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Abstract 10 

Question –Among the ‘minor’ species present in communities, we distinguish between true 11 

‘rare’ species, with infrequent occurrence (low occupancy) in a given regional data set, and 12 

‘sparse’ species, which may be present over most of the study area, but with low local 13 

abundance. Do rare and sparse species play a different role in the evaluation of beta diversity 14 

and in the constrained ordination of plant community data sets? 15 

Methods – Based on their positions in the abundance-occupancy scatterplots of six contrasted 16 

vegetation data sets, we distinguished core, rural, urban and satellite species. To disentangle 17 

the role of rarity and sparseness, we applied to each data set a progressive removal of either 18 

the least frequent or the least locally abundant species. We assessed impacts on beta diversity 19 

(q = 0, 1 and 2), and on model performance of RDA, without or after pre-transformation of 20 

absolute cover values. 21 

Results – Multiplicative beta diversity decreased with the number of removed rare species, 22 

with slightly higher values for q = 2, whereas it increased when removing sparse species, with 23 

much higher values for q = 0. With raw data or after binary or by-site transformation, the 24 

fraction of variation explained by RDA increased only slightly when removing rare species, 25 

with a more sensible increase of the relative contribution of the first canonical axis. By 26 

contrast, progressive elimination of sparse species, which mimics a lower sampling effort 27 

within each community, negatively affected model performance. Generally, the removal of 28 

rare species clearly improved the performance of RDA after double transformation (chi-29 

square transformation), contrary to the removal of sparse species. 30 
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Conclusions –The frequently observed positive correlation between occupancy and 31 

abundance hides profound differences with critical impacts on vegetation analysis. Providing 32 

that meaningful transformations are applied, there is no need to remove rare species prior to 33 

RDA. Focusing only on abundant species during sampling is likely to limit the performance 34 

of ecological empirical models. 35 

 36 

Key-words: abundance-occupancy relationship; beta-diversity; core-satellite species 37 

hypothesis; minor species; rare species; redundancy analysis 38 

 39 

Introduction 40 

Vegetation data sets generally include many species with a low frequency of occurrence, their 41 

number depending on plot size and on vegetation heterogeneity within and among sites. They 42 

are responsible for a high proportion of zeros in the community data matrix and thus for a 43 

high inertia in the multivariate response to be explained by constrained ordination. It has been 44 

argued that such infrequent species should be removed because they add noise to the analysis 45 

and reduce model performance (Cao et al., 2001; Poos & Jackson, 2012; Jing et al., 2015; 46 

Brasil et al., 2020). However, Legendre & Gallagher (2001) argued that removal of the most 47 

infrequent species may be relevant before correspondence analysis (CA) and canonical 48 

correspondence analysis (CCA), but not before principal component analysis (PCA), after 49 

showing that these species only play minor roles in PCA, without or with data transformation. 50 

These infrequent species often show low abundances in local communities, whereas 51 

frequent species are often locally dominant, so that there is generally a positive correlation 52 

between the frequency of occurrence of a species (also called ‘occupancy’ or ‘distribution’) 53 

throughout a data set and its average abundance in occupied plots (‘abundance-when-54 

present’), i.e. a positive interspecific abundance-occupancy relationship (Collins et al., 1993; 55 

Gaston, 1998; Gaston et al., 2000; Blackburn et al., 2006; Borregaard & Rahbek, 2010; 56 

Eriksson, 2013; Guedo & Lamb, 2013).  57 

In its broad sense, ‘rarity’ is often defined using the framework of Rabinowitz (1981), 58 

which considers the three axes of range size, local abundance and habitat specialism. In the 59 

British flora, Rabinowitz et al. (1986) found these three axes to be independent, whereas other 60 

studies often find high proportions of species that are rare in all three dimensions (Harrison et 61 

al., 2008). Habitat specialism, i.e. the specificity of a species to a few habitats, is more 62 
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difficult to measure than the two other dimensions and is sometimes interpreted by the 63 

availability of suitable sites for a species in the landscape, measured by the rarity of its 64 

preferred habitat (Broennimann et al., 2005). Habitat specificity can be better viewed as an 65 

underlying cause of rarity than a rarity dimension (Crisfield et al., 2024). Here, we will not 66 

consider this controversial dimension of ‘rarity’ and will focus on the difference between the 67 

two other dimensions. 68 

They correspond to the conceptual distinction between regionally rare species with low 69 

occupancy (frequency of occurrence) in a given regional data set, and locally sparse species 70 

with low relative abundance (measured by density, cover, biomass or local frequency) in each 71 

local community. These sparse species are sometimes neglected during sampling, e.g. when 72 

recording dominant species only or when working on small plots, where the probability of 73 

observing an abundant species is higher. In contrast, rare species may be omitted when 74 

restricting the range of habitats in the study area, as they are expected to have introgressed 75 

from surrounding habitats. We argue that the expression rare species should be restricted to 76 

species with a low frequency of occurrence in a given regional community data set, although 77 

this term is often also used to refer to locally sparse species. A generic term for both rare and 78 

sparse species may be ‘minor’ species. 79 

Adding to the confusion, abundance measured as local frequency – e.g. the fraction of 80 

small quadrats located within each site that is occupied by a given species, or the proportion 81 

of contacts with this species in a point-intercept method – can be seen as similar to regional 82 

occupancy, i.e. the fraction of large plots where a species is found, but at a finer scale 83 

(Eriksson, 2013). Thus, from this strict methodological point of view, the distinction between 84 

rare and sparse species would be dependent on the scale (grain and extent) considered in the 85 

study from which the data set was built. However, the distinction between rare and sparse 86 

species is also supported by an ecological argument: as far as each relevé corresponds to a 87 

local plant community, with strong biotic interactions and homogeneous habitat conditions 88 

(Lortie et al., 2004), species abundance results from fine-scale environmental and biotic 89 

filtering, while species occupancy depends on dispersal, biogeographical filtering, and on the 90 

range of habitats considered in the regional data set. Hence, rarity and sparseness, as well as 91 

commonness and abundance, deserve to be distinguished in order to correctly assess the role 92 

of ‘minor’ species in the analysis of a vegetation data set. 93 

To put the distribution-abundance relationship in the dynamic context of metapopulation 94 

models, Hanski (1982) developed his core-satellite species hypothesis by distinguishing two 95 

main kinds of species with respect to their average local abundance N and the fraction of 96 
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occupied patches, i.e. occupancy p: ‘core’ species with large N and p (abundant and common, 97 

relatively well spaced-out in niche space), and ‘satellite’ species with small N and p (sparse 98 

and rare, with a narrow niche). Following Söderström (1989), Hanski (1991) further 99 

considered two other distribution types of species which he named by analogy to human 100 

populations: ‘rural’ species with small N but large p (sparse but common), and ‘urban’ species 101 

with small p but large N (rare but abundant). Urban species are supposed to have high local 102 

growth rate and low dispersal rate, leading to population concentration, contrary to rural 103 

species. Thus, for a given data set, species may be classified into core, satellite, urban and 104 

rural species according to their position in the abundance-occupancy scatterplot, revealing 105 

distinct niche patterns (Collins et al., 1993). Indeed, many data sets include urban and rural 106 

species in addition to core and satellite species that shape the popular positive distribution-107 

abundance relationship.  108 

Hanski’s core and satellite species are somewhat equivalent to Grime’s ‘dominant’ and 109 

‘transient’ species, respectively (Grime, 1998; Gibson et al., 1999). ‘Subordinate’ (i.e. 110 

frequent but never dominant) species of Grime’s classification can be viewed as equivalent to 111 

rural species. Real-world species removal experiments showed that subordinate plant species 112 

play an overlooked but important role in grassland biodiversity and ecosystem functioning 113 

(Mariotte, Buttler, et al., 2013; Mariotte, Vandenberghe, et al., 2013). The ‘subordinate 114 

insurance hypothesis’ suggests that subordinate species may assist dominant species or 115 

compensate for their loss on ecosystem functions via complex plant-soil feedbacks (Mariotte, 116 

2014). Another typology of concepts based on abundance-occupancy patterns has been 117 

proposed recently (Avolio et al., 2019), somewhat equivalent to Hanski’s classification, core 118 

species being called ‘common’, urban species ‘restricted’, satellite species ‘rare’, and rural 119 

species ‘sparse’. In this conceptual framework, locally abundant species (either ‘common’ or 120 

‘restricted’) may be ‘dominant’ or ‘subordinate’ depending on their impact on their 121 

surrounding environment, community and ecosystem functioning. In the absence of a 122 

consensus on vocabulary and for methodological reasons, we prefer to restrict the meaning of 123 

‘rare’ and ‘sparse’ species to each dimension of occupancy and abundance. 124 

Equivalences among these different concepts and theories should be considered with 125 

caution, however. Urban species are not considered in Grime’s dominant-subordinate-126 

transient classification. Grime’s classification is based on frequency-abundance patterns 127 

inside a plant community, whereas Hanski’s classification basically considers a 128 

metacommunity, i.e. a network of patches of the same habitat occupied by local communities 129 

at a broader spatial scale. Moreover, discussions about abundance-distribution relationships 130 
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often refer to macroecology and biogeography, involving a variety of habitats in a wide 131 

region. Thus, as often in ecology, semantic shifts are likely to obscure the comparison of these 132 

concepts. 133 

The questions addressed in this paper are the following: given the potential ecological 134 

roles of rare and sparse species, what are the consequences of discarding them when 135 

analyzing abundance-occupancy patterns, diversity patterns and community-environment 136 

relationships in vegetation science? Do rare and sparse species play the same role in these 137 

analyses? Therefore, considering a variety of vegetation data sets differing in their spatial 138 

extent and ecological diversity, the specific question examined in this paper is: how does a 139 

progressive removal of either the regionally least frequent species or the locally least 140 

abundant species affect (1) the proportion of core, rural, urban and satellite species, (2) the 141 

evaluation of taxonomic β-diversity and (3) the performance of constrained ordination? In 142 

addition, does the impact of species removal on RDA model performance depend on the 143 

choice of the prior transformation of abundance-cover data? 144 

Methods 145 

Data sets 146 

We selected six contrasted vegetation data sets for which species absolute cover and 147 

explanatory variables were available (Table 1), i.e. three small and homogeneous data sets 148 

(hereafter called ‘vare’, ‘catgrass’ and ‘dune’) and three bigger and more heterogeneous data 149 

sets (‘trufe’, ‘vltava’, ‘bryce’). Each species data set is associated with an environmental data 150 

set containing explanatory variables to be used in constrained ordination. 151 

We describe each original species data set by the species frequency distribution (Fig. 1) 152 

and by the abundance-occupancy scatterplot (Fig. 2). According to the core-satellite species 153 

hypothesis, frequency distribution is supposed to be bimodal (U-shaped), but it depends on 154 

plot size and on the heterogeneity of the studied vegetation (Collins & Glenn, 1997). An 155 

abundance-occupancy scatterplot represents the average relative cover of each species in all 156 

occupied sites, without taking into account absences (its mean abundance-when-present, on a 157 

log scale) vs. the proportion of sites occupied by the species (its frequency of occurrence). It 158 

includes a regression line from the linear model explaining the logarithm of average 159 

abundance-when-present by the frequency of occurrence, as well as the delimitation of core, 160 

satellite, urban and rural species.  161 
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Fifty percent frequency is the threshold considered by Mariotte (2014) to first distinguish 162 

transient (i.e. satellite) from both dominant and subordinate species within a plant community. 163 

Above 50% frequency, this author suggested that species with a cumulative relative cover 164 

below 2% should be considered as transients, comprised between 2% and 12% as 165 

subordinates, and above 12% as dominants. Collins & Glenn (1997) considered as core 166 

species those present in more than 90% of the sites and as satellite species those present in 167 

less than 10% of the sites, all other species being classified as ‘intermediate’ without 168 

distinguishing rural and urban. To our knowledge, no clear boundaries have been specified so 169 

far to delimit these four categories. Since we consider here both mono- and multi-site data 170 

sets at various spatial scales, we retained Hanski’s classification, but we adapted Mariotte’s 171 

typology to delimit species groups. Therefore, we counted the number of core, satellite, urban 172 

and rural species by considering common arbitrary boundaries to delimit these four groups: 173 

50% frequency and 5% relative cover (Fig. 2 and 3). 174 

The Spearman rank correlation was used to measure and to test the abundance-occupancy 175 

relationship (Table 1). The heterogeneity of the species matrix was measured by (i) the 176 

multiplicative β-diversity of species richness, related to the differentiation among habitats 177 

(Whittaker, 1972; Tuomisto, 2010), (ii) the relative MacArthur’s homogeneity measure, 178 

which compares communities based on the Hill-Shannon beta diversity (Jost, 2007, equation 179 

22), (iii) the proportion of zeros in the vegetation table (species absences), and (iv) the 180 

number of species observed at only one site or plot (Table 1). 181 

The ‘vare’ data set describes the understorey vegetation of boreal pine forests (Väre et al., 182 

1995). ‘varespec’ (species) and ‘varechem’ (environmental variables) data frames are 183 

available in the R package vegan (Oksanen et al., 2024). Abundance was recorded as the 184 

average absolute cover of 44 lichen, bryophyte and vascular plant species in 15 or 10 quadrats 185 

of 1 m2 within 24 sites. This relatively homogeneous data set shows a low β-diversity, with a 186 

high proportion of core and rural species, but no urban species. The environmental matrix is 187 

made of 14 quantitative variables: soil concentration of 11 chemical elements, bare soil cover, 188 

humus thickness and pH. 189 

The ‘catgrass’ data set (Kohler, 2004) consists of 90 1-m2 quadrats equally distributed 190 

over three experimental sites of montane pastures in the Swiss Jura Mountains, in which 191 

absolute cover of 94 vascular plant species was measured by a point-intercept method after 192 

two years of treatment (simulation of various combinations of cattle activities). This rather 193 

homogeneous data set contains few core and urban species. The environmental matrix is made 194 
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of 7 binary and semi-quantitative variables representing each factor of the treatments: site, 195 

shading, mowing, manuring, trampling, abandonment and grazing. 196 

The ‘dune’ data set is a classic example of dune meadows in the Netherlands (Jongman et 197 

al., 1995). ‘dune’ (species) and ‘dune.env’ (environmental variables) data frames are available 198 

in the R package vegan. Original 9-class cover values of 30 vascular and bryophyte species 199 

recorded in 20 quadrats of 2 × 2 m2 were transformed into mid-class percentages of absolute 200 

cover (van der Maarel, 1979; Dengler & Dembicz, 2023). β-diversity is low, with many urban 201 

and no rural species. The environmental data frame is composed of five variables: thickness 202 

of soil A1 horizon (quantitative), soil moisture and manure (semi-quantitative, treated as 203 

numeric variables instead of ordered factors to avoid overfitting in ordination analysis), 204 

management and use (qualitative). 205 

The ‘trufe’ data set was obtained from a systematic sampling of the herb layer by 110 206 

quadrats of 1 m2 within a 1-ha area of heterogeneous wood-pasture at La Sagne in the Swiss 207 

Jura Mountains (Béguin, 2007). Original 6-class Braun-Blanquet dominance values of 111 208 

vascular plant species were transformed into mid-class percentages of absolute cover. The 209 

community data set encompasses a high proportion of satellite and rural species. The 210 

environmental data frame is made of 6 quantitative variables: slope, eastern aspect, shrub 211 

cover, mean soil depth, soil depth variance and yearly potential sunshine hours. 212 

The ‘vltava’ data set is made of 97 forest plots of 10 × 15 m2 arranged in transects across 213 

the Vltava river valley in the Czech Republic (Zelený & Chytrý, 2007). The transects were 214 

perpendicular to the map contour lines and the river course but the plots along the transects 215 

were rectangles parallel to the contour lines. Within each plot, the absolute cover of vascular 216 

plant species was recorded separately for each of the three layers of the forest vegetation 217 

(herbs, shrubs and trees). Cover was estimated using the 9-class ordinal Braun-Blanquet scale 218 

and these codes were consequently transformed into mid-point percentages of cover classes. 219 

The data are available at https://www.davidzeleny.net/anadat-r/doku.php/en:data:vltava. The 220 

β-diversity is high with very few core and rural species. The environmental data frame is 221 

made of 12 quantitative or binary variables: elevation, slope, aspect, heat load, landform 222 

shape (2 variables), soil type (4 dummy variables), soil depth and pH. 223 

Finally, the ‘bryce’ data set is another large-extent, heterogeneous vegetation data set from 224 

the Bryce Canyon National Park in Utah (USA). The ‘bryceveg’ (species) and ‘brycesite’ 225 

(environmental variables) data frames are included in the R package labdsv (Roberts, 2023). 226 

Absolute cover of the herbaceous species was recorded in various vegetation types (badlands, 227 

savannas and forests) using an 8-class dominance scale in 145 circular plots of 375 m2 and 228 

https://www.davidzeleny.net/anadat-r/doku.php/en:data:vltava
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transformed into mid-point percentages. The β-diversity is very high with very few species 229 

occurring in more than half of the sites. The environmental data frame is a selection of 7 230 

quantitative or qualitative variables: elevation, soil depth, topographic position, annual and 231 

growing-season solar radiation, slope and aspect. 15 sites with missing values for soil depth 232 

were removed from the original data set. 233 

Data sets ‘vare’, ‘dune’ and ‘trufe’ show a bimodal frequency distribution, due to their 234 

relative homogeneity, whereas ‘vltava’, ‘bryce’ and ‘catgrass’ show a unimodal distribution 235 

(Fig. 1). However, the modes of the distribution do not always correspond to a clear 236 

opposition between satellite and core species.  237 

 238 
Table 1. Characteristics of the six vegetation data sets.  Unique species are those observed in only one plot. 239 
Abundance/occupancy correlation is estimated by the Spearman rank correlation coefficient between species 240 
mean absolute cover and frequency of occurrence. Alpha and gamma diversities were calculated from raw 241 
absolute cover data as Hill numbers for q = 0, 1 and 2. Relative McArthur homogeneity measure was deduced 242 
from Hill numbers for q = 1. More explanations in text. 243 

Data set vare catgrass dune trufe vltava bryce 
Plot size (m2) 10 to 15 1 4 1 150 375 
Number of plots 24 90 20 110 97 145 
Number of core species 7 4 7 4 3 1 
Number of rural species 17 16 0 19 3 1 
Number of urban species 0 5 10 12 22 36 
Number of satellite species 20 69 13 76 246 128 
Proportion of zeros 41.9% 69.7% 67.2% 75.4% 90.0% 91.7% 
Number of unique species 0 9 3 9 55 29 
Abundance/occupancy correlation 0.495 0.577 0.497 0.351 0.448 0.233 
aN0 (mean number of species) 25.6 28.5 9.9 27.4 27.4 13.8 
aN1 (alpha Hill-Shannon diversity) 5.8 12.3 4.2 11.0 13.2 4.2 
aN2 (alpha Hill-Simpson diversity 3.8 7.2 2.9 7.0 7.0 2.4 
gN0 (total number of species) 44 94 30 111 274 166 
gN1 (gamma Hill-Shannon diversity) 11.7 25.9 16.3 36.6 70.0 31.9 
gN2 (gamma Hill-Simpson diversity) 8.4 10.5 13.1 18.7 33.0 12.3 
bN0 (beta species richness diversity) 1.72 3.30 3.05 4.06 10.00 12.02 
bN1 (beta Hill-Shannon diversity) 2.02 2.11 3.86 3.34 5.30 7.53 
bN2 (beta Hill-Simpson diversity) 2.25 1.46 4.53 2.68 4.74 5.14 
Relative MacArthur homogeneity 0.474 0.469 0.220 0.293 0.180 0.127 

 244 
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 245 
Figure 1. Species frequency distribution (occupancy percentage) in the six data sets. Histograms and smooth 246 
curves represent density. A vertical dashed line shows the mean species frequency of occurrence. 247 
 248 

 249 
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Figure 2. Abundance-occupancy scatterplots for the six data sets. Each point represents a species. The abscissa is 250 
occupancy, measured by the species frequency in the data set, i.e. the percentage of sites occupied by the 251 
species. The ordinate (on a log-scale) is the abundance-when-present, measured by the average relative cover of 252 
the species in occupied sites. Dashed lines represent boundaries between core (top-right quadrant), satellite 253 
(bottom-left quadrant), urban (top-left quadrant) and rural (bottom-right quadrant) species. The horizontal 254 
dashed line is positioned at 5% of relative cover and the vertical dashed line at 50% of frequency of occurrence. 255 
The solid straight line is the linear regression model of the logarithm of abundance-when-present by occupancy 256 
(with Pearson linear correlation coefficients r and p-values). 257 
 258 

These six examples support the common report of significant positive correlations 259 

between the frequencies of the species and their average relative covers in occupied plots 260 

(Table 1, Fig. 2). However, the variation in local abundance may be very high among 261 

regionally rare species.  262 

Most of the species belong to the satellite category in each data set. Core species never 263 

reach 25% of the species pool. Several data sets, such as ‘dune’ and ‘bryce’, contain a large 264 

proportion of urban species (Fig. 3). 265 

 266 

 267 
Figure 3. Proportion of core, rural, urban and satellite species in each data set. 268 
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Progressive removal of species records 269 

In each of the selected data sets, species records were progressively removed according to 270 

either their increasing frequency of occurrence in the whole community data set (rare species 271 

removal) or their increasing relative cover in each site (sparse species removal). As for sparse 272 

species removal, we fixed a constant interval between two successive minimum abundance 273 

values, that is 2% relative cover, and at each step all species records with an abundance lower 274 

than the minimum value were assigned the value zero. The phasing out was stopped before a 275 

site became empty and continued until the remaining dataset contained only five species.  276 

We assessed impacts of species removal on abundance-occupancy patterns, on β-diversity 277 

estimates and on the model performance of redundancy analysis, without or after pre-278 

transformation of absolute cover data (Fig. 4). 279 

For each data set, the number of core, urban, rural and satellite species was plotted in a 280 

stacked area plot against the minimum species occupancy or abundance applied during the 281 

progressive removal of rare or sparse species, respectively.  282 

α, β and γ taxonomic diversity indices were computed using the d() function available in 283 

the R package vegetarian (Charney & Record, 2012), with equal community weights. Such 284 

diversity indices are referred to as species numbers equivalents or Hill diversity numbers 285 

(Hill, 1973; Jost, 2007; De Bello et al., 2010). Three orders were considered (q = 0, 1 and 2), 286 

corresponding to an increasing sensitivity to differences in species abundances (Jost, 2006). 287 

More specifically, we compared three multiplicative β taxonomic diversities: bN0, or 288 

Whittaker β-diversity, is the inter-site diversity of all species ignoring their abundance; bN1 or 289 

Hill-Shannon β-diversity is the inter-site diversity of abundant species; bN2 or Hill-Simpson 290 

β-diversity is the inter-site diversity of dominant species. Multiplicative β-diversity was 291 

calculated as the ratio between γ-diversity and mean α-diversity for q = 0, q = 1 and q = 2, 292 

respectively. Finally, additive β-diversity was calculated as the difference between γ-diversity 293 

and mean α-diversity for q = 0, 1 and 2. 294 

At each step of the progressive species removal, we compared the performance of 295 

redundancy analysis (RDA) after five optional pre-transformations of the species abundance 296 

data: raw absolute percentage cover (no data transformation), presence-absence 297 

transformation (binary data), chord transformation of the presence-absence data 298 

(normalization of binary site vectors), Hellinger transformation (square root of relative cover 299 

by site), and χ2 (chi-square) double transformation (by site and by species). Site profiles 300 

(chord or Hellinger transformation) or double profiles (χ2 transformation) make double 301 



 12 

absences invisible in the computation of distances between sites; this transformation is 302 

recommended before the RDA of species data sets with many zeros (Legendre & Gallagher, 303 

2001). The Euclidean distance computed after a chord transformation of the presence-absence 304 

data is proportional to the Ochiai dissimilarity, which allows double zeros in the presence-305 

absence data to be ignored (Borcard et al., 2018, p. 42); therefore and for simplicity, this 306 

transformation will be named Ochiai transformation hereafter. Double profiles based on χ2 307 

distance make RDA similar (but not equivalent because eigenvalues and eigenvectors are 308 

computed in different ways) to canonical correspondence analysis (CCA), another popular 309 

constrained ordination method in community ecology (Borcard et al., 2018). Since we wanted 310 

to compare transformations and not constrained ordination methods, we have chosen to only 311 

apply RDA on our test data and not CCA. 312 

Every vegetation data set was associated with an environmental data set used to constrain 313 

the ordinations with the same explanatory variables at each step of the rare or sparse species 314 

removal. Performance of RDA was assessed by (i) the unbiased percentage of variation 315 

explained by the environmental variables (adjusted R2, Peres-Neto et al. (2006)) and (ii) the 316 

contribution of the first canonical axis to the explained variation (expressing the efficiency of 317 

the ordination space reduction). 318 

All analyses were performed in the R environment (RCoreTeam, 2024), using packages 319 

vegan, labdsv, vegetarian, tidyverse (Wickham et al., 2019) and ggpubr (Kassambara, 2023). 320 

The data and the R code used to perform these analyses are provided as electronic 321 

Supplementary Material (Appendix S2). 322 

 323 
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 324 
Figure 4. Summary of the methodology applied to assess the impact of progressive species removal on 325 
abundance-occupancy pattern, diversity pattern and constrained ordination. 326 

Results 327 

Impact of progressive species removal on abundance-occupancy patterns 328 

The impact of excluding the least frequent (rare) species or the least abundant (sparse) species 329 

from the original data set is consistent among the data sets (Fig. 5). When removing rare 330 

species, satellite and urban species disappear first, and the proportion of core species tends to 331 

increase. Rural species, when present, disappear more slowly. By contrast, the elimination of 332 

locally sparse species leads to a dramatic increase of the proportion of urban species. Rural 333 

species first disappear, followed by satellite and core species. Note that the exclusion of rare 334 

or sparse species in large and heterogeneous data sets (‘vltava’ and ‘bryce’) quickly leads to 335 

empty sites, and therefore short series. 336 

 337 
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 338 
Figure 5. Impact of rare (left) or sparse (right) species exclusion from each data set on the number of core, rural, 339 
urban and satellite species. For rare species removal, percentages on the x axis represent minimum frequency of 340 
occurrence (occupancy) and for sparse species removal they represent minimum relative cover (abundance-341 
when-present). 342 
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Impact on beta diversity assessment 343 

 344 
Figure 6. Impact of rare (left) and sparse (right) species exclusion from each data set on the additive partitioning 345 
of gamma species richness (q = 0). Blue area: mean alpha species richness (average number of species present at 346 
each site of the data set); red area: additive beta species richness (average number of species absent from each 347 
site but present in other sites of the data set); total area: gamma species richness (total number of species in the 348 
data set). 349 
 350 

When excluding rare species based on minimum frequency, additive beta species richness (q 351 

= 0) decreases more than mean alpha species richness, contrary to exclusion of sparse species 352 

based on minimum relative cover, for which alpha diversity declines more rapidly (Fig. 6). 353 

Similar patterns are obtained for Hill-Shannon (q = 1) and Hill-Simpson (q = 2) diversity 354 

(Supplementary Material, Appendix S1). 355 



 16 

 356 

 357 
Figure 7. Impact of rare (left) or sparse (right) species exclusion on the multiplicative beta taxonomic diversity. 358 
bN0: multiplicative beta diversity of all species (Whittaker); bN1: multiplicative beta diversity of abundant 359 
species (Hill-Shannon); bN2: multiplicative beta diversity of dominant species (Hill-Simpson). 360 

 361 

The difference is even more evident when considering multiplicative beta diversity of 362 

orders 0, 1 and 2 (Fig. 7). All beta diversity indices decline when removing rare species, 363 

whereas they tend to increase when removing sparse species. Apart from these general trends, 364 

we observe strong differences in the relative impact of species removal on these indices 365 

among data sets, depending on their initial structure. However, the multiplicative beta 366 

diversity of dominant or abundant species (bN2 and bN1, respectively) is generally less 367 

affected by species removal than beta diversity computed on presence-absence data (bN0). 368 

Irrespective of the initial values of beta diversity indices, beta species richness bN0 becomes 369 

always the lowest at the end of rare species exclusion and the highest at the end of sparse 370 
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species exclusion. This confirms that the exclusion of rare species leads to an increasingly 371 

apparently homogeneous community composition, whereas the exclusion of sparse species 372 

leads to greater apparent heterogeneity among the sites. 373 

Impact on RDA and community-environment relationship assessment 374 

The impact of species removal on RDA results was assessed by the variation of the 375 

percentage of explained variation (model performance expressed by adjusted R2, Fig. 8) and 376 

of the contribution of the first axis to this explained variation (Fig. 9) following a progressive 377 

exclusion of rare species (left) or of sparse species (right) records. 378 

In the case of ‘catgrass’, the data set for which the percentage of explained variation was 379 

initially the highest, both model performance and contribution of the first axis are slightly 380 

improved by rare species removal until the suppression of most satellite and urban species (at 381 

about 30% frequency), whatever the pre-transformation of relative cover data. By contrast, 382 

the elimination of sparse species tends to decrease model performance in all simulations. 383 
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 384 
Figure 8. Impact of rare (left) and sparse (right) species exclusion on the percentage of explained variation of 385 
RDA (adjusted R2) without or after several pre-transformations of each species matrix. Solid circles indicate 386 
significant results of permutation tests (p < 0.05, 999 permutations). 387 
 388 
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 389 
Figure 9. Impact of rare (left) and sparse (right) species exclusion on the contribution of axis 1 of RDA without 390 
or after several pre-transformations of each species matrix. Solid circles indicate significant results of 391 
permutation tests (p < 0.05, 999 permutations). 392 

 393 

For ‘vare’, a homogeneous data set in which b-diversity is mainly due to dominant 394 

species, the best results are obtained with raw absolute cover data, which are not affected by 395 

rare or sparse species exclusion. Most prior transformations of the data lead to non-significant 396 

results. Nevertheless, the performance of the model can be slightly improved by eliminating 397 

rare species after Hellinger or chi-square transformation.  398 

With ‘dune’, the best results are obtained after presence-absence or Ochiai transformation. 399 

They are improved by the elimination of rare species, but worsened by the exclusion of sparse 400 

species.  401 
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For ‘trufe’, conclusions are similar to those obtained from the ‘catgrass’ example, but with 402 

better results for raw abundance, even at the end of rare species removal.  403 

For ‘vltava’, Ochiai and Hellinger site profiles, as well as presence-absence data produce 404 

the highest explained variation slightly improved by the removal of species below 10% 405 

occupancy, but strongly impaired by the loss of sparse species.  406 

Finally, in the most heterogeneous data set (‘bryce’), the adjusted R2 of the model and the 407 

contribution of axis 1 are positively affected by the removal of rare species whatever the 408 

transformation applied, whereas the removal of sparse species affects model performance 409 

negatively, except for raw abundance data.  410 

Despite strong differences among data sets, some general conclusions may be drawn after 411 

comparing the results of these simulations: 412 

(1) With raw data or site profiles of abundance data (i.e. Hellinger transformation), model 413 

performance is not or only slightly enhanced when removing the least frequent species.  414 

(2) By contrast, model performance is generally negatively affected by the progressive 415 

exclusion of sparse species, which mimics a decreasing sampling effort in each 416 

community.  417 

(3) The ranking of prior transformation of absolute cover data according to model 418 

performance varies strongly among the data sets, yet without affecting the general effect 419 

of rare or sparse species removal. Interestingly, the Ochiai transformation of presence-420 

absence data does not improve model performance, as compared to the simple binary 421 

transformation, in any data set. However, canonical redundancy analysis on raw absolute 422 

cover data or on presence-absence data considers double zeros in the calculation of 423 

distances between sites and for this reason should only be applied to matrices with very 424 

few zeros (Borcard et al., 2018). 425 

(4) In large and heterogenous datasets, the removal of rare species clearly improves the 426 

performance of RDA after double transformation (chi-square), contrary to the removal of 427 

sparse species. 428 

Discussion 429 

Minor species, b-diversity and ecological assessment  430 

To assess the impact of reduced sampling effort and incomplete representation of local 431 

plant diversity on mean ecological indicator values of vegetation relevés, Ewald (2003) 432 



 21 

simulated a reduction of an original compositional matrix by randomly deleting 1, 10, 20, 40 433 

and 80% of species records with low abundance. The random omission of low-abundance 434 

species affected the correlation between log-abundance weighted average ecological indicator 435 

values and measured environmental variables only weakly. Incomplete recording of 436 

taxonomic information increased multiplicative b-diversity, due to the non-proportional 437 

relationship between a-diversity, which declined linearly with sparse species removal, and g-438 

diversity, which was little affected until ca. 40% of the records had been deleted (Ewald, 439 

2003). These last findings are consistent with the results of our progressive exclusion of 440 

sparse plant species. In addition, the author applied Mantel correlation to test the overall 441 

multivariate association between distance matrices of species composition and environment; 442 

however, this method is now considered inappropriate for this kind of study and should be 443 

replaced by the computation of RV coefficients (Escoufier, 1973; Legendre & Legendre, 444 

2012; Omelka & Hudecová, 2013; Legendre et al., 2015). 445 

As for animal communities, Sgarbi et al. (2020) compared the effect of sequential removal 446 

of genera from the most to the least locally abundant, sequential removal from the least to the 447 

most abundant or random removal on the ordination patterns of stream benthic invertebrate 448 

communities. By comparing Procrustes correlations based on abundance data, they found that 449 

taxon-based reduction in sampling effort, consisting in the omission of up to 50% of the least 450 

abundant species (confusingly called “rarest” by these authors), affected only weakly the 451 

multivariate pattern observed in the complete assemblage data, contrary to the removal of the 452 

most abundant species (called “commonest”).  453 

However, focusing on the effect on ecological assessment of excluding stream dwelling 454 

macroinvertebrate taxa with low abundances or with small distribution ranges, Nijboer & 455 

Schmidt-Kliber (2004) concluded that neither sparse nor rare taxa should be excluded, 456 

because of their essential ecological indicative power. In addition, our study shows that the 457 

omission of rare species had an opposite (i.e. negative) effect on multiplicative b-diversity. 458 

This finding supports the determinant role of these infrequent species in the differentiation of 459 

habitats. The removal of rare species may have similar or greater influence in biological 460 

assessment as other choices inherent in its computation, such as the choice of ordination 461 

method or measures of multivariate resemblance (Poos & Jackson, 2012). 462 

Indeed, rare species may be indicators of rare environmental conditions or specific 463 

habitats, to which these species could be adapted better than common species. According to 464 

Rabinowitz et al. (1986), habitat specificity (ecological specialization) is the most important 465 
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dimension of ‘rarity’ (in a broad sense). It could explain why many rare species often co-466 

occur in one or few sites, where they may be dominant. For example, the ‘vltava’ data set 467 

contains a plot with nine unique species including one dominant. Such sites and species 468 

appear as outliers in ordinations and can hide the main gradients, especially when applying 469 

chi-square-based methods such as CA and CCA. 470 

Minor species in canonical ordination 471 

By removing rare species from fish and odonatan communities Brasil et al. (2020) found that 472 

rare species are of little importance for understanding the relationships with spatial and 473 

environmental gradients using variation partitioning based on partial RDA (Borcard et al., 474 

1992; Peres-Neto et al., 2006). As shown in our study, the only improvement one can expect 475 

from rare species removal in canonical ordination is with double profiles (after chi-square 476 

transformation). 477 

Of course, RDA model performance cannot be reduced to an adjusted R2 and a 478 

contribution of axis 1 to the analysis. The purpose here was not to use these indicators to 479 

grade the different pre-transformation options, since their choice depends upon the questions 480 

and hypotheses of the modeling framework. Rather, the purpose was to figure out whether the 481 

effect of species removal on the RDA results was dependent on this choice. Indeed, whatever 482 

the various ranking of the four options for abundance transformation (presence-absence, 483 

Ochiai, Hellinger or chi-square) in terms of variation explained, a common general trend 484 

emerged from the six examples, i.e. a slight improvement after a moderate exclusion of rare 485 

species, and a clear degradation after any exclusion of sparse species. The only exception is 486 

the ‘vare’ data set after presence-absence or Ochiai transformation, for which sparse species 487 

removal has a positive effect on both variation explained and contribution of axis 1. In this 488 

homogeneous, species-poor data set, species-environment relationships are mainly expressed 489 

by variations in absolute cover among frequent species. 490 

Conclusion 491 

The positive correlation between inter-site occupancy (frequency of occurrence) and average 492 

intra-site dominance (relative abundance-when-present) should not hide the profound 493 

differences between rare (uncommon) and sparse (undominant) species. They must not be 494 

confounded because they play a completely different role in vegetation analysis and 495 

ecological studies of other groups of organisms. As for biodiversity assessment, removing 496 
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rare species decreases the proportion of satellite species, hence decreasing multiplicative beta 497 

diversity, whereas removing sparse species increases the proportion of urban species, hence 498 

dramatically increasing multiplicative beta diversity. As for ecological assessment, focusing 499 

only on dominant species during sampling or multivariate analyses by ignoring sparse species 500 

is likely to limit the performance of ecological empirical models. These conclusions are also 501 

applicable to animal and microbial communities, to which we applied the same methodology 502 

in a preliminary study (results not shown here). 503 

One of the main findings of our simulation study was that the multiplicative beta diversity 504 

decreased when removing rare species, but increased when removing the sparse ones. A 505 

possible explanation is that when you ignore the most infrequent species, the whole dataset 506 

becomes more homogenous because rare species, which are often numerous, are the most 507 

responsible for differences in community composition, hence decreasing beta diversity. By 508 

contrast, when you ignore sparse species (based on their average relative cover, not based on 509 

their absolute cover in each separate site), you focus more on dominant and abundant species, 510 

irrespective to their occupancy, while increasing the contrast between communities dominated 511 

by different species, hence increasing beta diversity. 512 

Provided that meaningful transformations are applied, there is no need to remove any 513 

species prior to RDA. For homogeneous data sets (“short gradients”) in which total vegetation 514 

cover and differences in species cover among sites are of interest, absolute cover data should 515 

not be transformed. For heterogeneous data sets (“long gradients”) and a focus on local 516 

dominance relationships, site profiles (e.g. Hellinger or other Box-Cox family transformation) 517 

should be used. Removing rare species is only useful for the ordination of double profiles, 518 

achieved by RDA after chi-square transformation or, more commonly, by canonical 519 

correspondence analysis (CCA). If CCA is preferred, down-weighting of rare species has 520 

proved to be more efficient than eliminating them (Jing et al., 2015). 521 

If canonical ordination is used to extract the main ecological gradients while taking into 522 

account differences in species abundances among sites, then RDA should be applied without 523 

pre-transformation of abundance data, but only in case of “short gradients” (species-poor 524 

communities with a small proportion of absences in the data set). To preserve the differences 525 

in total abundance among sites, reflecting site productivity, in a data set containing a high 526 

proportion of zeros, distance-based redundancy analysis (db-RDA) should be preferred, based 527 

on a percentage difference or Ružička dissimilarity matrix (Legendre & Anderson, 1999). If 528 

the community data set is very heterogeneous (“long gradient” or multiple gradients) and 529 

researchers are most interested in relative proportions of species within a community rather 530 
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than absolute comparisons of species abundances across multiple sites, then site 531 

transformation (e.g. Hellinger) should be applied prior to RDA. 532 

By encouraging researchers to recognize the contrasting roles of rare and sparse species in 533 

community assemblages, the results of the present study will motivate them to formulate more 534 

precise working hypotheses in their own studies. 535 

Our study focused on plant communities, but the question is more general and may be 536 

investigated for any animal or microbial communities at a given trophic level. Recently, new 537 

tools have been developed to standardize Hill diversity indices based on sample completeness 538 

or coverage (Roswell et al., 2021, 2023; Chao et al., 2023). In ecology, the concept of sample 539 

coverage has been only described and applied to species assemblages for which we can count 540 

individuals (typically animal or tree communities), which is not the case for most plant 541 

communities, where species “abundance” is generally measured by the percentage of 542 

aboveground cover (or classes of absolute or relative cover). As a matter of fact, all current 543 

formulae and implementations of the coverage-based or size-based standardisation of Hill 544 

diversity indices (iNEXT.beta3D; Chao et al., 2023) apply to individual-based or incidence-545 

based data (point-based or grid-based frequency) and cannot be applied to continuous 546 

abundance measures, such as cover or biomass. From a perspective of statistical inference, 547 

rare and sparse species carry the most essential information about sample coverage. However, 548 

we cannot presently apply such standardisation to our cover-based vegetation data.  549 

Future work is needed to assess the role of rare and sparse species on other beta diversity 550 

indices, such as dissimilarities or variance-based methods (Legendre & De Cáceres, 2013) 551 

and, as soon as it is available for any type of abundance data, coverage-based standardisation 552 

of Hill diversity indices, including phylogenetic and functional facets of community diversity. 553 
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 747 
Figure S1. Impact of rare (left) and sparse (right) species exclusion from each data set on the additive 748 
partitioning of gamma Hill-Shannon diversity. Blue area: mean alpha Hill-Shannon diversity (average 749 
number of abundant species present at each site of the data set); red area: additive beta Hill-Shannon 750 
diversity (average number of abundant species absent from each site but present in other sites of the 751 
data set); total area: gamma Hill-Shannon diversity (total number of abundant species in the data set). 752 
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 754 
Figure S2. Impact of rare (left) and sparse (right) species exclusion from each data set on the additive 755 
partitioning of gamma Hill-Simpson diversity. Blue area: mean alpha Hill-Simpson diversity (average 756 
number of dominant species present at each site of the data set); red area: additive beta Hill-Simpson 757 
diversity (average number of dominant species absent from each site but present in other sites of the 758 
data set); total area: gamma Hill-Simpson diversity (total number of dominant species in the data set). 759 
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