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Atmosphérique (LHEEA), CNRS UMR6598, École Centrale de Nantes
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Abstract

Hybrid RANS/LES (HRL) models are designed to allow transition be-
tween a RANS and a LES formulation inside the flow, ideally using LES only
where it is necessary, and RANS otherwise, especially in complex regions like
strong adverse pressure gradients. However HRL has issues when dealing
with the transfer of the turbulent quantities usually coming from the RANS
model to the LES part. The goal of this paper is to propose a solution to the
lack of transition mechanism in the Detached-Eddy Simulation (DES) model
and its subsequent iterations to handle the transfer of modeled to resolved
turbulent kinetic energy (TKE) in the context of turbulent boundary layers.
The presented approach uses a volume forcing based on Lundgren’s method
which amplifies already existing velocity fluctuations. The forcing is tuned
so that the modeled TKE, which is dissipated by the DES method to transi-
tion to the LES mode, is compensated by generating the equivalent amount
of resolved kinetic energy. The effectiveness of this solution is evaluated on
a turbulent boundary layer over a flat plate, a geometrically simple case but
the DES model is highly sensitive to mesh refinement in this configuration
which allows for a precise evaluation of the forcing. Different meshes and
time steps are tested to assess the impact of the method on the flow. This
approach shows a clear improvement on the turbulent quantities inside the
boundary layer when compared with the standard DES.

Keywords: Hybrid RANS-LES, Grey area, Volume forcing, DES

1 Introduction

A presentation of HRL models Since direct numerical simulations (DNS) and
large eddy simulations (LES) are beyond reach for most industrial applications and
RANS computations do not always offer a high enough level of precision especially
when dealing with highly transient flow features, hybrid RANS-LES method arose
as a viable intermediate between the low computational costs of RANS and the
high fidelity of LES models. The core concept of these methods is to use a RANS
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formulation whenever possible, mainly near solid boundaries where the very small
size of eddies would force the use of a highly refined mesh to perform an accurate
LES, while RANS models perform well. LES is used far away from the wall, mainly
in regions with strong separations. Many different HRL models have been proposed
such as the Detached-Eddy Simulation (DES) by Spalart et al. (1997), the Partially
Averaged Navier-Stokes (PANS) model by Girimaji and Abdol-Hamid (2005) or
the Partially Integrated Transport model (PITM) by Chaouat and Schiestel (2005).

The issue with the grey area Models like DES are known to have issues when
dealing with attached or mildly separated flows, where most of the turbulence
comes from the shear flow created by the boundary layer. The near-wall area,
treated purely in RANS, only contains modeled turbulence which is supposed to
be the source of the resolved turbulence further away from the wall, in the LES area.
In the so-called grey area (GA) between RANS and LES, this modeled energy is
destroyed to allow the creation of resolved eddies, so the modeled part of the energy
spectrum gets smaller when the model reaches the well resolved LES. However, in
flows without perturbation mechanisms in the outer flow, this creation does not
occur, since DES has no built-in mechanism to convert the modeled energy into
turbulent eddies. This causes a lack of turbulent energy, usually called modeled
stress depletion (MSD).

DES is highly sensitive to the mesh resolution, since the transition from RANS to
LES is based on the comparison of a turbulent length scale and the local mesh size.
Therefore, DES meshes are usually constructed to minimize RANS-LES transitions
in the boundary layer, which reduces MSD. However, HRL simulation is used for
more and more complex flows and recent work like Mozaffari et al. (2022) shows
that adaptive grid refinement (AGR) can improve the efficiency and accuracy of
such computations. Still, AGR adapts the mesh to all flow features and cannot
optimize only the boundary layer mesh. This means that for complex flows with
multiple flow features, MSD in the boundary layer region appears inevitable.

Reducing MSD To solve this issue, multiple solutions have been proposed. The
most common one for DES models is the use of a shielding function which prevents
the RANS-LES transition inside the boundary layer. Thus the transition from pure
RANS to well resolved LES is faster and more abrupt which facilitates the devel-
opment of instabilities. Also the attached boundary layer is modeled entirely in
RANS, which is suitable for these flows. The Delayed Detached-Eddy Simulations
(DDES) (Spalart et al., 2006) and Improved Detached-Eddy Simulations (IDDES)
(Shur et al., 2008) both add shielding functions to the DES model. This approach
does not create a transfer from modeled to resolved turbulence, but it limits MSD
by reducing the GA and improving its position in the flow.

Another way of handling MSD is to introduce an energy transfer viscosity term
(Girimaji and Wallin, 2013) which decreases the turbulent viscosity of the flow so
that instabilities develop faster. This method does not fit the role of a transfer
mechanism either, but rather helps the development of natural instabilities. In
configurations where few natural eddies exist (such as a turbulent boundary layer
treated with a DES model) reducing the turbulent viscosity is often insufficient.
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Turbulence forcing Active forcing methods are the most direct way to create
the desired transfer of energy. These methods stimulate the appearance of resolved
turbulence through fluctuating source terms in the momentum equations. While
this is a natural idea, its implementation poses two challenges: selecting the right
amount of forcing, and the correct spectrum of the fluctuations.

The issue of the forcing amplitude has been widely addressed in the literature.
Many authors associate MSD with the commutation error between the filtering
operator and partial derivatives (see e.g. Mehta et al. (2023); Arvidson et al. (2018);
Rajamani and Kim (2010) among others). They estimate the commutation error,
and use various techniques to generate the desired amount of fluctuations. While
mathematically rigorous, these methods can be cumbersome to implement. Other
approaches exist, such as Kok (2017) who uses a backscatter strategy to create the
missing resolved TKE.

To create the fluctuations, different approaches have been proposed such as using
precursor LES results from well-known flow configurations or downstream turbu-
lence recycling (Lund et al., 1998). Both techniques use rescaled turbulence and
prove to be efficient when the rescaling laws are correct. However these methods
are constrained to simple flows and need significant user input to choose the right
rescaling function. Synthetic turbulence generation (STG), which uses artificially
computed turbulence, is another possible approach. One method of STG is the
approach of Kraichnan (1970), which is based on a sum of random Fourier modes.
The main issue with this method is its lack of simplicity, especially in assuring that
the synthetic turbulence is compatible with the actual flow throughout a complex
flow field.

The approach chosen in this paper is based on a forcing term that amplifies small
pre-existing instabilities to generate eddies following the initial idea of Lund-
gren (2003). This use of turbulence extracted from the flow has the benefit of
a low computational cost. The forcing is interpreted as a transfer of energy from
modeled to resolved eddies, so its amplitude is derived from the artificial dissipa-
tion term which reduces the modeled turbulence during the transition from RANS
to LES. To test the effectiveness of the approach for reducing MSD, it is intention-
ally developed for the original DES model, which is particularly sensitive to this
issue. The proposed method is intended for use with adapted meshes (Mozaffari
et al., 2022) on complex flows with vortex-boundary layer interaction (Visonneau
et al., 2020). As such, its main objective is to reduce the mesh sensitivity of HRL
turbulence models.

The paper is organized as follows. Section 2 describes the HRL model used, fol-
lowed by the theory behind the artificial forcing method in section 3 which details
the amplitude of the forcing and the targeted turbulent scales. The flat-plate
boundary layer test case and numerical setup used are presented in section 4 and
reference RANS / DES computations are shown in section 5. Detailed results of
the DES model using the forcing method are presented in section 6, followed by a
study of the model’s sensitivity to variations of the mesh size and time discretiza-
tion. The paper ends with a conclusion and a discussion of future improvements
for the forcing.
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2 The HRL model: DES

Both RANS and LES are based on the filtered incompressible Navier-Stokes equa-
tions:

∂Ui

∂t
+ ρ

∂Ui

∂xj

= −∂P

∂xi

+
∂

∂xj

(
2µSij − ρu′

ju
′
j

)
, (1)

∂Ui

∂xi

= 0. (2)

These are obtained by introducing a decomposition u = U + u′ and p = P + p′,
where U and P are the filtered velocity field and pressure field respectively. For
RANS, this filter is the ensemble average, for LES it is a spatial average. The
quantity −ρu′

ju
′
j is the subfilter-stress tensor which is given by the turbulence

model, ρ the density of the flow, µ the molecular viscosity and Sij the filtered
strain-rate tensor.

DES-type HRL models create a bridge between RANS and LES by using the
similarity of their respective formulations, thus any RANS model may be adapted
to an HRL method. Since the k-ω SST model is a reliable RANS formulation
for hydrodynamics and naval applications, which is the main targeted field of this
work, only the SST version of the DES model (Strelets, 2001) will be used for
this paper. While the ω transport equation is strictly identical to the original k-ω
SST (Menter, 1993), the k transport equation has been modified to handle the
additional dissipation of modeled energy required to switch from RANS to LES.

∂ρk

∂t
+

∂

∂xj

(
ρUjk − (µ+ σkµt)

∂k

∂xj

)
= τij

∂Ui

∂xj

− β∗ρωkFDES︸ ︷︷ ︸
εkDES

. (3)

The modified dissipation term of the DES model that dictates the mode in which
the model is operating is detailed reads:

εkDES = ρβ∗kωFDES, with: (4)

FDES = max

(
lk−ω

CDES∆c

, 1

)
, the DES limiter, (5)

lk−ω =
k1/2

β∗ω
, the RANS turbulence length scale, (6)

∆c = max (∆x,∆y,∆z), the mesh cutoff length scale. (7)

Following the idea of the original DES paper (Spalart et al., 1997), the modified
dissipation term of the k transport equation is designed to ensure a RANS behavior
if FDES = 1 and a well resolved LES behavior when FDES > 1 and the flow reaches
equilibrium between the production and dissipation term. In this context, the
model is equivalent to a Smagorinsky subgrid-scale model: νt ∝ S∆2.
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3 Forcing method theory

As will be shown in figure 3c, there is almost no resolved TKE in a turbulent
boundary layer treated with DES. The total TKE shown in figure 3b contains only
modeled energy. This example illustrates the lack of a mechanism designed to
transfer the dissipated modeled energy into resolved energy.

The purpose of our forcing method is to create this mechanism in the DES model.
The forcing converts modeled TKE into resolved TKE by generating instabilities
inside the grey areas which occur near the transition from RANS to LES mode.
This is achieved via a source term added to the Navier-Stokes equations (1).

3.1 Forcing amplitude

The main issue embedded in the design of DES, which was already anticipated in
Spalart et al. (1997), is that while the behavior of the turbulence model is clear
when FDES = 1 (RANS) and when the flow is at equilibrium for FDES > 1 (LES),
the zone where FDES > 1 and the flow is not at equilibrium (the grey area) does
not bear a clear physical meaning. In this zone, the dissipation term in (3) assures
both the physical dissipation of modeled turbulence and its artificial destruction
to make way for resolved turbulence.

Our forcing is based on the assumption that this destruction in the grey area
should not disappear, but must be reinjected as resolved turbulence to ensure the
conservation of total TKE. Therefore, we break the dissipation term εkDES down
in two parts:

εkDES = εkSGS + εktr, (8)

where εkSGS is the physical dissipation of the sub-grid scale model and εktr the
transfer dissipation of modeled to resolved energy.

Since a general expression for εktr is not available, equation 8 is detailed for three
specific modes of the DES model:

1. In RANS mode (FDES = 1), εkSGS = β∗ρωk and εktr = 0. In this configuration
εkDES is known to be valid and concerns only the dissipation of modeled TKE
since no resolved velocity fluctuations exist in the flow field.

2. In well established LES mode (FDES > 1) the model is designed to function
as a LES sub-grid scale turbulence model. Thus, k represents the sub-grid
turbulence and the dissipation in the model represents its physical dissipation
rate. Therefore, εkSGS = β∗ρωkFDES and once again, εktr = 0. In both these
cases, no injection is required.

3. Lastly, at the very beginning of the grey area (FDES > 1, but only modeled
turbulence), k and ω still have the same values they had in the RANS zone.
Thus, the physical dissipation is εkSGS = εkSST ≡ β∗ρkω and therefore εktr =
εkDES − εkSST = β∗ρkω (FDES − 1).
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Within the grey area, the distribution of both transfer and SGS dissipation in
equation (8) is not known. To handle this configuration, since most of the transfer
is likely to occur close to the RANS zone, εkSST can be used to approximate εkSGS

while the model is transitioning from RANS to LES at equilibrium. Thus:

εktr = β∗ρkω (FDES − 1) , (9)

defines the target amount of energy injected in the flow.

However, given the actual dissipation term εkSGS in the established LES zone, this
first definition of εktr leads to an overestimation of the injection of turbulence.
Therefore, a limiter is introduced as an attempt to avoid over-producing resolved
TKE; this limiter estimates εkSGS as the maximum between εkSST and the production
term P k = τij

∂Ui

∂xj
. For the computation of the injection, this leads to:

εktr = ρβ∗kωFDES −max
(
ρβ∗kω, P k

)
. (10)

The choice of this limiter was made in order to recover the limit behavior of the
DES model. Indeed, the model is designed to be equivalent to an algebraic sub-
grid scale model like the Smagorinsky model when the flow reaches equilibrium
meaning that the production and dissipation of turbulence are equal. In this flow
state, εkDES is equivalent to the modeled viscous dissipation of the flow and there
should be no injection of TKE. The limiter allows the forcing method to respect
this condition: when P k = εkDES then εktr = 0, thus no body forces are applied if
the flow reaches a balance between production and dissipation.

3.2 Targeted turbulent scales

When creating turbulence through momentum forcing, the turbulent scales affected
by the forcing have a big impact on the efficiency of the creation of turbulent eddies.
Thus, the chosen injection method should be able to target specific length and
time scales. A common method of selecting the desired scales is to use synthetic
velocity fluctuations, derived from an energy spectrum broken into multiple Fourier
modes (Kraichnan, 1970). However this method requires a good knowledge of the
flow field, since it requires accurate predictions of the energy cascade, taking into
account that different flow behaviors result in different cascades.

Here the chosen approach is a modified Lundgren volume forcing (Lundgren, 2003),
which is based on the amplification of pre-existing turbulence. The original goal
of Lundgren’s method is to sustain TKE in the flow in order to study stationary
isotropic turbulence, thus it needs to be modified to fit the role of an energy transfer
mechanism. This is done by redefining the amplifying coefficient so that it takes
into account the additional dissipation of modeled kinetic energy εktr.

In Lundgren’s method, a body force f = AU ′ is added as a source term to the
Navier-Stokes equations, where A is an amplifying coefficient based on the charac-
teristics of the flow (see section 3.3) and U ′ a pre-existing velocity fluctuation of the
flow field defined using a low-pass filter: U = U +U ′ with U the instantaneous ve-
locity and U the filtered velocity. This method has shown to mainly impact scales
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Figure 1: Turbulent cascade showing the distribution of resolved (Kr) and modeled (Km) TKE
based on the cutoff wavelength κc = π/∆c. When FDES increases, the resolved portion of the
spectrum gets bigger.

between the integral scales and the inertial range (Rosales and Meneveau, 2005),
so it focuses mainly on the large turbulent structures which are the scales where
the lack of resolved turbulence takes place.

At time step n, U ′n is computed using an exponential averaging which acts as the
low-pass filter:

Ui
n
= αUn

i + (1− α)Ui
n−1

, (11)

U ′n
i = Un

i − Ui
n
. (12)

This technique, also called exponentially-weighted average (Pruett et al., 2003), has
many advantages compared to time or space averaging. A spatial average is only
relevant for simple geometry flows where fluctuations can be considered statistically
homogeneous in space, while a time average is only relevant for flows statistically
stationary in time. The smoothing coefficient α gives an exponentially decreasing
weight to the instantaneous velocity at a time step j as the current time step
strays further from j. This gives more impact to the most recent characteristics
of the flow while still not discarding the past flow behavior. This method acts as
a low-pass filtering of the velocity signal with a fixed cutoff frequency (Cahuzac
et al., 2010) dictated by the smoothing coefficient α and the time step:

fc ∝
α

∆t
(s−1). (13)

Another advantage of the exponential average is that the parameter fc can be
used to select the scales which will be targeted by the Lundgren forcing. The
importance of this is illustrated by figure 1 which shows the distribution of energy
in the turbulence cascade between the resolved and filtered quantity. Suppose that
a local variation of the mesh size occurs: the mesh is refined from ∆1 to ∆2 < ∆1

as well as the associated cutoff wavelength κ1 and κ2 > κ2. The theory presented
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above says that the portion of the spectrum contained between these wavelengths
should be converted from modeled to resolved energy. Ideally the low-pass filter
⟨U⟩ should remove these associated frequencies but keep the larger eddies. Thus,
only the scales which are just large enough to be resolved on the mesh end up in
U ′ and receive injected turbulence.

Therefore, variations of the time step and smoothing coefficient (α) have an impact
on the forcing. To study this affirmation, in section 6.3 a first approach using a
constant smoothing coefficient α = 0.01 is chosen. Its value is then changed in
multiple computations to observe its impact on the forcing. Ideally the value of α
should dynamically change in space and time so that the cutoff frequency of the
low pass filter and that of the flow are correlated.

3.3 Computation of the forcing

The turbulence injection approach is combined with a finite-volume discretization
of the incompressible Navier-Stokes equations, with implicit time integration (see
section 4.3 for details). The desired transfer TKE is injected in the momentum
equation (1) via a volume force. Using the definition of the resolved TKE and the
theory presented in section 3.1, the target added TKE in the time step n + 1 is
expressed as follows:

ktarget = εkart∆t =
1

2
ρ
(
(∥U ′n+1

i ∥)2 − (∥U ′n
i ∥)2

)
, (14)

with ∥U ′n∥ = U ′n
i U ′n

i the amplitude of the velocity fluctuation at time step n and
∆t the size of the time step. ktarget is the amount of energy dissipated by εkart over
the course of the time step ∆t.

From equation (14), the target velocity fluctuation at time step n+ 1 is obtained:

∥U ′n+1
i ∥ =

√
2

ρ
εkart∆t+ (∥U ′n

i ∥)2 . (15)

The components of the velocity fluctuations and the components of the forcing are
then computed as follows:

U ′n+1
i = U ′n

i

∥U ′n+1
i ∥

∥U ′n
i ∥

, (16)

fi = ρ
(
U ′n+1
i − U ′n

i

)
/∆t. (17)

The velocity fluctuations are computed at the first non-linear iteration of each time
step and the forcing term is not updated during the time step. Thus, the targeted
velocity fluctuation is never truly reached. It is based on obsolete flow data when
reaching the end of the time step’s computation and the final velocity fluctuation
is impacted by the rest of the Navier-Stokes equations. One way to circumvent
this issue would be to introduce an implicit coupling between the forcing and
the velocity computed with the momentum equation by recalculating the target
velocity during the time step. However the current approach has the advantage of
being more stable than this implicit formulation.
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4 Test case: developing boundary layer over a

flat plate

Attached boundary layers represent a difficult challenge for standard DES as the
creation of turbulence is caused purely by wall friction in the RANS zone. Thus,
they naturally cause significant modeled stress depletion (MSD) when the transi-
tion between RANS and LES occurs inside the boundary layer. This is therefore a
logical test case to evaluate the quality of the forcing method: as the LES region
contains no natural fluctuations, the forcing is responsible for the creation of all
resolved turbulent content.

This section describes the computational domain and physical setup used in this
paper. Reference results will be presented in section 5 and the forcing is tested in
section 6.

4.1 Physical setup

The computational domain consists of a parallelepipedic volume of dimensions
Lx = 0.32 m, Ly = 0.1 m and Lz = 0.02 m.

The fluid used is incompressible with density ρ = 1000 kgm−3, dynamic viscosity
0.00104362 Pa s and an initial velocity of 70 m s−1 in the entire volume. A far
field velocity of 70 m s−1 is applied at the inlet located at x = 0 m and at the
top surface at y = 0.1 m. On the outlet located at x = 0.32 m a frozen pressure
is applied. A no-slip condition is specified on the bottom wall at y = 0 m and
mirror conditions are applied on both side surfaces at z = −0.01 m and z = 0.01
m. The undisturbed flow is turbulent: for both the top and the inlet surfaces,
specified values of (modeled) turbulent kinetic energy (2.94 m2 s−2) and turbulent
dissipation (18 m2 s−3) are imposed. The Reynolds number of this setup is around
2 · 107 based on the length of the flat plate.

4.2 Turbulence models and averaging strategy

As mentioned previously, the hybrid turbulence model used is the DES-SST de-
veloped by Strelets (2001). The k-ω SST RANS model accurately predicts the
development of the boundary layers in this configuration. These results are used
as a reference for all hybrid computations to estimate the right amount of turbu-
lence that should be present.

To speed up the convergence and to reduce the impact of the convergence on the
computation of the mean velocities, the DES-SST computations with forcing are
started from a converged RANS solution on the same mesh and run until the
average flow has converged. Finally, this computation is restarted to obtain the
averaged flow used for post-processing.
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4.3 Numerical setup

The flow solver used in this paper is the second-order unstructured finite-volume
solver ISIS-CFD developed by Ecole Centrale de Nantes / CNRS (Queutey and
Visonneau, 2007). This solver contains a SIMPLE-like pressure-velocity coupling.
The discretization scheme used for turbulence and momentum is a blended scheme
with 5% of 2nd order upwind and 95% of centered discretization. Diffusive fluxes
use central discretizations and the implicit time integration is based on the two-step
Adams-Bashforth scheme.

The mesh composed of stretched hexahedrons is purposely chosen to be ambiguous
and to provoke a switch from RANS to LES inside the boundary layer, leading to
significant MSD. Since the filter cutoff length is ∆c = ∆max = max (∆x,∆y,∆z),
its value is prescribed by the cell size along the streamwise direction (see table 1).
Prismatic layers are used near the bottom wall surface to ensure y+ < 1 in the
first layer.

Name Nx ×Ny ×Nz ∆x (m) ∆z (m) Ncells CFL

x105 105× 81× 100 3.05 · 10−3 2 · 10−4 850500 0.2295
x210/z100 210× 81× 100 1.525 · 10−3 2 · 10−4 1701000 0.459

x420 420× 81× 100 7.625 · 10−4 2 · 10−4 3402000 0.918
x640 640× 81× 100 5 · 10−4 2 · 10−4 5184000 1.4
z25 210× 81× 25 1.525 · 10−3 8 · 10−4 425250 0.459
z50 210× 81× 50 1.525 · 10−3 4 · 10−4 850500 0.459
z200 210× 81× 200 1.525 · 10−3 1 · 10−4 3402000 0.459

Table 1: Mesh variations of case ts1e-5 (see table 2)

To study the effect of the spatial discretization on the forcing, multiple meshes
with different refinement levels in the x and z directions are used. Table 1 shows
all the mesh variations tested in this paper.

Name ∆t (s) α CFL fc (s
−1)

ts1e-5/a1e-2 1 · 10−5 1 · 10−2 0.459 1 · 103
ts5e-6 5 · 10−6 1 · 10−2 0.2295 2 · 103

ts2.5e-6 2.5 · 10−6 1 · 10−2 0.1148 4 · 103
ts1e-6 1 · 10−6 1 · 10−2 0.0459 1 · 104
ts5e-7 5 · 10−7 1 · 10−2 0.02295 2 · 104
a5e-3 1 · 10−5 5 · 10−3 0.459 5 · 102
a2.5e-3 1 · 10−5 2.5 · 10−3 0.459 2.5 · 102
a1e-3 1 · 10−5 1 · 10−3 0.459 1 · 102

a1e-2 ts5e-6 5 · 10−6 5 · 10−3 0.2295 1 · 103
a2.5e-3 ts2.5e-6 2.5 · 10−6 2.5 · 10−3 0.1148 1 · 103

a1e-3 ts1e-6 1 · 10−6 1 · 10−3 0.0459 1 · 103

Table 2: Time steps and α variations using mesh x210 (see table 1)

The standard time step is equal to 1 · 10−5 s and has been chosen to ensure that
the CFL number stays below 1. Like the mesh, the impact of a varying temporal
treatment of the turbulence is observed by changing the time step and the value of
the smoothing coefficient α (equation (12), details in section 3.2). Table 2 presents
the different configurations studied.
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5 Reference computations

As a comparison for the forcing simulations in the following section, this section
presents results for both RANS and standard DES-SST.

5.1 k-ω SST RANS

As mentioned earlier, the k-ω SST RANS model is reliable for attached boundary
layers. Its mean quantities, mainly the turbulent kinetic energy and x velocity,
are therefore used as references to estimate the quality of the presented forcing
method. The reference results (figure 2) are computed on mesh x210 and plotted
in the z-centerplane, as well as a line located at x = 0.3m represented by the
red line in figure 2a. Since the goal of the forcing is to compensate for a lack
of turbulent kinetic energy in the flow, this quantity will be the main source of
information to evaluate the forcing.

(a) Contour of TKE near the bottom wall (b) TKE profile in the boundary layer (x = 0.3m)

(c) Contour of x velocity near the bottom wall (d) x velocity profile of the boundary layer (x = 0.3m)

Figure 2: RANS results in the z = 0 centerplane, mesh x210
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5.2 Standard DES-SST

As predicted in the introduction, without any form of external forcing the standard
DES-SST model generates no resolved eddies. The increase of the k-dissipation
term (equation (3)) reduces the modeled TKE, which decreases the turbulent vis-
cosity. The underdevelopment of the boundary layer is a consequence of this.

Figure 3a shows the incomplete development of the boundary layer, compared with
the RANS computation in figure 2a and 2c. Moreover, the freestream TKE far
from the wall observed in the RANS computation disappears for the standard DES
case (shown in figure 3b), leaving almost no TKE outside of the boundary layer.

Figure 3c shows the very small amount of resolved energy present in the flow. This
implies that the TKE profile of figure 3b contains only the modeled energy. The
TKE diminishes even in the zone where FDES = 1 (figure 3d), so there is a two-way
interaction between the RANS and LES zones.

(a) Contour of the total TKE near the bottom wall (b) Total TKE profile (x = 0.3m)

(c) Resolved TKE (x = 0.3m) (d) FDES profile (x = 0.3m). The y+ axis is zoomed.

Figure 3: Standard DES results, mesh x210

Further tests, omitted here for brevity, show that different levels of mesh resolution
or temporal discretization do not influence the amount of resolved turbulence in the
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flow for a standard DES computation. Only the modeled energy varies according
to the size of the RANS area: a coarser mesh will trigger the LES transition further
away from the wall leaving more space to be modeled with the RANS model. Thus
a coarse mesh will yield better results.

6 Forcing method results

The following section presents the results obtained when the forcing method de-
scribed above is applied to the standard DES-SST model.

(a) Mean total TKE (b) Instantaneous forcing along x

(c) Mean resolved, modeled and total TKE profiles (d) Mean x velocity profile

Figure 4: DES with forcing, mesh x210

6.1 Initial forcing test

To illustrate the operation of the turbulence injection, a first simulation is analyzed.
The mesh used for the results presented in this section is the x210 case in table
1, the time integration setup is ts1e-5+ / a1e-2+ (table 2), and εktr is given by
equation (9).
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Figure 4b shows the instantaneous axial forcing fx of equation (17). The body
force has fairly large-scale fluctuations, and is strongest in the outer boundary
layer region. As expected, in the near-wall RANS zone where FDES = 1, the
forcing is zero.

The forcing manages to generate enough fluctuations to match the TKE of the
RANS computation (see figure 4c) with a slight overestimation of TKE right past
the transition where the DES limiter starts increasing and, on the contrary, a
slight underestimation of the near-wall turbulence. Although not all freestream
turbulence is sustained, the forcing has converted the modelled inflow turbulence
into resolved eddies, which is in line with the LES treatment of the outer flow.
Overall, the simulation more accurately predicts the TKE in the flow.

Figure 4a shows the faster development of the boundary layer when compared to
the standard DES (figure 3a), which matches well with the RANS computation.
This is confirmed by the streamwise velocity profile in figure 4d which accurately
follows the RANS profile.

The forcing method provides acceptable results with the current mesh and time
step configuration. However the impact of varying spatial and temporal discretiza-
tion, needs to be evaluated. Simulations with forcing contain much more resolved
turbulence than RANS and ‘natural’ DES computations, but the mesh is too coarse
to achieve a truly resolved LES, so the simulations are expected to be sensitive to
the grid and the time step.

6.2 Spatial discretization

The impact of mesh refinement is studied by changing the cell size along the
streamwise (x) or spanwise (z) direction. Since the entire boundary layer is meshed
with multiple prismatic layers chosen to ensure that y+ < 1 in the first layer,
the mesh refinement along the y axis is unchanged. All the different meshes are
presented in table 1 of section 4. The time integration setup used for all the mesh
variations is the ts1e-5 / a1e-2 configuration presented in table 2, while εktr is
given by equation (9).

Mesh variations along the streamwise direction First, the effects of differ-
ent levels of mesh refinement along the streamwise direction on the computations
and the forcing method are observed. This section uses meshes x105, x210, x420
and x640. As mentioned earlier, the reference RANS computation uses mesh x210.

The most straightforward effect of the mesh variations is on the FDES function
profiles shown in figure 5a, which indicate the location of the RANS-LES transition.
Since ∆max = max (∆x; ∆y; ∆z) is always driven by ∆x (see table 1), the finest
meshes have transition regions closer to the wall compared to coarser meshes.

As shown in figure 5d and 5e, the varying location of the transition influences the
balance between modeled and resolved energy. Coarser meshes tend towards a
RANS behavior as a greater part of the boundary layer is treated by the RANS
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(a) Mean DES limiter (b) Mean x forcing amplitude

(c) Mean total TKE (d) Mean modeled TKE

(e) Mean resolved TKE (f) Mean streamwise velocity

Figure 5: Streamwise resolution: profiles of mean FDES , mean x forcing amplitude, streamwise
velocity and resolved, modeled and total turbulent kinetic energy at x = 0.3m for meshes x105,
x210, x420 and x640
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(a) x105 (b) x210

(c) x420 (d) x640

Figure 6: Streamwise resolution: Q = 1 · 106 s−2 iso-surface for meshes x105, x210, x420 and
x640

mode of the DES model. On the other hand, the LES behavior of finer meshes
triggers closer to the wall. This generates more resolved TKE around the transition
region and the amount of modeled TKE in the boundary layer gets lower.

The forcing method shows a progressively larger injection as the mesh is refined.
Therefore, the total amount of turbulent kinetic energy shown in figure 5c becomes
greater than the desired amount shown by the RANS computation. This is con-
sistent with the theory in section 3: εktr according to equation (9) continues the
ejection in the LES zone, so it should lead to an overestimation of the total TKE.
The mean forcing amplitude (figure 5b) confirms this analysis. On finer meshes,
the peak of the injection gets closer to the wall as expected, becoming progres-
sively thinner and more intense. However, the injection stays strong throughout
the boundary layer: there is more injection in the outer layer on the finest mesh
than on the coarsest one.

Finally, the velocity profiles (figure 5f) on the finer meshes are less ‘full’ than the
RANS profile. While the turbulence intensity on these meshes is too high, this
turbulence does not create enough wall-normal momentum transport. The mesh,
which is too coarse to represent near-wall turbulence in true LES fashion, may
underestimate the velocity fluctuations in y-direction, independent of the forcing.

The Q-criterion Q = 0.5 (Ω2 − S2), with Ω the vorticity tensor and S the strain
rate tensor, shown in figure 6, indicates an increasing amount of vortices as the
mesh is refined. While the scales for the injection (determined only by ∆t and α)
stay the same, the finer meshes show both stronger large-scale vortices and more
fine eddies. This may have three causes: (i) the fine meshes cause more injection,
(ii) the smaller cells are able to represent a wider part of the energy cascade,
and (iii) the turbulent structures are better preserved over time thanks to a lower
numerical diffusion. The tests below are intended to separate these elements.

Mesh variations along the spanwise direction Here the effects of different
levels of mesh refinement along the spanwise direction on the computations and
the forcing method are studied. The test uses meshes z25, z50, z100 and z200.
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(a) Mean FDES (b) Mean x forcing amplitude

(c) Mean total TKE (d) Mean modeled TKE

(e) Mean resolved TKE (f) Mean streamwise velocity

Figure 7: Spanwise resolution: profiles of mean FDES , mean x forcing amplitude, streamwise
velocity and resolved, modeled and total turbulent kinetic energy at x = 0.3m for meshes z25,
z50, z100 and z200
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(a) z25 (b) z50

(c) z100 (d) z200

Figure 8: Spanwise resolution: Q = 1 · 106 s−2 iso-surface for meshes z25, z50, z100 and z200

The goal of this test is to observe different levels of mesh refinement while keeping
similar FDES function profiles and identical positions of the RANS-LES transition
point in the boundary layer. In this configuration ∆max is constant. Even though
∆z varies, it is always kept inferior to ∆x, thus FDES is nearly identical for all
meshes (figure 7a). As a consequence, the RANS zone in the boundary layer has
the same impact for all the computations, since the modeled turbulence hardly
varies (figure 7d).

However the size of the RANS zone is not the only factor that influences the
quality of the results. While the spanwise mesh variation study presents similar
FDES profiles, figure 7c still shows very different amounts of resolved TKE. In this
case however, mesh refinement does not always imply an increase of TKE. Indeed
figure 7e shows that while the mesh z50 displays more resolved turbulence than
z25, the turbulence decreases from there on: even though z200 is better able to
represent turbulence than coarser meshes like z50 and z100, less resolved energy is
observed. Thus, a specific mesh size seems to maximize the amount of turbulence
in the flow.

The Q-criterion in figure 6 and 8 again shows the presence of streamwise elongated
turbulent streaks. While the Q-criterion on the coarsest mesh displays low amounts
of turbulence, the finer meshes have a similar level of vortices, with some more small
details on the finest mesh.

These observations confirm the discussion presented in section 3.2. There is a need
for correlation between the exponential smoothing cutoff frequency and the mesh
cutoff frequency. If the turbulent scales injected in the flow are too small for the
resolution of the simulation (mesh z25) or too large to fit the highly stretched
cells of mesh z200, the injection is inefficient. Furthermore, the mesh needs to suit
the resolved turbulence; it is possible that the high aspect ratio cells degrade the
resolved eddies.
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6.3 Temporal discretization

The time step length and averaging parameter α have an effect on both the targeted
frequencies for the injection, and on the accurate time evolution of turbulent struc-
tures (section 3.2). To study the impact of these parameters, the cases presented in
table 2 have been simulated. They are divided in three main categories: variations
of α, variations of the time step and variations of both parameters together so that
the cutoff frequency (13) is preserved.

Figure 9 shows the turbulence kinetic energy. As the same mesh (x210) is used
for all cases, little to no differences are found in profiles of km so only kt and kr
profiles are shown. Figure 10 presents iso-surfaces of the Q-criterion for selected
cases.

Reduction of the time step clearly reduces the resolved turbulence with a big gap
between 2.5·10−6 and 1·10−6 seconds (figures 9a and 9b). Reducing ∆t for constant
α has the double effect of (i) increasing the temporal resolution, allowing smaller
near-wall eddies to be captured, and of (ii) increasing the cutoff frequency of the
exponential average. Thus, the TKE gets injected into these small eddies, which
are barely resolved on the mesh and cannot stimulate the creation of larger eddies
further from the wall. Figure 10b confirms that with a reduced time step, a kind
of Tollmien-Schlichting instabilities appear instead of the streamwise elongated
structures seen in previous computations (figure 10a).

On the other hand the decrease of parameter α, which decreases fc without chang-
ing ∆t, increases resolved turbulence (figures 9c and 9d). It should be noted that as
α gets smaller, the time needed to stabilize the exponential average of the velocity
increases, which is why the number of time steps was increased for all computations
of this specific configuration. Still, the TKE profiles have similar behaviors and
the shapes of the streaks are very close (figure 10c), which means that the resolved
spectrum is more determined by the mesh and time step than by fc. However,
fc has to agree with the mesh: if the turbulence is injected in scales that are too
large for the mesh (c.f. figure 1), the total TKE gets overestimated, which is the
case for α = 1 · 10−3.

When both ∆t and α vary (figures 9e and 9f), fc stays constant and much smaller
variations near the transition are observed. However, as the parameters decrease,
the amount of resolved turbulence in the near-wall part of the boundary layer
(y+ < 1000) increases significantly. For y+ < 1000, FDES = 1 thus RANS mode is
active in this area and there should be no velocity fluctuations. However, thanks
to the turbulence cascade, some fluctuations stimulate smaller eddies in the RANS
area, which can be resolved if the time step is small enough. These smaller eddies
are visible in the Q iso-surface (figure 10d). The shapes of the total TKE profiles
agree better with RANS when the parameters are reduced, which indicates that
the propagation of resolved turbulence into the RANS area is actually needed to
get correct results. As such, the overestimation in figure 9c may be caused by the
resolved turbulence remaining ‘blocked’ in the larger eddies.

This behavior confirms that the cutoff frequency of the exponential smoothing
has an important impact on the forcing both quantitatively and qualitatively, and
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(a) ⟨kt⟩, α = 1 · 10−2 (b) ⟨kr⟩, α = 1 · 10−2

(c) ⟨kt⟩, Time step = 1 · 10−5 (d) ⟨kr⟩, Time step = 1 · 10−5

(e) ⟨kt⟩, both α and the time step vary (f) ⟨kr⟩, both α and the time step vary

Figure 9: Temporal discretization: total and resolved TKE profiles for variations of ∆t and α
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(a) α = 1 · 10−2, ∆t = 1 · 10−5s, fc = 1 · 103s−1 (b) α = 1 · 10−2, ∆t = 5 · 10−7s, fc = 2 · 104s−1

(c) α = 1 · 10−3, ∆t = 1 · 10−5s, fc = 1 · 102s−1 (d) α = 1 · 10−3, ∆t = 1 · 10−6s, fc = 1 · 103s−1

Figure 10: Time discretization: Q = 1 · 106s−2 isosurface on mesh x210 (see table 1) for cases
x210 / ts1e-5, ts5e-7, a1e-3, and a1e-3 ts1e-6 (see table 2)

that the scales targeted by the injection should be correlated with the mesh size
to get the right amount and type of resolved turbulence. However, independent of
the injection, the temporal resolution has to be sufficient to capture the resolved
turbulence that the mesh requires (FDES depends on the mesh size but not on ∆t),
otherwise the distribution of turbulence will be incorrect.

6.4 Limiting the injection of turbulence

Figure 11 presents the results obtained when the limiter in equation (10) is applied
to the forcing method.

The results presented show that the limiter is successful in significantly reducing
the overestimation of TKE on the finer meshes, compared with figure 5. This
validates the principle of the limiter, since on finer meshes there is a large region
where LES is supposed to be established and the injection should be reduced.

However, overestimation of the total energy still occurs on the x420 mesh. The
near-wall layer turbulence is underestimated, so it is likely that the time step is too
large to resolve all the turbulence required on this fine mesh, like in figure 9e. But
the limiter (10) is also too simplistic: in spatially developing boundary layers, like
in most realistic flows, there is no equilibrium between subgrid-scale production
and dissipation. A more accurate estimation of the subgrid viscous dissipation
could improve the limiter.

7 Conclusion

A volume forcing method to stimulate the creation of resolved turbulence in the
grey zone has been presented, which is intended to reduce the modeled stress
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(a) Mean total TKE, x210 – with and without limiter (b) Mean resolved TKE, x210 – with and without limiter

(c) Mean total TKE, x420 – with and without limiter (d) Mean resolved TKE, x420 – with and without limiter

Figure 11: Impact of the limiting by the production term on the forcing method with meshes
x210 and x420

depletion issues of the DES-SST hybrid RANS/LES turbulence model. The forc-
ing attempts to compensate for the artificial destruction of modeled TKE and is
therefore based on the dissipation term of the k transport equation. The spectrum
for the forcing is created by amplifying existing turbulence, following Lundgren’s
method. It was found that the forcing enhances the accuracy of the TKE and
velocity profiles and allows for a much faster development of the boundary layer.

The forcing method proves to be sensitive to mesh variations, as finer meshes
overestimate the amount of resolved turbulence in the flow. An attempt at limiting
the injection of energy in the flow to remove the forcing once LES is established,
significantly reduces the amount of resolved TKE for finer meshes but this limiter,
based on the equilibrium of subgrid turbulence production and dissipation, is too
approximate. A better alternative to estimate the subgrid viscous dissipation,
based on an ‘equilibrium’ FDES value for well-developed LES flow, is currently
being worked on.

The injection also depends on variations of the filter size used to define the tur-
bulent scales amplified by the forcing method. If these scales are too small, the
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injected turbulence cannot be represented on the mesh and quickly disappears.
Too large scales perturb the spectrum and may lead to overestimations. For opti-
mal injection, a local correlation between the exponential smoothing coefficient α
and the mesh size must be implemented. Such a correlation also allows to reduce
the required user input.

However, apart from the forcing, the resolved TKE depends on the capacity of
the mesh and time integration to sustain resolved eddies. Large time steps and
stretched cells can perturb the distribution of TKE in boundary layers. Since
RANS is far less sensitive to these issues than LES, it is always wise (if possible)
to resolve attached boundary layers with RANS. The forcing must therefore be
seen as a complement to shielding functions, rather than an alternative, and it
would be interesting to combine the approach with for example DDES or IDDES.

A main advantage of the forcing approach is its simplicity, generality and relatively
low computational costs, which mean that the method can be used to simulate more
complex flows. Furthermore, it is not limited to boundary layers, but can also
accompany changes in the turbulence distribution due to local spatial or temporal
variations in the mesh size, which occur on unstructured and adaptively refined
grids. Therefore, it could become an important component of an adaptive HRL
simulation approach.
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