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Abstract: Progress in psychology has been frustrated by challenges concerning replicability, 
generalizability, strategy selection, inferential reproducibility, and computational reproducibility. 
Although often discussed separately, these five challenges may share a common cause: 
insufficient investment of intellectual and non-intellectual resources into the typical psychology 
study. We suggest that the emerging emphasis on big team science can help address these 
challenges by allowing researchers to pool their resources together to increase the amount 
available for a single study. However, the current incentives, infrastructure, and institutions in 
academic science have all developed under the assumption that science is conducted by solo 
Principal Investigators and their dependent trainees, an assumption that creates barriers to 
sustainable big team science. We also anticipate that big team science carries unique risks, such 
as the potential for big team science organizations to be co-opted by unaccountable leaders, 
become overly conservative, and make mistakes at a grand scale. Big team science organizations 
must also acquire personnel who are properly compensated and have clear roles, raising risks 
related to mismanagement and a lack of financial sustainability. If researchers can manage its 
unique barriers and risks, big team science has the potential to spur great progress in psychology 
and beyond. 
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Despite decades of investment, progress in psychology has been slower than many 
scholars would like (Fanelli, 2010; Meehl, 1978; Newell, 1973). The lack of progress is 
empirically supported by the results of replication studies. Whether with the same population, 
setting, and materials (the replicability challenge; Klein et al., 2014; Open Science 
Collaboration, 2015) or after a change to one or more of these features (the generalizability 
challenge; Henrich et al., 2010; Tiokhin et al., 2019; Yarkoni, 2019), replicated results often 
differ meaningfully from original results. Meaningful differences also occur in other forms of 
replication, such as: when separate teams develop research strategies to address the same 
research question (the strategy selection challenge; Landy et al., 2020) when separate teams 
develop analysis plans for the same dataset (the inferential reproducibility challenge; Botvinik-
Nezer et al., 2019; Silberzahn et al., 2018), and even when separate teams write code to execute 
the same analysis (the computational reproducibility challenge; Donoho et al., 2008; Hardwicke 
et al., 2018; Obels et al., 2019).  

These five challenges have complex proximal causes. Yet they may share a common 
ultimate cause: insufficient resource investment in the typical psychology study. Insofar as this 
premise is true, a particular method of collaboration, big team science, may help address this 
ultimate cause by efficiently scaling up the resources that can be invested in any given study. We 
define big team science as a method involving a relatively large number of collaborators who 
may be dispersed across labs, institutions, disciplines, cultures, and continents. We contrast this 
system of science with small team science, which is usually organized around a single Principal 
Investigator and their dependent trainees. If the unique risks and challenges of big team science 
are properly understood and managed, this method of collaboration may have great potential to 
improve the efficiency and information value of psychological science. 

The challenges in psychology share a common cause 

Discussion of the slow progress in psychology has a long history. Scholars have argued 
persuasively that each of the five challenges facing psychology has a pernicious and potentially 
destructive influence on scientific progress (Donoho et al., 2008; Landy et al., 2020; Meehl, 
1978; Sears, 1986; Silberzahn et al., 2018). These scholars have also presented a dizzying array 
of remedies for these challenges, ranging from increasing study sample sizes (Button et al., 
2013), which ought to improve replicability, to implementing version control (Vuorre & Curley, 
2018), which ought to improve computational reproducibility. Although varied, these remedies 
share a common feature: they ask researchers to incur additional costs to improve a particular 
aspect of study rigor (Finkel et al., 2017; LeBel et al., 2017; see Table 1 for a list of proposed 
remedies and their attendant costs). 

Because the individual researcher incurs costs for each remedy, discussions of problems 
in psychology tend to assume that implementations of these remedies are zero-sum in the 
following sense. The scientific resources that are available to a given researcher, such as time, 
labor, and money, are limited. This means that, as long as a solution to improve, say, replicability 
does not also improve all the other aspects of study rigor, resources devoted to implementing that 
solution to replicability must necessarily take away resources that could be spent on solutions to 
other aspects of rigor. Replicability, generalizability, inferential reproducibility, strategy 
selection, and computational reproducibility thus become qualities that must be traded off each 
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other because devoting resources to improve one of these five qualities means sacrificing 
resources that could be invested in improving the others. 

Challenge Suggested remedy Costs of implementation Who bears costs? 

Replicability 

Increase sample size Labor and money for extra recruitment 
Researchers; 
participants 

Preregister analysis plans 
Labor creating preregistration and making it 
accessible on a platform 

Researchers;  
platform maintainers 

Improve documentation of 
materials 

Labor creating and archiving documentation 
materials 

Researchers;  
platform maintainers 

Generalizability 

Use special platforms to recruit 
culturally different participants 

Labor developing, maintaining, and learning to 
use new platforms; money using and 
maintaining the platforms 

Researchers; 
platform maintainers 

Collaborate with colleagues from 
different settings & backgrounds 

Labor developing relationships with new 
colleagues 

Researchers 

Improve generality of materials 
Labor and money developing and validating 
improved stimuli and measures 

Researchers; 
participants 

Strategy selection 

Examine many construct 
operationalizations 

Labor and money examining different 
operationalizations 

Researchers; 
participants 

Consensus design 
Labor developing relationships with relevant 
experts; labor implementing consensus process 

Researchers 

Inferential 
reproducibility 

Machine-readable hypothesis tests 
Labor learning and implementing machine-
readable systems; money developing and 
maintaining platforms 

Researchers;  
platform maintainers 

Many analyst design 
Labor making connections with relevant 
analysts 

Researchers 

Examine a multiverse of tests 
Labor developing relationships with relevant 
experts; labor implementing multiverse analysis 

Researchers 

Computational 
reproducibility 

Share code and data 
Labor to put code and data into a shareable 
form; money developing and maintaining 
sharing platforms 

Researchers;  
platform maintainers 

Implement code checking Labor and money implementing code checking Researches; journals 

Improve documentation of 
codebases 

Labor making code readable and hygienic Researchers 

Use capsules, version control, and 
markdown 

Labor learning and implementing new 
workflows; money maintaining capsule and 
version control platforms 

Researchers;  
platform maintainers 

 

Table 1. Five challenges in psychology and some proposed remedies for these challenges. The challenges all ask 
researchers to bear extra costs to improve some aspect of study rigor.  
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We suggest that the views that prioritize one aspect of rigor over the others all share an 
important, mistaken assumption: the pool of resources available for investment in a given study 
is fixed. If the resources devoted to a single study are not fixed, these resources may be raised to 
a level that is high enough that no tradeoffs are necessary among the various types of research 
rigor. Instead, a researcher need merely select as many of the rigor-enhancing strategies from 
Table 1 as they like and invest the money, human resources, and skills required to deploy those 
strategies. 

Thus, although they are often discussed separately, all five of psychology’s major 
problems may share a common cause: under-investment of resources, whether those resources 
are money, person-hours, or specialized expertise, in psychology studies (see also Cuccolo et al., 
2021; Uhlmann et al., 2019). Instead of asking which aspects of study rigor ought to be 
prioritized, reframing psychology’s problems from this perspective allows us to ask a different 
question: how can we increase the resources invested in psychology studies and ascertain that the 
extra investment is used efficiently? 

Increasing resource investment through big team science organizations 

Increasing the per-study resource investment across an entire research ecosystem faces a 
collective action problem: as long as scientists are rewarded for publishing more studies, any 
single scientist who decides to invest more resources in fewer studies will be outcompeted by 
scientists who invest less resources in more studies (Smaldino & McElreath, 2016). Any attempt 
to increase the per-study resource investment of the entire ecosystem must adopt one of two 
solutions: (1) directly change the institutional incentives that prioritize quantity of publication 
and/or (2) devise new institutions, which we call big team science organizations, that allow blocs 
of scientists to increase the resource investments in concert. 

Direct change in the institutions of science is difficult because science itself has a 
decentralized structure – changing its reward structures requires buy-in from many independent 
actors. This limits the effectiveness of initiatives to directly change the incentives that prioritize 
quantity of publication. A similar problem afflicts the establishment of new organizations that 
coordinate the efforts of scientists to jointly invest in single projects. Fortunately, new 
information and communication technologies, such as the Google suite of collaboration tools, the 
Open Science Framework, Slack, and Zoom, have made the establishment of such organizations 
more feasible because they permit rapid, low-cost communication across far-flung countries and 
circumstances (Teasley & Wolinsky, 2001). Such communication lays the groundwork for new 
institutions that can change how scientific actors spend resources on their science (Spellman, 
2015). 

The function of an organization is to coordinate the activities of many actors 
simultaneously. An organization solves the collective action problem faced by individual actors 
by allowing multiple actors to pre-commit to a coordinated, simultaneous course of action. In the 
context of science, a big team science organization allows many scientists to pre-commit to 
investing their limited scientific resources into one big project in exchange for an individual 
reward – usually, authorship on a publication, though other rewards are possible, such as money 
or networking opportunities. During the project itself, the organization coordinates the actions of 
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the scientists so that they do not work at cross-purposes. These functions allow the per-study 
investments from big team science projects to eclipse what is achievable in small team science. 

We believe that the primary and most definitional function of a big team science 
organization is to allow larger investments of material and intellectual resources in a given 
project. However, once established, big team science organizations have the potential to provide 
benefits to both individual scientists and the broader scientific ecosystem that are external to this 
primary function. As an example of one such positive externality, big team science organizations 
centralize many aspects of project administration in one organization rather than forcing 
individual labs to complete these functions on their own. This not only produces an efficiency for 
the scientific ecosystem, but also allows researchers at organizations without strong research 
infrastructure, such as instructors at teaching-focused universities (Wagge, Baciu, et al., 2019; 
Wagge, Brandt, et al., 2019) to do more research than would otherwise be possible. Big teams 
also allow individual researchers to specialize into roles that match their skills rather than 
occupying all roles simultaneously, producing an efficiency for the scientific ecosystem and 
giving the individual researcher the opportunity to develop a specialized skill and thereby 
command a higher salary. Researchers who join a big team science organization also gain access 
to an expansive community. For the individual researcher, this reduces intellectual isolation and 
opens the door to professional opportunities; for the scientific ecosystem, this can generate new 
collaborations that would not have been possible absent the expansive community. Finally, if big 
team science organizations become robust enough, they can become political actors of their own 
right within the broader scientific ecosystem. Thus, they can nudge the incentives and values of 
the entire scientific ecosystem by, for example, prioritizing the qualities of scientists to improve 
team productivity rather than individual productivity (Tiokhin et al., 2021). 

Thus, big team science organizations can invest more resources into individual projects 
than is possible in small teams. Big team science organizations also have the potential to provide 
a variety of benefits to individual researchers and the broader scientific ecosystem that are 
external to this primary function. Whether these benefits materialize depend on establishing the 
organizations in the first place and ensuring the organizations do not fall prey to some of the 
unique risks and challenges of this style of science. 

Big team science outside of psychology 

Some disciplines have already adopted a big team science model, so they can provide 
useful examples of how big team science organizations can arise. These examples can also 
illustrate whether big team science can address the limitation of under-resourced studies. In the 
1990s, behavioral genetics generally featured small studies examining the relationship between 
variation in a single candidate gene and a complex behavior or trait. In one prominent example, 
only 52 patients provided genetic material for an analysis of the relationship between the 5-
HTTLPR polymorphism and major depression (Heils et al., 1996), a finding that spurred 
enormous interest in the biological mechanisms through which these genes might cause 
depression (Dannlowski et al., 2008; Gotlib et al., 2008). Unfortunately, and similar to the 
current situation in psychology, these early results were contradicted by failed replication studies 
(Gillespie et al., 2005). As more and more replication studies contradicted the earlier optimistic 
ones, researchers in behavioral genetics realized that changes were in order (Rieckmann, 2009).  
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The two decades that followed were a turning point for behavioral genetics because they 
gave rise to big team science in the form of large research consortia. Without pooling resources, 
researchers would have been unable to attain the scale of data necessary to advance our 
understanding of behavioral genetics. Before these consortia could attain such large-scale data, 
they needed to invest considerable research, time, and funds devising methodological workflows 
(Corvin et al., 2010), designing infrastructure to manage and harmonize datasets (Sullivan, 
2010), and developing processes that increased the accuracy of the measurement of genotypes 
and phenotypes (23andMe Research Team et al., 2018; Corvin et al., 2010). With these solutions 
in hand, the research consortia served as a conduit through which multiple labs pooled resources 
to achieve large, heterogeneous samples that would otherwise have been out of reach for any 
single lab working independently. The UK Biobank is a prominent example, hosting a repository 
for data from over 500,000 participants, a sample that dwarfs the sample of 52 used for the first 
5-HTTLPR study. The resulting findings have revolutionized our understanding of genes and 
behavior: we now know that, instead of single genetic variants exerting large influences, a large 
number of variants have small influences (23andMe Research Team et al., 2018). These impacts 
were subtle enough that they could not be observed and studied using the small, homogeneous 
samples typically employed in the early 1990s. Innovations in methods, workflows, and 
measurement allowed for a sea change in our understanding of the relationship between genes 
and behavior. 

Particle physics provides another, still larger-scale, example. The 1950s saw a growing 
recognition among particle physicists that further advances would require a scale of research and 
equipment that would strain the budgets of entire nations, let alone single laboratories (Krige, 
2004). For their part, Western governments saw cooperative large-scale investments in physics 
as a potential diplomatic tool; the projects served as a highly visible counterweight growing 
Soviet power, demonstrating the benefits that could accrue from an internationalist, democratic, 
and cooperative world order (Krige, 2004). These twin recognitions spurred the establishment of 
“mega-collaborations”: large, international collaborations spanning multiple countries. Such 
mega-collaborations could only realize their aims through both technical and social 
achievements to establish the infrastructure, documentation, and workflows necessary to 
coordinate the efforts of huge numbers of scientists (Bakker, 1955; Brumfiel, 2011; for a modern 
workflow, see Espinosa et al., 2020). One of the pre-eminent examples of these mega-
collaborations is the European Organization for Nuclear Research (CERN), which, together with 
Brookhaven National Laboratory, helped usher in a new era of particle physics: high-energy 
physics, in which large teams of scientists harness vast resources to probe the most fundamental 
constituents of matter (Bryant, 1994). 
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Name Type Description 

Reproducibility Project: Psychology 
(Open Science Collaboration, 2015) 

Ad-hoc 
A large team-science project in psychology, which involved 270 
contributing authors, who replicated 100 effects.  

ManyLabs (Ebersole et al., 2016; Klein et 
al., 2014, 2018, 2019) Ad-hoc 

These projects involve dozens of researchers, each of whom collects 
data using their own local resources. The individual datasets are pooled 
to create a large common dataset.  

Many Smiles Collaboration (Coles et 
al., 2019) 

Ad-hoc 

A collaborative project designed to find the best way to test the 
hypothesis that facial expressions influence emotions. The test was 
developed through consensus design. The resulting design uses multiple 
operationalizations and will be tested in a multi-site study. 

Research contests to reduce implicit 
race preferences (Lai et al., 2014, 2016) 

Ad-hoc 

A series of contests to develop the most effective interventions to 
reduce implicit race preferences. Separate teams submitted 
interventions; all interventions were run together on a large online 
platform. 

Registered Replication Reports (Simons 
et al., 2014) 

Standing 

An initiative to conduct multi-lab, preregistered close replications of 
previous studies. The initiative supervised by a hosting journal. 
Originally initiated at Perspectives at Psychological Science, other 
journals have adopted similar initiatives. Exact policies differ across 
journals. 

Collaborative Replication and 
Education Project (Wagge, Baciu, et al., 
2019; Wagge, Brandt, et al., 2019) 

Standing 

A framework for engaging undergraduates in replication research. On 
consultation with student advisors, the CREP team selects target effects 
for replication. CREP develops a set of templates that guide the 
replication process and uses a team of reviewers to ensure that the 
methods for each individual lab are true to the template. 

Psychological Science Accelerator 
(Jones et al., 2021; Moshontz et al., 
2018) 

Standing 
A standing, democratically structured network of labs focused on 
improving the national diversity of psychology samples. 

ManyBabies (Byers-Heinlein et al., 
2020) 

Standing A standing network that conducts multi-site infancy research. 

 

Table 2. Eight big team science initiatives in psychology. 

 

Big team science in psychology 

Psychology has also started to witness an increase in big team science projects. Although 
most of these projects are recent, they have already had an outsized impact on the field (see 
Table 2 for details). However, these efforts have revealed three categories of obstacles that must 
be overcome if big team science is to maintain a sustained presence in the research landscape. 
These obstacles are: incentivizing labor within the collaboration; developing and maintaining 
infrastructure to coordinate team science activities; and dealing with institutions designed 
around research conducted by smaller teams. 

 

 



8 

 

Barrier Description Solutions 

Incentives 
Academic prestige goes 
disproportionately to the first-listed 
author on publications 

Consortium authorship 

Contributorship systems, like CRediT 

Infrastructure 
Coordinating team science requires 
dedicated infrastructure 

Google Suite of tools for general online collaboration 

Open Science Framework for sharing materials & data 

Zoom and other videoconferencing for online meetings 

formr for online deployment of big team science projects 

experimentum for building experiments and managing projects 

ScienceVerse for documenting big team science projects 

Institutions 
Big team science must navigate 
frictions created by institutional 
policies developed around solo PIs 

None at present 

Table 3. Barriers to big team science and some potential solutions. 

 

Incentives. Due to the central importance of prestige in obtaining academic rewards, 
academics are incentivized to obtain publications that can be used to enhance their prestige. This 
means that any collective research enterprise that wishes to direct the labor of academic scientists 
must either rely on sporadic volunteerism, find some other reward, like money, that substitute for 
prestige, or find a way to dole out prestige. We describe the risks of relying on volunteerism and 
the barriers to providing money as a reward in the sections on institutional barriers and risks of 
financial unsustainability. Here we deal more completely with prestige as a form of 
compensation. 

A central problem with prestige as an incentive for participation in big team science is 
that, under the current system for awarding credit for publications, the bulk of credit goes to the 
first-listed author. This reward structure does not effectively incentivize the labor of the 
numerous other people who are necessary to produce big team science publications. Moreover, 
big team science organizations must do a tremendous amount of administration and coordination 
that, while critical to the success of the collaboration as a whole, is not easily creditable on 
publications.  

We see at least two innovations that may help resolve this problem. The first is 
consortium authorship, in which a publication is credited to a collective entity rather than a 
group of individuals, or in which all members of the collaboration are listed alphabetically on all 
publications to render the individual subservient to the collective (Birnholtz, 2008). This was the 
approach to credit taken by the Open Science Collaboration when they published the 
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Reproducibility Project: Psychology (Open Science Collaboration, 2015). This is also the 
approach taken by some large physics collaborations, especially for papers that document details 
of infrastructure or instrumentation (e.g., ALICE collaboration, 2010; Harry & the LIGO 
Scientific Collaboration, 2010; The ATLAS collaboration et al., 2018). This innovation 
incentivizes collaboration by attempting to flatten the credit reward structure. Consortium 
authorship systems come at some risk, however: they can under-reward highly active but less 
visible consortium members, or lead consortium members to seek informal routes of gaining 
recognition, thereby effectively substituting the flat, formal system of credit with a more 
arbitrary informal system (Birnholtz, 2008). 

The second innovation is to disclose contributions in a more fine-grained way through 
contributorship systems, such as CRediT (McNutt et al., 2018). These systems allow contributors 
to list within a manuscript the specific roles contributors play in projects. In principle, 
contributorship systems should allow people to develop reputations for filling certain types of 
project roles, such as data analysis or project management, and they should allow more fine-
grained accountability when errors are detected in the project. Finally, contributorship systems 
enable contributors to provide evidence of excellence in a particular project role when applying 
for grants, jobs, or other professional rewards.  

However, contributorship systems will only serve their purpose of giving recognition to 
excellent team scientists if people who control professional rewards, such as members of hiring 
committees, promotion committees, and funding committees, actually attend to and reward 
evidence of excellent team science contributions. Although we see promise in contributorship 
systems as a method to incentivize big team science labor (Holcombe, 2019), the existence of 
contributorship information is by itself not sufficient to ensure that incentives are aligned to 
reward big team science labor. The people who control professional rewards must also attend to 
these systems if they are to serve their intended functions. 

 Infrastructure. A second obstacle is the need for infrastructure to help facilitate and 
coordinate big team science projects. Some of this infrastructure already exists, such as the 
Slack, Google suite of collaboration tools, and Zoom. This existing infrastructure has been 
instrumental in propelling big team science to where it is today. For example, projects run 
through the Psychological Science Accelerator (Moshontz et al., 2018) use a combination of 
Slack and email for project coordination, Google Docs, Sheets, and Forms for collaborative 
project workflows (for a writing worklow, see Moshontz et al., 2019), a shared Google Drive for 
collaborative files management, and Zoom for conference calls. However, this existing 
infrastructure is general-purpose and therefore does not fully meet the specialized needs of 
behavioral science. For example, most psychology data collection platforms are designed for use 
by one or two users. This is insufficient in a team of researchers numbering in the hundreds. 
Although not every researcher needs to be part of the development of, for example, a survey, 
multiple users need to access survey instruments when helping with translation or other parts of 
the survey development process. 

Another example of where research infrastructure is insufficient is when recruiting 
samples of participants that vary linguistically – a common occurrence when working with 
worldwide collaborators. Often, translated versions of the target measures are simply 
unavailable. Creating and validating a greater array of translated measure versions will go a long 
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way toward facilitating big team science projects. A lack of applicability across languages and 
countries apply to infrastructure across all stages of the research lifecycle. Data collection and 
management platforms in particular must cope with both issues involving language and 
translation and the varying ethical and legal standards that govern private data. 

Fortunately, some promising initiatives already exist that, if they are properly supported, 
may help resolve these more specialized problems. For example, the formr experiment platform 
(Arslan et al., 2019) relies on some of the infrastructure that is already in place, namely Google 
Sheets, to permit easy, flexible, and collaborative construction of online experiments. Another 
promising project in this vein is the experimentum framework (https://psa.psy.gla.ac.uk/), which 
aims to develop an experiment builder and project management framework that is specialized for 
large, cross-linguistic, big team science settings. Finally, the ScienceVerse project (Lakens & 
DeBruine, 2021) aims to create a fully functional “grammar of science” that can be used for 
naming, describing, and identifying relationships between components of any scientific project. 
Such a grammar would be especially helpful for highly collaborative, cross-linguistic, big team 
science projects that must document a large number of components while navigating specialized 
ethical and legal standards. 

These initiatives will only succeed in meeting the specialized infrastructure needs of big 
team science in the social sciences if they are supported financially and on a sustainable basis. 
Funders should recognize that these and other initiatives that support big team science also 
provide benefits for small team science. For example, although formr is especially useful in team 
settings, it provides a useful platform for teams of any size. Smart and ongoing investment in 
these projects will go a long way toward facilitating both small team and big team science. 

Institutions. Another set of obstacles relates to the institutions that have developed 
assuming that projects are led by a solo (or small number of) Principal Investigators. These 
institutions cause friction in almost every aspect of large, collaborative science. The frictions 
start with funding mechanisms, most of which assume that projects are led by a sole PI and their 
staff. The European Research Council’s Consolidator Grant, for example, supports a single PI 
and their host institution, and the European Research Council enforces highly detailed 
accounting rules to ensure all money is used in support of a solo PI’s project. As another 
example, some grant funders, such as the US National Science Foundation, require applicants to 
list all their collaborators from a specified time period. This requirement places burdensome 
restrictions on prospective big team scientists whose collaborators can easily number in the 
hundreds. Even once money is awarded, administrative and legal barriers can make it difficult to 
send the money to the institutions and countries where it is needed. 

Similar frictions plague almost every part of the big team science research lifecycle. 
Academic psychology departments do not typically train scientists to operate in large, distributed 
team settings and do not have specialized training tracks for scientists who wish to specialize in 
the many specific roles that big team science requires. Ethical Review Boards are often not 
prepared to evaluate a project that will be executed at a hundred sites worldwide. A big team 
science project with 100 collaborating labs may need to submit 100 variations of the same 
application to 100 Ethical Review Boards – a process that leads to immense waste and 
duplication of effort (Ervin et al., 2016; Schneider, 2015, pg. 44). Even the content of ethical 
regulations themselves differs across locations due to varying laws and norms. Some 
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organizations are not subject to clear ethical requirements at all – or, as is the case in East Africa, 
for example – they are only able to complete an ethical review in exchange for a costly fee that 
competes with other research costs (Kaplay, 2016; Osborne & Luoma, 2018).  

As another example, journal submission portals are built assuming that articles are 
written by a relatively small number of authors – not 200 – and the process of entering author 
information is cumbersome and wasteful. A similar barrier obstructs the entry of authorship 
information in preprint servers like PsyArXiv. Once research is complete, tenure and evaluation 
committees do not know how to evaluate publications with hundreds of authors. This decision is 
high stakes, because if researchers that prioritize big team science are penalized by these 
committees, these “big team scientists” will be effectively selected out of the ecology of science 
(Smaldino & McElreath, 2016). 

Here we are less certain what the future holds. If the institutions of psychological science 
adapt to the emergence of big team science, they will make this sort of science less costly and 
therefore more common. Alternatively, psychological science could develop an entirely new set 
of institutions, such as funders, ethical review boards, and journals, that are more 
accommodating of big team science. Whatever the future may hold, we hope that the institutions 
of science recognize the potential of big team science and act accordingly. 

Risks of big team science 

 Although we believe that big team science approaches have great promise, they also 
bring a unique set of risks that stem from the very feature that provides their main benefits: the 
fact that they coordinate and centralize resources to be deployed in a single project (Stokols et 
al., 2008). These risks are unaccountable leadership, management failures, conservatism, 
sustainability failures, and mega-mistakes.  

Unaccountable leadership. The primary virtue of big team science is its ability to deploy 
resources at a large scale. Often, this requires turning over resources to a single scientific 
organization, which carries the same risk as that entailed in turning over resources to a single 
governmental organization: the leadership of that organization could use the resources to 
centralize power within themselves and make themselves unaccountable to influence and 
criticism. 

The negative consequences of unaccountable leadership power can impact many features 
of the scientific process. For example, in the idea generation phase, unaccountable leadership can 
select their own pet topics for investigation without heeding the ideas of people with less power, 
leading to ideas that are less creative and impactful (Wu et al., 2019). Unaccountable leadership 
can also stifle diversity in the strategies that are selected to develop and test the ideas that are 
selected (Devezer et al., 2019), slowing the pace of discovery. Finally, unaccountable leadership 
can have negative consequences for individual scholars who do not conform to leadership’s 
perhaps narrow expectations of who is a proper “big team scientist” – especially if the leadership 
has influence over important mechanisms of career advancement (Azoulay et al., 2019). 
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Risk Description Mitigation strategies 

Unaccountable leadership 

Leadership of big team science 
organizations make themselves 
unaccountable to influence and 
criticism 

Articulate organizational values 

Create structured bylaws 

Introduce democratic accountability 

Empower a board of directors 

Management failures 

Big team science organizations 
involve large numbers of 
relationships, and navigating the 
interpersonal issues that arise 
requires effective management of 
people 

Articulate roles and responsibilities 

Create structured methods of making decisions 

Create formal and informal ways to solicit team member feedback 

Obtain formal management training 

Conservatism 

Big team science organizations 
may make decisions that cater to 
the median desire of the people in 
their group 

Proactively partner with organizations that serve underrepresented groups 

Create mechanisms to facilitate mobility and advancement within the team 

Separate idea generation from project implementation 

Sustainability failures 
Big team science organizations 
require planning to be financially 
sustainable over the long term 

Pay people the people who are responsible for the organization's 
maintenance 

Create and follow a sustainability plan 

Mega-mistakes 
When big team science 
organizations make mistakes, they 
tend to be big ones 

Mitigate the other four types of risk 

Institute pro-active quality control processes 

Table 4. Risks of team science and some risk mitigation strategies. 

 
Mitigating this risk. At a baseline, big team science organizations should have a set of 

bylaws that lay out who is empowered to do what and a set of values. The bylaws need not 
specify a completely de-centralized power structure. Centralizing power within a small number 
of leaders can have important benefits, such as enabling those leaders to develop a coherent 
organizational strategy and allowing those leaders to make fast, agile decisions to adjust that 
strategy (Baum & Wally, 2003). However, to mitigate the risk of a lack of accountability, 
centralization of leadership must be accompanied with mechanisms to hold leadership 
accountable for its decisions if those leaders pursue directions with which important stakeholders 
disagree. 

An important tool for enabling such accountability is a clearly articulated statement of the 
values that guide the big team science organization’s mission. Once articulated, these values can 
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allow the organization’s stakeholders to identify leadership mistakes that might require 
accountability by allowing those stakeholders to evaluate whether leadership actions do indeed 
fit with the organization’s values. Insofar as leaders do issue regular statements about their 
organizational strategy, a set of well-articulated values also allows stakeholders to evaluate 
whether that strategy is indeed pursuing those values.  

However, values are empty unless a group of organization stakeholders are empowered to 
take action if and when leaders violate those values. One example of an empowered stakeholder 
is a board of directors that is empowered by the organization’s bylaws to remove leaders with 
whom they are unsatisfied. This board of directors should receive regular updates on the status of 
the big team science organization so that they can ask leaders to make corrections before a crisis 
occurs. Another possibility is to introduce explicit democratic mechanisms into the organization, 
such as regular elections for leadership positions. Whatever the form, accountability must be 
built into the organization’s structure if it is to effectively check the risks of unaccountable 
leadership.  

Management failures. The number of relationships within a team increases 
combinatorially with the number of people within the team. Larger teams also create more 
opportunities for people with widely different backgrounds to collide – or for single trouble-
makers to create a toxic environment. Finally, larger teams are more likely to be characterized by 
specialized roles and communication channels. These features vastly increase the complexity of 
relationships in very large teams. In failure cases, this complexity can lead to management 
failures. 

The first of these failures is role ambiguity. Role ambiguity occurs when the information 
a person has about the expectations that go along with the role, the methods for fulfilling those 
expectations, and the consequences for violating those expectations are unclear (Van Sell et al., 
1981). Role ambiguity can occur in small groups, but the number of roles in a large scientific 
team, combined with the specialization of roles and complex decision-making apparatus, 
increase the risk of role ambiguity as teams increase in size. Role ambiguity increases the risk of 
errors because team members are uncertain which responsibilities apply to them. This 
uncertainly can lead to duplicated work on the one hand and unfulfilled tasks on the other. Role 
ambiguity also breeds feelings of dissatisfaction, leading people to grow disillusioned with the 
big team science organization and, in extreme failure cases, to leave it (Tubre & Collins, 2000).  

The second failure is ineffective management of interpersonal issues. Some interpersonal 
issues, such as conflict between team members, are inevitable due simply to the number of 
relationships involved in big team science organizations. Some level of conflict can even be 
constructive when it is managed properly and kept task-focused (Forsyth, 2014; Loughry & 
Amason, 2014; Rahim, 2003). However, conflict can also create organizational dysfunction, 
potentially polarizing the team and derailing entire projects (Rahim, 2003). In the presence of 
sharp power differences between team members and unclear mechanisms for accountability, 
conflict can also take on a darker guise in the form of harassment and abuse (Berdahl & Raver, 
2011). The risks of conflict can be especially high when team members have sharp cultural or 
epistemic differences, as might be expected in big team science settings that bring together 
people of varying personal, cultural, and disciplinary backgrounds (Bender et al., 2015). 
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Mitigating this risk. The most fundamental step a big team science organization can take 
to mitigate the risk of organizational failures is to establish a well-defined leadership structure 
that clearly communicates and enforces the organization’s roles and decisions (Stokols, 2006). 
The leadership structure should also create both formal and informal ways of soliciting feedback 
from members of the big team science organization. These feedback mechanisms should include 
a means to report problematic behavior by individual team members, along with a means to hold 
problematic team members accountable, such as reporting the behavior to the team member’s 
workplace. The feedback mechanisms should establish a feedback loop between decision-makers 
and team members so that the organization responds effectively to issues as they arise. The goal 
of the feedback loop will not eliminate interpersonal issues, as some number of issues are simply 
part of the human condition, but rather to instill a sense that procedures are fair when issues do 
occur (Konovsky, 2000). Effective communication also fosters an environment of psychological 
safety in which team members feel empowered to express issues, concerns, and points of 
disagreement without creating outright fights (Frazier et al., 2017). 

Clarifying roles and instilling psychological safety both take time. However, their 
importance to effective collaboration means that team science organizations should prioritize 
creating structures that allow transparent communication, decision-making, and enforcement, 
ideally through a formal collaboration agreement that is drafted before the collaboration begins. 
Structured methods of communication, decision-making, and enforcement lay the groundwork to 
allow team members to build the mutual trust that is necessary for collaboration (Astuti & Bloch, 
2012). 

Management of teams is a vital skill that is seldom taught in the academy. Universities 
should recognize the central role that management plays in the success of projects, especially the 
larger ones that typify big team science. If big team science is to take root in the social sciences, 
management training needs to become a central part of the behavioral science curriculum. 

Conservatism. Large organizations require large amounts of people to keep themselves 
running. If these organizations attempt to satisfy the desires of these large numbers of people, 
they will tend to cater to the median desire. This means that organizations will usually be 
conservative – or at least conservative with respect to the people within the group. This 
conservatism can manifest in two ways: in the selection of personnel and the selection of 
projects. 

People tend to form social relationships with others who have similar characteristics and 
backgrounds (Kossinets & Watts, 2009; McPherson et al., 2001). Given that contemporary 
psychology is dominated by North America and Europe (Rad et al., 2018; Thalmayer et al., 
2020), this raises a risk that big team science organizations will be similarly dominated by people 
from those continents. For example, not a single first author of the papers in Table 2 comes from 
a nation outside North America and Europe. Once big team science organizations dominated by 
North America and Europe are established, they may inadvertently crowd out organizations from 
elsewhere with different goals and personnel. Systematically excluding large subsets of humanity 
from psychology perpetuates unfair systems of inequality and can lead to a science that focuses 
unduly on the preoccupations of a small subset of humanity (Medin et al., 2017). 
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Conservatism can also manifest in project selection. The primary purpose of big team 
science is to scale up the resources that can be invested in a given project. However, this very 
virtue may induce big team science collaborations to select projects that they perceive as “safe” – 
both in terms of whether they can be feasibly executed and in terms of the degree to which they 
deviate from the scientific mainstream. Given that some degree of theoretical risk is necessary to 
spur scientific progress (Devezer et al., 2019; Meehl, 1978), this theoretical conservatism could 
feasibly slow scientific progress. 

Mitigating this risk. To mitigate the risk of conservatism in personnel selection, we can 
draw on a general slate of strategies to improve the inclusion of underrepresented groups in 
science (Enriquez, 1979; Henrich et al., 2010; Syed & Kathawalla, 2020). These solutions must 
begin at the start of big team science organizations and must be continually re-evaluated 
throughout the organization’s lifecycle. At the organization’s founding, the founders must 
proactively and systematically partner with researchers in a broad array of non-Western and non-
elite institutions – and especially those who are not part of the “virtual academic commons” 
formed by Twitter, Facebook, and science blogs. Once the organization has been founded, the 
organization’s leadership must create mechanisms that allow for mobility within the team so that 
members of underrepresented groups can rise to positions of leadership. However, even these 
measures will not be sustainable without the direct investment of material resources into research 
infrastructure in under-resourced world regions.  

Diversity in big team science personnel will not ensure diversity in big team science 
projects. Mitigating the risk of this type of conservatism requires maintaining a separation 
between the idea generation and the project implementation phases of big team science projects. 
During the idea generation phase, much smaller groups of scientists can identify problems and 
approaches unconstrained from a broader team consensus. The smaller teams then develop 
proposals based on their ideas and submit them for consideration by the larger consortium. The 
larger team can even explicitly build in mechanisms to solicit proposals from teams whose 
perspectives may differ from the scientific mainstream – such as those from outside North 
America and Europe. 

Sustainability failures. The history of science is littered with promising initiatives and 
organizations that, once established, could not be sustained (Borgman et al., 2016). This problem 
recurs so frequently because scientific organizations are typically public-minded: they wish to 
provide a public good at little or no cost. Yet, this very public-mindedness invites free-ridership 
– people who will use the organization’s service but who are either unwilling or unable to 
support the organization financially (Neylon, 2017). 

This dynamic also threatens big team science organizations. All the initiatives listed in 
Table 2 were formed because the founders thought that large-scale collaboration could lead to 
better science rather than out of a desire to make money. If the initiative is intended to last for a 
single project, the project could survive using an ad hoc organizational structure run on the back 
of volunteer labor. However, continually creating one-shot organizations is wasteful and 
inefficient because such a model prevents the accumulation of organizational knowledge. If an 
initiative is to last beyond a single project, its leadership must at some point figure out how to 
generate the money required to retain long-term staff while not compromising the vision that 
inspired the project in the first place.  
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Mitigating this risk. The first step to mitigating the risk of a sustainability failure is to 
recognize that organizations cannot support themselves for free. If we want to have organizations 
that are capable of coordinating very large groups of scientists, those organizations must receive 
financial support so that they can generate and maintain the knowledge, staff, and other scientific 
resources necessary to fulfill their function. A corollary of this dictum is that, over the long haul, 
at least some skilled positions in a big team science organization must receive monetary 
compensation. Running entirely on volunteerism risks exploiting the idealistic people willing to 
donate their time (Kim et al., 2020), leading to burnout and interpersonal conflict. 

The second step to mitigating this risk involves creating and following a sustainability 
plan (for an example, see Forscher & IJzerman, 2021) that maps out how the organization will 
generate the funds necessary to maintain itself. The funding models could entail what is most 
familiar to academic scientists: designating some team members as grantwriters who spend part 
of their time identifying and applying for large grants to support the big team science 
organization. However, this grantwriting model puts big team science organizations at the whims 
of large funders, who are often only willing to spend money on projects that generate 
discoveries, not the infrastructure that makes the discoveries possible (Zakaria et al., 2021). Most 
science grantmakers also rely on competitive peer review to select the most “worthy” projects, a 
funding model that risks inefficiency because it encourages grantwriters to spend more time on 
grants than the activities the grants would fund (Gross & Bergstrom, 2019). For these reasons, 
we believe that a grantwriting-based funding model carries inherent risks of both research waste 
and instability in personnel due to feast-or-famine funding cycles. 

We believe that a more promising approach is to use one of the funding models that have 
led to sustainable funding for other large public-minded scientific organizations (Neylon, 2017). 
These funding models will likely involve either creating a system that “taxes” all beneficiaries of 
the big team science infrastructure by, say, imposing membership dues rather as a scientific 
society does, or, alternatively providing the infrastructure as a byproduct of selling another 
service. The other service could involve many things, but it should leverage what big team 
science organizations already do well – running multi-site studies. Thus, the organization might 
run some multi-site studies for a fee, or it might sell a service that it has needed to perfect in 
order to run multi-site studies, such as translation or project management. We believe that all 
these options are viable, though each has their own tradeoffs; membership dues could make the 
big team science organization inaccessible to lower-resourced members, whereas selling services 
could introduce conflicts of interest that threaten the organization’s mission. Choosing and 
following a sustainability plan is necessary to maintain any public-minded organization, but the 
tradeoffs of the available options must also be evaluated with care. 

Mega-mistakes. The final risk of big team science is that of what we term mega-mistakes. 
Big team science’s primary virtue is its ability to “scale up” small projects into big ones by 
pooling resources across labs. However, this very virtue makes errors all the more costly: these 
errors risk wasting much more resources than would be wasted on a smaller project. These errors 
can even occur at the time of project selection if the topic of the project is not one that deserves 
the high investment of resources that big team science brings. 

Errors in big team projects often have no one simple cause. Consider the example of the 
Human Brain Project. This project aimed to unlock massive advances for neuroscience by 
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developing and building large-scale computer simulations of brain regions, and eventually of 
entire brains (Markram, 2012). The leader of the project, Henry Markram, set an ambitious 
agenda; in 2009, he claimed that, after only ten more years of development the technology that 
powered the project would allow the simulation of an entire rodent brain, an achievement that he 
believed would revolutionize neuroscience (Abbott, 2020). The project’s vision and ambition 
attracted major investment from both universities and funders; in 2015, the project had 112 
university partners and a project budget of over €1 billion (Abbott, 2015). 

Yet the project was plagued with problems. These problems spanned multiple domains, 
ranging from concerns that the project was monopolizing resources that could be allocated to 
other worthy projects, to disagreement over the project’s core aims, to dissatisfaction with the 
project’s autocratic leadership structure (Abbott, 2014). Regardless of the specific causes, by 
2015 most scientists agreed that the project was not living up to Henry Markram’s original vision 
(Abbott, 2015). Markram was removed from his leadership position the following year (Abbott, 
2020). The project is still ongoing, but whether it will produce the revolution in neuroscience 
that Markram promised is anything but clear. 

Mitigating this risk. As the example of the Human Brain Project illustrates, mega-
mistakes can emerge due to a failure to manage other risks of big team science, such as the risk 
of mis-management. Thus, mitigating other risks of big team science may be one useful way of 
mitigating the risks of mega-mistakes. 

However, big team science organizations can also proactively implement quality control 
processes that minimize the risks of mega-mistakes more directly. These quality control 
processes entail everything from formally reviewing project proposals, to instituting code 
review, pilot tests, and project “soft launches”, to formal methods of optionally stopping data 
collection to avoid overinvestment in bad ideas (Lakens, 2014; Schönbrodt et al., 2017). Quality 
control can also involve partnering with outside scientific organizations that implement their own 
methods of quality control, such as journals that administer Registered Reports.  

An additional promising strategy involves instituting audits of scientific processes by 
people who are formally independent of the big team science collaboration. These audits can 
take the form of research design review by outside experts, systems of back-translation to check 
the quality of forward-translation, formal code review, and even “red teams” who receive 
bounties for spotting bugs and other project flaws (Lakens, 2020).  

All these quality control methods have high value in solo PI projects, but take on renewed 
importance in projects that command resources on the scale of big team science. 

Conclusion 

 Big team science will never be a wholesale replacement to solo science – nor should it 
be. Absent the coordination constraints of a large team, solo scientists have the freedom to 
flexibly explore ideas that might be infeasible in a larger group setting without creating a risk of 
squandering a scale of resources that rises to the level of a “mega-mistake”. 

What big team science can do is vastly “scale up” the amount of resources – in other 
words, the money, person-hours, and specialized expertise – that can be deployed in a single, 
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well-chosen and well-vetted project. This increased resource investment can result in projects 
that are larger, more rigorous, and more representative of humanity. We believe this virtue is not 
to be underestimated, as low resource investment is likely a key ultimate cause of why 
psychology’s progress has been slow. Moreover, other disciplines may find themselves facing 
similar problems. Ecologists identified similar problems in their own discipline, and team 
science is emerging as a potential solution (Fraser et al., 2013). Pre-clinical cancer biology faces 
problems even conducting the studies needed to assess whether a replicability problem exists 
(Friedl, 2019). A greater focus on big team science may help pre-clinical cancer biology “scale 
up” the resources devoted to the typical study in the discipline, which may help lay the 
groundwork to allow these replication studies to be conducted. 

We believe that big team science has the potential to simultaneously tackle the many 
challenges that psychology faces. However, to fulfill this potential, psychological scientists must 
recognize and manage the many barriers and risks that this approach entails. If properly managed 
to leverage its virtues while mitigating its risks, we believe that big team science can be 
instrumental in the movement to build more reliable, informative, and rigorous science. 
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