
HAL Id: hal-04923974
https://hal.science/hal-04923974v1

Preprint submitted on 1 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CaAdam: Improving Adam optimizer using connection
aware methods

Rémi Genet, Hugo Inzirillo

To cite this version:
Rémi Genet, Hugo Inzirillo. CaAdam: Improving Adam optimizer using connection aware methods.
2025. �hal-04923974�

https://hal.science/hal-04923974v1
https://hal.archives-ouvertes.fr

CaAdam: Improving Adam optimizer using
connection aware methods

Rémi Genet∗§ and Hugo Inzirillo†§

∗ DRM, Université Paris Dauphine - PSL
† CREST, Institut Polytechnique de Paris

Abstract—
We introduce a new method inspired by Adam that
enhances convergence speed and achieves better loss
function minima. Traditional optimizers, including
Adam, apply uniform or globally adjusted learning
rates across neural networks without considering
their architectural specifics. This architecture-agnostic
approach is deeply embedded in most deep learn-
ing frameworks, where optimizers are implemented
as standalone modules without direct access to the
network’s structural information. For instance, in
popular frameworks like Keras or PyTorch, optimizers
operate solely on gradients and parameters, without
knowledge of layer connectivity or network topology.
Our algorithm, CaAdam, explores this overlooked
area by introducing connection-aware optimization
through carefully designed proxies of architectural
information. We propose multiple scaling methodologies
that dynamically adjust learning rates based on easily
accessible structural properties such as layer depth,
connection counts, and gradient distributions. This
approach enables more granular optimization while
working within the constraints of current deep learning
frameworks. Empirical evaluations on standard datasets
(e.g., CIFAR-10, Fashion MNIST) show that our
method consistently achieves faster convergence and
higher accuracy compared to standard Adam optimizer,
demonstrating the potential benefits of incorporating
architectural awareness in optimization strategies.

I. INTRODUCTION

In deep learning, optimizers play a crucial role in the
efficient training of neural networks. Each of the best-known
deep learning libraries (Keras[1],Pytorch[2]) has implemented
different algorithms to optimize gradient descent. Among the
most popular optimizers, Adam (Adaptive Moment Estimation)
[3] is widely used for its ability to dynamically adjust learning
rates according to the first- and second-order moments of the
gradients. However, Adam applies a global uniform learning
rate to all parameters which impacts the convergence speed.
This weakness is all the more noticeable for deep, complex
neural networks, where different layers may require different
update rate adjustments.

This work aims to challenge the traditional paradigm of
treating neural network optimization as a uniform process
across all layers. We propose CaAdam (Connection Aware

§These authors contributed equally. Author ordering determined by odd or
even days.

Adam), an extension of the Adam optimizer that introduces
adaptive scaling strategies based on the structural properties
of neural networks. Unlike Adam, which adjusts parameter
updates globally, our approach allows learning rates to be
adapted more granularly, considering the number of connec-
tions per layer, network depth and gradient distribution. This
flexibility allows CaAdam to increase the speed of learning
within layers where faster update are needed and stabilize
training for layers where more gradual updates are beneficial.
While our current implementation focuses on basic metrics
such as connection counts and layer depth, we view this as an
initial exploration into architecture-aware optimization. These
simple proxies for network structure demonstrate significant
improvements in training dynamics, suggesting a rich space for
future research. More sophisticated approaches might consider
topological features, layer interactions, or dynamic architectural
characteristics during training. We believe this work opens a
new perspective on how optimization strategies could be better
aligned with neural network architectures, potentially leading
to more efficient and effective training methodologies. Our
codes are available at CaAdam repository and can be installed
using the following command: pip install CaAdam.

II. RELATED WORK

Gradient descent, a foundational optimization algorithm in
machine learning, traces its origins to Cauchy’s method of
steepest descent introduced in 1847 [4]. This mathematical
foundation laid dormant for over a century before finding
renewed purpose in the realm of computational optimization.
The method gained significant traction in the 1960s through the
work of Davidon, Fletcher, and Powell, who developed practical
applications for numerical optimization [5]. When it comes to
deep learning, gradient descent has emerged as an indispensable
cornerstone [6], [7]. The algorithm’s ability to handle high-
dimensional optimization problems made it particularly well-
suited for neural networks, as demonstrated in seminal work
by Rumelhart et al. [8]. Several methods have since been
introduced to enhance its effectiveness [9]. In the context of
deep neural networks [10], where models are complex and have
thousands or even millions of parameters, this optimization
is crucial if the model is to learn from the data. Gradient
descent objective is to minimize f(θ), an objective function
parametrized by θ ∈ Rd. The procedure consist of updating θ
in the opposite direction of ∇θLθ;xi, yi. This update step is

ar
X

iv
:2

41
0.

24
21

6v
1

 [
cs

.L
G

]
 3

1
O

ct
 2

02
4

http://keras.io/optimizers
https://pytorch.org/docs/stable/optim.html
https://github.com/remigenet/Caadam

performed using a learning rate, denoted η. Taking this simple
explanation, we can write the procedure of updating θ such:

θ = θ − η · ∇θL(θ;x
(i), y(i)) (1)

where xi = (xi,1, xi,2, ..., xi,m) represents the feature vector
for the i-th sample, containing m features of the dataset D ≜
(xi, yi)|i = 1, ..., N . yi is the target value of the i-th sample.
In some problems yi may be known (supervised learning)
or unknown (unsupervised). By adjusting model parameters
towards a minimum of the loss function L(θ);

L(θ) =
1

N

N∑
i=1

l(fθ(x
(i)), y(i)) (2)

where l(.) is a specific loss function (e.g mean squared error,
cross entropy,etc.) The gradient descent helps neural networks
generate accurate predictions and generalize efficiently to new
data. Stochastic gradient descent (SGD) performs parameter
update for each data point Eq.(1), this configuration allow
to jump to new local minima easily compared to the Batch
gradient which apply the update of the gradient over the entire
dataset. Mini-batch gradient descent finally takes the best of
both worlds [9] perform an update on each mini-batch of
training sample;

θ = θ − η · ∇θ · L(θ;x(i:i+bs), y(i:i+bs)), (3)

where bs denotes the mini-batch size. Various optimization
algorithms have been proposed to improve the convergence
and stability of gradient descent. Here, we discuss key ad-
vancements, beginning with Adagrad and leading to later
refinements like Adam and Nadam, each building on and
addressing limitations of prior methods.

[11] introduced Adagrad an adaptive gradient descent
algorithm that modifies the learning rate individually for each
parameter. The update is based on the historical accumulation
gradients. Let us define θ = θ1, θ2, ..., θj the vector of
parameters. For each parameter θi, i ∈ 1, 2, ..., j at timestep t
Adagrad computes gt,i

gt,i = ∇θtL(θt,i) (4)

to provide the following update:

θt+1,i = θt,i − η · gt,i (5)

However, Adagrad modifies this by scaling the learning rate
based on the sum of squared gradients up to the current time
step:

θt+1,i = θt,i −
η√

Gt,ii + ϵ
· gt,i (6)

where Gt is a diagonal matrix with elements Gt,ii =
∑t

τ=1 g
2
τ,i,

and ϵ is a small constant for numerical stability. This adjustment
enables larger updates for infrequent parameters, making
Adagrad effective for sparse data [12]. Building upon Adagrad,
[13] proposed Adelta. Instead of accumulating all past squared

gradients, Adadelta uses a decaying average of gradients,
updating the squared gradients recursively as follows:

E[g2]t = γE[g2]t−1 + (1− γ)g2t (7)

where γ ≈ 0.9 is similar to the momentum term. This allows
Adadelta to maintain a more consistent learning rate, avoiding
the gradual reduction to zero seen in Adagrad. The parameter
update rule is given by:

∆θt = − η√
E[g2]t + ϵ

gt (8)

where E[g2]t replaces Gt from Adagrad (6). This approach
allows to remove the need for a fixed learning rate. Proposed
independently around the same time, RMSprop introduced
by Geoff Hinton in his lecture notes1 also seeks to mitigate
Adagrad’s decaying learning rate by using an exponentially
decaying average of squared gradients:

E[g2]t = 0.9E[g2]t−1 + 0.1g2t (9)

The RMSprop update rule is:

θt+1 = θt −
η√

E[g2]t + ϵ
gt (10)

This update method has been popularized in deep learning
applications due to its stability with online and non-stationary
data.

Adam (Adaptive Moment Estimation) [?] introduces both
an exponentially decaying average of past gradients mt and
squared gradients vt:

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

These averages are then bias-corrected as:

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

The Adam update rule is then:

θt+1 = θt −
η√

v̂t + ϵ
m̂t

where default values β1 = 0.9, β2 = 0.999, and ϵ = 10−8

are commonly used. Adam’s bias correction and adaptive
learning rates have made it a highly effective optimization
algorithm in practice.

1http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

2

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

A. AdaMax

AdaMax [3] generalizes Adam to the ℓ∞-norm, stabilizing
parameter updates. Replacing the squared gradients with the
maximum absolute gradient values across time steps, AdaMax
redefines the vt term using the infinity norm ut:

ut = max(β2 · ut−1, |gt|) (11)

The update rule for AdaMax then becomes:

θt+1 = θt −
η

ut
m̂t (12)

This approach is beneficial when gradients vary greatly across
parameters, as it provides a stable adaptation without requiring
bias correction for ut.

B. Nadam

Nadam [14], or Nesterov-accelerated Adam, incorporates
Nesterov momentum into Adam’s update. In Nesterov’s method,
the gradient is computed with respect to the look-ahead position.
This configure enables better directional accuracy:

gt = ∇θtJ(θt − γmt−1),

mt = γmt−1 + ηgt,

θt+1 = θt −mt,

(13)

incorporating this look-ahead momentum, Nadam updates
parameters using both the current and past gradient information:

θt+1 = θt −
η√

v̂t + ϵ

(
β1m̂t +

(1− β1)gt
1− βt

1

)
(14)

This modification allows Nadam to achieve faster convergence
by accounting for momentum adjustments in advance. Each
of these method has contributed significantly to optimizing
neural network training by refining learning rates and stability.
These updates allow making gradient descent more adaptable
to complex datasets and models, in our work we proposed an
extension of Adam refining the learning rate of the algorithm
using the characteristics of the networks.

III. ALGORITHM

We introduce three scaling methods: additive MinMaxMedian
scaling, multiplicative MinMaxMedian scaling, and depth-
based scaling. Each strategy adjusts the effective learning
factor for the neural network parameter according to its
structural characteristics. This update allows faster and more
stable training. Through a theoretical analysis, we show that
these adaptive adjustments improve the speed of convergence
compared to the classical Adam optimizer, by allowing a faster
descent of the gradient and avoiding oscillations or too slow
adjustments.

A. Scaling

The computation of scaling factor S plays a crucial role in
CaAdam. For the additive MinMaxMedian method, we define
the scaling factor such

S+ =

{
1 + γ c̃−c

c̃−cmin
, if c ≤ c̃ .

1− γ c−c̃
cmax−c̃ , if c > c̃.

(15)

where γ is an hyperparameter scaling factor, we set this value
by default 0.95. c̃ represents the median number of connections,
which is used as a benchmark for whether the scaling should
increase or decrease. When the current number of connections
c is less or equal to c̃ the scaling factor using the additive
method is enhanced.The impact will be a more pronounced
adjustment during the optimization process. The strength of
this enhancement is control using γ which can be customized.
On the other hand if c is greater than c̃, S+ will be lowered.
The normalization of these adjustments is based on cmin and
cmax, which represent the minimum and maximum number of
connections, respectively. These parameters help balance the
optimization process by making the scaling adaptive, promoting
a smoother and more balanced training across different layers
of the network. For the multiplicative MixMaxMedian scaling
method we first normalized the value of connection:

σ =

{
c̃−c

c̃−cmin
, if c ≤ c̃ .

c−c̃
cmax−c̃ , if c > c̃.

(16)

Once obtained, we will update S, which will be defined as:

S∗ = expσ log(γ) (17)

where γ denotes the same scaling factor introduced Eq.(15)

Sd = (1 + γ)
dm−(1+d)

dm , (18)

where dm denotes the total depth of the neural network, d the
depth of the current layer. The equation adjusts Sa based on
the depth of the layer. Layers that are closer to the input receive
a scaling factor that is more influenced by γ, while deeper
layers have a diminished scaling effect. This helps manage
how gradients are adjusted across different depths, ensuring
that adjustments are not uniformly applied across the network,
thereby encouraging a more balanced training process across
all layers of the model.

B. Adam

Adaptive Moment Estimation (Adam) [3] computes adaptive
learning rates for each parameter. In addition to storing an
exponentially decaying average of past squared gradients
vt Adam keeps an exponentially decaying average of past
gradients mt, similar to momentum:

mt = β1mt−1 + (1− β1)gt,

vt = β2vt−1 + (1− β2)g
2
t ,

(19)

where mt and vt are estimates of the first moment (the mean)
and the second moment (the uncentered variance) of the

3

gradients respectively, hence the name of the method. As
mt and vt are initialized as vectors of 0’s, the authors of
Adam observe that they are biased towards zero, especially
during the initial time steps, and especially when the decay
rates are small (i.e. β1 and β2 are close to 1). The authors [3]
recommend using default values of β1 = 0.9, β2 = 0.999, and
ϵ = 10−8. Through empirical evaluation, they demonstrate that
Adam performs effectively in practice and offers competitive
results compared to other adaptive learning-rate algorithms.
They counteract these biases by computing bias-corrected first
and second moment estimates:

m̂t =
mt

1− βt
1

,

v̂t =
vt

1− βt
2

.
(20)

C. Update

They then use these to update the parameters just as we
have seen in Adadelta and RMSprop, which yields the Adam
update rule:

θt+1 = θt − α
m̂t√
v̂t + ϵ

(21)

Our method introduce a scaling factor denoted S which modify
the learning rate update, the general update step (22) will
become:

θt+1 = θt − α · S · m̂t√
v̂t + ϵ

(22)

where S is calculated based on specific scaling strategies;
additive scaling (linearly on connection counts or depth) and
multiplicative scaling (uses exponential functions based on the
connection structure). Looking at the impact on the learning
rate a, the effective learning rate using CaAdam α̃ = α · S.
The critical insight is that S dynamically adjusts α̃ based on
structural properties of the networks (layer depth, connection
counts), which can make learning more efficient.

D. A view on convergence effect

Now, we need to make sure that the expected value of the
squared gradient norm E

[
∥∇f(θ)∥2

]
will decrease faster or

at least at the same speed. The decline in the loss function can
be described as

f(θt+1)− f(θt) ≈ ∇f(θt) · (θt+1 − θt), (23)

replacing (θt+1− θt) from Eq.(23) using Adam update Eq.(22)
we have

f(θt+1)− f(θt) ≈ −α · ∇f(θt) · m̂t√
v̂t + ϵ

. (24)

Taking the expection we obtain:

E[f(θt+1)] ≤ E[f(θt)]− α · E
[
∥∇f(θt)∥2√

v̂t + ϵ

]
. (25)

Using our scaling factor S, we would have

f(θt+1)− f(θt) ≈ −α · S · ∇f(θt) · m̂t√
v̂t + ϵ

, (26)

and taking the expectation over the distribution of gradients
we obtain

E[f(θt+1)] ≤ E[f(θt)]− α · E
[
S · ∥∇f(θt)∥2√

v̂t + ϵ

]
. (27)

For parts of the model where S > 1 (e.g. layers needing quicker
adaptation or sparse gradients), the effective learning rate is
higher α̃ > α and leads to bigger steps to reach the optimal
solution. This case will allow to reduce the loss faster, on the
other side if S < 1 the step size will be reduced α̃ < α and
help the optimizer to avoid oscillations why may occur when
gradient are noisy. Adapting the learning rate locally will allow
to converge without large deviations. Looking at Eq.(25)-(27)
when we compare the convergence rate, S adjusts adaptively
based on structural information of the networks. This extension
ensures E [S] ≥ 1 when acceleration is needed leading to:

E[f(θt+1)]− E[f(θt)] ≤ −α · s̄ · E
[
∥∇f(θt)∥2√

v̂t + ϵ

]
, (28)

where s̄ ≥ 1 on average leading to faster descent. Custom
scaling strategies embedded in the optimizer lead to faster
convergence under typical conditions, as long as the scaling
factor S is designed properly to respond adaptively to the
neural networks architecture and training dynamics.

IV. EXPERIMENTAL SETUP

A. Learning Tasks and Datasets

To rigorously validate the effectiveness of CaAdam, we
constructed a comprehensive evaluation framework spanning
both classification and regression domains. Our experimental
design incorporated three classification tasks and one regression
task.

For classification, we employed the CIFAR-10, CIFAR-100
[15], and Fashion-MNIST datasets [16]. The CIFAR datasets
comprise 60,000 natural color images at 32×32 resolution,
with 50,000 allocated for training and 10,000 for testing.
While CIFAR-10 categorizes images into 10 classes, CIFAR-
100 presents a more challenging scenario with 100 classes,
allowing us to evaluate our optimizer’s performance on tasks
of varying complexity. For the Fashion-MNIST dataset, we
performed preprocessing steps by upscaling the original 28×28
images to 56×56 and converting to RGB format using bicubic
interpolation, maintaining the original 10-class categorization
of fashion items.

For regression analysis, we selected the California Housing
dataset, which contains 20,640 samples describing housing
districts in California. Each sample comprises 8 numerical
features including median income, housing median age, and
geographical coordinates, with the median house value as the
target variable. We relied on Keras dataset directly as our data
source.

4

B. Model Architectures

Our architectural choices were driven by the need for consis-
tency in classification tasks while allowing varied complexity in
regression scenarios. For all image classification tasks (CIFAR-
10, CIFAR-100, and Fashion-MNIST), we implemented a
ResNet-20 architecture, as using pre-trained larger models
would not have been appropriate, and trying to calibrate such
big models from scratch on relatively small datasets would
be impractical. This network follows the standard residual
block pattern with skip connections, facilitating better gradient
flow during training. The architecture processes 32×32×3 input
images for CIFAR datasets and 56×56×3 for the upscaled
Fashion-MNIST data. The only architectural variation across
these classification tasks lies in the output layer, which contains
10 units for CIFAR-10 and Fashion-MNIST, and 100 units
for CIFAR-100, corresponding to their respective number of
classes.

For the regression task, we employed multiple Multi-Layer
Perceptron (MLP) configurations of varying complexity. We
systematically explored architectures ranging from shallow
networks (two layers: 64→32 units) to deeper configurations
(four layers: 1024→256→64→16 units). This systematic
variation in network depth and width enables us to analyze
how our connection-aware scaling strategies perform across
different network topologies.

C. Training Protocol and Error Metrics

Our training protocol was designed to ensure robust optimiza-
tion while preventing overfitting. We employed the standard
Mean Squared Error (MSE) loss function for regression tasks
and sparse categorical cross-entropy loss for classification
tasks, as these are the de facto objectives for their respective
tasks in the deep learning literature. This choice allows for a
fair evaluation of our optimizer against existing methods on
these canonical loss landscapes. The implementation of early
stopping with a patience of 15 epochs serves two crucial
purposes: it prevents overfitting by monitoring validation
loss with a minimum delta of 1e-5, and it ensures fair
comparison of convergence speeds across different optimizers.
The choice of this particular patience value balances the trade-
off between allowing sufficient time for convergence and
preventing unnecessary computation.

Our learning rate scheduler employs a reduction factor of
0.25 with a patience of 6 epochs, triggering when validation
loss plateaus. This aggressive reduction factor, combined with a
minimum learning rate of 2.5e-5, allows the optimizer to make
rapid progress initially while ensuring fine-grained optimization
in later stages. The minimum learning rate was carefully chosen
to prevent premature convergence while maintaining numerical
stability. For evaluation metrics, we utilize Root Mean Square
Error (RMSE) for regression tasks, calculated as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (29)

As with our loss functions, we selected these standard
metrics to facilitate direct comparisons with existing optimiza-
tion methods: RMSE for regression tasks and accuracy for
classification tasks. We also track training time and epochs to
convergence to assess computational efficiency, as these are
crucial performance indicators for optimization algorithms.

D. Comparative Analysis Framework

To establish the effectiveness of CaAdam, we conducted
a comprehensive comparison against four state-of-the-art
optimizers: standard Adam, AdamW (Adam with decoupled
weight decay), Adamax (utilizing the infinity norm), and Nadam
(incorporating Nesterov momentum). Each experiment was
repeated 30 times to ensure statistical robustness, with all
optimizers initialized with a learning rate of 0.001 and a
batch size of 64. The maximum number of epochs was set to
1,000, though early stopping typically triggered well before this
limit. Our CaAdam implementation was evaluated with three
distinct scaling strategies: additive MinMaxMedian scaling,
multiplicative MinMaxMedian scaling, and depth-based scaling
as described in section III. Statistical significance was assessed
through independent t-tests comparing each optimizer variant
against the Adam baseline. We employed three significance
thresholds (p < 0.05, p < 0.01, and p < 0.001) to provide a
nuanced view of performance differences. Training time and
convergence speed were analyzed alongside accuracy/RMSE
to provide a comprehensive evaluation of each optimizer’s
practical utility. The consistent use of ResNet-20 across all
classification tasks ensures that performance differences can be
attributed to the optimizers’ behavior rather than architectural
variations, while the diverse MLP configurations for regression
allow us to evaluate our optimizer’s adaptability to different
network structures.

V. RESULTS AND ANALYSIS

A. Overview

We present our experimental results through a comprehensive
analysis of both classification and regression tasks. Tables I,
II provide the raw performance metrics, while Tables III, IV
present the statistical analysis of improvements over the Adam
baseline.

B. Classification Performance

On image classification tasks, CaAdam demonstrated con-
sistent improvements over the baseline Adam optimizer across
all datasets. Most notably, on CIFAR-10, the multiplicative
scaling strategy achieved an accuracy of 83.1% (±0.5%),
representing a statistically significant improvement of 4.09%
(p < 0.001) over Adam’s 79.8% baseline. This improvement
was achieved while maintaining comparable training times,
suggesting that the enhanced performance does not come at
the cost of computational efficiency.

For the more challenging CIFAR-100 dataset, both depth-
based and multiplicative scaling strategies showed substantial
improvements, achieving accuracies of 50.4% and 50.7%
respectively, compared to Adam’s 47.8%. The multiplicative

5

strategy’s 5.97% improvement was particularly noteworthy
(p < 0.001), demonstrating CaAdam’s effectiveness in handling
complex classification tasks with numerous classes.

On Fashion-MNIST, while the absolute improvements were
more modest due to the already high baseline performance,
CaAdam with depth-based scaling still achieved a statistically
significant improvement of 0.39% (p < 0.001), reaching
92.6% accuracy compared to Adam’s 92.3%. This suggests
that our connection-aware approach can provide benefits even
in scenarios where conventional optimizers already perform
well.

C. Regression Analysis

The regression results on the California Housing dataset
reveal interesting patterns across different MLP architectures.
Most significantly, CaAdam with multiplicative scaling consis-
tently outperformed other optimizers across all architectural
configurations, with improvements in RMSE ranging from
1.43% to 2.87% (all statistically significant at p < 0.001).

The most substantial improvement was observed in the [128,
64, 32] architecture, where multiplicative scaling achieved an
RMSE of 0.446 (±0.003) compared to Adam’s 0.459 (±0.003),
representing a 2.87% improvement. Notably, this enhancement
was accompanied by a 15.41% reduction in training time (p <
0.01), demonstrating that CaAdam can simultaneously improve
both accuracy and efficiency.

An interesting pattern emerged in the relationship between ar-
chitectural complexity and optimizer performance. For simpler
architectures ([64, 32]), CaAdam showed particularly strong
improvements in both RMSE (2.07% improvement, p < 0.001)
and training time (30.11% reduction, p < 0.01). This suggests
that our connection-aware approach is especially effective at op-
timizing smaller networks, where each parameter’s contribution
is more significant.

D. Convergence Characteristics

Across both classification and regression tasks, CaAdam
typically required fewer epochs to converge compared to
the baseline Adam optimizer. This is particularly evident in
the regression tasks, where the multiplicative scaling strategy
reduced the number of epochs to convergence by up to 34.6%
for certain architectures. This faster convergence did not
come at the cost of final model performance, suggesting that
CaAdam’s scaling strategies help navigate the loss landscape
more efficiently.

E. Scaling Strategy Comparison

Among the three proposed scaling strategies, multiplica-
tive scaling demonstrated the most consistent performance
improvements across all tasks. While additive and depth-based
scaling also showed significant improvements over the baseline,
multiplicative scaling’s superior performance can be attributed
to its more nuanced handling of parameter updates based on
layer connectivity patterns.

The depth-based strategy showed particular strength in deeper
architectures, especially in the CIFAR-100 classification task,
suggesting its utility in scenarios with more complex network
hierarchies.

This performance pattern aligns with the foundational design
principles of each scaling strategy. The multiplicative and
additive scaling approaches were initially conceived for simpler
MLP architectures, where they can leverage straightforward
proxies like connection counts to capture layer-wise optimiza-
tion needs. These strategies excel in such contexts because the
relationship between layer connectivity and optimal learning
rates tends to be more direct and predictable in simpler
networks.

In contrast, the depth-based scaling strategy was designed
specifically for deeper architectures, using layer depth as a
simple yet effective proxy for optimization behavior. While this
is a more basic architectural indicator compared to connection
counting, it proves particularly effective in deeper networks
where vanishing gradient issues are more prominent. This
explains its strong performance on CIFAR-100 with ResNet20,
where the depth-based approach can help counteract the
challenges of propagating gradients through many layers.

These complementary approaches demonstrate how even
relatively simple architectural proxies can significantly improve
optimization when properly matched to network characteristics.
Our results suggest that future research could explore more
sophisticated architectural indicators, potentially combining
multiple structural features to create even more effective scaling
strategies.

F. Training Loss Convergence Analysis

In order to better visualize optimizer effectiveness, we
analyzed training loss evolution across different network
architectures. Each configuration was tested with 5 independent
runs to ensure representativeness while maintaining clarity.
Individual runs were plotted separately to preserve information
about specific optimization paths.

Fig. 1: Training loss convergence on California Housing dataset
with MLP [64, 32]

6

Fig. 2: Training loss convergence on California Housing dataset
with MLP [128, 64, 32]

Fig. 3: Training loss convergence on California Housing dataset
with MLP [128, 128, 64]

1) Small MLP Architectures: For the smaller MLP configura-
tions ([64, 32], [128, 64, 32], and [128, 128, 64]) (Figures 1–3),
CaAdam with multiplicative scaling consistently demonstrated
superior performance, achieving both faster convergence and
lower final loss values. This aligns with our design intentions,
as multiplicative scaling was optimized for simpler architectures
where layer relationships can be effectively captured through
basic weight statistics. The advantage of multiplicative scaling
became particularly evident around epoch 20 across these
architectures, suggesting enhanced effectiveness during fine-
tuning phases. Interestingly, as we moved to wider architectures
like [128, 128, 64], both additive and depth-based scaling
showed competitive early-stage performance, indicating that
increased network width affects the relative strengths of
different scaling strategies during different training phases.

Fig. 4: Training loss convergence on California Housing dataset
with MLP [128, 128, 128, 128, 128]

Fig. 5: Training loss convergence on California Housing dataset
with MLP [1024, 256, 64, 16]

2) Large MLP Architectures: The behavior patterns evolved
significantly in larger architectures (Figures 4, 5). In these
deeper configurations, convergence paths showed increased
oscillation. Although multiplicative scaling maintained its
overall effectiveness, depth-based scaling demonstrated notably
improved relative performance, aligning with its design goals
for deeper networks.

In the most complex architecture [1024, 256, 64, 16], the
optimizer dynamics became more nuanced. Multiplicative
scaling exhibited slower initial progress but maintained steady
improvement throughout training. The strong performance
of depth-based scaling in this context validates its design
principles for complex network hierarchies, suggesting that
our different scaling strategies complement each other across
varying network complexities. These results demonstrate how
our different scaling approaches adapt to network depth and
width, with multiplicative scaling excelling in simpler architec-
tures while depth-based approaches show increasing benefits
as network complexity grows. The consistent performance
improvements across all architectures validate our connection-
aware approach to optimization.

3) ResNet20 on CIFAR Datasets: The ResNet20 experiments
on CIFAR datasets revealed distinct patterns:

Fig. 6: Training loss convergence on CIFAR-10 with ResNet20

7

Fig. 7: Training loss convergence on CIFAR-100 with ResNet20

On CIFAR-10 (Figure 6), both multiplicative and depth-based
scaling initially showed higher loss values but demonstrated
steeper descent rates after epoch 5. This suggests more
effective loss landscape navigation once the optimization
process stabilizes, despite these approaches being originally
designed for simpler architectures.

CIFAR-100’s more challenging nature (Figure 7) highlighted
the strength of depth-based scaling, which achieved notably
lower final loss values. This superior performance aligns with
the strategy’s design focus on deeper architectures.

Fig. 8: Training loss convergence on Fashion-MNIST with
ResNet20

4) Fashion-MNIST Results: The Fashion-MNIST experi-
ments with ResNet20 (Figure 8) revealed a distinctive pattern
where all CaAdam variants initially maintained higher loss
values but achieved superior final convergence. This behavior
suggests that our connection-aware scaling strategies excel at
fine-tuning network parameters in later training stages, even
when applied to ResNet architectures.

This comprehensive analysis demonstrates how different
CaAdam variants adapt to varying network architectures
and task complexities, with multiplicative scaling generally
excelling in simpler architectures and depth-based approaches
showing increasing benefits as network complexity grows.

VI. CONCLUSION

This work introduces CaAdam, a novel optimization ap-
proach that challenges the traditional paradigm of architecture-
agnostic parameter updates in neural networks. By incorpo-
rating structural information through simple scaling strategies,
we have demonstrated that connection-aware optimization
can significantly improve training dynamics across diverse
architectures and tasks. Our empirical results consistently

show the benefits of this approach across both classification
and regression tasks. The improvements in accuracy and
reduction in training time demonstrate that incorporating
architectural awareness into optimization strategies can enhance
both the efficiency and effectiveness of neural network training.
Moreover, these improvements were achieved while working
within the constraints of current deep learning frameworks,
suggesting the practical applicability of our method. The
complementary nature of our scaling strategies emerged as a
key finding. Multiplicative scaling proved particularly effective
for simpler architectures, where connection patterns directly
inform optimal learning rates. In contrast, depth-based scaling
showed its strength in deeper networks, especially evident
in its superior performance on ResNet architectures. This
pattern suggests that different architectural characteristics may
require distinct optimization approaches, challenging the one-
size-fits-all philosophy of traditional optimizers. While our
current implementation relies on relatively simple architectural
proxies, the consistent improvements across various tasks and
architectures suggest a promising direction for future research.
More sophisticated approaches might consider dynamic adap-
tation of scaling strategies during training, integration of layer-
type specific optimization behaviors, or incorporation of more
complex topological features. The potential also exists for
developing systems that automatically select and adjust scaling
strategies based on comprehensive architecture analysis. In
addition, preliminary testing has shown more mixed results
when using this method for Recurrent Neural Networks (RNNs),
and we would not advise using our work as-is for this kind
of network, though we encourage more research to adapt the
idea to them.

We believe this work opens new avenues for research in
architecture-aware optimization, suggesting that the future of
neural network training lies in methods that more closely align
with the structural characteristics of their target networks.
The success of our simple proxies indicates that even basic
architectural awareness can significantly impact optimization
performance, pointing toward potentially greater improvements
as more sophisticated approaches are developed.

REFERENCES

[1] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.
[2] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances
in neural information processing systems, vol. 32, 2019.

[3] D. P. Kingma, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[4] A.-L. Cauchy, “Méthode générale pour la résolution des systèmes
d’équations simultanées,” Comptes Rendus de l’Académie des Sciences,
vol. 25, no. 1847, pp. 536–538, 1847.

[5] R. Fletcher and M. J. Powell, “A rapidly convergent descent method for
minimization,” The Computer Journal, vol. 6, no. 2, pp. 163–168, 1963.

[6] S. Du, J. Lee, H. Li, L. Wang, and X. Zhai, “Gradient descent finds
global minima of deep neural networks,” in International conference on
machine learning. PMLR, 2019, pp. 1675–1685.

[7] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau,
T. Schaul, B. Shillingford, and N. De Freitas, “Learning to learn by
gradient descent by gradient descent,” Advances in neural information
processing systems, vol. 29, 2016.

8

https://github.com/fchollet/keras

[8] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, no. 6088, pp.
533–536, 1986.

[9] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

[10] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[11] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization.” Journal of machine learning
research, vol. 12, no. 7, 2011.

[12] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato,
A. Senior, P. Tucker, K. Yang et al., “Large scale distributed deep
networks,” Advances in neural information processing systems, vol. 25,
2012.

[13] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv preprint
arXiv:1212.5701, 2012.

[14] T. Dozat, “Incorporating nesterov momentum into adam,” 2016.
[15] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features

from tiny images,” 2009.
[16] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image

dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

9

TABLE I: Regression Results on California Housing Dataset

Architecture Optimizer Scaling Strategy RMSE RMSE Std Time Mean Time Std Epochs Mean Epochs Std

[1024, 256, 64, 16]

Adam - 0.442 0.002 14.84 1.73 72.50 8.81
AdamW - 0.442 0.003 14.82 1.85 72.83 9.65
Adamax - 0.452 0.002 18.74 3.55 93.00 18.19
CAdam Additive 0.440 0.003 14.23 1.44 69.00 7.03
CAdam Depth 0.440 0.003 14.49 1.69 71.03 9.05
CAdam Multiplicative 0.443 0.004 14.07 1.12 68.87 5.82
Nadam - 0.441 0.003 15.85 2.83 75.77 14.65

[128, 128, 128, 128, 128]

Adam - 0.455 0.003 6.85 0.63 61.33 6.13
AdamW - 0.453 0.003 6.75 0.55 58.27 5.46
Adamax - 0.464 0.002 8.14 0.82 72.60 8.30
CAdam Additive 0.450 0.004 6.60 0.60 56.83 5.66
CAdam Depth 0.450 0.003 6.83 0.57 59.87 5.66
CAdam Multiplicative 0.448 0.003 7.05 0.67 61.13 7.24
Nadam - 0.454 0.003 7.27 0.76 60.80 7.71

[128, 128, 64]

Adam - 0.456 0.002 4.86 0.45 76.57 7.44
AdamW - 0.456 0.001 4.83 0.45 77.07 8.28
Adamax - 0.464 0.002 6.56 0.99 111.53 19.47
CAdam Additive 0.451 0.003 4.45 0.40 68.83 6.89
CAdam Depth 0.452 0.002 4.67 0.40 73.33 6.47
CAdam Multiplicative 0.446 0.003 4.49 0.29 69.50 5.30
Nadam - 0.456 0.002 4.92 0.51 75.33 9.13

[128, 64, 32]

Adam - 0.459 0.003 3.93 1.04 88.27 28.71
AdamW - 0.459 0.003 3.90 0.52 86.50 14.73
Adamax - 0.467 0.002 6.34 3.86 155.07 106.09
CAdam Additive 0.451 0.003 3.55 0.49 77.37 13.81
CAdam Depth 0.454 0.002 3.92 0.65 86.30 16.95
CAdam Multiplicative 0.446 0.003 3.33 0.28 70.73 8.66
Nadam - 0.460 0.002 3.87 0.57 80.87 15.06

[256, 128, 64, 32]

Adam - 0.452 0.002 5.75 0.73 68.83 10.64
AdamW - 0.451 0.003 5.81 0.35 68.57 4.92
Adamax - 0.459 0.002 7.62 1.37 96.47 19.70
CAdam Additive 0.447 0.004 5.46 0.53 64.47 6.95
CAdam Depth 0.448 0.003 5.73 0.50 68.40 7.04
CAdam Multiplicative 0.446 0.004 5.76 0.64 67.93 8.47
Nadam - 0.454 0.002 5.94 0.55 67.43 7.93

[64, 32]

Adam - 0.466 0.003 5.16 2.16 170.43 81.35
AdamW - 0.466 0.003 4.57 2.04 147.23 75.98
Adamax - 0.472 0.002 9.24 5.66 322.87 207.91
CAdam Additive 0.463 0.003 3.82 1.12 119.00 40.12
CAdam Depth 0.464 0.004 4.29 1.80 138.30 66.84
CAdam Multiplicative 0.446 0.003 3.61 1.66 111.87 61.85
Nadam - 0.465 0.003 4.22 1.37 130.17 50.47

TABLE II: Classification Results on CIFAR and Fashion-MNIST Datasets

Dataset Architecture Optimizer Scaling Strategy Accuracy Acc. Std Time Mean Time Std Epochs Mean Epochs Std

CIFAR-10 ResNet20

Adam - 0.798 0.008 63.74 3.62 28.63 1.94
AdamW - 0.791 0.014 64.71 7.06 28.70 3.84
Adamax - 0.689 0.015 54.89 4.43 23.73 2.45
CAdam Additive 0.821 0.006 66.62 4.18 30.00 2.26
CAdam Depth 0.816 0.010 66.83 5.77 30.07 3.11
CAdam Multiplicative 0.831 0.005 73.73 7.38 33.90 4.14
Nadam - 0.792 0.014 67.79 5.89 29.00 3.13

CIFAR-100 ResNet20

Adam - 0.478 0.006 71.83 3.98 32.50 2.16
AdamW - 0.483 0.006 72.08 3.58 32.17 1.93
Adamax - 0.396 0.009 79.36 3.37 36.57 1.76
CAdam Additive 0.491 0.010 70.63 3.56 31.80 1.86
CAdam Depth 0.504 0.005 73.12 4.33 32.90 2.37
CAdam Multiplicative 0.507 0.005 69.29 3.56 30.93 1.93
Nadam - 0.476 0.011 74.23 4.23 31.77 2.18

Fashion-MNIST ResNet20

Adam - 0.923 0.005 139.01 12.82 32.00 3.27
AdamW - 0.924 0.004 140.31 16.86 32.13 4.23
Adamax - 0.916 0.004 128.91 12.88 29.50 3.26
CAdam Additive 0.925 0.004 150.64 24.09 34.93 6.08
CAdam Depth 0.926 0.003 143.59 19.05 33.13 4.80
CAdam Multiplicative 0.922 0.003 166.07 24.34 38.87 6.20
Nadam - 0.925 0.003 133.95 14.71 29.80 3.70

10

TABLE III: Statistical Analysis of RMSE Improvements on California Housing Dataset

Architecture Optimizer Scaling Strategy Metric RMSE Training Time

Improv. (%) t-stat p-value Improv. (%) t-stat p-value

[1024, 256, 64, 16]

AdamW - RMSE 0.00 0.03 9.77e-01 0.10 0.03 9.75e-01
Adamax - RMSE -2.23 -18.40 6.95e-26*** -26.29 -5.41 1.24e-06***

CAdam Additive RMSE 0.49 3.24 2.01e-03** 4.11 1.49 1.43e-01
CAdam Depth RMSE 0.50 3.36 1.39e-03** 2.37 0.80 4.29e-01
CAdam Multiplicative RMSE -0.26 -1.40 1.67e-01 5.15 2.04 4.62e-02*

Nadam - RMSE 0.22 1.45 1.52e-01 -6.80 -1.66 1.01e-01

[128, 128, 128, 128, 128]

AdamW - RMSE 0.25 1.35 1.83e-01 1.42 0.64 5.26e-01
Adamax - RMSE -2.06 -13.41 1.99e-19*** -18.96 -6.87 4.75e-09***

CAdam Additive RMSE 1.07 4.80 1.17e-05*** 3.56 1.54 1.30e-01
CAdam Depth RMSE 1.08 5.91 1.95e-07*** 0.28 0.12 9.01e-01
CAdam Multiplicative RMSE 1.44 7.48 4.65e-10*** -2.93 -1.19 2.37e-01
Nadam - RMSE 0.09 0.53 6.01e-01 -6.14 -2.35 2.24e-02*

[128, 128, 64]

AdamW - RMSE 0.06 0.65 5.21e-01 0.76 0.32 7.51e-01
Adamax - RMSE -1.82 -19.20 8.28e-27*** -34.88 -8.51 8.46e-12***

CAdam Additive RMSE 1.14 9.03 1.18e-12*** 8.48 3.77 3.87e-04***

CAdam Depth RMSE 0.99 9.02 1.22e-12*** 4.06 1.80 7.66e-02
CAdam Multiplicative RMSE 2.24 15.94 7.27e-23*** 7.69 3.81 3.37e-04***

Nadam - RMSE 0.08 0.86 3.93e-01 -1.21 -0.47 6.37e-01

[128, 64, 32]

AdamW - RMSE 0.18 1.23 2.25e-01 0.98 0.18 8.57e-01
Adamax - RMSE -1.68 -12.74 1.85e-18*** -61.14 -3.29 1.70e-03**

CAdam Additive RMSE 1.77 11.77 5.20e-17*** 9.70 1.82 7.33e-02
CAdam Depth RMSE 1.26 9.80 6.55e-14*** 0.35 0.06 9.51e-01
CAdam Multiplicative RMSE 2.87 16.89 4.60e-24*** 15.41 3.09 3.06e-03**

Nadam - RMSE -0.17 -1.27 2.11e-01 1.54 0.28 7.81e-01

[256, 128, 64, 32]

AdamW - RMSE 0.27 2.19 3.22e-02* -1.02 -0.40 6.93e-01
Adamax - RMSE -1.52 -15.59 2.12e-22*** -32.52 -6.59 1.45e-08***

CAdam Additive RMSE 1.15 6.80 6.24e-09*** 4.99 1.74 8.68e-02
CAdam Depth RMSE 0.93 6.67 1.05e-08*** 0.41 0.15 8.84e-01
CAdam Multiplicative RMSE 1.43 8.53 7.90e-12*** -0.14 -0.05 9.63e-01
Nadam - RMSE -0.30 -2.57 1.28e-02* -3.25 -1.12 2.69e-01

[64, 32]

AdamW - RMSE 0.06 0.38 7.05e-01 11.48 1.09 2.80e-01
Adamax - RMSE -1.24 -8.60 6.04e-12*** -79.17 -3.69 4.96e-04***

CAdam Additive RMSE 0.61 3.53 8.23e-04*** 25.90 3.00 3.96e-03**

CAdam Depth RMSE 0.41 2.23 2.97e-02* 16.79 1.69 9.72e-02
CAdam Multiplicative RMSE 2.07 13.30 2.89e-19*** 30.11 3.12 2.79e-03**

Nadam - RMSE 0.31 1.93 5.86e-02 18.19 2.01 4.92e-02*

TABLE IV: Statistical Analysis of Performance Improvements Compared to Adam Baseline

Dataset Optimizer Scaling Strategy Metric Accuracy Training Time

Improv. (%) t-stat p-value Improv. (%) t-stat p-value

CIFAR-10

AdamW - Accuracy -0.93 -2.49 1.58e-02 -1.51 -0.67 5.08e-01
Adamax - Accuracy -13.67 -35.53 4.62e-41*** 13.88 8.47 1.02e-11***

CAdam Additive Accuracy 2.84 12.70 2.16e-18*** -4.51 -2.85 6.08e-03**

CAdam Depth Accuracy 2.20 7.56 3.32e-10*** -4.84 -2.48 1.59e-02*

CAdam Multiplicative Accuracy 4.09 18.89 1.89e-26*** -15.67 -6.66 1.09e-08***

Nadam - Accuracy -0.82 -2.21 3.08e-02* -6.35 -3.21 2.18e-03**

CIFAR-100

AdamW - Accuracy 1.02 3.19 2.29e-03** -0.34 -0.25 8.01e-01
Adamax - Accuracy -17.21 -39.92 6.99e-44*** -10.49 -7.92 8.49e-11***

CAdam Additive Accuracy 2.72 6.04 1.17e-07*** 1.67 1.23 2.25e-01
CAdam Depth Accuracy 5.48 17.32 1.37e-24*** -1.80 -1.20 2.34e-01
CAdam Multiplicative Accuracy 5.97 20.00 1.06e-27*** 3.53 2.60 1.17e-02*

Nadam - Accuracy -0.39 -0.82 4.18e-01 -3.35 -2.27 2.72e-02*

Fashion-MNIST

AdamW - Accuracy 0.15 1.24 2.19e-01 -0.93 -0.34 7.39e-01
Adamax - Accuracy -0.76 -6.36 3.42e-08*** 7.26 3.04 3.51e-03**

CAdam Additive Accuracy 0.31 2.66 1.00e-02* -8.36 -2.33 2.31e-02*

CAdam Depth Accuracy 0.39 3.61 6.35e-04*** -3.30 -1.09 2.79e-01
CAdam Multiplicative Accuracy -0.02 -0.23 8.22e-01 -19.47 -5.39 1.00e-06***

Nadam - Accuracy 0.23 2.16 3.48e-02* 3.64 1.42 1.61e-01

11

	Introduction
	Related work
	AdaMax
	Nadam

	Algorithm
	Scaling
	Adam
	Update
	A view on convergence effect

	Experimental Setup
	Learning Tasks and Datasets
	Model Architectures
	Training Protocol and Error Metrics
	Comparative Analysis Framework

	Results and Analysis
	Overview
	Classification Performance
	Regression Analysis
	Convergence Characteristics
	Scaling Strategy Comparison
	Training Loss Convergence Analysis
	Small MLP Architectures
	Large MLP Architectures
	ResNet20 on CIFAR Datasets
	Fashion-MNIST Results

	Conclusion
	References

