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A B S T R A C T

This paper aims to evaluate the criticality of strategic metals by (i) investigating the validity of the Herfindahl–
Hirschman Index (HHI) for assessing the supply risk aspect of criticality and (ii) determining an appropriate
threshold for using this indicator in the context of criticality studies. Relying on a large panel of 33 strategic
metals over the 1995–2021 period, our findings show that the variation of HHI has more impact on metal
prices at lower HHI levels and question the existence of a threshold that clearly distinguishes high-risk markets
from less risky ones based on their concentration levels. Overall, we show that using the HHI as a supply risk
indicator, especially in conjunction with a threshold, may result in underestimating risks in less concentrated
markets.
1. Introduction

In recent decades, the increasing number of raw material criticality
assessments reflects a growing focus on securing the supply of these
resources, particularly for countries and companies heavily dependent
on international commodity flows. Accurately assessing the criticality
of minerals and metals has become essential in this context, especially
as these raw materials have regained strategic importance since the
late 2000s. This paper aims to address this challenge, which is far from
straightforward. As noted by Graedel et al. (2015), defining criticality
is a difficult task because ‘‘criticality depends not only on geologi-
cal abundance, but on a host of other factors such as the potential
for substitution, the degree to which ore deposits are geopolitically
concentrated, the state of mining technology, the amount of regula-
tory oversight, geopolitical initiatives, governmental instability, and
economic policy.’’

The first decade of the 21st century witnessed remarkable economic
growth and industrialization, mainly driven by emerging economies

✩ This paper has been presented at the 3rd ARAE Annual Workshop ‘Econometrics of the Energy Transition’, Paris, December 8, 2023. We would like to thank
Capucine Nobletz and all the participants for their constructive remarks and suggestions. We also thank two anonymous referees for their helpful remarks and
suggestions.
∗ Correspondence to: EconomiX-CNRS, University of Paris Nanterre, 200 avenue de la République, 92001 Nanterre cedex, France.

E-mail address: pauline.bucciarelli@parisnanterre.fr (P. Bucciarelli).
1 See Seaman (2019). The reader interested by the role of REE in the energy transition may refer to Depraiter and Goutte (2023).
2 For a historical review about the geopolitical supply risk of metals, see Habib et al. (2016).

such as China, which became a dominant force in the global mar-
ketplace. As China’s demand for metals and minerals surged, global
markets tightened, leading to historic price increases and heightened
concerns over potential shortages and scarcity (Schmidt, 2019). The
imposition of Chinese export restrictions on rare earth elements (REE)
over the 2009–2011 period—especially in 20101—further exacerbated
these fears, leading highly import-dependent industrialized countries
to develop their criticality assessment methodology in order to secure
their raw material supply chains (Frenzel et al., 2017). More recently,
the COVID-19 pandemic and the war in Ukraine have had significant
implications for global supply chains, including those related to metals
and minerals.2

The pandemic’s disruptive impact on production, transportation,
and distribution of raw materials led to temporary shutdowns of mines
and processing facilities (Gupta et al., 2020), highlighting vulnera-
bilities in global supply chains and tensions between economic pow-
ers (Jaravel and Méjean, 2021). These events have contributed to
https://doi.org/10.1016/j.eneco.2025.108208
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growing concerns about geographic fragmentation, prompting the In-
ternational Monetary Fund (IMF) to warn in 2023 that such fragmenta-
tion could reverse decades of globalization momentum (IMF, 2023). In
response, states are increasingly implementing economic policies aimed
at bolstering the resilience of their industrial sectors and safeguarding
economic sovereignty, often as a shield against potentially adversarial
conomic partners. Metals have become central to these policies. Pro-
ucer countries have turned to protectionist measures such as export

embargoes, licensing restrictions, and quotas, while consumer countries
are prioritizing national development strategies and securing supply
chains to mitigate their exposure to geopolitical and economic risks.

In 2017, Donald Trump elevated the issue of critical metals to a
ational priority, framing it as an extraordinary threat to the economy,
hereby reinvigorating U.S. policy on mining and strategic metals.

This trajectory was further reinforced under Joe Biden through the
enactment of the Inflation Reduction Act (IRA) in 2022. This legislation
includes provisions aimed at promoting domestic battery production,
otentially fostering the localization or reshoring of metallurgical ac-
ivities within the United States. It thus promotes the development
f more robust supply chains and domestic production of various
inerals. In particular, it introduces the New Advanced Manufacturing
roduction Credit, a 10% tax credit granted to domestic producers of
pecified critical minerals (IEA, 2023). The IRA also signals the prospect

of a more protectionist approach to international trade. This policy
shift represents a robust countermeasure to China’s long-standing strat-
egy of securing critical minerals and metals, a policy Beijing has
systematically pursued for over two decades (Bonnet et al., 2022).

A few months later, the European Commission proposed the Critical
aw Materials Act (CRMA), a set of actions aimed to ensure ‘‘the EU’s
ccess to a secure, diversified, affordable and sustainable supply of
ritical raw material’’ (European Commission, 2023). The European
ommission has thus designated 34 materials as ‘critical’ and 17 as

‘strategic’, including cobalt, lithium, copper and nickel, with the latter
wo added to the list in 2023. To mitigate supply risks, it has estab-
ished a maximum dependency threshold of 65% for imports from any
ingle country and set ambitious domestic production goals: achieving
0% of national consumption through local production, 40% through
etal refining, and 25% through recycling by 2030. This framework,

upported by the industrial strategy outlined in the Net Zero Industry
ct (NZIA), reflects a shift towards proactive intervention to address
urope’s growing concerns over mineral security.

Moreover, the ongoing global energy transition, aimed at reducing
reenhouse gas emissions, has significantly increased the demand for

specific metals and minerals.3 This transition heavily relies on low-
arbon technologies, which require both a higher metal content and
 greater diversity of materials compared to traditional systems (IEA,

2021). Batteries, for instance, rely on metals such as cobalt, copper,
lithium, manganese, and nickel, while permanent magnets, used in
electrified vehicle engines and certain offshore wind technologies, re-
uire REE. Electricity-generating technologies also depend on various
etals: aluminum, copper, and nickel for wind power systems; alu-
inum, silver, copper, and silicon for solar technologies; and hydrogen

low-carbon production technologies often involve nickel, iridium, pal-
adium, and/or platinum. In its 2024 World Investment Report, the
nternational Energy Agency (IEA) projects that investments in clean
echnologies and infrastructure will reach 2 trillion US dollars by
024 (IEA, 2024). However, achieving a pathway consistent with lim-

iting global temperature increases to 1.5 ◦C above pre-industrial levels
by 2100 necessitates investments that are 2.5 times greater than current
levels. This growing demand is expected to further strain certain metal

3 For a recent overview of the main challenges faced by countries regard-
ing economic development and climate sustainability, see Goutte and Sanin
(2024).
2 
markets, amplifying existing pressures in the years ahead. As a result,
the availability of metals and minerals has become a central concern
in the energy transition dynamic, with these resources potentially be-
coming limiting factors for achieving net-zero ambitions (Zhang et al.,
2022).

Within this context, adequately assessing the criticality of minerals
nd metals is crucial. Originally developed by states to ensure their
ilitary-strategic positions and later to sustain economic growth and

ontemporary lifestyles, criticality studies are now conducted by a
ultitude of actors at different scales (state, industry, company or

ven technology scale) (Schrijvers et al., 2020). As a result, multiple
criticality assessment methodologies have been developed to identify
materials of concern and assist decision-making processes, drawing on
he pioneering work of the National Research Council (2008) and the
uropean Commission (2010). Two key aspects are commonly used
s criteria to identify critical raw materials: (i) their economic and/or
trategic importance, and (ii) the likelihood of supply disruptions, often

referred to as ‘supply risk’ (Frenzel et al., 2017).4 However, the mea-
surement of these criteria varies from one study to another, from the
election of the indicators used to the way they are aggregated (Gleich

et al., 2013).
The absence of a standardized theoretical framework for criti-

ality measurement coupled with the proliferation of such studies,
as led to the emergence of a distinct field in the scientific litera-
ure reviewing the various criticality assessment methods and their
elevance (Erdmann and Graedel, 2011; Achzet and Helbig, 2013;

Glöser et al., 2015; Frenzel et al., 2017; Hatayama and Tahara, 2018;
Schrijvers et al., 2020). It is commonly observed that certain indicators
ack sufficient relevance. Therefore, experts and researchers recom-

mend identifying best practices (Schrijvers et al., 2020), primarily
through acquiring more robust empirical evidence on widely used
indicators (Helbig et al., 2021).

One of the most commonly used indicators for assessing the supply
risk of a material is the country’s production concentration. Helbig et al.
(2021) conduct a thorough review of different indicators employed to
measure supply risk and find that country’s production concentration
appears in about 75% of the 88 assessment analyses presented in their
paper and has been in use since 1977. The rationale behind using
such an indicator is that as the production of a given raw material
becomes more concentrated in a few countries, the likelihood of supply
disruptions increases due to various factors, including economic, polit-
ical, or environmental considerations (Frenzel et al., 2017). Moreover,
‘‘in the context of global studies, ‘‘production’’ is used as a proxy
for ‘‘supply’’’’ (Brown, 2018). Therefore, world production by country
s used to evaluate supply diversity (Thomas et al., 2022), which is

known in the literature as a significant factor in supply resilience and,
consequently, supply risk (Sprecher et al., 2015; Sato et al., 2017).5
The Herfindahl–Hirschman Index (HHI) (Herfindahl, 1950; Hirschman,
1945) is the dominant measure for assessing this indicator (Helbig
t al., 2021; Brown, 2018). The HHI is a widely recognized measure

of market concentration. It was initially developed in the field of
industrial organization to assess market structure and quantify market
power and has since been extensively used, particularly in the field
of competition law. The HHI is calculated by summing the squares

4 A third component, the environmental implications, is also considered in
some methodologies (Graedel et al., 2012).

5 In recent years, the study of network resilience has become a significant
ubfield in network science (Liu et al., 2022), referring to the ability to

withstand and rapidly recover from environmental changes or disruptions.
n essential component of resilience, as highlighted by recent research, is
edundancy, denoting the use of multiple pathways, functions, or components
ithin a system (Kharrazi et al., 2020). In the context of trade systems,

redundancy refers to the diversity of supply, which involves having multiple
suppliers for a specific product, as emphasized by Sprecher et al. (2015)
and Kharrazi et al. (2020).
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of individual firms’ market shares, thereby assigning greater weight
o larger market shares.6 As a result, the HHI approaches zero when

a market consists of numerous firms of relatively equal size, while
reaching its maximum value of 10,000 points when a single firm
dominates the market.

In the metal and mineral production sector, various HHIs are avail-
ble to evaluate concentration. The HHI can be assessed at different
cales, either based on the national production of countries (referred
o as country HHI) or by focusing on the production of specific firms.
oreover, the HHI can be computed at various points along the value

hain, including ore extraction, smelting, and refining. Indeed, minerals
ndergo a multi-stage transformation process before they can be uti-

lized in final applications. Initially, the raw minerals are extracted from
eposits through mining activities, which are classified as upstream
perations. Subsequently, the extracted minerals are transferred to

smelters or refiners, where chemical refining and processing take place,
known as midstream operations, transforming the minerals into fine
particles with high purity levels, rendering them suitable for use in
he final products. Finally, the refined metals are passed on to down-
tream actors who incorporate them into the manufacturing process
o create the end products (Castillo and Purdy, 2022). Most criticality
nalyses focus on the country’s concentration of mineral production
t the extraction stage, a choice driven primarily by data availability

considerations.
In many cases, criticality studies are used to identify which minerals

re subject to relatively higher supply risk, thereby distinguishing be-
ween different materials and identifying which markets require more
igilant monitoring. Although supplier diversity is generally considered

in the literature to be a robust indicator of supply risk, it remains
mportant to determine whether it is effective as a discriminative
riterion for classifying different metals and minerals. This is a recur-

ring observation in the literature reviewing criticality methodologies,
consistently highlighting the lack of empirical evidence for widely used
indicators (Achzet and Helbig, 2013; Frenzel et al., 2017; Helbig et al.,
2021).

Only a few studies have highlighted the relevance of the HHI of
production in this context, using different methodologies. Buchholz
t al. (2022) focus on the largest mines for 12 mineral commodities
ver 1.5 years. They use big data analytics to investigate how specific
isk events disrupt these mines. They analyze the impact of events such

as COVID-19 measures taken by different countries and conclude that
a global market with few suppliers would be more vulnerable to risk
than a market with a large supplier base. However, their conclusion
depends largely on their underlying assumption: ‘‘the potential impact
has been quantified based on the global share of production from
mines at risk.’’ Furthermore, the study only looks at 12 raw materials
over a relatively short period of time. Brown (2018), though, shows
that assessing supply concentration using only a snapshot index taken
at a single point in time may inadequately measure potential supply
concentration concerns. Therefore, examining the impact of HHI over
such a truncated time period (less than two years) could lead to mis-
leading results. Gleich et al. (2013) assess the relevance of the indicator
y examining its impact on raw material prices. This methodology
s grounded in the efficient market hypothesis, assuming that prices
eflect current and future risks, i.e., economic scarcity, and thus capture

a degree of criticality. This approach offers a more comprehensive
perspective, encompassing a larger set of metals and minerals (42)
ver an extended period (26 years). However, the study adopts a
ime series perspective, considering every material independently. As
 result, it cannot demonstrate whether the HHI is a relevant indicator

for the entirety of metals and minerals, and thus a suitable means of
differentiation.

6 According to Le Coq and Paltseva (2009), the HHI’s emphasis on the
arger suppliers makes it ‘‘suited to reflect the risks, associated with the
on-diversified energy portfolio.’’
 m

3 
In the United States, the Federal Trade Commission has established
benchmark values, as outlined in their guidelines, to identify markets
of concern (Federal Trade Commission, 2006): markets are categorized
into three groups based on the HHI—unconcentrated markets (HHI
below 1500), moderately concentrated markets (HHI between 1500 and
2500), and highly concentrated markets (HHI above 2500). Mineral
criticality studies frequently incorporate the thresholds specified in the
American Merger Guidelines when utilizing the HHI to quantify produc-
tion concentration. This is done in two ways. Firstly, the thresholds are
mentioned in the introduction to the analysis, which creates a framing
ias for the reader but does not directly affect the results (Al Barazi
t al., 2021; Buchholz et al., 2022). Secondly, some studies include

these thresholds in their methodology. For instance, in their paper
on supply risk for mineral commodities, Schneider et al. (2014) set a
threshold for each selected indicator, including the HHI of production,
above which supply risk is expected. The supply risk for each resource
is then calculated by considering its proximity to this threshold. For the
HHI of production, the threshold is set at 1500, in line with the thresh-
olds defined by the US Department of Justice in the Merger Guidelines.
Similarly, Rosenau-Tornow et al. (2009) use these thresholds to define
their benchmarks for HHI values related to country concentration.
However, these thresholds were established in the context of using the

HI as a proxy for the monopolistic structure of an industry, rather
than for measuring the redundancy of the trading system, which is a
more pertinent criterion in criticality studies. Furthermore, even in the
ontext of mergers, these thresholds have been criticized for being arbi-

trary (Nocke and Whinston, 2022). The arbitrary nature of thresholds
is also emphasized by Brown (2018) within the context of criticality
studies. She highlights that the specific level at which the threshold for
defining ‘‘high concentration’’ is established can significantly influence
the interpretation of results in criticality assessments of minerals.

While the scientific community is generally less inclined towards
adopting a sharply defined threshold value for criticality determination,
policymakers tend to employ such values since they lead to easily
nderstandable outcomes, as in the case of enumerative inventories
f critical raw materials (Schrijvers et al., 2020). Consequently, it is

essential to provide empirical evidence to support the validity of such
indicators and the relevance of the thresholds used (Brown, 2018).

This paper tackles this crucial issue. Specifically, it aims to empiri-
cally assess the validity of a country production concentration indicator
for evaluating the supply risk aspect of criticality and to examine
whether a threshold exists within the HHI values to assign the criticality
of specific non-fuel minerals. We go further than the aforementioned
iterature since, to the best of our knowledge, no study has assessed the
elevance of the HHI of production as an indicator for distinguishing
mong various metals and minerals, nor has any study empirically
ttempted to determine an appropriate threshold for utilizing this
ndicator in the context of criticality studies. Our paper fills these gaps
y investigating the impact of the production HHI on metal prices from
 panel perspective and seeking to identify the presence of a threshold.
o this end, we adopt the approach outlined in Gleich et al. (2013),
hich attempts to assess the validity of certain indicators, by examining

their relationship with raw material prices.
Our results challenge the commonly held assumption that the vari-

ation of HHI has a greater impact on prices at higher HHI levels.
Additionally, our findings suggest that a clear threshold does not ex-
ist to distinguish high-risk markets from less risky ones based on
heir concentration levels. Therefore, using the HHI as a supply risk
ndicator, particularly in conjunction with a threshold, may result
n underestimating risks in less concentrated markets. Overall, our
esults contribute to a deeper understanding of metal criticality and

provide actionable insights for policymakers and industry stakeholders
o mitigate supply risks and ensure the sustainability of the energy
ransition. In particular, our findings and the associated thresholds
ffer a framework for policymakers and industry leaders to (i) identify
arkets where intervention (e.g., strategic stockpiles, diversification of
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supply sources, trade policies...) is necessary, (ii) anticipate price and
supply risks in metal markets undergoing structural changes, and (iii)
develop policies tailored to the degree and nature of concentration and

arket stability.
The rest of the paper is organized as follows. Section 2 compre-

hensively describes the HHI data used in the model while Section 3
outlines our chosen models. Section 4 presents and discusses the results,
and draws some policy implications. Finally, Section 5 summarizes our

ain findings.

2. The Herfindahl–Hirschman Index (HHI): calculation and styl-
ized facts

2.1. HHI calculation

We construct a database that tracks the evolution of the HHI for a set
f 63 metals and minerals that are key to today’s economy (see Table 8

in Appendix A). The database spans the period from 1994 to 2021 at
n annual frequency. To measure these concentrations, we use country-
pecific production data for these materials. Our primary sources for
his purpose are the United States Geological Survey (USGS) and the
ritish Geological Survey (BGS), both recognized as global references
or minerals and metals data and statistics.

The USGS publishes an annual report called The Minerals Yearbook,
hich reviews the mineral and metal industries of both the United
tates and foreign countries. This yearbook comprises statistical data
n various metals and minerals and offers information on economic
nd technical trends. First published in 1933, digital versions have been
vailable on the USGS website since 1996. In the publication for year
, the USGS provides data of global primary production by country
or a wide variety of raw materials for year 𝑖 − 2. Consequently, we
an extract production data from 1994 to 2021. This data availability
efines the period of our study. For most materials listed, the data
ertains to primary production (extracted from mining operations),
hile refining data is available for some metals.

Similarly, the BGS maintains its own database on the production and
rade of minerals named the World Mineral Statistic Datasets. This data is
ublished annually in three reports, including World Mineral Production,
hich contains production statistics, categorized by country, for a

ange of economically significant mineral commodities, encompassing
errous and non-ferrous metals, industrial minerals, and hydrocarbons.
he first publication of this dataset dates to 1913. While data for some
etals are available before 1994, we opt to extract data from 1994 to

nsure comparability with the USGS dataset.
While primarily relying on data from the USGS, we use BGS data in

ases where USGS data is missing, and it serves as a robustness check
or our HHI calculations. The HHI for raw material 𝑚 at stage 𝑠 and
ear 𝑖 is defined as follows:

HHI𝑚,𝑠,𝑖 =
∑

𝑐 ∈ 𝑃𝑚,𝑠

(𝑆𝑐 ,𝑚,𝑠,𝑖)2

where:

– 𝑃𝑚,𝑠 is the set of all countries 𝑐 that produce raw material 𝑚 at
stage 𝑠.

– 𝑆𝑐 ,𝑚,𝑠,𝑖 is the share of country 𝑐 in the global supply of the raw
material 𝑚 at stage 𝑠 in the specified year 𝑖, expressed as a
percentage.

– 𝑠 corresponds either to mine production, refinery, or smelter
activities.

In the USGS reporting, for some raw materials, minor producers are
aggregated into the ‘Other Country’ category, resulting in a combined
production denoted as 𝑝𝑜𝑡ℎ𝑒𝑟. In this case, we assume that each country
within the ‘Other Country’ category produces less than the country
 m

4 
with the lowest production (𝑝𝑚𝑖𝑛) among the available data.7 Applying
his methodology, we obtained HHI data for 63 metals and minerals at

various stages of their value chain. Most of these data points represent
production concentration at the extraction level, but for certain metals,
we also have data on concentration at the refining or smelting stages
(see Table 8 in Appendix A).

2.2. Stylized facts: trends in HHI over the 1994–2021 period

2.2.1. HHI at the extraction stage
The time evolution of HHI at the extraction stage exhibits diverse

patterns across the studied metals and minerals (Fig. 1). Specifically,
we observe five distinct categories of HHI trends. First, certain metals
nd minerals exhibit continuous HHI growth, indicating a rising market

dominance over time. Second, another group maintains relatively stable
HHI values, pointing to a consistent market share throughout the years.
Third, some raw materials experience a decreasing trend in HHI, im-
plying increased competition between countries within their respective
markets. Fourth, there are cases where materials initially undergo
growth before experiencing a subsequent decline. Fifth, conversely,
we find instances where materials exhibit the reverse pattern, initially
declining before witnessing growth.

In the period under study, most HHI series exhibit an increasing
trend (40% of the analyzed series) indicating a concentration of pri-
mary production for a significant number of metals and minerals over
the past two decades. This intensification in concentration occurs at
varying rates, with the HHI for silver increasing only by 13 points
per year on average, while for gallium,8 the rise amounts to over
400 HHI points annually (Table 1). Several factors contribute to this
phenomenon, including geological considerations as countries possess
iffering mineral endowments and prioritize the extraction of highly
oncentrated ores. For instance, the Democratic Republic of the Congo
DRC) is a prominent cobalt producer due to its possession of nearly
alf of the world’s cobalt reserves (USGS, 2023). Economies of scale

and expertise are additional drivers of production concentration. Lastly,
environmental, and social regulations (ecological and social dumping)
can also lead to significant concentration in the production of certain
metals.

A sustained decrease in HHI over the same period is relatively
rare, representing only 16% of the studied series. Notably, this subset
omprises gold, palladium, and platinum, three metals categorized as
recious metals.9 This can be attributed to consistently high prices that
ake extraction profitable, even when deposits are not highly con-

entrated. For instance, artisanal and small-scale gold mining, which
contributes to about 20% of global production and operates in 80
countries (Kumah, 2022), plays a role in lowering the gold HHI value.
Some minerals such as talc, kaolin, bentonite, and gypsum, also exhibit
a sustained decrease in HHI. In these cases, the decreasing trend can be
explained by their large and well-distributed resources among various
producing countries, contributing to a more balanced concentration of
production across the globe (USGS, 2023). In 16% of cases, the HHI
series display a pattern of growth followed by a subsequent decline
over time. Notably, when we examine the leading producer of these

aterials at the point where the HHI reaches its maximum before
ecreasing, China emerges as the predominant producer in the majority
f cases (Table 2). Also, the decline in HHI is often attributed to either

a governmental decision to reduce production, typically in response
to curbing domestic pollution, or a significant natural disaster that
ecessitated a substantial reduction in production.

7 All the details, as well as robustness checks, are provided in Appendix A.
8 Gallium data is available only for the period 2007–2021.
9 Silver is the only element in the precious metals category within our

ataset that does not exhibit a declining HHI; nevertheless, as previously
entioned, its growth remains sluggish.
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Fig. 1. Trends in production concentration: Evolution of the Herfindahl–Hirschman Index (HHI) at the extraction stage over the 1994–2021 period.
ote: These graphs illustrate the evolution of the HHI values calculated at the mining stage for key metals and minerals from 1994 to 2021. Higher HHI values indicate greater
roduction concentration. Data sources: USGS and BGS (see Section 2.1).
Antimony serves as a pertinent case study exhibiting a decreasing
HI from the period of 2008–2010 onwards. Classified as a metalloid,
ntimony plays a crucial role as an alloying element in the produc-
ion of flame retardants, lead–acid batteries, and semiconductors. The
eduction in HHI for antimony is explicitly linked to China’s pivotal po-
ition as the world’s leading antimony producer since the early 1980s.
5 
A government-driven decision to curtail antimony mining operations
in 2010, in response to environmental concerns and safety issues,
significantly contributed to this decline (USGS, 2023). Given China’s
dominance, accounting for nearly 90% of global antimony production
at the time, the production disruptions led to a substantial price surge in
2011. Similarly, the decline in HHI for lead, tin, REEs, and molybdenum
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Fig. 1. (continued).
Table 1
Trends in production concentration: Regression coefficients for metals and minerals (1994–2021).

Raw material Regression coefficient Trend Raw material Regression coefficient Trend

tantalum −146.281 Decreasing phosphate-rock 45.737 Increasing
kaolin −69.571 Decreasing lithium 61.131 Increasing
platinum −54.949 Decreasing fluorspar 62.978 Increasing
palladium −32.278 Decreasing tungsten 64.060 Increasing
zirconium −27.161 Decreasing wollastonite 102.845 Increasing
talc −22.322 Decreasing asbestos 109.864 Increasing
gold −20.033 Decreasing graphite 129.243 Increasing
bentonite −12.414 Decreasing cobalt 131.806 Increasing
gypsum −6.788 Decreasing germanium 142.685 Increasing
silver 13.809 Increasing yttrium 167.491 Increasing
niobium 20.059 Increasing silicon 171.143 Increasing
manganese 24.751 Increasing magnesite 183.807 Increasing
iron 29.663 Increasing mercury 251.764 Increasing
zinc 31.527 Increasing magnesium 265.179 Increasing
uranium 33.052 Increasing gallium 414.387 Increasing
vanadium 38.926 Increasing

Note: This table presents the linear regression coefficients calculated for the HHI data of raw materials that exhibit a monotone HHI trend throughout the specified period (Fig. 1).
Metals and minerals are arranged in ascending order based on their regression coefficients. Most of these trends show an upward trajectory, and the rate at which the HHI evolves
aries significantly among the different elements studied.
6 
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Table 2
HHI peak year and leading producer market share: Key producer market dominance before declining concentration.

Raw material Year of max HHI First producer country Market share Regression coefficient

REE 2010 China 97.7 −550
antimony 2008 China 91.3 −399
arsenic 2011 China 66.6 −168
barite 2008 China 57.1 −108
beryllium 2014 USA 93.1 −440
copper 2006 Chile 35.5 −32
lead 2013 China 52.8 −114
strontium 2011 China 50.7 −119
tin 2011 China 49.2 −113

Note: This table presents the years of peak HHI values and the corresponding market share of the leading producer country. The ‘Year of max
HHI’ column indicates the specific year when the Herfindahl–Hirschman Index reaches its highest value before starting to decrease. The ‘Market
Share’ represents the proportion of production held by the leading producer country in that specific year.
Fig. 2. Global distribution of primary resource producers: Leading country by commodity count (1994–2021).
Note: This figure displays the global distribution of primary resource producers, highlighting the countries dominating production across different materials over the period
1994–2021. It presents the number of primary commodities within our panel, for which each country holds the position of the leading producer at the upstream stage. Only
countries leading in at least 3 commodities are individually listed, while all others are grouped under the ‘Other’ category based on their respective continents. This analysis is
based on the raw mineral production data from the USGS and BGS datasets presented in Section 2.1.
s
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p
t
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in the 2010s can be attributed to production curtailments implemented
s part of an environmental clean-up initiative led by Beijing (USGS,

2023). Additionally, the decline in HHI for REEs, starting in 2010, is
lso linked to China’s export restrictions on these elements, justified as
 measure to conserve resources and protect the environment. This pol-
cy shift resulted in a substantial price surge for REEs in international

markets, sparking increased investments in rare earth developments
outside China. Consequently, despite China’s production rebound from
2016 onwards, the country’s market share declined due to growing
exploitation in other regions of the world, which contributed to the
rapid decrease in REE’s HHI since 2010 at a rate of −550 points per
year (Table 2). The reduction in barite’s HHI is also attributed to the
decrease in China’s production, although in this case, it is not due
o a governmental decision but rather the result of extreme climatic
onditions that significantly impacted Chinese production from 2009 to
011. Coupled with increased fuel costs and robust global demand for

barite, these circumstances led to a sharp increase in prices for Chinese
barite. Consequently, the higher prices encouraged the entry of new
players into the barite mining sector, particularly India, which resulted
in a sustained decline in HHI (USGS, 2023).

Since the 1990s, a select group of countries have emerged as ma-
or players in primary resource production, dominating the supply
of essential materials. Notably, China’s role as a significant producer
experienced substantial growth from the 2010s onwards, leading to a
hift in the dynamics at the expense of the United States. By 2009,
hina had claimed the top position as the leading producer of over half
f all metals and minerals in our panel (Fig. 2). This shows that we have

not only observed an increase in the concentration of global production
for various commodities, but also a significant overall concentration of
resources within China. However, despite China’s continued dominance
7 
as a primary resource producer, there has been a decline in its market
hare since 2012, reflecting the impact of environmental policies im-
lemented by the government (Fig. 3).10 Also, contextualizing Chinese
roduction in relation to its consumption is essential as China is both
he primary producer of metals and minerals and the largest consumer
f these commodities (Frenzel et al., 2017).

2.2.2. HHI at the smelting stage
The concentration of smelter production for aluminum, copper,

and tin exhibits an upward trend over the studied period (Fig. 4). In
all three cases, the rise in HHI can be attributed to the expanding
influence of the Chinese market on total production. China emerged
as the leading player in tin smelting as early as 1993, with its market
share steadily growing over time (Bonnet et al., 2022). Similarly, for
aluminum and copper, China became the top producer in 2001 and
2004, respectively, leading to a noticeable shift in the HHI curves,
oinciding with the moment when the country attained the position
f the primary producer with an increasingly dominant market share.

2.2.3. HHI at the refinery stage
Likewise, the HHI series at the refinery stage for all metals with

available refining data (metals shown in Fig. 5) exhibit an increasing
trend. Notably, this upward trajectory in HHI values is consistently
attributed to China’s production activities, signifying its progressive
dominance in the refining processes of these metals.

10 The rationalization of industrial activities in China since 2010 should
also be mentioned, with a wish to eliminate small actors for better control
activities (Hache, 2019).



P. Bucciarelli et al.

Fig. 3. Market share dynamics: Total maximum production shares of top producers by country (1994–2021).
Note: The graph displays the sum of the maximum market shares, representing the market share held by the first producer of each commodity, for each respective country. This
analysis is based on the raw mineral production data from the USGS and BGS datasets presented in Section 2.1.

Fig. 4. Concentration dynamics: HHI evolution for selected materials at the smelting stage (1994–2021).
Note: These graphs illustrate the evolution of concentration at the smelting stage. The HHI values reflect the degree of production concentration over time. Data sources: USGS
and BGS (see Section 2.1).

Fig. 5. Concentration dynamics: HHI evolution for selected materials at the refinery stage (1994–2021).
Note: These graphs illustrate the evolution of concentration at the refinery stage. The HHI values reflect the degree of production concentration over time. Data sources: USGS
and BGS (see Section 2.1).
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Fig. 6. Relationship between concentration and total annual production (1994–2021).
ote: This plot depicts the relationship between concentration (HHI) and total annual production of the metals and minerals included in our panel. Total annual production is

expressed in logarithmic terms and measured in metric tons of metal or mineral content per year.
t

f
b

t

n

It is noteworthy to compare the HHI values between the upstream
nd midstream stages.11 Taking copper and tin as examples, the con-

centration of production at the extraction stage has been decreasing
or over 15 years, while the concentration at the refining stage is

increasing. This dynamic is primarily driven by China’s growth in the
refining sector, even though China’s tin extraction is declining. Regard-
ng cobalt, both the extraction and refining HHIs show a comparable
ncreasing trend, but the primary producer differs. The DRC domi-
ates cobalt extraction, while China refines over 76% of global cobalt
roduction in 2021. This reflects China’s determination to secure its
upplies and assert its hegemony in the global resources market. It also
nderscores its aim to move up the value chain and capture additional
alue downstream from ore, a sentiment echoed by many resource-
roducing countries. Notably, many countries have begun to restrict
he export of unprocessed minerals. Indonesia banned the export of
aw nickel ore in 2020 and has been followed by several lithium-
ich African countries, including Ghana, Namibia, and Zimbabwe. The
rimary goal of these nations is to encourage investments in on-site ore
rocessing, with a long-term objective of developing batteries within
heir territories. The Chinese dominance in the permanent magnet mar-
et is a successful example of value chain ascent, spanning from mining
o the development of final technology. In his work, Pitron (2018)
escribes the Chinese strategy, starting with establishing a dominant

position in rare earth mining and refining, and later assimilating foreign
xpertise in permanent magnet production.

2.3. Concentration as a function of total production

When examining the relationship between mining production con-
centration and total raw material production within the panel, we
observe a negative relationship in the pooled regression. This implies
hat as the total quantity of mined mineral increases, its production

concentration decreases. This initial finding suggests that metals or
inerals produced in larger quantities tend to be shared among a

reater number of actors. However, when we consider the individuality

11 Given the proximity of HHI values between smelting and refining data,
e can combine these two categories in the analysis. Although there is a slight
ifference for copper and tin, where the refining data accounts for secondary
roduction, this has a negligible impact on the overall HHI.
9 
of each metal and conduct a within-panel regression, the coefficient of
regression between HHI and global production is positive (Fig. 6). This
aligns with the earlier qualitative analysis, where we observed that the
HHI of metals and minerals extraction generally shows a growing trend
over time, while the production of metals and minerals also generally
increases through time. As a result, we would expect to find a positive
relationship between HHI and production.12

3. Data and methodology

Our analysis focuses on evaluating the HHI of a country’s production
concentration as a reliable indicator for measuring supply risk, specif-
ically in distinguishing between different materials. Furthermore, we
aim to analyze the presence of a distinct threshold in the HHI values
for assigning the criticality of particular metals. Based on the hypothesis
hat metal prices can indicate to some degree their criticality (Gleich

et al., 2013; Stepanek et al., 2013), we rely on a panel regression anal-
ysis to examine the impact of HHI on metal prices. The use of a panel
data framework provides the significant advantage of working with
a sizable dataset, thereby enhancing the statistical robustness of our
indings. Furthermore, it is necessary to rely on a panel data approach
ecause using a single metal’s HHI values over time is insufficient for

determining a consistent threshold due to their limited variability.

3.1. Data

Our dependent variable is the annual price of metals. Metal prices
are measured in US dollars per metric ton and have been sourced from
he USGS.13 Note that the prices reflect rates in the United States,

serving as a representative estimate for the average cost of these raw
materials in the country. As stated in the IRENA report (IRENA, 2023),
ot all metals and minerals have a fully global market presence. Never-

theless, after thoroughly comparing the USGS-derived prices with metal
market rates obtained from alternative sources, a remarkable level of

12 In this analysis, we have excluded chromium from our panel due to data
inconsistency, as its production data is expressed in gross weight rather than
element content. To ensure consistency, we have retained only elements with
production data expressed in element content.

13 Data sources for all series are provided in Appendix D (Table 12).
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similarity is observed. The differences between these price series, on a
edian basis, tend to hover around a modest 3%, and their variations

xhibit an even narrower median difference of approximately 0.3%.
etailed statistics are available in Appendix B (Table 10). Based on

his empirical evidence, it is reasonable to consider the metal prices
under examination as indicative of global market prices. However, this
assumption cannot be uniformly applied to minerals such as salt, talc,
and asbestos due to the lack of comprehensive global price data. Conse-
quently, minerals have been excluded from the subsequent econometric
analysis. This choice can also be justified by the fact that metals are
more relevant than minerals in low-carbon technologies which deserve
particular attention.14 Overall, our (unbalanced) panel is composed
f 33 metals over the 1995–2021 period, corresponding to a total of
21 observations (see the list and descriptive statistics in Appendix C

- Table 11). Following the common practice in the literature that
examines commodity prices (Akram, 2009; Issler et al., 2014; Rubaszek
et al., 2020), the metal prices have been transformed into real prices
by deflating them by the US consumer price index (CPI).

The explanatory variable is the country HHI computed at the mine
roduction level, presented in detail in the previous section.

Turning to the control variables, we use the five variables most
ound in the literature that investigates the dynamics of metal prices
nd, more generally, commodity prices. First, we consider the real
rice of Brent crude oil, which exerts its influence on metal prices
hrough two primary channels.15 On the one hand, oil can be regarded

as a proxy for global economic growth, thus impacting metal prices
through its effect on demand. This relationship is supported by the
literature, which indicates that commodities used as inputs in the
production process typically escalate during periods of strong global
economic activity (Erten and Ocampo, 2013). This is notably the case
or metals used in sectors such as manufacturing, transportation, and
nergy. On the other hand, the extraction and refining processes of
etals require a significant amount of energy, predominantly derived

rom fossil fuels. In the literature, this energy demand is estimated to
account for 5% to 10% of the global primary energy supply (Aramendia
et al., 2023). Therefore, fluctuations in oil prices have an impact on the
production costs of metals, creating potential cost-push effects on metal
prices (Akram, 2009; Lombardi et al., 2012).

Second, fluctuations in the US dollar can also act as a driver of metal
rices. Since metals are commonly traded in US dollars, a depreciation
f the US currency leads to a lower price for importers. Consequently,
mporters’ demand for metals increases, ultimately resulting in higher
rices. Conversely, when the US dollar appreciates, it becomes costlier
or importers to purchase metals, leading to potentially reduced de-
and and lower commodity prices (Akram, 2009). We use the broad
S dollar real effective exchange rate from the FRED database.

Third, metals and minerals are fundamental inputs in industrial
roduction. For instance, strategic metals like cobalt, lithium, and REE
re essential for producing electronics, vehicles, and renewable energy
echnologies. As previously mentioned, the rise in industrial production
elated to renewable energy infrastructure and electric vehicles has
trongly intensified demand for critical metals. Therefore, an increase
n industrial production triggers higher consumption of metals and
inerals, which, in turn, has an impact on their prices. To capture this

relationship as an explanatory variable, we rely on US real manufac-
turing and trade industries sales, which measures the combined value
of the manufacturing, wholesale trade and retail trade industries. This

14 Additionally, none of the parameters obtained from the panel regression
exclusively conducted on mineral data attains statistical significance.

15 The Brent crude oil price benchmark was chosen over the WTI because
t is the world’s most important crude oil benchmark, responsible for pricing
early 70% of globally traded crude oil (Imsirovic and Chapman, 2022). As

shown in Appendix G, using WTI leads to similar results, illustrating the
obustness of our findings to the choice of the oil price series.
10 
is an indicator of whether production is increasing or decreasing, thus
providing insights into the evolution of global economic activity and,
in turn, the demand for strategic metals.16

Fourth, mineral and metal prices can also be influenced by short-
erm interest rates. Frankel (2008) presents the theoretical link between
nterest rates and commodity prices, demonstrating a negative rela-
ionship between them. This negative correlation can be attributed to
everal factors. Firstly, interest rates influence metal markets through

investment dynamics. A lower interest rate encourages a shift in in-
estments from financial markets to commodity assets as it reduces

the opportunity cost of holding non-yielding assets like metals. Then,
it increases the incentive to hold inventories due to reduced carrying
osts and diminishing the motivation for early extraction of exhaustible
ommodities. Low interest rates indeed reduce storage costs, increas-
ng stockpiling behavior and stimulating demand for strategic metals.
hese combined effects lead to an increase in metal demand and a
ecrease in metal supply, ultimately resulting in higher commodity
rices. We use the US LIBOR rate as a proxy for the US interest rate, as
n Akram (2009).

Fifth, the influence of uncertainty on metal prices has been widely
explored in the literature. Uncertainty can impact metal prices by
amplifying the effects of an economic recession, as global economic
rowth is a key driver of commodity prices. Moreover, heightened
ncertainty may induce increased risk aversion among investors, lead-
ng to a rise in the desired risk premium, subsequently hampering

investment prospects (Byrne et al., 2013; Chen et al., 2022). Investors
ay shift from industrial metals to safer assets, lowering demand for

trategic materials. As geopolitical events tend to generate uncertainty,
hey can create supply chain shocks for metals, leading to price volatil-
ty. The volatility index (VIX) traded in the Chicago Board Options
xchange can be used to proxy uncertainty, as a measure of the implied
olatility of S&P 500 index options and reflects the uncertainty of the
tock market.

Finally, the ore concentration is often cited as one of the primary
factors influencing production costs, which, in turn, can ultimately
impact metal prices. However, several studies have shown that there is
no direct link between resource scarcity and market prices, indicating
that current market prices are not reliable indicators of resource deple-
tion (Seyhan et al., 2012; Henckens et al., 2016). Vidal (2021) explains
this phenomenon by highlighting that technological innovation has
hus far offset the decline in mineral concentration. As a result, we do
ot consider the concentration of minerals in deposits as an explanatory
ariable in our model.

With the exception of the interest rate, all series are transformed
into first-logarithmic differences to ensure stationarity.17

16 Other variables exist such as the shipping freight cost (Baltic Dry Index).
his index reflects shipping rates for major raw materials, and serves as a

gauge of global demand for minerals and metals, providing insights into the
overall economic activity. Another usual variable is the industrial production
index of OECD, China, Brazil, India, and Russia, measuring the output of
industrial sectors in the respective countries. In the present study, we have
selected the US real manufacturing and trade industries sales as the proxy for
industrial production because it exhibits the highest significance in our model.

17 We used the second-generation unit root test for panel data proposed
by Demetrescu et al. (2006) that allows for cross-dependence across the panel
nits. We applied this test to the price series and HHI series, which are the

only ones that vary according to the 𝑁 individuals of the panel (metals). The
remaining variables depend solely on the time section of the panel. This test
is a modification of Choi’s inverse-normal combination test that can be used
when the 𝑁 p-values are not independent. The results, reported in Appendix E
Table 13, show that the logged price series cannot be considered stationary,
as the test fails to reject the null at a 10% significance level. The outcomes
for the logged HHI series are dependent on the chosen specification, yet the
test never displays significance at the 5% level.
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3.2. Panel regressions

To address our research questions, we consider four panel regression
odels:

Model 1
𝛥 ln 𝑝𝑟𝑖𝑐 𝑒𝑖,𝑡 = 𝛼𝑖 + 𝛽1 𝛥 lnHHI𝑖,𝑡+

𝛽2 𝛥 ln 𝑜𝑖𝑙𝑡 + 𝛽3 𝛥 ln 𝑒𝑟𝑡 + 𝛽4 𝑖𝑟𝑡 + 𝛽5 𝛥 ln 𝑣𝑖𝑥𝑡 + 𝛽6 𝛥 ln 𝑖𝑠𝑡 + 𝜖𝑖,𝑡

(1)
Model 2

𝛥 ln 𝑝𝑟𝑖𝑐 𝑒𝑖,𝑡 = 𝛼𝑖 + 𝛽11 𝛥 lnHHI𝑖,𝑡 + 𝛽12 IHHI𝑖,𝑡+

𝛽13 𝛥 lnHHI𝑖,𝑡 ∗ IHHI𝑖,𝑡+

𝛽2 𝛥 ln 𝑜𝑖𝑙𝑡 + 𝛽3 𝛥 ln 𝑒𝑟𝑡 + 𝛽4 𝑖𝑟𝑡 + 𝛽5 𝛥 ln 𝑣𝑖𝑥𝑡 + 𝛽6 𝛥 ln 𝑖𝑠𝑡 + 𝜖𝑖,𝑡

(2)
Model 3

𝛥 ln 𝑝𝑟𝑖𝑐 𝑒𝑖,𝑡 = 𝛼𝑖 + 𝛽11 𝛥 lnHHI𝑖,𝑡 + 𝛽12 I𝛥 lnHHI𝑖,𝑡+

𝛽13 𝛥 lnHHI𝑖,𝑡 ∗ I𝛥 lnHHI𝑖,𝑡+

𝛽2 𝛥 ln 𝑜𝑖𝑙𝑡 + 𝛽3 𝛥 ln 𝑒𝑟𝑡 + 𝛽4 𝑖𝑟𝑡 + 𝛽5 𝛥 ln 𝑣𝑖𝑥𝑡 + 𝛽6 𝛥 ln 𝑖𝑠𝑡 + 𝜖𝑖,𝑡

(3)
Model 4

𝛥 ln 𝑝𝑟𝑖𝑐 𝑒𝑖,𝑡 = 𝛼𝑖 + 𝛽11 𝛥 lnHHI𝑖,𝑡 + 𝛽121 IHHI𝑖,𝑡 + 𝛽122 I𝛥 lnHHI𝑖,𝑡+

𝛽131 𝛥 lnHHI𝑖,𝑡 ∗ IHHI𝑖,𝑡 + 𝛽132 𝛥 lnHHI𝑖,𝑡 ∗ I𝛥 lnHHI𝑖,𝑡+

𝛽14 𝛥 lnHHI𝑖,𝑡 ∗ IHHI𝑖,𝑡 ∗ I𝛥 lnHHI𝑖,𝑡+

𝛽2 𝛥 ln 𝑜𝑖𝑙𝑡 + 𝛽3 𝛥 ln 𝑒𝑟𝑡 + 𝛽4 𝑖𝑟𝑡 + 𝛽5 𝛥 ln 𝑣𝑖𝑥𝑡 + 𝛽6 𝛥 ln 𝑖𝑠𝑡 + 𝜖𝑖,𝑡

(4)
The variable 𝑝𝑟𝑖𝑐 𝑒𝑖,𝑡 represents the price of metal 𝑖 at time 𝑡, while

HI𝑖,𝑡 denotes the corresponding country HHI computed at the mine
production level. The variables 𝑜𝑖𝑙𝑡, 𝑒𝑟𝑡, 𝑣𝑖𝑥𝑡, 𝑖𝑟𝑡 and 𝑖𝑠𝑡 represent the
oil price, exchange rate, VIX index, interest rate, and industries sales,
respectively, at time 𝑡, all independent of 𝑖. The constant vector 𝛼𝑖
reflects the unobserved effects. The random error terms are denoted
by 𝜖𝑖,𝑡. Model (1) simply examines the effect of a change in HHI on the
metal price. In the other models, two dummy variables are introduced:
IHHI𝑖,𝑡 takes the value of 0 when HHI𝑖,𝑡 is below a certain threshold and
1 otherwise. Similarly, I𝛥 lnHHI𝑖,𝑡 is derived from the absolute value of
𝛥 lnHHI𝑖,𝑡. Mathematically, this is expressed as:

IHHI𝑖,𝑡 =

{

0 if HHI𝑖,𝑡 < 𝑡HHI

1 if HHI𝑖,𝑡 ≥ 𝑡HHI
with 𝑡HHI ∈ [0, 10000] (5)

I𝛥 lnHHI𝑖,𝑡 =

{

0 if |𝛥 lnHHI𝑖,𝑡| < 𝑡𝛥 lnHHI

1 if |𝛥 lnHHI𝑖,𝑡| ≥ 𝑡𝛥 lnHHI
with 𝑡𝛥 lnHHI ∈ [0, 1] (6)

Incorporating these variables into Eqs. (2) to (4) enables differen-
tiation of the effects of an HHI variation on prices based not only on
he HHI level but also on the magnitude of this variation. In Model (2)
e include the interaction dummy variable IHHI𝑖,𝑡 alongside 𝛥 lnHHI𝑖,𝑡,

n order to explore the interplay between the level of the HHI and the
luctuation of the HHI on price changes. Similarly, within Eq. (3), a

corresponding investigation is made by including the dummy variable
I𝛥 lnHHI𝑖,𝑡 . The latter represents the absolute value of the annual HHI
variation and aims to capture the impact of pronounced HHI fluctua-
ions. In Model (4), we take into account the interaction of the three

variables: 𝛥 lnHHI𝑖,𝑡, IHHI𝑖,𝑡 , and I𝛥 lnHHI𝑖,𝑡 , which enables us to examine
how a metal price responds to changes in HHI, considering the extent
of the variation and HHI’s level. This specification outlines four regimes
as detailed in Table 3.

Moreover, the inclusion of the dummy variable IHHI𝑖,𝑡 can provide
vidence of the existence of a threshold within the HHI values. Instead
f arbitrarily fixing a threshold value as in most of the previous liter-
ture, we check all the possible thresholds by performing a loop over
11 
Table 3
Metal price responses to changes in HHI: Metal price fluctuation regimes delineated in

odel (4).
IHHI𝑖,𝑡 HHI level I𝛥 lnHHI𝑖,𝑡 HHI variation Model parameters Regime effect

0 Low 0 Low 𝛽11 𝛽𝑙 𝑜𝑤,𝑙 𝑜𝑤
0 Low 1 High 𝛽11 + 𝛽132 𝛽𝑙 𝑜𝑤,ℎ𝑖𝑔 ℎ
1 High 0 Low 𝛽11 + 𝛽131 𝛽ℎ𝑖𝑔 ℎ,𝑙 𝑜𝑤
1 High 1 High 𝛽11 + 𝛽131 + 𝛽132 + 𝛽14 𝛽ℎ𝑖𝑔 ℎ,ℎ𝑖𝑔 ℎ

Note: Model (4) delineates four regimes based on the levels and variations of HHI.
The effect of HHI variations on prices for each regime is captured by the parameters
f Eq. (4) in the ‘Model parameters’ column. The overall name for these parameters is
rovided in the ‘Regime effect’ column.

the values of the variable 𝑡HHI, ranging from 0 to 10,000. Differences
in the results based on the value of 𝑡HHI could be a positive indication
f a threshold. The chosen value would be the one leading to the
ost empirically significant results. This method leads us to select a

hreshold value equal to 2700. This value corresponds to a market that
s quite highly concentrated, such as those of cobalt and lithium. The
ame method is applied to the dummy variable I𝛥 lnHHI𝑖,𝑡 , resulting in a
alue of 0.1, which corresponds to a 10% change in HHI.18

In this analysis, we did not use a dynamic model because the results
did not show significance when incorporating the lagged endogenous
variable (see Appendix G). Similarly, the outcomes lack significance

hen accounting for the lagged variable of interest (𝛥 lnHHI𝑖,𝑡−1).
owever, the issue of endogeneity is not a substantial concern within

he scope of our econometric model due to several factors. Mining,
he first stage in the value chain of metal production, depends on
xternal factors unrelated to the price of raw materials. These factors
nclude the mining endowment of the producing country and prevailing
nvironmental and social regulations. Moreover, the start of mine
perations is primarily a government decision driven by sovereignty
onsiderations rather than economic concerns. In addition, although
ining investment is highly correlated with metal prices, its effect

n production and, consequently, on the HHI, may take several years
o materialize. According to IEA (2021), the average lead time from

discovery to production is about 17 years. The period from discov-
ery through exploration to feasibility accounts for most of this time,
with the remaining period (construction planning and construction to
production) averaging about 4.5 years.

4. Empirical results, discussion, and policy implications

4.1. Results

Table 4 presents the results of the four regression models consid-
ered, estimated for the thresholds set at 𝑡HHI = 2700 and 𝑡𝛥 lnHHI = 0.1.
Before discussing our main variables of interest, let us briefly comment
on the control variables.

The significant and positive correlation between oil and metal
rices underscores the cost-driven nature of the extraction and refining

processes—a result that acts in favor of the transition towards renew-
ble energy within mining operations to mitigate cost volatility. As

expected, the positive link between industrial production and metal
rices confirms the strategic importance of these materials in global
conomic activity, particularly in growth sectors like renewable en-
rgy and electric vehicles. Exchange rate fluctuations also appear as
ignificant drivers of metal prices, pointing to the interconnectedness
f global trade and—to a lesser extent—financial systems with metal
arkets.

18 Although the Panel Smooth Regression Model specification would have
been an interesting alternative approach at a first sight, it cannot be
implemented in our context as demonstrated in Appendix H.
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Table 4
Estimation results of fixed-effects regressions: Impact of concentration and control
variables on metal prices.

Model 1 Model 2 Model 3 Model 4
𝛥 lnHHI𝑖,𝑡 −0.04 0.04 −0.38 −0.75**

(0.09) (0.12) (0.24) (0.31)
𝛥 ln 𝑜𝑖𝑙𝑡 0.14** 0.14** 0.14** 0.14**

(0.07) (0.07) (0.06) (0.06)
𝛥 ln 𝑒𝑟𝑡 −1.70*** −1.70*** −1.69*** −1.71***

(0.35) (0.36) (0.35) (0.36)
𝛥 ln 𝑖𝑠 0.89*** 0.88*** 0.89*** 0.88***

(0.31) (0.32) (0.31) (0.31)
𝛥 ln 𝑣𝑖𝑥𝑡 0.02 0.01 0.02 0.02

(0.04) (0.04) (0.04) (0.04)
𝑖𝑟𝑡 −0.00 −0.00 −0.00 −0.00

(0.01) (0.01) (0.01) (0.01)
IHHI𝑖,𝑡 −0.01 −0.00

(0.03) (0.04)
𝛥 lnHHI𝑖,𝑡 ∗ IHHI𝑖,𝑡 −0.12 0.70

(0.18) (0.48)
I𝛥 lnHHI𝑖,𝑡 −0.03 −0.01

(0.02) (0.04)
𝛥 lnHHI𝑖,𝑡 ∗ I𝛥 lnHHI𝑖,𝑡 0.41 0.95***

(0.26) (0.34)
IHHI𝑖,𝑡 ∗ I𝛥 lnHHI𝑖,𝑡 −0.02

(0.05)
𝛥 lnHHI𝑖,𝑡 ∗ IHHI𝑖,𝑡 ∗ I𝛥 lnHHI𝑖,𝑡 −0.96*

(0.52)

Num. obs. 821 821 821 821

Note: The dependent variable is the log differentiated prices of metals 𝛥 ln 𝑝𝑟𝑖𝑐 𝑒. The
variables 𝛥 ln 𝑜𝑖𝑙, 𝛥 ln 𝑒𝑟, 𝛥 ln 𝑣𝑖𝑥, and 𝛥 ln 𝑖𝑠 denote the variation rate of oil price,
exchange rate, VIX index, and Industries sales, respectively. 𝑖𝑟 denotes the US interest
rate. 𝛥 lnHHI is the variation rate of the country metal production concentration
and IHHI and I𝛥 lnHHI are the dummy variables computed for the threshold values of
𝑡HHI = 2700 and 𝑡𝛥 lnHHI = 0.1. These thresholds are chosen according to the methodology
presented in the previous section, and the decision relies on the results presented
in Appendix F. To provide consistent results, we apply the Newey and West robust
ovariance estimators, the corresponding standard errors are in parentheses.

* 𝑝 < 0.1.
** 𝑝 < 0.05.
*** 𝑝 < 0.01.

In the first panel regression model, the HHI has no impact on price
ynamics. This is also the case in Models (2) and (3). Furthermore,
he interaction terms in both models are not significant; a result which

remains consistent regardless of the considered threshold (see Figs. 7
and 8 in Appendix F).19 The most interesting findings concern Model
(4). Indeed, the parameters associated with 𝛥 lnHHI𝑖,𝑡, 𝛥 lnHHI𝑖,𝑡 ∗
𝛥 lnHHI𝑖,𝑡 , and 𝛥 lnHHI𝑖,𝑡 ∗ IHHI𝑖,𝑡 ∗ I𝛥 lnHHI𝑖,𝑡 are statistically significant at
onventional confidence levels. Based on this finding, to examine the

impact of metal production concentration on their prices, it is essential
to consider both the HHI level and the extent of HHI variation. In
this context, the estimated value of the parameter 𝛽11 related to the
variable 𝛥 lnHHI𝑖,𝑡 is negative (−0.75). This implies that for HHI values
below 2700 and for HHI fluctuations below 10%, HHI fluctuations
and commodity price fluctuations have an inverse relationship. The
stimated parameter value associated with the interaction variable
𝛥 lnHHI𝑖,𝑡 ∗ I𝛥 lnHHI𝑖,𝑡 is positive and greater than the absolute value
of the preceding parameter (𝛽11 + 𝛽132 = 0.2). This suggests that when
the HHI is below 2700 and the HHI variation is above 10%, the HHI
variation has a positive effect on price variation. The estimated param-
eter value associated with the interaction variable 𝛥 lnHHI𝑖,𝑡 ∗ IHHI𝑖,𝑡 is
also positive but lower than the absolute value of the first parameter
(𝛽11 + 𝛽131 = −0.05). However, it is not statistically significant at
conventional confidence levels (𝑝𝑣𝑎𝑙 𝑢𝑒 = 14%). Finally, the parameter

19 We obtain the same results (available upon request to the authors)
when testing homogeneity against the Panel Smooth Transition Regression
alternative.
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Table 5
Impact of HHI fluctuations on metal prices by HHI level and variation magnitude.

HHI level low Low High High
HHI variation Low High Low High
parameter 𝛽𝑙 𝑜𝑤,𝑙 𝑜𝑤 𝛽𝑙 𝑜𝑤,ℎ𝑖𝑔 ℎ 𝛽ℎ𝑖𝑔 ℎ,𝑙 𝑜𝑤 𝛽ℎ𝑖𝑔 ℎ,ℎ𝑖𝑔 ℎ
effect on price −0.75 0.2 −0.05 −0.06

Note: This table summarizes the results of Model (4), with 𝑡HHI = 2700 and 𝑡𝛥 lnHHI = 0.1.

linked to the variable 𝛥 lnHHI𝑖,𝑡 ∗ IHHI𝑖,𝑡 ∗ I𝛥 lnHHI𝑖,𝑡 is significant and the
verall effect of HHI variation when the HHI is above 2700 and the HHI
ariation exceeds 10% is captured by : 𝛽11 + 𝛽131 + 𝛽132 + 𝛽14 = −0.06.
herefore, in that case, the HHI variation has a negative impact on price

variation. Additionally, we observe that the effect of HHI on prices is
ore pronounced for lower HHI levels, where a 1-point HHI variation

esults in a price change of either 0.2 points or 0.75 points, depending
n the magnitude of the variation.

Table 5 summarizes our main findings. For relatively low concentra-
tions of mining production (HHI below 2700) and modest concentration
ariations (<10%), an increase in HHI generally leads to a downward

effect on prices. However, when the HHI is low (<2700) and concen-
tration variation is large (>10%), the effect is reversed and a rise in
HHI tends to increase commodity prices. Finally, when both the HHI
level and the HHI variation are high, a negative coefficient is observed,
indicating that a decrease in HHI leads to higher prices.20

4.2. Discussion and policy implications

We have shown that the effect of HHI variation on metal prices
depends on the magnitude of the HHI change, irrespective of whether

e examine high or low HHI values. If metal production is diversified, a
mall change in HHI (less than 10%) will negatively impact prices. This
an be illustrated by commodities characterized by low HHI values and
igh prices, such as precious metals, where a price increase induces
ven small producers (e.g., gold) to augment production, leading to
 reduction in HHI. This can be attributed to increased competition
mong diverse producers, where even small changes in production
oncentration significantly influence market dynamics. For example, a
light reduction in supply diversity due to geopolitical tensions or pro-
uction constraints can generate price spikes, as in the cobalt market
uring times of heightened demand for batteries used in electronic de-
ices (smartphones, laptops) or for heat-resistant alloys for aerospace,
edical applications, and the chemical industry. In cases of larger HHI

ariations, the inverse effect is observed.
Within the scope of our analysis, the dummy variable I𝛥 lnHHI𝑖,𝑡

an be considered a proxy for disturbances or shocks to material
roduction. A minor fluctuation in HHI indicates the absence of market
isruption, while a substantial fluctuation signifies market disturbance.
 significant HHI shift can be traced back to a sudden drop in major
roducers’ production or a decline in output from smaller producers,
hich magnifies the dominance of the leading producer. This variable
llows us to account for the vulnerability of metal markets to external

shocks—such as disruptions caused by resource nationalism or export
bans (e.g., Indonesia’s nickel ore export ban)—which amplify insta-
bility in relatively diversified markets. More specifically, among the
six geopolitical risks to the supply of materials listed by IRENA, five
have the potential to cause production disruptions that could impact
HHI. These risks include resource nationalism, mineral cartels, political
instability and social unrest, export restrictions, as well as external

20 These results hold for other HHI threshold values (see Figs. 9 to 12). The
threshold 2700 was chosen as it is the value that gives the most empirically
significant results.
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shocks (IRENA, 2023).21 Consequently, our findings indicate that a
disruption in markets with lower concentration positively affects prices
but has a negative effect in markets with higher concentration. This lat-
ter phenomenon can be illustrated by cases such as antimony and REEs,
where a significant decline in HHI can be attributed to a reduction
in production by the dominant producer, leading to shortages in the
market. Under the assumption that a major commodity producer can
more easily reduce the HHI in the short term by lowering production
than increase it, market participants may view a negative impact as
riskier. This is due to the potential increase in prices resulting from
the decisions of a few key players which underscores the rationale for
avoiding excessively concentrated commodity markets.

Nonetheless, disruption has a four-fold greater impact in less con-
centrated markets compared to their more concentrated counterparts
in absolute terms. This apparently paradoxical result can be explained
by the stabilizing effect on prices provided by cartels’ market power.

As previously mentioned, redundancy is widely acknowledged as a
key factor in enhancing the resilience of networks, including trade sys-
tems (Kharrazi et al., 2020). By diversifying supply chains, redundancy
reduces vulnerability to disruptions in contexts where multiple produc-
ers face varying shocks (Sprecher et al., 2015). It also ensures a more
competitive and resilient pricing structure under normal conditions.

his has implications for policy advocating for diversification of supply
ources, particularly for critical raw materials essential to renewable
nergy technologies. However, in the case of metals, we show that
educed redundancy—reflected in higher production concentration—
an have a stabilizing effect on prices. By consolidating control over
roduction and pricing, entities such as cartels can help mitigate price

volatility, thereby reducing the supply risks associated with market
fluctuations. Importantly, price stabilization is key for advancing the
energy transition (Balcılar et al., 2019). Stable commodity prices pro-
vide a more predictable environment for planning and investment in
renewable energy technologies, which are highly sensitive to market
uncertainties. A notable example is Indonesia, a leading producer of tin,
which in 2013 established the Indonesia Commodity and Derivatives
Exchange with the aim of stabilizing tin prices (Pitron, 2018).

A comparable situation can be observed for other raw materials like
oil, where OPEC strives to maintain prices at a fair level, a phenomenon
highlighted in the literature (Brémond et al., 2012; Pescatori and Nazer,
2022). The role of OPEC in stabilizing oil prices mirrors the ability
of major metal producers, such as China for REE, to influence global
pricing. However, this stability may come at the cost of increased
eopolitical risks and potential supply vulnerabilities, as disruptions to
 key supplier can have outsized impacts on the market.

Overall, our findings challenge the conventional assumption that
arket disruptions have a greater impact on prices for metals whose

production is highly concentrated. Furthermore, our analysis indicates
the absence of a clear threshold to differentiate high-risk metals from
ower-risk ones based solely on production concentration levels. This
aises questions about the reliability of concentration-based metrics,
uch as the HHI, in criticality assessments, particularly when rigid
hresholds are applied, as it may lead to underestimating risks in less
oncentrated markets. In addition, our results underscore the key role
layed by fluctuations in concentration production as an indicator
f supply disruption. While most criticality assessment methodologies
mphasize the absolute level of concentration, the potential for changes
n concentration requires greater attention. This perspective aligns with
indings by Nocke and Whinston (2022) in the context of mergers

analysis and extends them to the domain of metal criticality.
Our study highlights the critical need for careful monitoring of

metal supply chains, even those that appear diversified. Particular

21 The final risk type is market manipulation, which refers to phenomena
ike short squeezing, market cornering, spoofing, and insider trading. However,

these risks do not affect production and are thus not accounted for in our
models.
 g
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attention should be paid to potential changes in production concen-
tration, which can arise from various factors. One such factor is the
geographic clustering of mines. For instance, the ‘‘Lithium Triangle’’, a
region spanning Argentina, Chile, and Bolivia, hosts numerous lithium
mines across different countries, contributing to the diversification
of global lithium production. However, this geographic proximity ex-
poses these operations to shared risks, such as climate-related events
(e.g., droughts). Such simultaneous disruptions could significantly re-
duce production in all three countries,22 further consolidating Aus-
tralia’s dominant position as a global lithium supplier. Another factor to
consider when assessing the potential for changes in production concen-
tration is the number of different host metals associated with a metal
hat has a high degree of companionality.23 Metals with a single host

metal are particularly vulnerable to supply disruptions affecting that
pecific host. For example, germanium, which is almost exclusively a

co-product of zinc, faces heightened supply risks due to its dependency
on a single host. In contrast, metals like silver, which are co-products of
multiple host metals (e.g., copper, gold, lead, and zinc), benefit from
a more diversified production base. This diversification decreases the
likelihood of significant changes in production concentration. These
two factors—geographic clustering and companionality—illustrate the
complexities involved in understanding supply risks. However, they
represent only a subset of the variables that can influence production
concentration.

A more detailed and context-specific analysis could reveal addi-
ional insights, enabling stakeholders to better anticipate changes in

production dynamics and identify which metals require closer moni-
toring. Such an analysis would be helpful in drawing tailored policy
recommendations aiming at reducing dependency on a few dominant
suppliers and enhancing supply chain resilience among the various
strategies and trade policies that can be followed: (i) developing domes-
ic mining capabilities through policies including financial incentives
or mining, (ii) promoting partnerships with emerging suppliers by es-
ablishing agreements with resource-rich regions such as Africa, South
sia, and Latin America, (iii) facilitating cross-border resource-sharing
greements to reduce over-reliance on specific regions, (iv) encourag-
ng the development of recycling technologies for metals like cobalt,
ithium, and REE, (v) supporting exploration and processing capacity in
iverse regions to decentralize the production chain, and (vi) constitut-
ng and maintaining strategic stockpiles that can serve as buffers during
upply shocks, price spikes or geopolitical tensions. These examples
f policy recommendations aim to lower the potential risk of supply
isruption, but also to balance immediate supply chain resilience with
ong-term sustainability, ensuring that critical materials are available
o meet the growing demands of the energy transition and associated
reen technologies.

4.3. Beyond the HHI

As previously discussed, the HHI calculated at the country produc-
tion level remains the most widely used metric to evaluate the supply
isk component of criticality. However, ongoing research aims to refine
his indicator by incorporating complementary metrics to better capture
he complexities of supply risk. One key refinement involves enhancing
he geopolitical relevance of the production concentration indicator
y incorporating the political and economic stability of producing
ountries. This adjustment is often implemented by weighting the HHI

with the World Bank’s Worldwide Governance Indicators (WGI), based
on the premise that a higher production share in politically unstable
countries increases geopolitical risk. This approach has been adopted

22 Currently, Bolivia’s lithium production remains very limited.
23 The degree of companionality is defined as ‘‘the degree to which a metal

is obtained largely or entirely as a by-product of one or more host metals from
eologic ores’’ (Nassar et al., 2015).
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by the European Commission in its criticality assessments (European
Commission, 2010) and is integrated into the methodology developed
by Graedel et al. (2012). However, the concept of political stability
remains ambiguous and subject to various biases, as the correlation
between governance quality and political stability is neither strictly
linear nor universally consistent. Furthermore, the causal relationship
between political instability and supply risks warrants further empirical
study. To better integrate geopolitical risk, some studies propose con-
sidering the political and strategic interactions among market actors.
For example, Hache et al. (2019) suggest using a net export dependency
index for producers to complement traditional market concentration
metrics or net import dependency indices for consumers. Complemen-
ary indicators, such as material substitutability and recyclability rates,
re also employed to account for potential supply offsets (European

Commission, 2010). Helbig et al. (2016) extended this framework by
ncorporating the domestic production capacity of importing countries,
mphasizing its importance in mitigating supply disruptions—an im-
rovement later adopted by the European Commission in its 2017
riticality assessment.

Alternative approaches to measuring concentration along the value
chain of metals have also been proposed, leading to results that some-
times differ from those presented in this paper. Gemechu et al. (2016),
for instance, suggest computing the HHI based on the share of each
producer country in an importing country’s total imports rather than
global production. Another approach considers corporate concentra-
tion, which generally compounds the geographical concentration of
production (IRENA, 2023). Faubert et al. (2024) explore the capital
ownership structures of leading publicly traded companies engaged
in critical raw material extraction, measuring the geographical dis-
tribution of shareholders. Their resulting concentration index reveals
differences compared to our findings for certain metals, including
cobalt and lithium.

Despite these developments, more sophisticated approaches face
challenges related to data availability, which limits the broader applica-
tion of such indicators (European Commission, 2010). Data availability
remains a fundamental issue in criticality assessments, as it directly
impacts the comparability of analyses across different metals. Other
indicators, like the convenience yield of commodity futures, have also
been tested as proxies for commodity availability to measure supply
isk (Stepanek et al., 2013). However, this approach is constrained by
he fact that not all metals have sufficiently liquid futures markets to
erive meaningful convenience yields.

Such methodological gaps in the measurement of supply risk re-
lect broader critiques of the criticality concept itself. Criticality is
nherently context-dependent, varying across geographic regions and
ntities, and evolving with technological advancements and geopoliti-
al shifts. As Eggert (2011) aptly observes, ‘‘criticality is in the eye of

the beholder.’’
These methodological uncertainties underline why no singular

framework can adequately address all supply security challenges, ne-
cessitating the adoption of diverse and complementary policy ap-
proaches for securing critical raw materials. The strategies imple-
mented in the United States, Europe, and key producer nations such as
Australia and Canada reflect a growing international recognition of the
pivotal role strategic metals play in global technological competition.
According to the IEA, more than 230 regulations concerning critical
materials have been enacted across nearly 25 countries or regions, with
nearly half introduced in recent years. These measures encompass a
broad range of aforementioned policies, including the establishment
of critical material lists, the introduction of updated mining laws, and
nitiatives aimed at fostering the development of domestic resources.
dditionally, they include efforts to forge new international collabo-
ations, enforce stricter environmental standards for mining, and, in
ome instances, create or expand strategic material stocks to enhance
ndustrial resilience against external disruptions.
14 
5. Conclusion

The Herfindahl–Hirschman Index applied to world production of
 given commodity by country is a fundamental component of most
aw material criticality assessments. This operates on the premise
hat analyzing mineral supply concentration is crucial since increased
oncentration heightens the potential risk of supply disruption.

In the present paper, we rely on a large panel of 33 metals to
nalyze the influence of HHI on market prices. Interestingly, our results
hallenge the commonly held assumption since they indicate that the
ariation of HHI has more impact on prices at lower HHI levels. Fur-
hermore, our findings question the existence of a threshold that clearly
istinguishes high-risk markets from less risky ones based on their
oncentration levels. Hence, using the HHI as a supply risk indicator, es-
ecially in conjunction with a threshold, may result in underestimating
isks in less concentrated markets. Additionally, our paper highlights
he importance of assessing the potential for fluctuations in production
oncentration, since it directly influences the impact of HHI on prices.
his variable, which poses a challenge to measurement, has yet to be

ncluded in studies on criticality.
Our results are relevant for policymakers and industry leaders as

scrutinizing the variation in HHI may help them identify markets where
intervention is necessary, anticipate price and supply risks in markets
undergoing structural changes, and implement strategies tailored to the
degree and nature of concentration and market stability. Our paper can
be extended in several ways. First, it would be relevant to weight the
HHI measured at the country level by the country’s level of governance,
to account for institutional quality considerations. Second, our study
does not consider the recycling of metals, as it assesses concentration
at the mining level. Although recycling rates for many metals are still
low, recycling has the potential to significantly affect the concentration
of metal production (at the refining stage) and provide a measure
of sovereignty over these materials for countries without significant
mining resources. Therefore, it would be instructive to replicate our
study with HHI values calculated at the refining stage, allowing for
the inclusion of recycling data when assessing the impact of concen-
tration on commodity prices. Third, since all world production may
not be available for consumption by any country (Thomas et al.,
2022), it would be interesting to consider market availability instead
of production concentration as a measure of supply diversity. Finally,
cknowledging that criticality is a complex notion that cannot be
ully captured by prices, using multi-dimensional models that account
or the supply-risk dimension, environmental and social factors, and
eopolitical risks, would be a promising extension to provide valuable
ools for policymakers and stakeholders in resource management in the

context of the energy transition and sustainable development. These
avenues are left for future research.
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Appendix A. HHI calculation

A.1. USGS ‘other country’ category

In the USGS reporting, for some raw materials, minor producers are
aggregated into the ‘Other Country’ category, resulting in a combined
production denoted as 𝑝 . In this case, we assume that each country
𝑜𝑡ℎ𝑒𝑟
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Table 6
Comparison of HHI statistics: Impact of HHI adjustment for minor producers.

HHI Adjustment HHI wo Adjustment HHI w Adjustment HHI Adjustment %
mean 11.223 3075.467 3086.690 7.520
std 29.076 2152.209 2146.427 2.119
min 0.000 497.691 517.388 0
25% 0.015 1518.263 1530.770 0.003
50% 1.348 2382.732 2391.428 0.048
75% 7.828 3917.357 3917.382 0.440
max 321.394 9776.956 9776.962 22.022

Note: (i) HHI wo Adjustment represents the calculation excluding the ‘Other Country’ category, (ii) HHI w Adjustment is the total HHI after
including the fictitious country adjustment (sum of HHI wo Adjustment and HHI Adjustment), (iii) HHI Adjustment % indicates the contribution
of the fictitious country adjustment to the overall HHI.
o
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p
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s

Table 7
Relative differences between USGS and BGS data with and without HHI adjustment.

Relative difference wo
Adjustment

Relative difference w
Adjustment

mean 10.179 9.657
std 11.739 11.277
min 0.017 0.012
25% 2.609 2.424
50% 6.637 6.022
75% 13.883 13.277
max 143.370 142.242

Note: The ‘Relative difference’ refers to the percentage difference between USGS and
BGS data, calculated with and without the HHI Adjustment. Lower relative differences
indicate better alignment and comparability between the datasets when the HHI

djustment is considered.

within the ‘Other Country’ category produces less than the country with
he lowest production (𝑝𝑚𝑖𝑛) among the available data. To account for
his, we introduce 𝑛 fictitious countries, each hypothetically producing
𝑝𝑚𝑖𝑛
2 of the commodity. The value of 𝑛 is determined as the floor of

the ratio 𝑝𝑜𝑡ℎ𝑒𝑟∕ 𝑝𝑚𝑖𝑛
2 . Employing the previously mentioned formula, we

calculate what we refer to as the ‘HHI Fictitious Country Adjustment’.
The ‘HHI Fictitious Country Adjustment’ has a minimal effect on

he overall HHI calculation, with an average adjustment value of 11.2
nd a standard deviation of 29 observed across all materials and
hroughout the entire period (Table 6). Despite its seemingly negligible
mpact, the adjustment retains importance, particularly for certain
etals. Specifically, in cases where the ‘Other Country’ category sig-

nificantly contributes to the total production, the fictitious country
adjustment can have a more notable influence on the HHI calcula-
ion. Accurately accounting for these smaller producers through the
ntroduction of fictitious countries becomes essential to preserve the
ntegrity of the HHI analysis and ensure a comprehensive representa-
ion of market concentration. Moreover, in the case of comparable data
etween the USGS and the BGS, the relative difference between the
atasets is observed to be lower when considering the inclusion of the

HHI Fictitious Country Adjustment’, as depicted in Table 7.
This suggests that accounting for the fictitious country addition in

the HHI calculation leads to a reduced disparity between USGS and BGS
data, enhancing the comparability and alignment of their results. In this
paper, we will refer to the Herfindahl–Hirschman Index calculation that
incorporates the ‘HHI Fictitious Country Adjustment’ simply as HHI.

A.2. Final data

In total, we obtained HHI data for 63 metals and minerals at various
tages of their value chain. Most of these data points represent market
oncentration at the extraction level, but for certain metals, we also
ave data on concentration at the refining or smelting stages. By
onsidering both the raw material and the stage of the value chain, we
ave a total of 69 HHI series. The distribution of these values between

Table 8.
ur two sources is shown in
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Table 8
Data source by material and stage in the supply chain.

Stage USGS BGS

Mine REE, antimony, asbestos,
barite, bauxite, bentonite,
beryllium, boron, chromium,
cobalt, copper, diatomite,
feldspar, fluorspar gallium
gold, graphite, gypsum, iron,
lead, lithium, magnesite,
magnesium, manganese,
mercury, molybdenum,
nickel, niobium, palladium,
perlite, phosphate-rock,
platinum, potash, rhenium,
salt, silicon, silver,
strontium, sulfur, talc,
tantalum, tin, titanium,
tungsten, vanadium,
vermiculite, yttrium, zinc.

arsenic, bentonite,
gallium, germanium
kaolin sillimanite,
uranium, wollastonite
zirconium.

Smelting aluminum, copper, tin.

Refinery cadmium, indium, tellurium. alumina, cobalt,
copper, lead, nickel,
selenium, tellurium.

Note: Metals such as bentonite, gallium, and tellurium, appear in both the ‘USGS’ and
‘BGS’ columns due to the data collection process. For some years, BGS data were used
when USGS data were either unavailable or considered unreliable.

Table 9
Differences in HHI values obtained from (i) USGS and BGS data and (ii) World
Mining Data (WMD) data (2013–2021).

Relative difference Relative difference abs

mean −0.019 0.111
std 0.184 0.148
min −1.098 0
25% −0.064 0.024
50% 0.004 0.065
75% 0.067 0.136
max 0.344 1.098

Note: The ‘Relative difference’ represents the percentage difference between the
final dataset and WMD data.

A.3. Robustness checks

The calculations conducted in Table 7 serve as a preliminary assess-
ment of the robustness of the obtained results by comparing the HHIs
btained from the USGS and BGS sources. Additionally, a third source,

the World Mining Data (WMD), an annual publication of the Federal
inistry Republic of Austria, is used. This publication reports the

roductions of 65 minerals and computes the HHI values between 2013
nd 2021, utilizing data from various sources, including the USGS. We
nalyze the difference between the HHIs obtained solely from USGS
nd BGS data and those from WMD over this period. On average, the
ifference is approximately 10%, indicating that the calculations based
olely on USGS or BGS data are relatively reliable (Table 9).
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Table 10
Metal price differences: USGS data compared to alternative data sources.

Metal Source 𝑝𝑟𝑖𝑐 𝑒 diff 𝛥 ln 𝑝𝑟𝑖𝑐 𝑒 diff

REE Dysprosium Metal Dy/ TREM=99% Dom. - SMM −0.303 0.014
aluminum Aluminum 99.7% Cash U$/MT - LME 0.084 0.090
antimony Antimony 99.65% CIF NWE U$/MT- Refinitiv 0.046 0.008
arsenic Arsenic Metal =99.5% Domestic – SMM 0.168 0.349
bauxite Bauxite Australia Al:48-50,Si:6-7- SMM 0.740 1.669
bismuth China Bismuth Ingot 99.99% - SMM 0.093 −0.147
cadmium Cadmium 99.99% CIF NWE U$/LB – Refinitiv −0.120 0.610
chromium Chromium =99.2%, Coarse Particle - SMM −36.084 −0.068
cobalt Cobalt Cash - LME 0.076 0.096
copper Copper Grade A Cash U$/MT - LME 0.031 −0.046
gallium Gallium Ingots CIF NWE U$/KG - Refinitiv 0.356 −0.315
germanium Germanium 50ohm CIF NWE U$/KG- Refinitiv 0.053 −0.500
gold Gold Spot - LME 0.007 0.025
graphite Graph spherical 99.9 FOB China - Fastmarket MB −1.039 0.758
indium Indium CIF NWE U$/KG - Refinitiv 0.182 0.460
lead Lead Cash U$/MT - LME 0.240 −3.783
lithium Lithium Metal =99%, Battery Grade - SMM 0.036 0.948
magnesium Magnesium Ingot Shanghai-Wenxi - SMM 0.495 1.310
manganese EMM =99.7% Major Prodctn Region – SMM −422.723 −0.322
mercury China Mercury Metal 99.999% EXW - Bloomberg 0.998 0.216
molybdenum Molybdenum Cash Comp U$/MT - LME 0.051 1.125
nickel Nickel Cash U$/MT - LME −0.001 0.008
selenium Selenium CIF NWE U$/LB - Refinitiv 0.107 −0.449
silicon Silicon Lumps CIF NWE U$/MT- Refinitiv −0.016 0.435
silver Silver, Handy&Harman (NY) U$/Troy OZ - Handy&Harman −0.096 0.066
strontium China Strontium Metal 99% EXW - Bloomberg −76.269 0.681
tantalum China Tantalum Pentoxide 99.5% EXW - Bloomberg −0.163 −1.019
tellurium Tellurium =99.99% Domestic - SMM −0.131 0.149
tin Tin 99.85% Cash U$/MT - LME 0.038 0.130
tungsten Tungsten Ferro CIF NWE U$/KG- Refinitiv −0.108 1.094
yttrium China Yttrium Metal 99.9% - Bloomberg 0.093 0.030
zinc SHG Zinc 99.995% Cash U$/MT - LME 0.074 −0.280
zirconium China Zirconium Carbonate ZrHfO2 40% EXW - Bloomberg −1.533 −1.889

Note: The ‘𝑝𝑟𝑖𝑐 𝑒 diff’ and ‘𝛥 ln 𝑝𝑟𝑖𝑐 𝑒 diff’ columns show the average relative differences between metal price data from USGS and those from
the source indicated in the ‘Source’ column. The differences are calculated respectively on the raw level data and after applying logarithmic
differentiation.
g

Appendix B. Price benchmark

See Table 10.

Appendix C. Descriptive statistics

See Table 11.

Appendix D. Sources

See Table 12.

Appendix E. Second-generation panel unit root test

See Table 13.

Appendix F. Empirical results

See Figs. 7–12.

Appendix G. Robustness tests

See Tables 14 and 15.
16 
Appendix H. Panel smooth transition regression (PSTR)

We first considered the possibility of using PSTR models to investi-
ate the likely non-linear relationship between metal prices and HHI

variations. However, our research shows statistical significance only
with the inclusion of two threshold variables—the HHI level and the
magnitude of HHI variations—which is not consistent with a PSTR
specification, as further illustrated.

Within the PSTR framework (Gonzalez et al., 2017), the additive
model can account for two different transition variables. The model
specification is presented as follows:

𝑦𝑖𝑡 = 𝜃0 𝑥𝑖𝑡 + 𝜃1 𝑥
′
𝑖𝑡 𝐺1(𝑠1,𝑖𝑡; 𝛾1, 𝑐1) + 𝜃2 𝑥

′
𝑖𝑡 𝐺2(𝑠2,𝑖𝑡; 𝛾2, 𝑐2)

where :

• 𝑦𝑖𝑡 is the dependent variable
• 𝑥𝑖𝑡 is the vector of explanatory variables
• 𝑥′𝑖𝑡 is the vector of explanatory variables in the non-linear part
• 𝑠𝑘,𝑖𝑡 is an observable transition variable
• 𝐺𝑘(𝑠𝑘,𝑖𝑡; 𝛾𝑘, 𝑐𝑘) is a transition function bounded between zero and

one, where 𝛾𝑘 is the slope parameter indicating the speed of
transition between the extreme values, whereas the threshold
parameter 𝑐𝑘 points to where the transition takes place.

If we apply this specification to our data, 𝑠1,𝑖𝑡 corresponds to
HHI𝑖𝑡 and 𝑠2,𝑖𝑡 to |𝛥 lnHHI𝑖,𝑡|. Then, our dummy variables correspond
to the extreme values of the transition functions 𝐺1(𝑠1,𝑖𝑡; 𝛾1, 𝑐1) and
𝐺 (𝑠 ; 𝛾 , 𝑐 ) (see Tables 16 and 17).
2 2,𝑖𝑡 2 2
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Fig. 7. Estimated parameters of Eq. (2) based on dummy variable thresholds.
Note: Rows represent the threshold value 𝑡𝐻 𝐻 𝐼 applied to the IHHI variable, while columns indicate the explanatory variables in the model. The 𝑑 𝑢𝑚𝑚𝑦 column corresponds to
𝛥 lnHHI ∗ IHHI. Each cell shows the estimated parameter from the fixed effects panel regression for the given threshold and variable. Significance levels are represented by cell
colors: blue for 10%, green for 5%, and yellow for 1%.
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Fig. 8. Estimated parameters of Eq. (3) based on dummy variable thresholds.
Note: Rows represent the threshold value 𝑡𝛥 lnHHI used to compute the I𝛥 lnHHI variable, while columns indicate the explanatory variables in the model. The 𝑑 𝑢𝑚𝑚𝑦 column corresponds
to 𝛥 lnHHI ∗ I𝛥 lnHHI. Each cell shows the estimated parameter from the fixed effects panel regression for the given threshold and variable. Significance levels are represented by
cell colors: blue for 10%, green for 5%, and yellow for 1%.
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Fig. 9. Estimated parameters for 𝛥 lnHHI in Eq. (4) based on dummy variable thresholds.
Note: Rows represent the threshold values applied to the IHHI variable, while columns indicate the threshold values applied to the I𝛥 lnHHI variable. Each cell shows the estimated
parameter of the 𝛥 lnHHI variable from the fixed effects panel regression for the corresponding thresholds. Significance levels are represented by cell colors: blue for 10%, green
for 5%, and yellow for 1%.
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Fig. 10. Estimated parameters for 𝛥 lnHHI ∗ IHHI in Eq. (4) based on dummy variable thresholds.
Note: Rows represent the threshold values applied to the IHHI variable, while columns indicate the threshold values applied to the I𝛥 lnHHI variable. Each cell shows the estimated
parameter of the 𝛥 lnHHI ∗ IHHI variable from the fixed effects panel regression for the corresponding thresholds. Significance levels are represented by cell colors: blue for 10%,
green for 5%, and yellow for 1%.
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Fig. 11. Estimated parameters for 𝛥 lnHHI ∗ I𝛥 lnHHI in Eq. (4) based on dummy variable thresholds.
Note: Rows display the threshold values applied to the IHHI variable, while columns indicate the threshold values applied to the I𝛥 lnHHI variable. Each cell shows the estimated
parameter of the 𝛥 lnHHI ∗ I𝛥 lnHHI variable from the fixed effects panel regression for the corresponding thresholds. Significance levels are represented by cell colors: blue for 10%,
green for 5%, and yellow for 1%.
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Fig. 12. Estimated parameters for 𝛥 lnHHI ∗ IHHI ∗ I𝛥 lnHHI in Eq. (4) based on dummy variable thresholds.
Note: Rows represent the threshold values applied to the IHHI variable, while columns indicate the threshold values applied to the I𝛥 lnHHI variable. Each cell shows the estimated
parameter of the 𝛥 lnHHI ∗ IHHI ∗ I𝛥 lnHHI variable from the fixed effects panel regression for the corresponding thresholds. Significance levels are represented by cell colors: blue
for 10%, green for 5%, and yellow for 1%.
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Table 11
Descriptive statistics (1995–2021).

HHI 𝛥 lnHHI 𝛥 ln 𝑝𝑟𝑖𝑐 𝑒
Metal mean std min max mean std min max mean std min max

REE 7061 2041 3409 9559 0.004 0.129 −0.418 0.349 0.087 0.439 −0.850 1.229
antimony 6479 1428 3547 8359 −0.018 0.092 −0.229 0.139 0.049 0.317 −0.468 0.834
arsenic 3768 1086 1636 5116 0.028 0.167 −0.36 0.62 −0.009 0.291 −0.535 0.562
bauxite 1795 123 1520 1997 −0.001 0.074 −0.21 0.16 −0.016 0.093 −0.213 0.146
beryllium 6073 1576 3906 8716 0.012 0.141 −0.378 0.458 0.027 0.141 −0.266 0.376
chromium 2560 249 2102 2982 0.008 0.107 −0.149 0.252 −0.007 0.248 −0.404 0.721
cobalt 2590 1207 1361 5268 0.046 0.116 −0.185 0.271 −0.029 0.404 −0.81 0.788
copper 1372 173 1105 1663 0 0.054 −0.073 0.145 0.035 0.223 −0.324 0.564
germanium 6898 1587 3321 8923 0.012 0.149 −0.388 0.369 −0.018 0.282 −0.513 0.430
gold 712 177 517 1150 −0.029 0.036 −0.088 0.064 0.035 0.127 −0.182 0.275
graphite 4105 1382 1530 6292 0.032 0.194 −0.531 0.436 0.007 0.177 −0.344 0.463
iron 1888 144 1592 2049 0.014 0.042 −0.06 0.072 0.036 0.153 −0.149 0.394
lead 1941 673 894 3195 0.032 0.082 −0.135 0.159 0.043 0.181 −0.320 0.503
lithium 2785 585 1880 4263 0.018 0.127 −0.208 0.275 0.019 0.234 −0.545 0.529
magnesium 5602 2386 1820 8138 0.039 0.105 −0.121 0.327 −0.002 0.180 −0.311 0.446
manganese 1431 245 1132 2091 0.018 0.067 −0.093 0.219 0.007 0.341 −0.421 1.328
mercury 4940 2252 1718 8533 0.053 0.261 −0.399 0.758 0.032 0.321 −0.518 0.829
molybdenum 2418 241 1967 2846 −0.007 0.074 −0.115 0.227 0.005 0.436 −0.888 1.122
nickel 1157 204 909 1839 0.012 0.106 −0.209 0.246 0.027 0.292 −0.605 0.466
niobium 8046 418 7214 9025 0.004 0.05 −0.122 0.103 0 0.205 −0.257 0.253
palladium 3426 311 2932 4017 −0.004 0.044 −0.097 0.059 0.084 0.309 −0.598 0.677
platinum 5866 571 4450 6796 −0.005 0.079 −0.191 0.232 0.016 0.147 −0.275 0.334
rhenium 3134 566 2006 4243 −0.008 0.13 −0.35 0.2 −0.027 0.385 −0.479 1.605
silicon 3293 1486 1125 4997 0.057 0.111 −0.143 0.369 0.028 0.189 −0.408 0.452
silver 952 122 751 1152 0.015 0.058 −0.111 0.122 0.037 0.194 −0.283 0.526
strontium 3132 505 2548 4210 0.007 0.103 −0.251 0.16 0.019 0.207 −0.306 0.802
tantalum 3435 1428 1474 6175 −0.030 0.253 −0.601 0.699 0.015 0.554 −1.810 1.834
tin 2227 450 1508 2983 0.005 0.103 −0.228 0.218 0.046 0.236 −0.304 0.636
tungsten 6456 741 4526 7579 0.017 0.075 −0.135 0.213 0.06 0.268 −0.372 0.979
vanadium 3684 474 3203 4950 0.015 0.07 −0.183 0.193 0.031 0.495 −0.915 0.999
yttrium 8947 1188 4921 9777 0.038 0.11 −0.024 0.455 −0.035 0.334 −0.517 1.080
zinc 1292 290 856 1769 0.02 0.062 −0.112 0.125 0.021 0.249 −0.589 0.830
zirconium 2806 289 2120 3361 −0.013 0.071 −0.231 0.138 0.033 0.312 −0.948 1.025

Note: This table presents descriptive statistics for each material in the panel over the 1995–2021 period. The panel consists solely of metals and metalloids from the materials
described in Fig. 1, except for two: bauxite, a mineral containing alumina and thus representing aluminum (a metal), and graphite, which, although not classified as a metal, is
ssential to battery technologies (for which market data is available). Additionally, the panel excludes four metals, namely boron, uranium, gallium, and titanium, due to limited
ata availability.
n

Table 12
Data sources.

Variable Source

Metal and mineral HHI USGS and BGS
Metal price USGS
BRENT crude Oil price FRED - code: POILBREUSDM
Broad US dollar real effective rate FRED – code: RTWEXBGS
Industries sales FRED - code: CMRMTSPL
US LIBOR FRED - code: IR3TIB01USM156N
VIX Bloomberg
US consumer price index FRED - code: CPIAUCSL

Hence, through correspondence, employing the additive model ne-
cessitates that the model satisfies the condition:
𝛽11 + 𝛽132 + 𝛽11 + 𝛽131 = 𝛽11 + 𝛽131 + 𝛽132 + 𝛽14

𝛽11 = 𝛽14
Conversely, the model with interaction variables developed in the
paper gives:

𝛽11 ≠ 𝛽14

Using the additive model does not offer sufficient degrees of freedom,
aking it unsuitable for our analysis.

This problem of multiple regimes has been addressed in a time
series context in van Dijk and Franses (1999). The authors develop a

ultiple Regime Smooth Transition AutoRegressive (MRSTAR) model
23 
Table 13
Panel unit root tests – 𝑝-values.

Variable With linear trend With constant Without constant

ln 𝑝𝑟𝑖𝑐 𝑒 0.17 0.38 0.77
𝛥 ln 𝑝𝑟𝑖𝑐 𝑒 1.7 × 10−5 1.2 × 10−6 1.8 × 10−8
ln(HHI) 0.67 0.19 1
𝛥 ln(HHI) 1.2 × 10−67 7.8 × 10−76 1.9 × 10−105

Note: This table reports the 𝑝-values of the second-generation unit root test for panel
data proposed by Demetrescu et al. (2006). The test is based on the 𝑝-values from 𝑁
independent ADF tests, with the number of lags determined by the Akaike Information
Criterion (AIC). The null hypothesis is the presence of a unit root. Columns specify the
deterministic kernel used in the test.

that allows the definition of a four-regime model.24

𝑦𝑡 =[𝜙1𝑥𝑡(1 − 𝐺1(𝑠1,𝑡; 𝛾1, 𝑐1)) + 𝜙2𝑥𝑡𝐺1(𝑠1,𝑡; 𝛾1, 𝑐1)][1 − 𝐺2(𝑠2,𝑡; 𝛾2, 𝑐2)]
+ [𝜙3𝑥𝑡(1 − 𝐺1(𝑠1,𝑡; 𝛾1, 𝑐1)) + 𝜙4𝑥𝑡𝐺1(𝑠1,𝑡; 𝛾1, 𝑐1)]𝐺2(𝑠2,𝑡; 𝛾2, 𝑐2)

The MRSTAR model could be adapted to our problem, though it has
ot yet been extended to panel data.

24 Obtained by ‘encapsulating’ two different two-regime LSTAR models.
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Table 14
Robustness tests: Dynamic model estimation and sensitivity to the oil price series.

difference GMM individual fixed effects

Model 1 lag Model 4 lag Model wo CV Model WTI

𝛥 ln 𝑝𝑟𝑖𝑐 𝑒𝑖,𝑡−1 0.01 0.02
(0.06) (0.06)

𝛥 lnHHI𝑖,𝑡 −0.02 −1.04*** −0.54 −0.76**
(0.08) (0.39) (0.35) (0.31)

𝛥 lnHHI𝑖,𝑡−1 0.10 0.10
(0.08) (0.08)

𝛥 ln 𝑜𝑖𝑙𝑡 0.17** 0.17** 0.11
(0.07) (0.07) (0.07)

𝛥 ln 𝑒𝑟𝑡 −1.43*** −1.54*** −1.87***
(0.37) (0.36) (0.37)

𝛥 ln 𝑖𝑠 1.05*** 1.03*** 0.92***
(0.35) (0.33) (0.31)

𝛥 ln 𝑣𝑖𝑥𝑡 0.03 0.04 0.01
(0.04) (0.04) (0.04)

𝑖𝑟𝑡 −0.00 −0.00 0.00
(0.01) (0.01) (0.00)

IHHI𝑖,𝑡 −0.08 −0.00 0.00
(0.07) (0.04) (0.04)

𝛥 lnHHI𝑖,𝑡 ∗ IHHI𝑖,𝑡 1.14** 0.65 0.71
(0.46) (0.52) (0.48)

I𝛥 lnHHI𝑖,𝑡 −0.00 −0.03 −0.01
(0.06) (0.04) (0.04)

𝛥 lnHHI𝑖,𝑡 ∗ I𝛥 lnHHI𝑖,𝑡 1.30*** 0.85** 0.95***
(0.42) (0.38) (0.34)

IHHI𝑖,𝑡 ∗ I𝛥 lnHHI𝑖,𝑡 −0.02 −0.01 −0.02
(0.07) (0.05) (0.05)

𝛥 lnHHI𝑖,𝑡 ∗ IHHI𝑖,𝑡 ∗ I𝛥 lnHHI𝑖,𝑡 −1.39*** −1.06* −0.97*
(0.50) (0.56) (0.52)

Num. obs. 898 898 821 821
Num. obs. used 753 753

Note: The dependent variable is the log differentiated price of metals 𝛥 ln 𝑝𝑟𝑖𝑐 𝑒. The
variables 𝛥 ln 𝑜𝑖𝑙, 𝛥 ln 𝑒𝑟, 𝛥 ln 𝑣𝑖𝑥, and 𝛥 ln 𝑖𝑠 denotes the variation rate of oil price,
exchange rate, VIX index, and Industries sales, respectively. 𝑖𝑟 denotes the US interest
rate. 𝛥 lnHHI denotes the variation rate of the country metal production concentration,
and IHHI and I𝛥 lnHHI are the dummy variables computed for the threshold values of
𝑡HHI = 2700 and 𝑡𝛥 lnHHI = 0.1. GMM stands for the Generalized Method of Moments.
Model 1 lag and Model 4 lag correspond to the dynamic form of Model (1) and Model
4), respectively. Model wo CV corresponds to Model (4) without the control variables,

and Model WTI uses the WTI price benchmark for oil instead of Brent in Model (4). To
rovide consistent results, we apply the Newey and West robust covariance estimators
or the fixed effect specification, the corresponding standard errors are in parentheses.

* 𝑝 < 0.1.
** 𝑝 < 0.05.
*** 𝑝 < 0.01.

Table 15
Impact of HHI fluctuations on metal prices by HHI level and variation magnitude —

obustness tests.
𝛽𝑙 𝑜𝑤,𝑙 𝑜𝑤 𝛽𝑙 𝑜𝑤,ℎ𝑖𝑔 ℎ 𝛽ℎ𝑖𝑔 ℎ,𝑙 𝑜𝑤 𝛽ℎ𝑖𝑔 ℎ,ℎ𝑖𝑔 ℎ

Model 4 lag −1.04 0.27 0.11 0.02
Model wo CV −0.54 0.32 0.11 −0.10
Model WTI −0.76 0.20 −0.04 −0.05

Note: This table corresponds to Table 5 for the models presented in Table 14.

Table 16
Parameter correspondence with the PSTR additive model.

IHHI𝑖,𝑡 /𝐺1 I𝛥 lnHHI𝑖,𝑡 /𝐺2 Regime
parameter

Article parameters PSTR
parameters

0 0 𝛽1,𝑙 𝑜𝑤,𝑙 𝑜𝑤 𝛽11 𝜃0
0 1 𝛽1,𝑙 𝑜𝑤,ℎ𝑖𝑔 ℎ 𝛽11 + 𝛽132 𝜃1
1 0 𝛽1,ℎ𝑖𝑔 ℎ,𝑙 𝑜𝑤 𝛽11 + 𝛽131 𝜃2
1 1 𝛽1,ℎ𝑖𝑔 ℎ,ℎ𝑖𝑔 ℎ 𝛽11+𝛽131+𝛽132+𝛽14 𝜃1 + 𝜃2
24 
Table 17
Parameter correspondence with the MRSTAR additive model.

IHHI𝑖,𝑡 /𝐺1 I𝛥 lnHHI𝑖,𝑡 /𝐺2 Regime
parameter

Article parameters MRSTAR
parameters

0 0 𝛽1,𝑙 𝑜𝑤,𝑙 𝑜𝑤 𝛽11 𝜙1
0 1 𝛽1,𝑙 𝑜𝑤,ℎ𝑖𝑔 ℎ 𝛽11 + 𝛽132 𝜙2 − 𝜙1
1 0 𝛽1,ℎ𝑖𝑔 ℎ,𝑙 𝑜𝑤 𝛽11 + 𝛽131 𝜙3 − 𝜙1
1 1 𝛽1,ℎ𝑖𝑔 ℎ,ℎ𝑖𝑔 ℎ 𝛽11+𝛽131+𝛽132+𝛽14 𝜙4 − 𝜙1
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