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Université d’Angers
Angers, France

matthieu.loumaigne@univ-angers.fr

4th Bouhlel Nizar
INRAE, IRHS, SFR QuaSaV

Institut Agro, Université d’Angers
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Abstract—We propose a smart scanning protocol to speed up
the acquisition of Brillouin microscopy. It is based on a two-
pass algorithm. In a first pass at low signal-to-noise-ratio (SNR),
essential pixels located on the convex hull of the Fourier phasor
space of the sample are identified, selected and rescanned at high
SNR. These essential spectra serve as a decomposition basis for
the remaining spectra located inside the convex hull. A second
acceleration is gained through the use of superpixels computed on
a denoised version of the low SNR image. It allows to reduce the
number of pixels on which Brillouin spectra are to be estimated.
This protocol recently introduced for Raman microscopy is tested
here for the first time on Brillouin hyperspectral images (HSI).
A compression by a factor between 3 and 253 with very limited
distortion is demonstrated on simulated samples fitted on real
samples of cell bones. Further opportunities of improvement are
identified and discussed.

Index Terms—Brillouin, micro-imaging, smart scanning, pha-
sor, superpixels

I. INTRODUCTION

Brillouin microscopy [1] represents a valuable imaging tech-
nique for mapping and mechanically characterizing cellular
structures. A current limitation of the technique is the acquisi-
tion time which is not systematically compatible with real-time
imaging of in vivo samples. This is intrinsically linked with
the point-by-point raster-scanning of the sample. The resulting
acquisition times can range from a few to tens of minutes for
extended samples. Consequently, an open research front of
science is to accelerate the data acquisition in Brillouin micro-
imaging via computational approaches [2]. These approaches
differ by their method and by the informational tasks that they
address.

Some accelerations can be achieved via the instrumentation
itself, e.g., involving line scanning [3], [4] or reducing the
laser exposure time [5]. Apart from these physical approach
few has been done on the side of the spectral and spatial
signal analysis [6], [7] for these images while the hyperspectral
Brillouin data are obviously very redundant both in the spectral

and spatial domain. Recently, an approach combining spatial
domain compression and spectral domain compression [8] has
allowed for a 1000-fold reduction in acquisition time in Raman
micro-imaging. In [8], authors mentioned that their acquisition
protocol can be extended to other hyperspectral microscopy.

In [8] and the related articles [9]–[11] authors assume that
the spectral information of the sample can be recovered from
only few pixels, called essential spectra, of the hyperspectral
image. These essential spectra form a convex hull of the
data points in a reduced space. This brings a first source of
acceleration in the acquisition. Another source of acceleration
comes with the use of superpixels to encode the acquired
image. In this communication, we investigate the value of the
protocol introduced in [8] for Brillouin microscopy.

II. MATERIAL AND METHODS

A. Methods

Figure 1 represents the smart scanning protocol described
in [8] which is revisited here for Brillouin microscopy. Briefly,
this scanning protocol consists in a first fast acquisition, i.e. at
low SNR, of the whole sample to produce Ilow(x, y, λ), an HSI
made of X×Y pixels and L wavelengths. Then, a dimension
reduction is applied along λ to obtain Imono, a mono component
image, which is then segmented into P superpixels using SLIC
[12] to produce Iseg. A subset of the spectra can be extracted
from Ilow by selecting the centroids of the superpixels (xp, yp),
with p ranging from 1 to P . It represents the compression in
the spatial domain.

As a parallel branch of the pipeline, a discrete Fourier
transform is computed on Ilow along the wavelength domain.
It results in the the decomposition of each spectra constituting
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Fig. 1. Pipeline of the protocol proposed in [8].

the HSI in elementary waves

Ilow(x, y)l =
1

L

L∑
r=1

(Gr(x, y) + jQr(x, y))

exp

(
j
2π

L
(l − 1)(r − 1)

)
,

(1)

with the real numbers Gr(x, y) and Qr(x, y) which can be
seen as coordinates of the r-th phasor involved in the Fourier
representation, and j the imaginary number. For a defined
value of r, we compute the convex hull of the points cloud rep-
resented by Gr(x, y) and Qr(x, y). The pixels corresponding
to the phasors located on this convex hull are associated to the
most linearly dissimilar spectra, the so-called essential spectra.
They constitute another subset of spectra that we gather in
Slow a matrix containing K essential spectra along rows and
L spectral bands along columns. It represents the compression
in the spectral domain.

Therefrom, a mean square error (MSE) is used to unmix
the spectra of Ilow(xp, yp) with respect to the spectra of Slow.
It leads to a matrix of concentration clow containing the K
concentrations associated with the essential spectra for the
pixel located at (xp, yp) along the rows for the P centroids
along the columns. It can be formally expressed as

Ilow(xp, yp) = ST
lowclow(xp, yp), (2)

with clow(xp, yp), the estimated mixture proportion.
Rescanning only the essential spectra during a longer ex-

posure, i.e. higher signal, produces Shigh which allows to
reconstruct each centroid of superpixel with a higher signal

Ioutput(xp, yp) = ST
highclow(xp, yp) . (3)
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Fig. 2. Comparison between real data (on the left) and simulated data (on
the right). The first row shows the spectra corresponding to the pixels pointed
with matching color cross on the images of the second row. The real and
simulated data SNR are estimated to 17 dB. The value indicated corresponds
to the spectral value in GHz of the Brillouin shift.

The produced output image is made of superpixels with
homogeneous spectra as given in (3).

B. Dataset

The protocol described in II-A has been tested on simulated
Brillouin microscopy data and we now detail the simulator
created to generate realistic synthetic data. Similarly to [8]
we started with an initialization of an empty image of size
X × Y where we randomly put some object corresponding
to materials with homogeneous Brillouin parameters. In this
communication, to mimic cells, as shown in Fig. 2, we
generated ellipses representing (a) the nucleus which includes
(b) the cytoplasm and we filled the remaining room with pixels
corresponding to (c) water.

The spectrum of each of these materials is made of Rayleigh
rays and Brillouin rays which are classically modelled respec-
tively as an Asymmetric Pseudo-Voigt [13]

R(ν, νR, HR, α1, α2, wR) =

HR ×


α1

[
1

1+
(

ν−νR
wR/2

)2

]

+(1− α1) e

[
− ln 2

(
ν−νR
wR/2

)2
]

 ; ν < νR

HR ×


α2

[
1

1+
(

ν−νR
wR/2

)2

]

+(1− α2) e

[
− ln 2

(
ν−νR
wR/2

)2
]

 ; ν ≥ νR

(4)

and a Lorentzian

B(ν, νB , HB , wB) = HB
1

1 +
(

ν−νB

wB/2

)2 (5)
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functions with ν the frequency and νR, νB , HR, HB , α1, α2,
wR, wB the parameters described in Fig. 3.

These spectral information are further corrupted with a
classical thermal noise (i.e. an iid Gaussian noise) which
can be modeled as an independent and identically distributed
Gaussian noise. The simulator of Brillouin microscopy data
described aboved was tuned to fit with data from real sample.
We used as real sample cells of bones imaged with a ×60
objective. To excite the sample, a 785 nm Rubidium laser
was used. The diffuse light emitted by the sample was then
split with a virtually imaged phased array (VIPA) device
and collected by a complementary metal-oxide-semiconductor
(CMOS) sensor. Several replicated measurements at different
acquisition times were performed to study the relation between
the signal-to-noise ratio

SNR = 10 log10

(
I

σN

)
, (6)

that we defined as the ratio of the maximum intensity of the
Brillouin peak I and the standard deviation of the thermal
noise σN , and the acquisition time. These multiple acquisitions
allowed us to estimate tbase, the minimum time taken by the
equipment between two acquisitions. The similarity of the real
and generated data are shown in Fig. 2 both in the spectral
and spatial domain. One can recognize the Rayleigh peaks at 0
and 15 GHz, the Brillouin anti-Stokes peaks at 5 and 20 GHz
and the Brillouin Stokes peaks at -5 and 10 GHz. Multiple
Rayleigh and Brillouin peaks appear on the spectrum due to
different order of diffraction of the light. The Brillouin peak of
interest for the extraction of mechanical properties (see (6)) is
the anti-Stokes of the first order, spotted here around 5 GHz.
The magnitude of the Brillouin shift for each component of
the cells is provided in Fig. 2. On the real spectra one the
Rayleigh peaks do not have the same amplitude. This is due
to the position of the frequency of the laser cavity which may

−2 0 2 4 6 8
Frequency (GHz)

0

100

200

300

400

500

600

700

800

D
ig

ita
lc

ou
nt

(a
.u

.)

νR νB

wR

wB

α1 α2

HR

HB

Fig. 3. Description of parameters of the simulated spectrum where R stands
for Rayleigh and B Brillouin. HR and HB correspond to the amplitudes, wR

and wB the full width half maximum (FWHM), νR and νB the position of
the maximum, and α1 and α2 parameters that give asymmetry.

TABLE I
ESTIMATED VALUES OF THE LORENTZIAN CURVE, CORRESPONDING TO

THE BRILLOUIN PEAK ON THE REAL DATA. νB AND wB ARE IN GHZ, HB

IN ARBITRARY UNIT.

HB νB wB

Nucleus (a) 62.89 5.35 0.86
Cytoplasm (b) 291.27 5.32 0.85

Matrix, i.e. water (c) 1390.78 5.21 0.79

not be centered on the part of interest of the spectra. As visible
in Fig. 2, we choose not to include this aspect in our model.

The detail of parameters HB , νB and wB which have
been used to build the synthetic data through (4) and (5)
are provided in Table I. The built in synthetic dataset has
been composed of 90 HSI of the same simulated sample at
different SNR, ranging from 5 dB to 24 dB in order to assess
the robustness and the gain in time of the protocol. To provide
an estimation of the noise-induced variance, we replicated the
same HSI five times for each SNR. The HSI corresponding to
the SNR of 24 dB will be taken as a reference for assessment,
we designated it as I ref. I ref will also be used to simulate the
second pass at a higher SNR, we will thus collect Shigh in it.

C. Metrics

To evaluate the reconstruction of the HSI by the protocol
described in II-A, we decided to focus on the assessment of
the restitution of the anti-Stokes Brillouin peak of the first
order across the entire HSI. Its characterization is indeed
essential to study the composition of the sample since it carries
most of its mechanical properties. Thus, for each pixel of
the reconstructed HSI, we computed the mean absolute error
(MAE) of the shift

νerr =
1

XY

X∑
x=1

Y∑
y=1

|νB(x, y)− νref(x, y)|, (7)

and of the FWHM

werr =
1

XY

X∑
x=1

Y∑
y=1

|wB(x, y)− wref(x, y)|, (8)

with νB(x, y) and wB(x, y) the Brillouin shift and FWHM
estimated on Ioutput(x, y), and νref(x, y) and wref(x, y) esti-
mated on I ref(x, y) by fitting (5) on the reconstructed data
using least mean square method. The fit also allows to estimate
the amplitudes HB and Href(x, y), giving us the possibility to
calculate

ϕ =
1

XY

X∑
x=1

Y∑
y=1

HB(x, y)wB(x, y)

Href(x, y)wref(x, y)
, (9)

the ratio between the area under the curve of Ioutput(x, y)
and I ref(x, y). MAE has been chosen to penalize outliers.
Furthermore, we evaluated the processing time of the entire
acquisition process, encompassing the time required for ac-
quiring I low, computing the protocol and the rescan of the
essential spectra Shigh.
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III. RESULTS

The assessment of the scanning protocol for various SNR is
in Fig. (4). Error on the Brillouin shift νerr, the FWHM werr and
the Integral ratio ϕ are trivially degraded as the SNR decreases
but with a relative plateau located at 17 dB which appears as
a possible tradeoff between compression and distorsion. The
recorded error amplitudes appear small in absolute amplitude.
However, one has to relate these amplitudes with the expected
difference between each material composing the sample itself.
Table I indicates a minimum difference of 0.04 between
the standard νB values of the different material composing
our sample. Interestingly, even at the lowest tested SNR νerr
reaches only 0.014. This means that even at these low SNR a
distinction between the materials should be possible.

Table II exhibits the protocol time for three SNR values
chosen as follow: 5.4, the minimum value; 17, the location
of the plateau; 21, the maximum value. The reference is also
given for comparison. The first pass of the acquisition appears
to be the bottleneck of the protocol, representing at least 95%
of the total time. Nevertheless, a 3 fold compression factor
in time and limited distorsion seems to be possible via a first
pass around 17 dB, with our protocol.

As a complement to the quantitative assessment of our
method, we propose in Fig. 5 a qualitative visual appre-
ciation of the results provided both in the spatial domain
after superpixelisation and after estimation of the Brillouin
spectra. The estimated spectra show a good quality on the
Brillouin part even at low SNR thanks to the use of essential
spectra. However, it is to be noticed that the distortion on
the spectra differ from one material to another. The most
represented material (water here in orange in Fig. 5) has a
perfect estimation independently of the SNR while the noise
has much more impact on the areas of the samples with fewer
pixels. This may be due to the fact that the protocol introduced
has been used on the full spectra as in [8]. This is of course
fully relevant for Raman microscopy but can be criticized for
Brillouin microscopy where the mechanical information lay
on the Brillouin part. Changing the seek of essential spectra
by first masking the Rayleigh peaks should probably enhance
the distinction between the materials and allow to select better
representatives for the essential spectra. Dimension reduction
step leading to Imono would also benefit from this modification
and allow a segmentation more specifically oriented toward the
Brillouin information.
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Fig. 4. Metrics of performance, respectively from left to right spectral shift, FWHM and integral ratio for the estimated Brillouin parameters defined in (7),
(8) and (9) as a function of SNR. Average value in dot line, standard deviation in bold. Results presented here are obtained for 100× 100× 940 HSI with
the following parameters: number of harmonics r=3, number of superpixels P=1000 and a SLIC compactness of 0.1.

TABLE II
DETAILED TIME TAKEN BY THE PROPOSED SCANNING PROTOCOL ASSOCIATED WITH THE PERFORMANCE METRICS SPECTRAL SHIFT, FWHM AND

INTEGRAL RATIO FOR THE ESTIMATED BRILLOUIN PARAMETERS DEFINED IN (7), (8) AND (9) FOR THREE VALUES OF SNR.

First pass SNR Protocol time (s) Metrics
First pass Processing time Second pass Total νerr werr ϕ

5.45 336.5 4.8 11.6 352.9 0.013 0.012 0.986
17.32 861.4 4.7 11.6 877.7 0.011 0.010 1.014
21.13 1649.8 4.8 12.5 1667.1 0.007 0.009 1.01

Reference 3037.1 3037.1 0 0 1
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Fig. 5. Qualitative assessment of the protocol for the three SNR presented
in Tab. II. First row is for the image resulting from the averaging of the Ilow
spectra. Second row gives the recovered Brillouin shift map obtained with
the protocol. Third row gives the low SNR spectra acquired on the position
indicated in the images of the second row. Fourth row gives the Ioutput spectra,
where the value of the recovered Brillouin shift is indicated. Spectral and
spatial domain are here cropped to the part of interest and presented in log
scale to allow a better visualization (see Fig. 2).

IV. CONCLUSION

In this communication, we extended the protocol recently
proposed in [8] to Brillouin microscopy data. A 3 fold com-
pression factor in time seems to be possible with a limited
distortion of the spectra. It is far from the 1000× compression
mentioned in [8]. This can be easily understood since the
acquisition time in Raman microscopy is much larger than
in Brillouin microscopy.

A higher compression of 253× could even be reached if,
as also proposed in [8], the first pass could be replaced by
another full-frame fast imaging modality which could help in
the superpixelization of the image. This indeed is accessible
in practice. For instance, fluorescence imaging, or differencial
interference contrast (DIC) (to remain dye-free), could be
used as candidate for this full-frame fast image replacing the
first raster scan. These are interesting perspectives that we
currently investigate to optimize the use of spatial and spectral
redundancy in Brillouin data via smart computational micro-
imaging.
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