−1)|w2||w3|⟨⟨w1, w3⟩⟩⟨⟨w2, w4⟩⟩
+(−1)|w4|(|w2|+|w3|)⟨⟨w1, w4⟩⟩⟨⟨w2, w3⟩⟩
+(−1)|w1|(|w2|+|w3|)⟨⟨w2, w3⟩⟩⟨⟨w1, w4⟩⟩
+(−1)|w1||w2|+|w4|(|w1|+|w3|)⟨⟨w2, w4⟩⟩⟨⟨w1, w3⟩⟩
+(−1)(|w1|+|w2|)(|w3|+|w4|)⟨⟨w3, w4⟩⟩⟨⟨w1, w2⟩⟩ ,

and one can see that the terms cancel pairwise. For instance, ⟨⟨w1, w2⟩⟩⟨⟨w3, w4⟩⟩ is non-zero
only if (|w1|+ |w2|)(|w3|+w4|) is odd, so that the first and last terms cancel (we let the reader
check the two other cancellations).

We denote by

• Oq(W∗) the 𝔹𝔻0-algebra
(
Sym(W)JℏK, dW + ℏ∆, ·, {-, -}

)
appearing in Proposition 4.8;

• Ocℓ(W∗) the ℙ0-algebra Oq(W∗)⊗𝕜JℏK 𝕜 =
(
Sym(W), dW, ·, {-, -}

)
.

Remark 4.9. Following [8, §4.2.6], the 𝔹𝔻0 algebraOq(W∗) is in fact the Chevalley–Eilenberg
chain complex of a certain Heisenberg Lie algebra. This Heisenberg Lie algebra is obtained
as the central extension W[−1] ⊕ 𝕜[−1] of the abelian Lie algebra W[−1] associated with the
degree −1 anti-symmetric pairing on W[−1] induced by degree 1 symmetric pairing ⟨⟨-, -⟩⟩ on
W. The (degree 0) parameter ℏ is the suspension of the (degree 1) central generator.
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We mention three crucial facts (we leave the details to the reader):

1. The assignment W 7→ Oq(W∗) is clearly functorial (in the 1-categorical sense), more
precisely it yields a functor from the category of cochain complexes with a degree 1
symmetric pairing to the category of 𝔹𝔻0-algebras.

2. It is also symmetric monoidal. The symmetric monoidal structure on the category of
cochain complexes with a pairing is the direct sum (of the underlying complexes, equipped
with the sum of the pairings). The symmetric monoidal structure on the category of 𝔹𝔻0-
algebras comes from the fact that the operad 𝔹𝔻0 is a Hopf operad: the coproduct on
generating operations is given by

𝟙 7−→ 𝟙⊗ 𝟙, · 7−→ · ⊗ · and {-, -} 7−→ {-, -} ⊗ ·+ · ⊗ {-, -} .

3. It finally preserves quasi-isomorphisms. Indeed, this can be checked after applying
⊗𝕜JℏK𝕜, and thus this reduces to the fact that Sym preserves quasi-isomorphisms (because
𝕜 is a field of characteristic 0).

As a result, we get a locally constant D
1
2
1 -algebra (and thus an 𝔼1-algebra) in 𝔹𝔻0-algebras

Oq(𝕍∗), because 𝕍 is a locally constant D
1
2
1 -algebra in complexes with a pairing.

Remark 4.10. The D
1
2
1 -algebra in 𝔹𝔻0-algebra Oq(𝕍∗) is strict. Indeed, our quantization pro-

cedure for constant 1-shifted Poisson structures is purely 1-categorical. Note finally that even
though the algebraic structure on Oq(𝕍∗) is strict, it is locally constant only in the cohomolog-
ical sense (unary operations are quasi-isomorphisms, not isomorphisms).

Theorem 4.11. There is an equivalence of (locally constant) D
1
2
1 -algebras

Oq(𝕍∗) ∼= γ∗Weylℏ(V⟨-,-⟩).

Recall from Section 2 the morphism of operads γ : D
1
2
1 −→ 𝔼1.

Proof. First of all we observe that the morphism

Oq(𝕍∗) −→ H0
(
Oq(𝕍∗)

)
is a quasi-isomorphism. Indeed, this can be checked after applying ⊗𝕜JℏK𝕜, where we have that

Sym(𝕍) = Ocℓ(𝕍∗) −→ H0
(
Ocℓ(𝕍∗)

) ∼= Sym
(
H0(𝕍)

)
is a quasi-isomorphism because so is 𝕍→ H0(𝕍) ∼= V (thanks to Proposition 4.3).

Therefore it remains to prove that there is an equivalence of D
1
2
1 -algebras

H0
(
Oq(𝕍∗)

) ∼= γ∗Weylℏ(V⟨-,-⟩) .

Note that both are concentrated in degree 0 and strictly locally constant (meaning that unary
operations are isomorphisms). Hence they can be regarded as plain associative algebras:

• The Weyl algebra Weylℏ(V⟨-,-⟩) on the one hand;
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• H0
(
Oq

(
𝕍(−1, 2)∗

))
on the other hand, where the product is described as follows:

H0
(
Oq

(
𝕍(−1, 2)∗

))
⊗ H0

(
Oq

(
𝕍(−1, 2)∗

))

H0
(
Oq

(
𝕍(−1, 1

2
)∗
))
⊗ H0

(
Oq

(
𝕍(1

2
, 2)∗

))

H0
(
Oq

(
𝕍(−1, 2)∗

))

∼= local constancy

factorization product

We then introduce the algebra map

φ : T(V)JℏK −→ H0
(
Oq

(
𝕍(−1, 2)∗

))
defined by V ∋ v 7−→ [δ0v] ∈ H0

(
Oq

(
𝕍(−1, 2)∗

))
, and prove that for any v, w ∈ V,

φ(v)φ(w)−φ(w)φ(v) = ℏ⟨v, w⟩:

• Recall that δ1v − δ0v = d(δ0v), where d = Q+ ℏ∆.

• Therefore

[δ0v][δ0w]− [δ0w][δ0v] = [δ0v][δ1w]− [δ0w][δ1v] = [δ0v · δ1w − δ0w · δ1v]
=

[
δ0v ·

(
δ0w + d(δ0w)

)
− δ0w ·

(
δ0v + d(δ0v)

)]
=

[
δ0v · d(δ0w)]−

[
δ0w · d(δ0v)]

• We observe that d(δ0w · δ0v) − δ0w · d(δ0v) = ℏ{δ0w, δ0v} = ℏ
2
⟨v, w⟩. Similarly,

d(δ0v · δ0w)− δ0v · d(δ0w) = ℏ{δ0v, δ0w} = ℏ
2
⟨w, v⟩. Hence

[δ0v][δ0w]− [δ0w][δ0v] = ℏ⟨v, w⟩ .

As a consequence, the map φ factors through Weylℏ(V⟨-,-⟩).
Finally, it remains to prove that the induced algebra morphism

Weylℏ(V⟨-,-⟩) −→ H0
(
Oq

(
𝕍(−1, 2)∗

))
is an isomorphism. Again, this can be checked “mod ℏ” (i.e. after applying ⊗𝕜JℏK𝕜), where the
map becomes the identity on Sym(V).

A Weak approximations of∞-operads
In this brief appendix, we show that weak approximations (see [13, Definition 4.2.14] or [18,
Definition 2.3.3.6]) are a no go to prove our main Theorem 2.4. This tool is what J. Lurie
employed to prove that locally constant factorization algebras over ℝn are 𝔼n-algebras, see
[18, Theorem 5.4.5.9].
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Theorem A.1. The morphism γ : DR
n → 𝔼n is not a weak approximation.

Proof. While Condition (ii) in [13, Definition 4.2.14] holds true for γ : DR
n → 𝔼n, we show

that Condition (i) does not. The assumption (i) asserts that for any disc Z ∈ DR
n

(DR,⊗
n )act

/Z −→ (𝔼⊗
n )

act
/⟨1⟩

must be a weak homotopy equivalence. As in the proof of [13, Proposition 5.3.4], we use the
commutative triangle

(DR,⊗
n )act

/Z (𝔼⊗
n )

act
/⟨1⟩

(𝔼⊗
n )

act

to reduce this assertion to see if the homotopy fibers of the diagonal maps are weakly homotopy
equivalent. Take ⟨m⟩ ∈ (𝔼⊗

n )
act. On the one hand, the homotopy fiber of the right diagonal

map is a Kan complex presenting the weak homotopy type of 𝔼n(m) = Embrect(𝔻⊔m;𝔻).
On the other hand, (DR,⊗

n )act
/Z can be identified with the subposet of open subsets of Z ⊆ ℝn

which are disjoint unions of finite collections of discs with radii strictly bigger than R, i.e.
P(Z) =

⋃
m Pm(Z) ⊂ Open(Z) where

Pm(Z) =
{
U1 ⊔ · · · ⊔ Um

open
↪→ Z s.t. Ui = 𝔻(xi, ϵ) with ϵ > R for 1 ≤ i ≤ m

}
.

We describe the homotopy fiber over ⟨m⟩ of the left diagonal map as the total space of a
Grothendieck construction. More precisely, the Grothendieck construction corresponds to the
functor Pm(Z)→ Spc given by

(U1, . . . , Um) 7−→
∏

j∈⟨m⟩o

Embrect(𝔻;Uj)

and consequently, the homotopy fiber is hocolim
(U1,...,Um)

∏
j Embrect(𝔻;Uj), where the homotopy col-

imit runs over Pm(Z). Thus, we are reduced to check that the map

hocolim
(U1,...,Um)

∏
j∈⟨m⟩o

Embrect(𝔻;Uj) −→ Embrect(𝔻⊔m;𝔻)

is not a weak equivalence. Taking Z small enough, Pm(Z) is empty (for m > 1). Hence, the
left hand side of the map is the empty space whereas Embrect(𝔻⊔m;𝔻) has the homotopy type
of Confm(ℝn).

Remark A.2. An alternative criterion to detect ∞-localizations of ∞-operads can be found
in the work of Karlsson–Scheimbauer–Walde, see [16, Appendix A]. Unfortunately, it also
doesn’t help in our case, i.e. to check that γ : DR

n → 𝔼n is an∞-localization (by a counterex-
ample similar to the one observed in Theorem A.1).
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B Localizations of operator categories
Given an ∞-operad O and a subcategory W of its underlying ∞-category, it always exists
the ∞-localization of O at W as an ∞-operad (we assume that W contains all identities for
notational convenience later on). Let us denote this device by γ : O → LW O. Working with
quasioperads as our preferred presentation of∞-operads [18, Definition 2.1.1.10], our task is
to check that

O⊗JW−1
• K (LW O)⊗

Fin∗

∼

are equivalent as quasioperads, where W• ⊆ O⊗ is the subcategory associated to W ⊆ O⊗
⟨1⟩ via

the Segal condition (i.e. W• is the union of its fibers over Fin∗ and its fiber over ⟨n⟩ corresponds
to W×n via the equivalence O⊗

⟨n⟩ ≃ (O⊗
⟨1⟩)

×n) and O⊗JW−1
• K denotes the∞-localization of O⊗

at W• as an∞-category. In other words, the functor O⊗ → O⊗JW−1
• K over Fin∗ exhibits the

∞-localization of O⊗ at W as a quasioperad. However, the first problem one encounters is that
O⊗JW−1

• K→ Fin∗ is not yet known to be a quasioperad. We will see that this is the case by an
indirect argument.xi

Recall that the forgetful functor U : smCat∞ → Opd∞ from symmetric monoidal ∞-
categories, with strong monoidal functors between them, to quasioperads admits a left adjoint
Env : Opd∞ → smCat∞. This sm-envelope was constructed by Lurie (see [18, Subsection
2.2.4]) as follows: given O⊗ → Fin∗, its sm-envelope fits into the pullback of∞-categories

Env(O⊗) O⊗

Act(Fin∗) Fin∗
s

,

where

• Act(Fin∗) denotes the full subcategory of Fun([1],Fin∗) spanned by active morphisms,

• s : Act(Fin∗)→ Fin∗ is the restriction of the source map Fun([1],Fin∗)→ Fin∗.

We equip Env(O⊗) with the morphism Env(O⊗) → Fin∗ given by composing the functor
Env(O⊗) → Act(Fin∗) with the target projection t : Act(Fin∗) → Fin∗. Consequently, the
previous construction Env can be consider as a functor Env : Cat∞/Fin∗ → Cat∞/Fin∗ . Actually,
in [1, Corollary 2.1.5], this generalized construction was refined to yield a left adjoint functor

Env : Cat∞/Fin∗ −→ Cat∞
act-cocart

/Fin∗ , (3)

where Cat∞act-cocart/Fin∗ denotes the subcategory of Cat∞/Fin∗ whose objects have all cocartesian lifts
over active maps and whose morphisms preserve these.

Neither of the functors in Env : Opd∞ ⇄ smCat∞ : U is fully-faithful. Nevertheless,
Haugseng-Kock in [14] noticed that taking into account the image of the unique map of qua-
sioperads O⊗ → Fin∗ to the terminal quasioperad, and observing that Env(Fin∗) ≃ Fin⨿, one

xiWe can slightly modify the subcategory W• ⊆ O⊗ without changing the∞-localization by considering that
cocartesian lifts of isomorphisms in Fin∗ are also part of W•.
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obtains an adjunction

Env : Opd∞ ≃ Opd∞/Fin∗
smCat∞/Fin⨿ :U′

whose left adjoint is fully-faithful. Actually, they described the essential image of Env as
follows: a strong monoidal functor C⊗ → Fin⨿ comes from a quasioperad if the following two
conditions are satisfied

(i) every object in C = C⊗
⟨1⟩ is equivalent to a tensor product of objects that lie over 1 := {1}

in Fin = Fin⨿⟨1⟩,

(ii) the morphism∐
ϕ∈Fin(n,m)

∏
j∈m

MapC

( ⊗
i∈ϕ−1(j)

xi, yj

)
−→ MapC

(⊗
i∈n

xi,
⊗
j∈m

yj

)
,

given by tensoring maps, is a weak homotopy equivalence for any collection of objects
{xi, yj}i,j in C lying over 1 ∈ Fin. In other words, for any ϕ ∈ Fin(n,m), the map∏

j∈m

MapC

( ⊗
i∈ϕ−1(j)

xi, yj

)
−→ MapϕC

(⊗
i∈n

xi,
⊗
j∈m

yj

)
is a weak homotopy equivalence, where the right-hand side denotes the union of con-
nected components of the mapping space lying over ϕ.

See [14] for more details.
The idea is to show that Env(O⊗JW−1

• K) lies in the essential image of the fully-faithful
functor Env : Opd∞ ↪→ smCat∞/Fin⨿ , by relating this object with an ∞-localization of the
symmetric monoidal∞-category Env(O⊗).

Proposition B.1. Let O⊗ → Fin∗ be a quasioperad and W• ⊂ O⊗ be the subcategory gen-
erated by a subcategory of unary operations W ⊂ O⊗

⟨1⟩ via the Segal condition. Consider the
∞-localization LW Env(O⊗) := Env(O⊗)JEnv(W•)

−1K of the pair Env(W•) ⊂ Env(O⊗) in
Cat∞. Then, the following statements hold:

(a) The functor LW Env(O⊗)→ Fin∗ induced by Env(O⊗)→ Fin∗ exhibits LW Env(O⊗)⟨1⟩
as a symmetric monoidal∞-category.

(b) The functor LW Env(O⊗) → Fin⨿ induced by Env(O⊗) → Fin⨿ is a strong monoidal
functor and satisfies conditions (i)-(ii) of Haugseng-Kock’s characterization above.

(c) The commutative triangle of strong monoidal functors

Env(O⊗) LW Env(O⊗)

Fin⨿

induces an equivalence of∞-categories

Fun⊗(LW Env(O⊗),V⊗)
∼−−−−→ AlgO,W(V

⊗)

for any symmetric monoidal∞-category V⊗ → Fin∗, where AlgO,W(V
⊗) denotes the full

subcategory of AlgO(V
⊗) spanned by algebras which send W to equivalences.
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Proof. (a) We use [15, Proposition 3.2.2] or [22, Proposition A.5]; morally speaking, the lo-
calization of a sm-∞-category is a sm-∞-category provided the tensor product preserves
weak equivalences separately in both variables. In our case, the tensor product is formal
⊗ : Env(O⊗)×2

⟨1⟩ → Env(O⊗)⟨1⟩, i.e. it takes two formal tensor products of objects and
produces the total formal tensor product of all the objects, and Env(W•) is by definition
closed under formal tensor products.

(b) By [22, Proposition A.5 (v)] we have such a strong monoidal functor. Also, it is clear that
condition (i) holds since it holds for Env(O⊗)→ Fin⨿; e.g. one can take the localization
to be the identity on objects. For condition (ii), we have to do more work. The idea is
to exploit Mazel-Gee’s description of mapping spaces in the∞-localization of a relative
∞-category (D, J) (see [20, Section 2] for notation and definitions)

MapDJJ−1K(x, y) ≃
∥∥∥∥hocolimz∈Zop

N∞
(
Fun∗∗(z,D)J

)∥∥∥∥ ≡ ∥∥∥∥hocolimz∈Zop
N∞

(
z(D,J)(x, y)

)∥∥∥∥ ,
where the homotopy colimit (in simplicial spaces) runs over Zop, the opposite of the
category of zigzag types, and the vertical lines are meant to denote (homotopy invariant)
geometric realization.

First recall that Haugseng-Kock’s conditions for C⊗ → Fin⨿ are the same as asserting
that the counit transformation Env(U′(C⊗))→ C⊗ is an equivalence of sm-∞-categories,
or equiv. that Env(U′(C⊗))⟨1⟩ → C⊗

⟨1⟩ is an equivalence of∞-categories (see [14]). Ap-
plied to Env(O⊗), we actually obtain that the counit transformation yields an equivalence
of relative ∞-categories, when equipping Env(O⊗)⟨1⟩ with Env(W•)⟨1⟩. Let us use the
notation (

Q(O⊗),Q(W•)
) ∼−−−−→

(
Env(O⊗)⟨1⟩,Env(W•)⟨1⟩

)
for this equivalence of relative ∞-categories; i.e. Q(O⊗) =

(
Env ◦U′ ◦Env(O⊗)

)
⟨1⟩.

Again borrowing notation from [20], for any pair of objects (xi)i∈n, (yj)j∈m ∈ Q(O⊗)
and any zigzag type z, one gets an equivalence of∞-categories

zQ(O⊗)

(
(xi)i∈n, (yj)j∈m

) ∼−−−−→ zEnv(O⊗)

(
(xi)i∈n, (yj)j∈m

)
.

Restricting to zigzags lying over a fixedϕ ∈ Fin(n,m) and by definition of (Q(O⊗),Q(W•))
(see the proof of [14, Proposition 2.4.6]), we have an equivalence

zQ(O⊗)

(
(xi)i∈n, (yj)j∈m

)ϕ ≃∏
j∈m

zQ(O⊗)

(
(xi)i∈ϕ−1(j), yj

)
,

because such decomposition holds in Q(O⊗) and arrows in Q(W•) preserve it. Actually,
maps z → z′ of zigzag types, i.e. maps in Z, induce functors which are compatible with
these decompositions. See Figure 5 for an instance of this phenomenon.

Now use: (1) N∞ preserves (homotopy) coproducts and homotopy limits, and (2) ho-
motopy colimits in Spc commute with finite homotopy limits and homotopy colimits; to
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(xi)i∈6 (x′
i)i∈6 (zk)k∈3 (y′j)j∈2 (yj)j∈2

||

(xi)i∈4 (x′
i)i∈4 (zk)k∈{1,3} y′1 y1

×

(xi)i∈{5,6} (x′
i)i∈{5,6} z2 y′2 y2



w1|{1}

w2|{2}

...
w6|{6}




f1|{4}

f2|{5,6}

f3|{1,2,3}

 g1|{1,3}

g2|{2}

 v1|{1}

v2|{2}




w1|{1}

...
w4|{4}

  f1|{4}

f3|{1,2,3}


g1|{1,3} v1|{1}

w5|{5}

w6|{6}


f2|{5,6} g2|{2} v2|{2}

Figure 5: A depiction of an object in zQ(O⊗)

(
(xi)i∈6, (yj)j∈2

)
for z = [−1; 2;−1] and the

corresponding factors in the decomposition. More concretely, this object lies over the map
ϕ : 6 → 2 characterized by ϕ−1(1) = {1, 2, 3, 4} and ϕ−1(2) = {5, 6}. We have employed
a notation which makes explicit the source and target of each component, e.g. f3|{1,2,3} is a
morphism (x′

1, x
′
2, x

′
3)→ z3 in Q(O⊗).
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obtain for any ϕ ∈ Fin(n,m)

∏
j MapLW Env(O⊗)

(⊗
i∈ϕ−1(j) xi, yj

)
Mapϕ

LW Env(O⊗)

(⊗
i xi,

⊗
j yj

)
∥∥∥∥hocolimz∈Zop

N∞

(
zEnv(O⊗)

(⊗
i xi,

⊗
j yj

)ϕ)∥∥∥∥
∥∥∥∥hocolimz∈Zop

N∞

(∏
j zQ(O⊗)

(
(xi)i∈ϕ−1(j), yj

))∥∥∥∥

≀

∼

∼ .

Hence, we have seen that LW Env(O⊗) → Fin⨿ satisfies condition (ii) in Haugseng-
Kock’s characterization.

(c) Again by [22, Proposition A.5 (v)], the functor Env(O⊗) → LW Env(O⊗) identifies
Fun⊗(LW Env(O⊗),V⊗) with the full subcategory of Fun⊗(Env(O⊗),V⊗) spanned by
strong monoidal functors that send Env(W•) to equivalences. Via the equivalence

Fun⊗(Env(O⊗),V⊗)
∼−−−−→ AlgO(V

⊗),

induced by the adjunction Env ⊣ U, the previous subcategory corresponds to the full sub-
category AlgO,W(V

⊗) of AlgO(V
⊗) spanned by algebras which send W to equivalences.

Proposition B.2. With the notation of Proposition B.1, there is a canonical equivalence of
∞-categories over Fin⨿

LW Env(O⊗)
∼−−−−→ Env(O⊗JW−1

• K)

which preserves the cocartesian lifts over active maps in Fin∗ and the subcategory of arrows
over inert maps in Fin∗ which come from inert maps in O⊗.

Proof. First note that the functor Env(O⊗) → Env(O⊗JW•K) over Fin⨿ induces a canonical
functor as stated. In fact, it is compatible with the specified classes of maps because: (i)
cocartesian lifts over active maps on Env(O⊗JW•K) are created by construction of Env, and
(ii) the marking by arrows over inerts on Env(O⊗JW•K) comes from the analogous marking
on O⊗JW•K, which is the image of the inert maps in O⊗ via the functor O⊗ → O⊗JW•K.
Also, observe that the induced functor LW Env(O⊗)→ Env(O⊗JW•K) is essentially surjective.
Thus, to conclude the claim, we are reduced to show that the map

MapLW Env(O⊗)

(
(X,α), (Y,β)

)
−→ MapEnv(O⊗JW•K)

(
(X,α), (Y,β)

)
is a weak homotopy equivalence for any pair of objects (X,α), (Y,β) ∈ Env(O⊗). As in the
proof of statement (b) in Proposition B.1, we use Mazel-Gee’s machinery to describe mapping
spaces of∞-localizations [20] for this task.
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On the one hand, since Env(O⊗JW•K) is given by a pullback of∞-categories,

MapEnv(O⊗JW•K)

(
(X,α), (Y,β)

)
≃ MapO⊗JW•K

(
X, Y

) h
×

Fin∗(sα,sβ)
Act(Fin∗)(α,β)

≃
∥∥∥∥hocolimz∈Zop

N∞
(
zO⊗

(
X, Y

))∥∥∥∥ h
×

Fin∗(sα,sβ)
Act(Fin∗)(α,β)

≃
∥∥∥∥hocolimz∈Zop

[
N∞

(
zO⊗

(
X, Y

) h
×

Fin∗(sα,sβ)
Act(Fin∗)(α,β)

)]∥∥∥∥ .
We have applied: (1) homotopy colimits in Spc commute with finite homotopy limits, (2)
maps between zigzag types z → z′ produce functors z′

O⊗

(
X, Y

)
→ zO⊗

(
X, Y

)
compatible

with their maps into Fin∗
(
π(X),π(Y )

)
(because arrows in W• lie over identities in Fin∗), and

(3) N∞ commutes with homotopy limits.
On the other hand,

MapLW Env(O⊗)

(
(X,α), (Y,β)

)
≃

∥∥∥∥hocolimz∈Zop
N∞

(
zEnv(O⊗)

(
(X,α), (Y,β)

))∥∥∥∥ .
Therefore, it suffices to prove that the canonical functor

zEnv(O⊗)

(
(X,α), (Y,β)

)
−−−−→ zO⊗

(
X, Y

) h
×

Fin∗(sα,sβ)
Act(Fin∗)(α,β)

is an equivalence of∞-categories for any zigzag type z. This follows from the fact that(
Env(O⊗),Env(W•)

) (
O⊗,W•

)
(
Act(Fin∗), {identities}

) (
Fin∗, {identities}

)s

is a pullback of relative∞-categories and since zEnv(O⊗)

(
(X,α), (Y,β)

)
is just a shortcut nota-

tion for Fun∗∗(z,Env(O⊗))Env(W•), which is part of a closed RelCat∞-enrichment of bipointed
relative∞-categories (see [20, Notation 2.2]).

Corollary B.3. The canonical functor O⊗JW−1
• K → Fin∗ is a quasioperad and the map of

quasioperads O⊗ → O⊗JW−1
• K exhibits the∞-localization of O⊗ at W as a quasioperad. In

particular, restriction along O⊗ → O⊗JW−1
• K induces an equivalence of∞-categories

AlgO⊗JW−1
• K(V

⊗)
∼−−→ AlgO,W(V

⊗),

where AlgO,W(V
⊗) denotes the full subcategory of AlgO(V

⊗) spanned by O-algebras which
send W to equivalences, for any symmetric monoidal∞-category V⊗.

Proof. Observe that there is a commutative diagram of∞-categories

Opd∞/Fin∗
smCat∞/Fin⨿

Cat∞
mrk

/Fin∗ (Cat∞
act-cocart,mrk

/Fin∗
)/Fin⨿

Cat∞/Fin∗ Cat∞
act-cocart

/Fin∗

Env

Env

Env

,
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where the lower horizontal arrow refers to the functor in Equation (3) (see also [1, §2.1-2.3])
and the superscript “mrk” means that the∞-categories are equipped with a marking given by
arrows over inert maps in Fin∗ and functors between them preserve these markings.

The reason for the middle horizontal arrow to be fully-faithful is the same as for the top
one (it admits a right adjoint such that the unit transformation is a natural equivalence; see [14,
Lemma 2.3.3]). The decorated vertical maps are fully-faithful because

AlgQ(P) ⊂ FunFin∗(Q
⊗,P⊗) (resp. Fun⊗(C⊗,D⊗) ⊂ FunFin∗(C

⊗,D⊗))

is the full subcategory spanned by functors preserving cocartesian lifts of inert maps (resp.
functors preserving all cocartesian maps).

Since Env applied to (O⊗JW−1
• K → Fin∗) ∈ Cat∞

mrk
/Fin∗ yields an object in the essential

image of Env : Opd∞/Fin∗
↪→ smCat∞/Fin⨿ (use Propositions B.1 and B.2), we deduce that

O⊗JW−1
• K→ Fin∗ actually belongs to Opd∞.

It remains to check the ∞-localization claim. Combining Proposition B.2, statement (c)
in Proposition B.1 and the fact that Env : Opd∞ ⇄ smCat∞ : U is an adjunction, one gets a
commutative diagram of∞-categories

AlgO⊗JW−1
• K(V

⊗) AlgO,W(V
⊗)

Fun⊗(Env(O⊗JW−1
• K),V⊗) Fun⊗(LW Env(O⊗),V⊗)

≀ ≀

∼

for any symmetric monoidal ∞-category V⊗ → Fin∗. The equivalence of ∞-categories of
algebras implies that the canonical map of quasioperads (LW O)⊗ → O⊗JW−1

• K is a DK-
equivalence; just note that this map is essentially surjective and apply [13, Proposition 4.1.23].

Localization criteria for∞-categories. We have established that we can check if a map of
quasioperads O⊗ → P⊗ exhibits an ∞-localization of quasioperads when it exhibits an ∞-
localization of∞-categories. Now, we provide the criterion we use in the main body of the text
to detect∞-localizations of∞-categories, which is based on∞-Rezk nerves as developed in
[21] and which generalizes Hinich’s Key Lemma in [15].

First, recall that ∞-categories can be found among simplicial spaces Fun(∆op, Spc) as
complete-Segal spaces CSSpc. In fact, the canonical cosimplicial object [•] in Cat∞ induces an
equivalence of∞-categories N∞ : Cat∞ → CSSpc.

Given a relative ∞-category C = (C,W), the ∞-Rezk pre-nerve is the simplicial ∞-
category

preNR
∞(C)• = Fun([•],C)W ≡ weq([•],C).

That is, the composite functor

∆op [•]−−→ Cat∞
op minop−−−→ RelCat∞

op Fun(⋆,C)W−−−−−−→ Cat∞ .

The∞-Rezk nerve is given by postcomposing this construction with the groupoid completion,
i.e. it is the following simplicial space/∞-groupoid

NR
∞(C)• =

(
Fun([•],C)W

)gpd
: ∆op preNR

∞−−−−−→ Cat∞
(−)gpd−−−−−→ Spc.

Denoting by LCS : Fun(∆op, Spc) ⇄ CSSpc : inc the reflection of∞-categories within sim-
plicial spaces given by complete-Segal-envelope, an important result of Mazel-Gee [21, Theo-
rem 3.8] states:
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Proposition B.4. The map N∞(C)• → LCS N
R
∞(C,W)• exhibits the∞-localization of C at W

in CSSpc ≃ Cat∞ for any relative∞-category (C,W).

Equipped with such a result, the criterion is immediate.

Proposition B.5. Let f : C → C′ be a relative functor in RelCat∞. If the map of simplicial sets

f∗ : weq [[k],C] weq [[k],C′]

is a weak homotopy equivalence for any k ≥ 0, f induces an equivalence of∞-localizations
CJW−1K −→ C′JW′−1K in Cat∞. In particular, the claim holds if for any k ≥ 0 and any
σ ∈ weq [[k],C′], the slice∞-category

weq [[k],C]σ/ (resp. weq [[k],C]/σ)

is weakly contractible.

Proof. Applying the∞-Rezk nerve, we obtain a commutative square of simplicial spaces

NR
∞(C)• NR

∞(C′)•

LCS N
R
∞(C)• LCS N

R
∞(C′)•

N f•

,

where the left vertical maps are instances of the universal CS-equivalence. By Proposition B.4,
we need to show that the lower horizontal map is a Reedy-equivalence (or equivalently a CS-
equivalence). This would follow if we prove that N f• is a Reedy-equivalence (since Reedy
implies CS).

Unwinding the definitions, we should prove that for any k ≥ 0,

f∗ :
(
Fun([k],C)W

)gpd −→ (
Fun([k],C′)W

′)gpd
is a weak homotopy equivalence of spaces. Equivalently, Fun([k],C)W → Fun([k],C′)W

′
is a

weak homotopy equivalence in Cat∞.
By Quillen’s Theorem A for∞-categories [19, Theorem 4.1.3.1], this condition follows if

for any object σ ∈ Fun([k],C′)W
′
, the slice∞-category(

Fun([k],C)W
)
σ/

(resp.
(
Fun([k],C)W

)
/σ
)

is weakly contractible. Both slices are models for the homotopy fiber of f∗ at σ if the condition
holds for any σ.

Remark B.6. In Proposition B.5, we could have taken the target relative ∞-category to be of
the form D♯ = (D,D≃). In that case, the conclusion translates into f : C → D exhibiting the
∞-localization of C at W.

Corollary B.7. In Proposition B.4, it suffices to check the condition for k = 0 and k = 1 when
NR

∞(C)• and NR
∞(C′)• are Segal spaces.

Proof. In the proof of the cited result, replace “NR
∞(C)• → NR

∞(C′)• is a Reedy-equivalence”
by Dwyer-Kan equivalence between Segal spaces.

Remark B.8. In [16], it has also been observed that a map of quasioperads O⊗ → P⊗ exhibits
an ∞-localization of ∞-operads if it does so as ∞-categories (see Lemma A.6 in loc.cit.).
Their result, while useful in many situations, is weaker than Corollary B.3. For instance, our
combined use of the cited Corollary with Proposition B.5 to prove Lemma 2.19 (and hence our
main Theorem 2.4) cannot be justified only with [16, Lemma A.6].
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