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We study auction design within the widely acclaimed model of interdependent values, introduced by Milgrom

and Weber [1982]. In this model, every bidder 𝑖 has a private signal 𝑠𝑖 for the item for sale, and a public

valuation function 𝑣𝑖 (𝑠1, . . . , 𝑠𝑛) which maps every vector of private signals (of all bidders) into a real value. A

recent line of work established the existence of approximately-optimal mechanisms within this framework,

even in the more challenging scenario where each bidder’s valuation function 𝑣𝑖 is also private. This body of

work has primarily focused on single-item auctions with two natural classes of valuations: those exhibiting

submodularity over signals (SOS) and 𝑑-critical valuations.

In this work we advance the state of the art on interdependent values with private valuation functions,

with respect to both SOS and 𝑑-critical valuations. For SOS valuations, we devise a new mechanism that gives

an improved approximation bound of 5 for single-item auctions. This mechanism employs a novel variant of

an “eating mechanism”, leveraging LP-duality to achieve feasibility with reduced welfare loss. For 𝑑-critical

valuations, we broaden the scope of existing results beyond single-item auctions, introducing a mechanism

that gives a (𝑑 + 1)-approximation for any environment with matroid feasibility constraints on the set of

agents that can be simultaneously served. Notably, this approximation bound is tight, even with respect to

single-item auctions.

CCS Concepts: • Theory of computation→ Theory and algorithms for application domains; Algo-
rithmic game theory and mechanism design;

Additional Key Words and Phrases: Truthful Mechanisms, Approximation Algorithms, Matroids

ACM Reference Format:
Alon Eden, Michal Feldman, Simon Mauras, and Divyarthi Mohan. 2024. Private Interdependent Valuations:

New Bounds for Single-Item Auctions and Matroids. In Conference on Economics and Computation (EC ’24), July
8–11, 2024, New Haven, CT, USA. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/3670865.3673581

1 Introduction
A standard assumption in auction theory literature is that each bidder has a private value for the

item, typically assumed to be independent of other bidders’ values. However, in many scenarios, a

bidder’s value may crucially depend on private information possessed by others. This is the case in
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contexts such as mineral rights auctions, art auctions, and online ad auctions, where bidders lack

knowledge of their value for the item a priori, and moreover, their values are interdependent.

The seminal work of Milgrom and Weber [1982] and Wilson [1969], recognized by the 2020

Nobel prize in Economics [for the Prize in Economic Sciences in Memory of Alfred Nobel, 2020],

introduced the interdependent values model to formally study these intricate settings. In this model,

every bidder 𝑖 has a private signal 𝑠𝑖 , representing her partial information about the item, and a

public valuation function 𝑣𝑖 (·) that maps the signals of all bidders to 𝑖’s value for the item, with

𝑣𝑖 (𝑠1, . . . , 𝑠𝑛) denoting bidder 𝑖’s value for the item under a signal profile (𝑠1, . . . , 𝑠𝑛). For instance,
in the context of art auctions, a bidder’s signal might encapsulate her perception of the artwork’s

significance or her personal connection to it, while her valuation might also be shaped by the

information and perspectives of other bidders. Naturally, this scenario presents a notably more

complex challenge than the standard model of independent private values. In particular, a long line

of economic research has established strong impossibilities for obtaining optimal welfare truthfully,

except in settings that satisfy a strict property called single-crossing [Ausubel et al., 1999, Dasgupta

and Maskin, 2000, Jehiel and Moldovanu, 2001, Maskin, 1992].

The approximation lens. Recent endeavors in EconCS have addressed these challenges by

adopting the algorithmic lens of approximation, leading to the construction of truthful mechanisms

that obtain approximately optimal welfare or revenue (e.g., [Amer and Talgam-Cohen, 2021, Chawla

et al., 2014, Chen et al., 2022, Cohen et al., 2023, Eden et al., 2018, 2019, 2022, Gkatzelis et al., 2021,

Lu et al., 2022, Roughgarden and Talgam-Cohen, 2016]). A key result from these studies is that

when valuations satisfy submodularity over signals (SOS) — capturing valuations with diminishing

returns — it is possible to obtain a constant-factor approximation of the optimal welfare through

a truthful auction [Amer and Talgam-Cohen, 2021, Eden et al., 2019, Lu et al., 2022]. A valuation

function satisfies SOS if, for any 𝑗 , the effect of an increase in 𝑠 𝑗 is more significant when the

other signals 𝑠−𝑗 are lower. This class of valuations captures a variety of natural settings where

information (signals) have decreasing marginal returns, including those frequently explored in the

literature, such as art auctions and mineral rights auctions. Quite remarkably, these results apply

to a much broader range of auction settings than single-item auctions. In particular, [Eden et al.,

2019] provides a 4-approximation for welfare for general combinatorial auctions under SOS and

separable valuations.

Private valuation functions. A crucial assumption that drives the above results is that while

the signals are private information, the valuation functions mapping signals to values are publicly

known. This assumption may be quite controversial in real-world scenarios, as the way by which a

bidder assesses the value of an item, considering all available information from others, may remain

private to that bidder. This concern has led to a new line of work studying the interdependent

values model under the setting where both the signals and the valuation functions are private.
This environment proves to be significantly more challenging than its public valuations counter-

part. For example, even in single-item auctions with valuations satisfying single-crossing (which

enables optimal welfare under public valuations), one cannot guarantee better than the trivial

𝑛-approximation [Eden et al., 2022].

The state of the art results for interdependent valuations with private signals and valuation

functions are the following: (i) A truthful mechanism for single-item auctions with SOS valuations,

that gives a 5.55-approximation with respect to the optimal welfare [Eden et al., 2022, 2023]. (ii) A

truthful mechanism for single-item auctions with valuations satisfying a natural property called

𝑑-critical, that gives a (tight) (𝑑 + 1)-approximation with respect to the optimal welfare [Eden et al.,

2022]. A valuation 𝑣 is 𝑑-critical if, for every signal profile s = (𝑠1, . . . , 𝑠𝑛), there exist at most 𝑑

bidders 𝑗 for whom reducing 𝑠 𝑗 changes the value of 𝑣 (s).
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Two primary open problems emerge from the current research landscape. First, for single-

item auctions, there exists a 5.55-approximation, and it is known that one cannot get a better

approximation factor than 2 [Eden et al., 2019]. Shrinking this gap is a clear open problem. Second,

work on interdependent settings with private valuation functions has focused primarily on single-

item auctions (with some extensions to settings with identical items and unit-demand valuations

[Eden et al., 2023]). This is in stark contrast to interdependent settings with public valuation

functions, where the approximation results extend to significantly broader settings. Providing

approximation results for private interdependent valuations, in settings beyond single-item auctions,

stands as a major open problem.

1.1 Our Results
In this paper, we address and make progress on both of the aforementioned open problems. Our

first result is improving the state of the art for single-item actions with SOS valuations:

Theorem 1 (Theorem 3.1): For any single-item auction with private interdependent, SOS valua-

tions, there exists a truthful mechanism that gives 5-approximation with respect to the optimal

social welfare.

Beyond improving the approximation factor for SOS valuations, a key component of our result is

a new eating mechanism for this setting, which might be of independent interest. The mechanism

starts with a single unit of allocation probability. Ideally, we envision an eating process wherein

each bidder 𝑖 begins to consume at a moment determined by her value 𝑣𝑖 (s) (with those having

higher valuations starting first). This approach, however, does not yield a truthful mechanism.

To address this, we implement 𝑛 separate eating processes, one for each bidder. The allocation

probability for bidder 𝑖 then depends on bidder 𝑖’s true value 𝑣𝑖 (s), and on the other bidders’ shadow
values 𝑣 𝑗 (s−𝑖 , 0𝑖 ) that don’t depend on 𝑖’s signal. The challenge is to construct this mechanism in a

way that ensures feasibility, namely that the sum of all allocation probabilities does not exceed 1,

while still ensuring good approximation guarantees. To this end, we formulate the eating process

solution via a Linear Program (LP) and apply LP duality to bound the allocation probabilities.

Interestingly, the RCF mechanism described in [Eden et al., 2023] employs a filtering process that

determines a bidder’s candidacy based on a random discretization and tie-breaking order. In a way,

our eating mechanism is analogous to the probabilistic serial rule, whereas the RCF mechanism is

analogous to the random serial dictatorship rule.

Our second result concerns settings with private interdependent, 𝑑-critical valuations. For this

valuation class, we extend the prior results beyond single-item auctions, to any auction settingwhere

the set of bidders that can be simultaneously served is subject to matroid feasibility constraints.

Theorem 2 (Theorem 4.1): For any auction setting with matroid feasibility constraints (on the

set of bidders that can be simultaneously served) and private interdependent, 𝑑-critical valuations,

there exists a truthful mechanism that gives the tight (𝑑 + 1)-approximation with respect to the

optimal social welfare.

Interestingly, the approximation ratio of (𝑑 + 1) is proven to be tight, even for the single-item

setting [Eden et al., 2022]. In order to extend the result for any matroid feasibility constraint, we

carefully generalize the mechanism for single-item auction outlined in [Eden et al., 2022].

The high-level intuition for the single-item auction is that a bidder 𝑖 qualifies as a candidate for

allocation if and only if her value 𝑣𝑖 (s) exceeds the shadow values 𝑣 𝑗 (s−𝑖 , 0𝑖 ) of all other bidders
𝑗 ≠ 𝑖 . Notably, the bidder 𝑖★ with the true highest value always qualifies as a candidate, with the

only additional potential candidates being the ≤ 𝑑 bidders whose signals can reduce 𝑣𝑖★ (s).
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Building upon this intuition, we introduce a candidate filtering algorithm that designates bidder

𝑖 as a candidate if and only if she belongs to the maximal independent set, when using the shadow

values of others. A key challenge here is to show that all bidders in the true optimal set 𝐼★ are

selected as candidates, and the only other potential candidates are those who can reduce the

value of the bidders in 𝐼★. We then need to address the challenge that the set of candidates may

not be feasible. To overcome this issue, we employ the matroid partition theorem of Edmonds

[1971], showing that the set of candidates can be partitioned into at most (𝑑 + 1) independent sets,
allowing us to provide an ex-post feasible allocation by selecting each of these independent sets

with probability 1/(𝑑 + 1).
We also note that, this mechanism can be adjusted to scenarios where every agent 𝑖 has a 𝑑𝑖-

critical valuation, with an unknown 𝑑𝑖 . In this case, the mechanism can be extended to obtain

2(max𝑖 (𝑑𝑖 ) + 1)-approximation.

A natural open problem arising from our work is whether there exists a truthful mechanism for

private interdependent, SOS valuations with matroid feasibility constraints. We believe that our

new eating mechanism may be a promising direction for resolving this problem, as it sidesteps the

complexities associated with random ordering (as was required in the previous approach taken by

Eden et al. [2023]), which is hard to analyze in matroid settings, as evident by the notoriously hard

matroid secretary problem [Babaioff et al., 2018].

1.2 Related Work
The two most closely related works are Eden et al. [2022], who are the first to study interdependent

values with private valuation functions and provide an 𝑂 (log
2 𝑛)-approximation to the optimal

welfare for single-item auctions under SOS valuations, and Eden et al. [2023], who improve this

to a 5.5-approximation and extend the result to multi-unit auctions. In addition, these papers

also establish a (𝑑 + 1)-approximation for single-item auctions with 𝑑-critical valuations. A more

general class of valuations called 𝑑-self-bounding is considered in [Eden et al., 2023], for which an

𝑂 (𝑑)-approximation is provided. Dasgupta and Maskin [2000] study a related setting where the

valuation function is unknown to the seller but the bidders are aware of each others’ valuation

functions. They design a mechanism where the bidders report a complicated contingent bidding

function, and show that under single-crossing type conditions there is a fully efficient equilibrium.

The interdependent model with public valuations has attracted extensive work in economics

for decades, establishing strong impossibilities for obtaining optimal welfare truthfully unless the

valuations satisfy some strong condition such as single-crossing [Ausubel et al., 1999, Dasgupta and

Maskin, 2000, Jehiel and Moldovanu, 2001, Maskin, 1992]. Many additional studies have explored

the interdependent values model in a variety of scenarios, often incorporating single-crossing type

assumptions (e.g., [Che et al., 2015, Chung and Ely, 2002, Ito and Parkes, 2006, Robu et al., 2013]).

Recently, there has been a surge of research within EconCS focusing on the interdependent

values model from an algorithmic perspective. Roughgarden and Talgam-Cohen [2016] study prior-

independent mechanisms that are approximately optimal in the revenue maximization regime for

single parameter settings with downward closed constraints and further provide conditions under

which Myerson-like virtual welfare maximization obtains optimal revenue. Li [2013] provides

simple VCG-based mechanisms that obtain near-optimal revenue under MHR distributions and

matroid feasibility constraints. Chawla et al. [2014] provide approximation guarantees for revenue

in single-parameter settings with matroid feasibility constraints under relaxed assumptions. These

results assume some form of single-crossing type condition in order to obtain positive results.

Eden et al. [2018] provide approximation guarantees for welfare in prior-free single-item auction

settings when the valuation functions are approximately single-crossing. Eden et al. [2019] were the

first to study public SOS valuations in interdependent setting and provide a 4-approximation for any
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single-parameter setting with downward closed feasibility constraints (without any single-crossing

type assumption). They also study combinatorial auctions and provide a 4-approximation under

an additional condition of seperable valuations. Amer and Talgam-Cohen [2021] and Lu et al.

[2022] provide improved approximation guarantees for the single-item setting, and Mauras et al.

[2024] study competitive ratio guarantees for the online selection variant (in prophet and secretary

settings). Eden et al. [2021] study price of anarchy bounds for simple non-truthful mechanisms,

and Gkatzelis et al. [2021] show that clock auctions can obtain approximately optimal welfare

under certain assumptions on valuation functions and finite signal space. Cohen et al. [2023] study

approximation guarantees for the public projects setting with interdependent values, and Birmpas

et al. [2023] study a fair division problem with interdependence.

Resource allocation problems under matroid feasibility constraints have been extensively studied

in the Computer Science and Economics literature, as they provide an elegant abstraction to various

natural feasibility constraints. For example, 𝑘-uniform matroids capture multi-unit auctions and

transversal matroids capture housing allocation settings where the agents each have a subset of

accepted houses. See [Bikhchandani et al., 2011, Hartline and Roughgarden, 2009, Karlin et al.,

2005, Milgrom and Segal, 2017] for prominent examples in auction design and [Babaioff et al., 2018,

Kleinberg and Weinberg, 2012] for online selection problems.

2 Preliminaries
2.1 Interdependent Valuations and Truthful Mechanisms
We consider an auction with 𝑛 bidders with interdependent valuations. Every bidder 𝑖 ∈ [𝑛] has a
private signal 𝑠𝑖 ∈ 𝑆𝑖 , capturing bidder 𝑖’s private information about the item, where 𝑆𝑖 denotes the

signal space of bidder 𝑖 . Wlog assume that the minimum signal in 𝑆𝑖 is 0, for every 𝑖 . We denote by

S = 𝑆1 × . . . × 𝑆𝑛 the joint signal space of the bidders, and by s = (𝑠1, . . . , 𝑠𝑛) ∈ S a signal profile. As
is standard, we denote by s−𝑖 = (𝑠1, . . . , 𝑠𝑖−1, 𝑠𝑖+1, . . . , 𝑠𝑛) the signal profile of all bidders other than
bidder 𝑖 .

In addition to the signal, every bidder 𝑖 has a private monotone valuation function 𝑣𝑖 : S→ R+,
which maps every signal profile s = (𝑠1, . . . , 𝑠𝑛) into a non-negative real number, which is bidder 𝑖’s

value for the item. We denote by 𝑉𝑖 ⊆ RS
+ the valuation space of bidder 𝑖 , and by V = 𝑉1 × . . . ×𝑉𝑛

the joint valuation space of all bidders. A vector v = (𝑣1, . . . , 𝑣𝑛) ∈ V denotes a valuation profile.

We refer to bidder 𝑖’s value under signal profile s as 𝑖’s real value. We sometimes refer to a low

estimate of bidder 𝑖’s value, where bidder 𝑗 ’s signal is zeroed out; i.e., 𝑣𝑖 (s−𝑗 , 0𝑗 ); we refer to this

value as bidder 𝑖’s shadow value.

A mechanism is defined by a pair (x, p) denoting the mechanism’s allocation and payment rules,

based on the bidders’ reports of their signals and valuations. The allocation rule x : S× V→ [0, 1]𝑛
returns the allocation probability 𝑥𝑖 (s, v) for every bidder 𝑖 , and the payment rule p : S × V→ R𝑛

+
returns the payment 𝑝𝑖 (s, v) every bidder 𝑖 for reported signals s, v.

Unless specified otherwise, we access bidder valuations via value queries; namely, given a signal

profile s, bidder 𝑖’s value oracle 𝑣𝑖 returns 𝑣𝑖 (s). A mechanism is said to be polynomial if it makes a

polynomial number of value queries.

A mechanism (x, p) is said to be truthful if it is an ex-post Nash equilibrium for the bidders to

truthfully report their private information (signals and valuations). In our query access model,

truthfulness means that it is in every bidder’s best interest to answer every query truthfully, given

that other bidders do the same.

Definition 2.1 (EPIC-IR). A mechanism (x, p) is ex-post incentive compatible (IC) if for every
𝑖 ∈ [𝑛], s ∈ S, v ∈ V, 𝑠 ′𝑖 ∈ 𝑆𝑖 , 𝑣 ′𝑖 ∈ 𝑉𝑖

𝑥𝑖 (s, v) · 𝑣𝑖 (s) − 𝑝𝑖 (s, v) ≥ 𝑥𝑖 (s−𝑖 , 𝑠 ′𝑖 , v−𝑖 , 𝑣 ′𝑖 ) · 𝑣𝑖 (s) − 𝑝𝑖 (s−𝑖 , 𝑠 ′𝑖 , v−𝑖 , 𝑣 ′𝑖 ). (1)
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It is ex-post individually rational (IR) if for every 𝑖 ∈ [𝑛], s ∈ S, and v ∈ V
𝑥𝑖 (s, v) · 𝑣𝑖 (s) − 𝑝𝑖 (s, v) ≥ 0 (2)

It is EPIC-IR if it is both ex-post IC and ex-post IR. An allocation x is EPIC-IR implementable if there
exists a payment rule p such that the pair (x, p) is EPIC-IR.

It is well known that even when the valuation functions are public, this is the strongest possible

solution concept when dealing with interdependent valuations.
1

Eden et al. [2022] give a sufficient condition for an allocation rule x to be EPIC-IR implementable.

Proposition 2.1 (Eden et al. [2022]). An allocation rule x is EPIC-IR implementable if for every
bidder 𝑖 , 𝑥𝑖 depends only on s−𝑖 , v−𝑖 and 𝑣𝑖 (s), and is non-decreasing in 𝑣𝑖 (s).

For an (EPIC-IR) implementable x, the corresponding payment rule p is given by:

𝑝𝑖 (s, v) := 𝑥𝑖 (s−𝑖 , v−𝑖 , 𝑣𝑖 (s)) · 𝑣𝑖 (s) −
∫ 𝑣𝑖 (s)

0

𝑥𝑖 (s−𝑖 , v−𝑖 , 𝑡) d𝑡 . (3)

That is, bidder 𝑖’s allocation may depend on all other bidders’ signals and valuation functions,

and it can only depend on bidder 𝑖’s signal 𝑠𝑖 or valuation function 𝑣𝑖 through the numerical

value 𝑣𝑖 (s). Eden et al. [2022] show that this condition is almost necessary in order to be EPIC-IR

implementable.
2

2.2 Valuations Classes
We focus on two classes of valuations which are well-studied in the context of interdependent

values with private valuation functions, namely SOS valuations and 𝑑-critical valuations.

Definition 2.2 (SOS Valuations). A valuations function 𝑣 : S→ R+ is Submodular over signals
(or SOS) if for every 𝑖 , 𝑠𝑖 ∈ 𝑆𝑖 , s−𝑖 , ŝ−𝑖 ∈ S−𝑖 such that s−𝑖 ⪯ ŝ−𝑖 , and 𝛿 > 0,

𝑣 (𝑠𝑖 + 𝛿, s−𝑖 ) − 𝑣 (𝑠𝑖 , s−𝑖 ) ≥ 𝑣 (𝑠𝑖 + 𝛿, ŝ−𝑖 ) − 𝑣 (𝑠𝑖 , ŝ−𝑖 ). (4)

The SOS class includes most valuation classes studied in the literature on interdependent values,

including the resale model (i.e., affine functions) [Klemperer, 1998, Myerson, 1981], the mineral

rights model [Wilson, 1969], average value, etc.

Previous work [Eden et al., 2022, 2023, Lu et al., 2022] has shown that SOS valuations satisfy

a useful property called self-bounding, where

∑𝑛
𝑖=1
(𝑣 (s) − 𝑣 (s−𝑖 , 0𝑖 )) ≤ 𝑣 (s). This is cast in the

following lemma.

Lemma 2.1 (SOS functions are self-bounding [Eden et al., 2022, Lu et al., 2022]). For every
monotone SOS valuation function 𝑣 : S→ R+, and every signal profile s, we have

𝑛∑︁
𝑖=1

(𝑣 (s) − 𝑣 (s−𝑖 , 0𝑖 )) ≤ 𝑣 (s).

We now turn to define 𝑑-critical valuations.

Definition 2.3 (𝑑-critical Valuations). A valuation function 𝑣 : S → R+ is 𝑑-critical if for
every s ∈ S,

|{ 𝑗 : 𝑣 (s−𝑗 , 0𝑗 ) < 𝑣 (s)}| ≤ 𝑑. (5)

1
Dominant strategy incentive-compatibility does not make sense, as a bidder 𝑖 might not be willing to win if other bidders

over-bid, which causes the winner to over-pay and incur a negative utility.

2
The necessary conditions for EPIC-IR implementablity are (i) 𝑥𝑖 is monotone in 𝑣𝑖 (s) , and (ii) for a given s−𝑖 , the set of
signals 𝑠𝑖 , 𝑠

′
𝑖
and valuation functions 𝑣𝑖 , 𝑣

′
𝑖
such that 𝑣𝑖 (𝑠𝑖 , s−𝑖 ) = 𝑣′

𝑖
(𝑠′
𝑖
, s−𝑖 ) and 𝑥𝑖 (𝑣𝑖 , 𝑠𝑖 , s−𝑖 ) ≠ 𝑥𝑖 (𝑣′𝑖 , 𝑠′𝑖 , s−𝑖 ) has measure

0.
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A few natural functions that lie in low levels of the 𝑑-critical hierarchy are: (i) max signal is

1-critical, (ii) any weighted matroid function over signals with rank 𝑑 is 𝑑-critical, (iii) values derived

from a social network with 𝑑-bounded degrees (where every bidder’s value is an arbitrary function

of its neighbors’ signals) are 𝑑-critical.

Eden et al. [2022] show the following impossibility for (a special case of) 𝑑-critical valuations.

Proposition 2.2 (Eden et al. [2022]). For every EPIC-IR single-item auction for 𝑑-critical val-
uations, there exists an instance for which the obtained welfare cannot give better than (𝑑 + 1)-
approximation for the optimal welfare.

2.3 Matroid Preliminaries
In Section 4, we consider auctions where the feasible sets of bidders that can be served are indepen-

dent sets of a matroid. The definition of a matroid follows.

Definition 2.4 (Matroid). A matroid is a pair𝑀 = ( [𝑛],I), where [𝑛] is a set of elements, and I
is a (non-empty) collection of subsets of [𝑛], which are the independent sets of the matroid, satisfying:
• Downward closed: If 𝐼 ∈ I then 𝐴 ∈ I for all subsets 𝐴 ⊆ 𝐼 .
• Exchange property: If 𝐴, 𝐵 ∈ I with |𝐴| < |𝐵 | then there exists 𝑖 ∈ 𝐵 \𝐴 such that 𝐴 ∪ {𝑖} ∈ I.

Definition 2.5 (Rank Function). For a subset of elements 𝑆 ⊆ [𝑛], let 𝑟𝑎𝑛𝑘 (𝑆) = max𝐼 ⊆𝑆 : 𝐼 ∈I |𝐼 |.
𝑟𝑎𝑛𝑘 (𝑀) = 𝑟𝑎𝑛𝑘 ( [𝑛]) is referred to as the matroid’s rank.

The rank function is submodular [Oxley, 2011]. That is, for every 𝑆 ⊆ 𝑇 ⊆ [𝑛], and for every 𝑖 ∈ [𝑛],
𝑟𝑎𝑛𝑘 (𝑆 ∪ {𝑖}) − 𝑟𝑎𝑛𝑘 (𝑆) ≥ 𝑟𝑎𝑛𝑘 (𝑇 ∪ {𝑖}) − 𝑟𝑎𝑛𝑘 (𝑇 ).

Greedy algorithm. Consider a matroid with weighted elements, where the weight function

𝑤 : [𝑛] → R+ assigns a non-negative weight to every element 𝑖 ∈ [𝑛]. The greedy algorithm

with weights 𝑤 operates by sorting the elements in [𝑛] in non-increasing order of 𝑤 and then

sequentially adds elements to maintain an independent set. Specifically, the algorithm starts with

an empty set 𝐼★ and, for each element 𝑖 in the specified order, adds 𝑖 to 𝐼★ if 𝐼★ ∪ {𝑖} ∈ I. It is well
known that the greedy algorithm produces an independent set 𝐼★ with maximum weight. This is

cast in the following theorem.

Theorem 2.1 (Greedy is Optimal (Edmonds [1971])). Let 𝐼★ be the set returned by the greedy
algorithm on a matroid𝑀 = ( [𝑛],I). It holds that
(1) |𝐼★ | = 𝑟𝑎𝑛𝑘 (𝑀).
(2)

∑
𝑖∈𝐼★ 𝑤 (𝑖) = max𝐼 ∈I

∑
𝑖∈𝐼 𝑤 (𝑖).

For our result, we need the following folklore lemma about the greedy algorithm.

Lemma 2.2. Let 𝑖 ∈ [𝑛] be some element in𝑀 . Consider two weight functions𝑤, �̂� , where �̂� (𝑖) ≥
𝑤 (𝑖) and �̂� ( 𝑗) ≤ 𝑤 ( 𝑗) for every 𝑗 ≠ 𝑖 . If 𝑖 is selected by the greedy algorithm with weights 𝑤 and
some tie-breaking rule, then 𝑖 is also selected by the greedy algorithm with weights �̂� and the same
tie-breaking rule.

Proof. Consider the ordering 𝜎 which results by ordering the elements according to𝑤 using

some tie-breaking rule. By renaming, assume we break ties in favor of lower-index elements. Let 𝐼★

be the obtained independent set. Consider an element 𝑖 ∈ 𝐼★ and consider �̂� such that �̂� (𝑖) ≥ 𝑤 (𝑖)
and �̂� ( 𝑗) ≤ 𝑤 ( 𝑗) for 𝑗 ≠ 𝑖 . Let �̂� and 𝐼★ be the ordering and the independent set determined

according to �̂� when breaking ties in favor of lower-index elements. Let 𝐴 and 𝐴 be the sets of

elements that appear before 𝑖 when ordering the elements according to orders 𝜎 (i.e., according to

𝑤 ) and �̂� (i.e., according to �̂� ), respectively. Since in order �̂� , �̂� (𝑖) ≥ 𝑤 (𝑖) while �̂� ( 𝑗) ≤ 𝑤 ( 𝑗) for
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𝑗 ≠ 𝑖 , 𝐴 ⊆ 𝐴. We transform 𝜎 into �̂� in three steps, and show that after each step, 𝑖 is still chosen

by the greedy algorithm (see Figure 1 for a schematic depiction of the transitions).

First, consider an ordering 𝜎 ′ which reorders elements in 𝐴 to have the same relative ordering

as in �̂� , but does not change the ordering of all other elements. In 𝜎 ′, the set of elements ordered

before 𝑖 is still 𝐴. Moreover, the first |𝐴| elements in order 𝜎 ′ are exactly 𝐴. Let 𝐼★𝑖 and 𝐼 ′𝑖 be the
sets of elements added by running the greedy algorithm on orders 𝜎 and 𝜎 ′, respectively, just
before element 𝑖’s turn. By Theorem 2.1, |𝐼★𝑖 | = |𝐼 ′𝑖 | = 𝑟𝑎𝑛𝑘 (𝐴). Since 𝑖 is added to 𝐼★ in ordering 𝜎 ,

𝐼★𝑖 ∪ {𝑖} ∈ I → 𝑟𝑎𝑛𝑘 (𝐴 ∪ {𝑖}) = 𝑟𝑎𝑛𝑘 (𝐴) + 1 = |𝐼 ′𝑖 | + 1. Again, by Theorem 2.1, it must be that 𝑖 is

added to 𝐼 ′𝑖 in ordering 𝜎 ′.

For the second step, we move 𝑖 to be right after set 𝐴 in the ordering 𝜎 ′, bumping up one spot

each element in 𝐴 \𝐴. Let 𝜎 ′′ be the resulting ordering. Notice that up until the position of element

𝑖 in the order, including, the elements are ordered the same as in �̂� . Let 𝐼 ′′𝑖 be the set of elements

added by the greedy algorithm in order 𝜎 ′′ up until element 𝑖’s turn. Since up until this point, the

order of the elements in 𝜎 ′ and 𝜎 ′′ is the same, 𝐼 ′′𝑖 ⊆ 𝐼 ′𝑖 . Therefore, since I is downwards-closed, it

must be the case that 𝑖 can be added to 𝐼 ′′𝑖 as well.

To finish the proof, we now order the elements after 𝑖 to be in the same order as in �̂� , thus

recovering order �̂� . Notice that elements ordered after 𝑖 in an instance of the greedy algorithm

cannot determine whether 𝑖 is selected or not. Therefore, 𝑖 is selected by running greedy on �̂� to be

in 𝐼★, finishing the proof. □

𝐴 𝑖 �̂� [𝑛]\(�̂�∪𝑖) �̂�

𝐴 𝑖 𝐴 \𝐴 𝜎 [𝑛]\(𝐴∪𝑖) 𝜎 ′′

𝐴 𝐴 \𝐴 𝑖 𝜎 [𝑛]\(𝐴∪𝑖) 𝜎 ′

𝐴 𝑖 𝜎 [𝑛]\(𝐴∪𝑖) 𝜎

Fig. 1. The transitions from 𝜎 to �̂� used in the proof of Lemma 2.2.

We will also use the following known theorem about matroids.

Theorem 2.2 (Matroid partition (Edmonds [1965])). Given a matroid 𝑀 over a ground set
[𝑛], it is possible to find a partitioning 𝑀 = 𝐼1 ⊎ · · · ⊎ 𝐼𝑡 with 𝑡 pairwise disjoint independent sets
𝐼1, . . . , 𝐼𝑡 ∈ I if and only if

∀𝑆 ⊆ [𝑛], |𝑆 | ≤ 𝑡 · 𝑟𝑎𝑛𝑘 (𝑆). (6)

Moreover, there exist efficient algorithms to find such partitioning.

3 Eating Mechanism for Single-Item Auctions with SOS Valuations
In this section, we present a truthful mechanism that improves upon the state-of-the-art approxima-

tion for single-item auctions with SOS valuations. We start by introducing a new eating mechanism,

and then show that this mechanism is truthful and provides a 5-approximation to the optimal

welfare for SOS valuations. The main theorem of this section follows.

Theorem 3.1. Mechanism 1 (the eating mechanism) is an EPIC-IR mechanism that obtains a 5-
approximation to the optimal welfare when the bidders have interdependent values with private SOS
valuations.
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The proof of Theorem 3.1 unfolds as follows. In Lemma 3.2 we show that the mechanism is

EPIC-IR, in Lemma 3.3 we show that the mechanism, if feasible, gives 5-approximation to the

optimal welfare, and in Lemma 3.4 we prove that the mechanism is feasible. Collectively, these

lemmas prove Theorem 3.1.

Before presenting the lemmas, we give an informal description of the mechanism, and present a

linear program whose solution coincides with the allocation probabilities produced by the eating

mechanism (as shown in Lemma 3.1).

The eating mechanism. Our mechanism considers 𝑛 separate eating processes, one for each

bidder, where the eating process corresponding to bidder 𝑖 determines 𝑖’s share of the allocation

probability. In bidder 𝑖’s eating process, we use 𝑖’s real value, and for all other bidders 𝑗 ≠ 𝑖 , we

use their shadow values (i.e., their values when 𝑖’s signal is zeroed out). In particular, every bidder

𝑗 starts eating at a time that depends on her (shadow) value (with higher valued bidders starting

earlier). At each point in time, all the bidders eating at that time, eat at the same speed. The eating

process ends when the total share eaten is 1.
3
Bidder 𝑖 is then allocated her (normalized) share

obtained in this process. Figure 2 depicts the eating process used to determine 𝑖’s allocation.

time

− ln 𝑣 𝑗 (s−𝑖 , 0𝑖 ) − ln 𝑣𝑖 (s) − ln 𝑣 𝑗 ′ (s−𝑖 , 0𝑖 )𝑡

Fig. 2. The eating process used to determine bidder 𝑖’s allocation. bidder 𝑖 starts eating at time − ln 𝑣𝑖 (s) and
all other bidders 𝑗 ≠ 𝑖 start eating at time − ln 𝑣 𝑗 (s−𝑖 , 0𝑖 ). At each point in time, all bidders eating at that
time eat at the same speed. The solid blue line denotes bidder 𝑖’s share and the dashed blue line denotes 𝑗 ’s
(pretend) share. The red square denotes the time 𝑡 when the sum of the blue lines adds up to 1, thus halting
the eating process.

Mechanism 1: Eating Mechanism.

Function eat(weight function𝑤 : [𝑛] → R+) :

(1) Each bidder 𝑗 starts eating at time − ln(𝑤 ( 𝑗)), and eats at a constant speed of 1.

(2) Eating stops at time 𝑡 , when the item has been entirely eaten, that is when

∑𝑛
𝑗=0
(𝑡 + ln𝑤 ( 𝑗))+ = 1.

(3) Return the allocation, that is the vector y where 𝑦 𝑗 = (𝑡 + ln𝑤 ( 𝑗))+.
Mechanism eating :

(1) Elicit signals ŝ and valuation functions v̂.
(2) For each bidder 𝑖:

Define the function𝑤𝑖 where𝑤𝑖 (𝑖) = 𝑣𝑖 (ŝ) and𝑤𝑖 ( 𝑗) = 𝑣 𝑗 (ŝ−𝑖 , 0𝑖 ) for 𝑗 ≠ 𝑖 .

Set 𝑥𝑖 ← eat(𝑤𝑖 )𝑖/4, that is, the 𝑖-th coordinate of eat(𝑤𝑖 ), divided by 4.

(3) Charge payments using Eq (3).

3
Note that some bidders may not even start eating before the process ends, leading to a share of 0.
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For the sake of the analysis, we formulate the eating process as the solution of the following

linear program (𝑃𝑖 ):

maximize 𝑦𝑖 (𝑃𝑖 )
such that 𝑦𝑖 ≤ 𝑦 𝑗 + ln(𝑤 (𝑖)) − ln(𝑤 ( 𝑗)) ∀𝑗 ≠ 𝑖∑

𝑖 𝑦𝑖 ≤ 1

𝑦1, . . . , 𝑦𝑛 ≥ 0.

Lemma 3.1 shows that the (pre-normalized) share allocated to bidder 𝑖 by the eating mechanism

equals the value of the linear program (𝑃𝑖 ).
To establish the feasibility of Mechanism 1, we will show in Lemma 3.4 that the sum of probabili-

ties assigned to the bidders does not exceed 1. We obtain an upper-bound on the (pre-normalized)

share of bidder 𝑖 in the primal program (𝑃𝑖 ) using a feasible solution to the dual program (𝐷𝑖 )
presented below.

minimize 𝛼𝑖 +
∑

𝑗≠𝑖 𝛽𝑖, 𝑗 · (ln(𝑤 (𝑖)) − ln(𝑤 ( 𝑗))) (𝐷𝑖 )
such that 𝛼𝑖 +

∑
𝑗≠𝑖 𝛽𝑖, 𝑗 ≥ 1

𝛼𝑖 ≥ 𝛽𝑖, 𝑗 ∀𝑗 ≠ 𝑖

𝛼𝑖 ≥ 0, 𝛽𝑖, 𝑗 ≥ 0 ∀𝑗 ≠ 𝑖 .

The following lemma shows that the value of the primal LP (𝑃𝑖 ) of bidder 𝑖 equals the (pre-
normalized) share of bidder 𝑖 in the eating mechanism.

Lemma 3.1. Given a weight function𝑤 , the function eat(𝑤) assigns bidder 𝑖 a share that equals
the value of the linear program (𝑃𝑖 ) if it is feasible, and 0 otherwise. In particular, it is non-decreasing
in𝑤 (𝑖), and non-increasing in every𝑤 ( 𝑗) with 𝑗 ≠ 𝑖 .

Proof. First, we give another linear program (𝑃 ′𝑖 ) which is analogous to the eating procedure.

We show that (𝑃𝑖 ) is feasible if and only if (𝑃 ′𝑖 ) has a non-negative solution, in which case they

both have the same value.

maximize 𝑡 + ln(𝑤 (𝑖)) (𝑃 ′𝑖 )
such that 𝑡 + ln(𝑤 ( 𝑗)) ≤ 𝑧 𝑗 ∀𝑗 ∈ [𝑛]∑

𝑖 𝑧𝑖 ≤ 1

𝑧1, . . . , 𝑧𝑛 ≥ 0.

Observe that 𝑡 denotes the stopping time of the eating process, given that each bidder 𝑗 ’s share

is at least 𝑡 + ln(𝑤 𝑗 ) and the total share sums up to at most 1. Since 𝑡 can be negative, (𝑃 ′𝑖 ) is
always feasible. By construction, the 𝑖-th coordinate of eat(𝑤) is equal to (𝑡 + ln(𝑤 (𝑖)))+. When

𝑡 + ln(𝑤 (𝑖)) ≥ 0, setting 𝑦 𝑗 = 𝑧 𝑗 and 𝑦𝑖 = 𝑡 + ln(𝑤 (𝑖)) gives a feasible solution of the linear program

(𝑃𝑖 ). Conversely, given a feasible solution (𝑦1, . . . , 𝑦𝑛) to (𝑃𝑖 ), setting 𝑧 𝑗 = 𝑦 𝑗 and 𝑡 = 𝑦𝑖 − ln(𝑤 (𝑖))
gives a solution to (𝑃 ′𝑖 ) with value 𝑡 + ln(𝑤 (𝑖)) ≥ 0.

To show the monotonicity properties, observe that increasing𝑤 (𝑖) or decreasing𝑤 ( 𝑗) makes the

constraints of (𝑃𝑖 ) looser, which cannot decrease the objective or make the program infeasible. □

We are now ready to prove Theorem 3.1. We first show that Mechanism 1 is truthful.
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Lemma 3.2. Mechanism 1 is EPIC-IR.

Proof. By Proposition 2.1, it suffices to show that 𝑖’s allocation depends only on ŝ−𝑖 , v̂−𝑖 , and
𝑣𝑖 (ŝ), and is monotone non-decreasing in 𝑣𝑖 (ŝ). The first property holds by design, and monotonicity

holds by Lemma 3.1, showing that 𝑥𝑖 is increasing in 𝑣𝑖 (s). □

Given that the mechanism is truthful, we hereafter simplify notation and write s and v instead

of ŝ and v̂. The following lemma establishes the approximation factor of the mechanism.

Lemma 3.3. Mechanism 1 gives 5-approximation to the optimal welfare.

Proof. We define the weight function𝑤★( 𝑗) = 𝑣 𝑗 (s) mapping each bidder to their true value.

First, by monotonicity of the function eat, we have that each bidder 𝑖 gets an allocation probability

𝑥𝑖 = eat(𝑤𝑖 )𝑖/4 which is at least eat(𝑤★)𝑖/4, because we replaced low estimates with the true

value for each bidder 𝑗 ≠ 𝑖 (i.e.,𝑤★( 𝑗) ≥ 𝑤𝑖 ( 𝑗) for all 𝑗 ). Hence, the expected welfare is at least

𝑛∑︁
𝑖=1

𝑣𝑖 (s) ·
eat(𝑤★)𝑖

4

.

Let 𝑖★ be the bidder with the highest value, and let 𝑦𝑖★ be the (pre-normalized) probability share she

receives from the eating procedure with weight function𝑤𝑖★ . Observe that, in this eating process,

all bidders stop eating by time 𝑦𝑖★ − ln(𝑣𝑖★ (s)), and thus the (1 − 𝑦𝑖★) share which has not been

eaten by 𝑖★ has been eaten by someone who has value at least exp(ln(𝑣𝑖★ (s)) −𝑦𝑖★). Therefore, the
overall welfare is greater than or equal to

𝑣𝑖★ (s) ·
𝑦𝑖★ + (1 − 𝑦𝑖★)𝑒−𝑦𝑖★

4

.

The function 𝑦 + (1 − 𝑦)𝑒−𝑦 has a minimum approximately equal to 0.8005 at 𝑦 ≈ 0.44.
4
Therefore,

after normalizing the probability shares by 4, the expected welfare is at least 𝑣𝑖★ (s) · 0.8005

4
≥

𝑣𝑖★ (s)/5. □

Finally, the following lemma confirms the mechanism’s feasibility.

Lemma 3.4. Mechanism 1 is feasible when bidders have SOS valuation functions; that is, the sum of
probabilities 𝑥1 + · · · + 𝑥𝑛 is at most 1.

Proof. First, define the set 𝑆 of bidders 𝑖 who receive a positive probability 𝑥𝑖 > 0 from the

algorithm. For the sake of the analysis, observe that we can restrict our instance to bidders in

𝑆 , because doing so cannot decrease the sum of probabilities. Indeed, removing 𝑗 ∉ 𝑆 does not

decrease their probability 𝑥 𝑗 = 0, and when computing the probability of a bidder 𝑖 ∈ 𝑆 , removing 𝑗

is equivalent to replacing 𝑣 𝑗 (s−𝑖 , 0𝑖 ) by 0, which cannot decrease 𝑥𝑖 by the monotonicity property

of Lemma 3.1. For simplicity of notations, we assume (without loss of generality) that 𝑆 = [𝑛], i.e.
we relabel bidders and set 𝑛 to be the size of 𝑆 .

We are now ready to start bounding the probabilities, and we define

∀𝑖 ∈ [𝑛], 𝑦𝑖 = eat(𝑤𝑖 )𝑖 > 0, where𝑤𝑖 (𝑖) = 𝑣𝑖 (s) and𝑤𝑖 ( 𝑗) = 𝑣 𝑗 (s−𝑖 , 0𝑖 ) for 𝑗 ≠ 𝑖

and our goal is to give an upper show that 𝑦1 + · · · + 𝑦𝑛 ≤ 4. For all 𝑖 , we consider the dual (𝐷𝑖 )
of the linear program (𝑃𝑖 ) from lemma 3.1. We now define a feasible solution to all dual linear

programs. The main insight is that we will choose symmetric 𝛽𝑖, 𝑗 := 𝛾𝑖, 𝑗 · 𝛾 𝑗,𝑖/𝑛, where 𝛾𝑖, 𝑗 ’s will be

4
By a numerical analysis, we find that the optimal base for the logarithm is approximately 3.2, which results in a minor

improvement in the approximation to about 4.97.
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set later. This way, we will be able to swap the indices 𝑖 and 𝑗 in 𝑣𝑖 (s−𝑗 , 0𝑗 ) which appear in the

upper-bound:

𝑛∑︁
𝑖=1

𝑦𝑖 ≤
𝑛∑︁
𝑖=1

𝛼𝑖 +
𝑛∑︁
𝑖=1

∑︁
𝑗≠𝑖

𝛽𝑖, 𝑗 · (ln(𝑣𝑖 (s)) − ln(𝑣 𝑗 (s−𝑖 , 0𝑖 )))

=

𝑛∑︁
𝑖=1

𝛼𝑖︸︷︷︸
𝐴

+
𝑛∑︁
𝑖=1

∑︁
𝑗≠𝑖

𝛽𝑖, 𝑗 · (ln(𝑣𝑖 (s)) − ln(𝑣𝑖 (s−𝑗 , 0𝑗 )))︸                                               ︷︷                                               ︸
𝐵

.

Next, using Lemma 2.1, we know that

∑
𝑗≠𝑖 (1 − 𝑣𝑖 (s−𝑗 , 0𝑗 )/𝑣𝑖 (s)) ≤ 1. Thus, we want to choose 𝛾𝑖, 𝑗

appropriately to be able to bound the sum 𝐵:

∀𝑖 ≠ 𝑗, 𝛾𝑖, 𝑗 :=

{
1−𝑣𝑖 (s−𝑗 ,0𝑗 )/𝑣𝑖 (s)

ln(𝑣𝑖 (s))−ln(𝑣𝑖 (s−𝑗 ,0𝑗 )) if 𝑣𝑖 (s−𝑗 , 0𝑗 ) < 𝑣𝑖 (s)
1 if 𝑣𝑖 (s−𝑗 , 0𝑗 ) = 𝑣𝑖 (s)

.

Using the fact that −𝑥 ln𝑥 ≤ 1 − 𝑥 for all 0 < 𝑥 < 1, we have the following important property:

∀𝑖 ≠ 𝑗, 𝑣𝑖 (s−𝑗 , 0𝑗 )/𝑣𝑖 (s) ≤ 𝛾𝑖, 𝑗 ≤ 1.

We set 𝛼𝑖 := 1 −∑𝑗≠𝑖 𝛽𝑖, 𝑗 . By construction, the inequality 𝛼𝑖 +
∑

𝑗≠𝑖 𝛽𝑖, 𝑗 ≥ 1 is satisfied. Moreover,

we have that each 𝛽𝑖, 𝑗 is smaller than 1/𝑛, therefore each 𝛼𝑖 is at least 1/𝑛 and the inequalities

𝛼𝑖 ≥ 𝛽𝑖, 𝑗 are also satisfied.

To conclude the proof, it remains to give an upper bound on 𝐴 and 𝐵.

𝐴 =

𝑛∑︁
𝑖=1

(
1 −

∑︁
𝑗≠𝑖

𝛽𝑖, 𝑗

)
= 1 +

𝑛∑︁
𝑖=1

∑︁
𝑗≠𝑖

(
1

𝑛
− 𝛽𝑖, 𝑗

)
(using 𝛼𝑖 = 1 −

∑︁
𝑗≠𝑖

𝛽𝑖, 𝑗 )

= 1 + 1

𝑛

𝑛∑︁
𝑖=1

∑︁
𝑗≠𝑖

(
1 − 𝛾𝑖, 𝑗 · 𝛾 𝑗,𝑖

)
(using 𝛽𝑖, 𝑗 = 𝛾𝑖, 𝑗 · 𝛾 𝑗,𝑖/𝑛)

≤ 1 + 1

𝑛

𝑛∑︁
𝑖=1

∑︁
𝑗≠𝑖

(
(1 − 𝛾𝑖, 𝑗 ) + (1 − 𝛾 𝑗,𝑖 )

)
(because 𝛾𝑖, 𝑗 + 𝛾 𝑗,𝑖 ≤ 1 + 𝛾𝑖, 𝑗 · 𝛾 𝑗,𝑖 )

≤ 1 + 2

𝑛

𝑛∑︁
𝑖=1

∑︁
𝑗≠𝑖

(1 − 𝑣𝑖 (s−𝑗 , 0𝑗 )/𝑣𝑖 (s)) . (because 𝑣𝑖 (s−𝑗 , 0𝑗 )/𝑣𝑖 (s) ≤ 𝛾𝑖, 𝑗 )

𝐵 =

𝑛∑︁
𝑖=1

∑︁
𝑗≠𝑖

𝛾𝑖, 𝑗 · 𝛾 𝑗,𝑖
𝑛

· (ln(𝑣𝑖 (s)) − ln(𝑣𝑖 (s−𝑗 , 0𝑗 ))) (using 𝛽𝑖, 𝑗 = 𝛾𝑖, 𝑗 · 𝛾 𝑗,𝑖/𝑛)

≤ 1

𝑛

𝑛∑︁
𝑖=1

∑︁
𝑗≠𝑖

𝛾𝑖, 𝑗 · (ln(𝑣𝑖 (s)) − ln(𝑣𝑖 (s−𝑗 , 0𝑗 ))) (using that 𝛾 𝑗,𝑖 ≤ 1)

≤ 1

𝑛

𝑛∑︁
𝑖=1

∑︁
𝑗≠𝑖

(1 − 𝑣𝑖 (s−𝑗 , 0𝑗 )/𝑣𝑖 (s)) . (replacing 𝛾𝑖, 𝑗 with its expression)

Overall, by adding together 𝐴 and 𝐵 we obtained that

𝑛∑︁
𝑖=1

𝑦𝑖 ≤ 1 + 3

𝑛

𝑛∑︁
𝑖=1

∑︁
𝑗≠𝑖

(1 − 𝑣𝑖 (s−𝑗 , 0𝑗 )/𝑣𝑖 (s)) .
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Using Lemma 2.1, this last expression is upper-bounded by 4. Recalling that, by Lemma 3.1, 𝑦𝑖 is the

pre-normalized share, and that 𝑥𝑖 is set to 𝑦𝑖/4, this implies that

∑𝑛
𝑖=1

𝑥𝑖 ≤ 1, proving feasibility. □

4 Optimal Mechanism for Matroid Feasibility Constraints and 𝑑-Critical Valuations
In this section, we devise a mechanism for 𝑑-critical valuations within settings where the feasible

sets of bidders to be served form a matroid. We show that our mechanism obtains a (𝑑 + 1)-
approximation to the optimal welfare truthfully. This bound is optimal even for single-item settings.

The main result of this section follows.

Theorem 4.1. For every setting with bidders with 𝑑-critical valuations, where the feasible sets of
bidders form a matroid, Mechanism CP is an EPIC-IR mechanism that gives a (𝑑 + 1)-approximation
to the social welfare.

Our mechanism first finds a set of potential candidates C, comprising the only bidders eligible

for allocation. To determine whether bidder 𝑖 is a candidate, the following process takes place (for

each bidder 𝑖 separately): the mechanism considers bidder 𝑖’s real value alongside the low estimates

of all other bidders 𝑗 ≠ 𝑖 . Bidders are sorted in non-increasing order of these values (breaking ties

in favor of low index), and are added greedily to a set 𝐼𝑖 provided an independent set is maintained.

Bidder 𝑖 belongs to the set of candidates C if 𝑖 belongs to 𝐼𝑖 .

We first show that every bidder that belongs to the optimal solution (i.e., the welfare-maximizing

solution based on the real values) also belongs to C. Therefore, to establish a (𝑑 + 1)-approximation,

it suffices to show that every bidder in C is served with probability 1/(𝑑 + 1). The set C, however,
need not be an independent set in the matroid. We then show that the condition of Theorem 2.2

holds when restricting attention to the bidders in C, for 𝑡 = 𝑑 +1, and thus C can be partitioned into

at most 𝑑 + 1 independent sets. It follows that, by choosing each one of these ≤ 𝑑 + 1 independent

sets with probability 1/(𝑑 + 1), every bidder in C, and thus also every bidder in the optimal solution,

is served with probability 1/(1 + 𝑑), yielding the desired approximation guarantee (which is tight

according to Proposition 2.2).

Mechanism CP: Candidate Partitioning (CP) Mechanism.

Function greedy(weight function𝑤 : [𝑛] → R+) :

(1) Initialize 𝐼 = ∅.
(2) Sort bidders 𝑖 by decreasing weights𝑤 (𝑖), and let 𝜎 be the resulting ordering, breaking ties in favor of

lower-index bidders.

(3) Go over bidders according to ordering 𝜎 , for a current bidder 𝑗 , add 𝑗 to 𝐼 if 𝐼 ∪ { 𝑗} ∈ I.
(4) Return the set 𝐼 .

Mechanism CP:

(1) Elicit signals ŝ and valuation functions 𝑣 . Initialize the set of candidates C = ∅.
(2) For each bidder 𝑖:

Define the function𝑤𝑖 where𝑤𝑖 (𝑖) = 𝑣𝑖 (ŝ) and𝑤𝑖 ( 𝑗) = 𝑣 𝑗 (ŝ−𝑖 , 0𝑖 ) for 𝑗 ≠ 𝑖 .

Define 𝐼𝑖 ← greedy(𝑤𝑖 ), then add 𝑖 to C if 𝑖 ∈ 𝐼𝑖 .
(3) Find a partitioning of C using at most 𝑑 + 1 independent sets IC (which exists by Lemma 4.3).

(4) Serve each set 𝐼 ∈ IC with probability 1/(𝑑 + 1).
(5) Charge payments using Eq (3).

Towards proving Theorem 4.1, we first show that the mechanism is truthful.

Lemma 4.1. Mechanism CP is EPIC-IR.

460



EC ’24, July 8–11, 2024, New Haven, CT, USA Alon Eden, Michal Feldman, Simon Mauras, and Divyarthi Mohan

Proof. By Proposition 2.1, it suffices to show that the allocation depends only on ŝ−𝑖 , v̂−𝑖 , and
𝑣𝑖 (ŝ), and is monotone non-decreasing in 𝑣𝑖 (ŝ). We first observe that if 𝑖 is a candidate, then 𝑖 is

allocated with probability 1/(𝑑 + 1), regardless of the composition of C. To determine whether 𝑖

is a candidate, we consider𝑤𝑖 (𝑖)’s relative position compared to every other𝑤𝑖 ( 𝑗), where these
values depend only on ŝ−𝑖 , v̂−𝑖 , and 𝑣𝑖 (ŝ). An increase in 𝑣𝑖 (ŝ) boosts 𝑤𝑖 (𝑖) without affecting all

other𝑤𝑖 ( 𝑗) values. Thus, by Lemma 2.2, if 𝑖 is added to 𝐼𝑖 for some 𝑣𝑖 (ŝ), it is also added when 𝑣𝑖 (ŝ)
is increased, establishing monotonicity. This implies the EPIC-IR property of the mechanism. □

Since the mechanism is EPIC-IR, hereafter, we use v and s instead of v̂ and ŝ.
Let 𝜎 be the ordering of the bidders according to their actual values 𝑣𝑖 (s), with ties broken

in favor of lower-index bidders. Let 𝐼★ be the independent set returned by the greedy algorithm

described above, iterating over bidders in the order of 𝜎 (and adding bidder 𝑖 into 𝐼★ if 𝐼★∪𝑖 ∈ I). By
Theorem 2.1, 𝐼★ is a welfare-maximizing feasible set of bidders, i.e.,

∑
𝑖∈𝐼★ 𝑣𝑖 (s) = max𝐼 ∈I

∑
𝑖∈𝐼 𝑣𝑖 (s).

The following lemma shows that all bidders in 𝐼★ will be candidates.

Lemma 4.2. Let 𝐼★ be the welfare-maximizing set computed by the greedy algorithm (iterating over
bidders according to the order 𝜎). It holds that 𝐼★ ⊆ C.

Proof. Consider a bidder 𝑖 ∈ 𝐼★. Consider the weight functions𝑤 ( 𝑗) = 𝑣 𝑗 (s) for all 𝑗 , and �̂� = 𝑤𝑖

as defined in Mechanism CP. Notice that𝑤 (𝑖) = 𝑣𝑖 (s) = �̂� (𝑖) and that𝑤 ( 𝑗) = 𝑣 𝑗 (s) ≥ 𝑣 𝑗 (s−𝑖 , 0𝑖 ) =
�̂� ( 𝑗) for all 𝑗 ≠ 𝑖 . Notice also that 𝐼★ and 𝐼𝑖 are the independent sets resulting from the greedy

algorithm using weight functions 𝑤 and �̂� , respectively, breaking ties in favor of lower-index

bidders. Therefore, by 𝐿𝑒𝑚𝑚𝑎 2.2, 𝑖 ∈ 𝐼𝑖 , which implies that 𝑖 ∈ C. □

We next show that there exists a partitioning of C into at most 𝑑 + 1 independent sets.

Lemma 4.3. There exists a set of 𝑘 ≤ 𝑑 + 1 disjoint independent sets IC = {𝐼1, . . . , 𝐼𝑘 } such that
𝐼1 ⊎ · · · ⊎ 𝐼𝑘 = C.

Proof. We show that Eq. (6) holds for C with 𝑡 = 𝑑 + 1, namely, that |𝑆 | ≤ (𝑑 + 1) · 𝑟𝑎𝑛𝑘 (𝑆)
for every 𝑆 ⊆ C. We first show that Eq. (6) holds for 𝑆 = C. Since 𝐼★ ⊆ C (by Lemma 4.2),

𝑟𝑎𝑛𝑘 (C) = 𝑟𝑎𝑛𝑘 (𝑀) = |𝐼★ |. Thus, to show that Eq. (6) holds, it suffices to show that |C| ≤ (𝑑+1)·|𝐼★ |.
For 𝑖 ∉ 𝐼★ to be a candidate, there must be at least one 𝑗 ∈ 𝐼★ such that 𝑣 𝑗 (s−𝑗 , 0𝑗 ) < 𝑣 𝑗 (s). Otherwise,
by Lemma 2.2, all bidders in 𝐼★ will be added to 𝐼𝑖 when iterating over the bidders in order 𝜎𝑖 , and

since 𝑟𝑎𝑛𝑘 (𝐼★) = 𝑟𝑎𝑛𝑘 (𝑀), bidder 𝑖 would not be selected.

For 𝑖 ∈ 𝐼★, let 𝐷𝑖 be the set of bidders for which 𝑣 𝑗 (s−𝑗 , 0𝑗 ) < 𝑣 𝑗 (s). Since 𝑣𝑖 is 𝑑-critical, |𝐷𝑖 | ≤ 𝑑 .

By the above argument, C \ 𝐼★ ⊆ ∪𝑖∈𝐼★𝐷𝑖 . Therefore,

|C| = |C \ 𝐼★ | + |𝐼★ | ≤ | ∪𝑖∈𝐼★ 𝐷𝑖 | + |𝐼★ | ≤ 𝑑 · |𝐼★ | + |𝐼★ | = (𝑑 + 1) · |𝐼★ |,

where the second inequality follows from the union bound. Therefore, Eq. (6) holds for the set C.
Now consider a set of candidates 𝑆 ⊆ C. Since the rank function is submodular with marginal

contribution at most 1,

𝑟𝑎𝑛𝑘 (C) − 𝑟𝑎𝑛𝑘 (𝑆) ≤ |C| − |𝑆 |.
Therefore,

|𝑆 |
𝑟𝑎𝑛𝑘 (𝑆) ≤

|𝑆 | + (|C| − |𝑆 |)
𝑟𝑎𝑛𝑘 (𝑆) + (𝑟𝑎𝑛𝑘 (C) − 𝑟𝑎𝑛𝑘 (𝑆)) =

|C|
𝑟𝑎𝑛𝑘 (C) ≤ 𝑑 + 1,

satisfying Eq. (6). It follows by Theorem 2.2 that one can find a partition of C into at most 𝑑 + 1

independent sets, as desired. □

We are now ready to prove the main theorem of this section.
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Proof of Theorem 4.1. By Lemma 4.1, the mechanism is EPIC-IR. By Lemma 4.3, the mechanism

is well-defined, and always outputs a feasible set of bidders. It remains to show that the mechanism

gives a (𝑑 + 1)-approximation. Consider the welfare-maximizing set of bidders, 𝐼★, which is the

output of the greedy algorithm when iterating over the bidders according to their real values. By

Lemma 4.2, 𝐼★ ⊆ C. Let IC be a set of 𝑘 ≤ 𝑑 + 1 independent sets forming a partition of C (which

exists by Lemma 4.3). For every 𝑖 ∈ 𝐼★, let IC (𝑖) denote the set in IC containing 𝑖 . We have that the

expected welfare is

𝑛∑︁
𝑖=1

𝑣𝑖 (s) · Pr[𝑖 is allocated] ≥
∑︁
𝑖∈𝐼★

𝑣𝑖 (s) · Pr[𝑖 is allocated]

=
∑︁
𝑖∈𝐼★

𝑣𝑖 (s) · Pr[IC (𝑖) is served]

=
1

𝑑 + 1

∑︁
𝑖∈𝐼★

𝑣𝑖 (s)

=
𝑂𝑃𝑇

𝑑 + 1

,

as desired. This concludes the proof of the theorem. □

Remark.We note that the CP Mechanism can be applied to non-monotone critical valuations,

by changing the definition of 𝑖’s low estimate for 𝑗 ’s value to be inf𝑜𝑖 ∈𝑆𝑖 𝑣 𝑗 (𝑜𝑖 , s−𝑖 ).

4.1 Bidders with Heterogeneous and Unknown 𝑑

Similarly to Eden et al. [2022, 2023], we can extend the results to the case where each bidder 𝑖’s

valuation is 𝑑𝑖 -critical with a different 𝑑𝑖 and 𝑑𝑖 is private information. We adjust the mechanism as

follows.

In addition to answering value queries, each bidder 𝑖 also reports
ˆ𝑑𝑖 . For every 𝑖 , we compute

¯𝑑𝑖 = max𝑗≠𝑖
ˆ𝑑 𝑗 . Note that (𝑖) ¯𝑑𝑖 only depends on the reports of bidders 𝑗 ≠ 𝑖; and (𝑖𝑖) assuming

bidders bid truthfully, all bidders face the same
¯𝑑 , except (potentially) one bidder — the bidder 𝑖

with the maximum overall 𝑑𝑖 value, call this bidder 𝑖 . We then find an allocation rule such that if a

bidder 𝑖 ≠ 𝑖 becomes a candidate, they are served with probability 1/2( ¯𝑑 + 1), and if 𝑖 is a candidate,
𝑖 is served with probability 1/2( ¯𝑑𝑖 + 1). This ensures truthfulness as the probability a bidder is

served depends on the reports of other bidders, and is monotone in 𝑣 (ŝ) (since by Lemma 2.2, being

a candidate is monotone in 𝑣 (ŝ)).
It remains to present an allocation rule that satisfies the above conditions. This is done as follows.

We flip a fair coin. If it turns head, then if 𝑖 is a candidate, we serve 𝑖 with probability
1

¯𝑑𝑖+1 . If it

turns tails, then if 𝑖 ∈ C, we remove 𝑖 from C. Since all bidders are ¯𝑑-critical, we can apply the same

argument as in Lemma 4.3, and partition C into at most
¯𝑑 + 1 independent sets, choosing each

one with probability
1

¯𝑑+1 . To show that this mechanism gives 2( ¯𝑑 + 1)-approximation, note that by

Lemma 4.2, every bidder in 𝐼★ is a candidate, and is served with probability at least 1/2( ¯𝑑 + 1).
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