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Numerical and experimental approaches are becoming more complementary approaches to address
highly turbulent regimes thanks to improvements in computation resources. Nonetheless, experimen-
tal results, such as meshless 3D3C Particle Tracking Velocimetry, are often spatially sparse, somewhat
discontinuous, subject to measurement noise and incomplete, while CFD simulations still require in-
tensive resources to solve all the time scales. To address these issues, we employ Physics Informed
Neural Networks (PINNs) [2], which provide a meshless way to enrich and complement experimental
data [1]. In the case of turbulent convection, our framework allows 3D temperature discovery, denois-
ing, and generating continuous field representations [3]. Departing from the idealized case of Eulerian
training-reconstruction, we propose a spatio-temporal sampling framework to tailor our DNS database
to closely resemble experimental measurements. This poses additional challenges to PINNs particularly
on addressing spatial gaps, tracking loss and scarcity of experimental-type labels. An important ques-
tion arises on the optimal choice of collocation points to help alleviating these constraints. Our analysis
focuses on the impact of PDE collocation points density through parallel GPU computations. Addition-
ally, we explore the effectiveness of smart adaptive spatial PDE sampling to mitigate information loss
with respect to relevant turbulent quantities caused by inherently noisy and sparse data.
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(a) Ground truth (b) PINN; NR = N (c) PINN; NR = 5×N

Figure 1: 3D-Reconstruction of instantaneous turbulent convection field (Ra = 2×109, Pr = 4.4) from
experimental-like data at iso-budget of labels. NR is the total number of PDE collocation points. Iso-
surfaces of temperature and velocity magnitude at the boundaries with the same ground truth colorbar.
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