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We study best-of-both-worlds guarantees for the fair division of indivisible items among agents with subaddi-

tive valuations. Our main result establishes the existence of a random allocation that is simultaneously ex-ante

1

2
-envy-free, ex-post

1

2
-EFX and ex-post EF1, for every instance with subadditive valuations. We achieve this

result by a novel polynomial-time algorithm that randomizes the well-established envy cycles procedure

in a way that provides ex-ante fairness. Notably, this is the first best-of-both-worlds fairness guarantee for

subadditive valuations, even when considering only EF1 without EFX.
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1 Introduction
In a fair division problem, the goal is to allocate a set 𝑀 of𝑚 indivisible items among 𝑛 agents

fairly. Every agent has a valuation function 𝑣𝑖 : 2
𝑀 → R≥0, mapping every bundle of items 𝑆 ⊆ 𝑀

to a (non-negative) real number 𝑣𝑖 (𝑆). An allocation 𝑋 = (𝑋1, . . . , 𝑋𝑛) is a partition of the items

among the agents, where 𝑋𝑖 is the bundle allocated to agent 𝑖 .

The problem of allocating resources fairly dates back to Aristotle [Chroust, 1942]. Many mathe-

matical notions of fairness have been considered in the literature (both for divisible and indivisible

items). A particularly natural fairness notion that generated significant interest in the literature is

envy-freeness (EF), requiring that every agent prefers her own bundle to any other agent’s bundle

[Foley, 1967, Varian, 1974]. That is, an allocation 𝑋 is EF if for every two agents 𝑖 and 𝑗 , it holds that

𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣𝑖 (𝑋 𝑗 ). The notion of envy-freeness extends to random allocations in two ways. We say

that a random allocation is EF ex-ante (before the randomization is realized) if every agent prefers
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her own bundle to any other agent’s bundle in expectation. We say that a random allocation is EF

ex-post (after the randomization is realized) if every deterministic allocation in its support is EF.

Achieving ex-ante EF is quite easy. For example, allocating all items to a single agent chosen

uniformly at random is trivially ex-ante EF. However, an ex-ante EF allocation may still be arbitrarily

unfair ex-post. Indeed, in the example above, one agent receives all the items, and will surely be

envied by all other agents. On the other hand, ex-post EF is too strong of a requirement, as even

the simplest setting of a single item desired by two agents does not admit any EF allocation.

Best-of-both-worlds fairness. Recently, Aziz [2019] posed, as an interesting new research

direction, the question of finding random allocations that simultaneously achieve desirable ex-ante

and ex-post properties. Shortly thereafter, Freeman et al. [2020] studied this problem in the fair

division domain, with the goal of obtaining a random allocation that is simultaneously ex-ante EF

and ex-post “relaxed EF”. The approach of constructing random allocations with strong ex-ante

and ex-post fairness guarantees has since been known as the “best-of-both-worlds” approach.

In their work, Freeman et al. [2020] focus on the notion of EF1 — envy-freeness up to one

item [Budish, 2011, Lipton et al., 2004] — which requires that the envy of every agent 𝑖 toward

another agent 𝑗 can be removed by the elimination of at most one item from agent 𝑗 ’s bundle, i.e.,

there exists an item 𝑔 ∈ 𝑋 𝑗 such that 𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣𝑖 (𝑋 𝑗 \ {𝑔}). Unlike EF, an EF1 allocation always

exists [Budish, 2011]. Moreover, Freeman et al. [2020] and Aziz [2020] showed that any instance

with additive valuations — where an agent’s value for a bundle is the sum of her values for the

individual items — admits a random allocation that is simultaneously ex-ante EF and ex-post EF1.

Namely, an envy-free distribution over deterministic allocations such that each satisfies EF1.

While this is a promising result, it is limited in two ways. First, it is restricted to additive

valuations, while in most practical settings, agent valuations are non-additive. For example, items

may exhibit substitutability, where an agent might like to get one of two given items but have no

additional value for having both of them. Second, this result holds with respect to EF1, but does

not hold with respect to another important (and stronger) relaxation of envy-freeness, known as

EFX — envy-freeness up to any item [Caragiannis et al., 2016] — which requires that the envy of

every agent 𝑖 toward another agent 𝑗 can be removed by the elimination of any item from agent 𝑗 ’s

bundle.

To demonstrate why EFX may be more desirable than EF1, consider the following scenario.

Suppose there are three items, 𝑎, 𝑏, 𝑐 , and two agents with identical additive values of 100, 50, 50 for

items 𝑎, 𝑏, 𝑐 , respectively. Any reasonable fairness notion in this case would allocate item 𝑎 to one

agent and items 𝑏, 𝑐 to the other agent, resulting in a value of 100 to each agent. This allocation is

the only EFX allocation for this instance. However, one can easily verify that allocating items 𝑎, 𝑏

to agent 1 (for a value of 150) and item 𝑐 to agent 2 (for a value of 50) is EF1: removing item 𝑎 from

agent 1’s bundle removes agent 2’s envy. Indeed, extending best-of-both-worlds results to ex-post

EFX appeared as one of the open problems in Freeman et al. [2020].

While many attempts have been made towards improving the results of Freeman et al. [2020]

and Aziz [2020], none of the subsequent works specifically resolve these issues. Instead, they either

give best-of-both-worlds results that hold only for highly structured valuation classes, such as

binary additive valuations (Aleksandrov et al. [2015], Halpern et al. [2020]), matroid rank valuations

(Babaioff et al. [2021]), and multi-demand valuations (Hoefer et al. [2023]), or study the case of

arbitrary entitlements, where they obtain only weaker ex-post guarantees (Aziz et al. [2023a],

Hoefer et al. [2023]).
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Our contribution.With the desire to go beyond additive valuations and beyond the EF1 notion,

the key question we address in this paper is whether there always exists a random allocation that

is simultaneously ex-ante EF and ex-post EFX, for any instance with subadditive valuations.

A valuation function is subadditive if 𝑣 (𝑆) + 𝑣 (𝑇 ) ≥ 𝑣 (𝑆 ∪ 𝑇 ) for every two bundles of items

𝑆 and 𝑇 . The class of subadditive valuations encompasses important subclasses, such as additive

valuations and submodular valuations (namely, valuations exhibiting decreasing marginal values).

Let us consider first the simplest scenario of two agents with additive valuations. While not

immediate, we show that this scenario always admits a random allocation that is simultaneously

ex-ante EF and ex-post EFX (see Proposition A.3).

But this positive result breaks as soon as we go either beyond two agents or beyond additive

valuations. Going beyond two agents, even for additive valuations, the mere existence of ex-post

EFX, without any additional requirement, is an intriguing open problem. In fact, it is widely

considered to be the biggest open problem in fair division [Procaccia, 2020]
1
. Similarly, going

beyond additive valuations, we show that even with only two agents and submodular valuations,

there are instances that do not admit any allocation that is simultaneously ex-ante EF and ex-post

EFX. This is demonstrated in Proposition A.8.

As is standard in the literature, to address this problem we turn to the framework of approximate
fairness. A deterministic allocation is 𝛽-EFX if every agent prefers her own bundle to a 𝛽 fraction of

any other agent’s bundle after eliminating any single item from it. A random allocation is ex-post

𝛽-EFX if every allocation in its support is 𝛽-EFX. Similarly, a random allocation is ex-ante 𝛼-EF if

every agent prefers her own bundle to an 𝛼 fraction of every other agent’s bundle, in expectation.

The approach taken by Freeman et al. [2020] and Aziz [2020] gives no ex-post 𝛽-EFX guarantees

for any 𝛽 > 0 (see Appendix C). Therefore, the question that drives us in this work is the following:

Main Question: Are there constants 𝛼 and 𝛽 such that an allocation that is simultaneously ex-ante

𝛼-EF and ex-post 𝛽-EFX is guaranteed to exist for every profile of subadditive valuations?

Our main result is an affirmative answer to this question:

Main Result (Theorem 3.1): For every instance with subadditive valuations, Algorithm 1 outputs

a random allocation that is ex-ante
1

2
-EF, ex-post

1

2
-EFX, and ex-post EF1 in polynomial time.

This result constitutes a significant advancement in the best-of-both-worlds fairness literature

in multiple ways:

(1) We are the first to provide best-of-both-worlds results for subadditive valuations – our work

even extends the previous work on (EF, EF1) from additive all the way to subadditive, and

gains ex-post
1

2
-EFX in the process, while losing only a factor of 2 in the ex-ante envy.

(2) No better approximation of EFX than
1

2
-EFX is known to exist [Plaut and Roughgarden,

2018], even for the smaller class of submodular valuations, and even without any ex-ante EF

requirements. We match this guarantee for the broader class of subadditive valuations while

providing ex-ante guarantees in addition.

(3) To the best of our knowledge, we are the first to consider randomized envy cycles in a way

that provides ex-ante EF guarantees. Envy cycles is one of the most widely-used procedures

for discrete fair division. Indeed, the envy cycles algorithm was one of the earliest works

in the fair division of indivisible items [Lipton et al., 2004], and it has since been used to

1
EFX is only known to exist for some special cases, including three additive agents [Chaudhury et al., 2020a] or identical

valuations [Plaut and Roughgarden, 2018].
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achieve many fairness results, including EF1 and EFX guarantees [Lipton et al., 2004, Plaut

and Roughgarden, 2018]; see Section 1.2 for more details.

We complement our positive result with the following upper bounds (holding even for 2 agents):

Impossibility Result (Proposition A.7): For every 0.618 ≈ 𝜑 −1 < 𝛽 ≤ 1, there exists an instance

with two subadditive valuations that admits no randomized allocation that is simultaneously ex-ante

𝛼-EF and ex-post 𝛽-EFX, for any 𝛼 >
𝛽+1

𝛽2+2𝛽 .

In particular, our impossibility result implies the following upper bounds:

• There is no random allocation that is ex-ante 𝛼-EF and ex-post EFX for 𝛼 > 2

3
.

• There is no random allocation that is ex-ante EF and ex-post 𝛽-EFX for 𝛽 > 𝜑 − 1.
In Appendix A we show that the first of these bounds is tight for two agents, namely, we devise

an algorithm that gives an ex-ante
2

3
-EF and ex-post EFX allocation for every instance with two

subadditive valuations (Proposition A.6). In addition, for every such instance, we devise an algorithm

that gives an ex-ante EF and ex-post
1

2
-EFX allocation (Proposition A.5).

Our results are summarized in Figure 1.

Two agents

0 2/3 1

0

1/2
𝜑 − 1

1

Prop. A.7

Prop. A.6

Prop. A.5

?

𝛼-EF

𝛽
-
E
F
X

𝑛 agents

0 1/2 2/3 1

0

1/2
𝜑 − 1

1

?

Thm. 3.1

Prop. A.7

𝛼-EF

𝛽
-
E
F
X

Fig. 1. Trade-offs between ex-ante 𝛼-EF and ex-post 𝛽-EFX, for two (left) and 𝑛 (right) subadditive agents.
The 𝑥-axis (resp., 𝑦-axis) represents ex-ante 𝛼-EF (resp., ex-post 𝛽-EFX) guarantees. Dotted (resp., hatched)
areas represent our existence (resp., impossibility) results.

Discussion. While our main theorem is the first best-of-both-worlds fairness result for subaddi-

tive valuations, there are several important questions that this work raises. In Section 4, we discuss

a collection of future directions for research in this area.

1.1 Our Techniques
In this section, we present an overview of the construction and the analysis of our main algorithm.

While most previous works on best-of-both-worlds fairness (e.g. [Aziz, 2020, Aziz et al., 2023a,

Freeman et al., 2020, Hoefer et al., 2023]) first select a suitable fractional allocation and then

construct a distribution over integral allocations that implements it, our new method approaches

this problem from the opposite direction. Namely, we first select a deterministic procedure with

the desired ex-post properties (in this case, a simple variation of the envy cycles procedure [Lipton

et al., 2004]), and then introduce a technique to randomize this procedure to obtain the ex-ante

guarantees.
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The standard deterministic envy cycles procedure involves two phases. In the first phase, the

algorithm assigns one item to each agent using a matching algorithm that satisfies a natural

property called weak separation (Definition 3.2), which states that every agent prefers her item

to any unassigned item. In the second phase, the algorithm allocates the remaining items. This is

done by either (1) allocating one of the remaining items to an unenvied agent, or (2) shifting the
bundles along an envy cycle, which is a cycle where each agent prefers the next agent’s bundle to

her own. This procedure is explained in detail in Section 3.1.

Crucially, there are many ways to implement the deterministic envy cycles procedure that yield

the same ex-post guarantees. For instance, in the second phase, one can arbitrarily decide which

unenvied agent to select for operation (1) or which envy cycle to choose for operation (2). However,

for any deterministic choices for these operations, this algorithm gives no ex-ante EF guarantees.

Consequently, achieving the desired ex-ante fairness requires randomization of these choices. In

what follows, we describe the randomization of each phase of the algorithm separately.

Randomizing the First Phase. One possible approach to obtain ex-ante fairness guarantees is

to apply some randomness to a given deterministic algorithm. For example, a common algorithm

for the first phase is serial dictatorship, where agents are sorted according to some order, and

every agent, upon her turn, chooses her most preferred item among the remaining ones. One can

easily verify that deterministic serial dictatorship gives no ex-ante fairness guarantees. A natural

approach to obtain some ex-ante fairness guarantees is to randomize the order in which agents

choose items. This is called random serial dictatorship (RSD). Unfortunately, choosing a uniformly

random order over the agents does not give ex-ante EF [Bogomolnaia and Moulin, 2001]. In fact,

we improve the upper bound on the ex-ante fairness of RSD, by showing (Proposition D.2) that

using a uniformly random order does not give better than ex-ante
1√
2

-envy-freeness.

Therefore, to construct the matching in the first phase, we use the probabilistic serial procedure
of Bogomolnaia and Moulin [2001]. Recently, Freeman et al. [2020] and Aziz [2020] utilized this

procedure to achieve ex-ante EF together with ex-post EF1 for additive valuations. They apply the

probabilistic serial procedure for the entire allocation process. Unfortunately, this method does not

extend to subadditive valuations, and even for additive valuations, it does not guarantee 𝛽-EFX for

any 𝛽 > 0 (see Appendix C). Instead, we apply the probabilistic serial method for a single time unit,

followed by randomized envy cycles. See Section 3.2 for more details.

Randomizing the Second Phase. It may seem reasonable to hope that selecting the envy

cycles arbitrarily during the second phase of the algorithm results in a fair outcome. However,

even though an envy cycle elimination step does not modify any of the bundles, it might shuffle

them among the agents in a way that benefits some agents more than others. This is illustrated in

Example 3.11. A natural second attempt would be to choose the envy cycle uniformly at random.

However, one can show that this too does not provide any ex-ante EF guarantees.

We propose a novel way to sample the envy cycles in a way that provides a probability distribution

that gives ex-ante EF guarantees. To construct the desired distribution, we present an algorithm

inspired by the decomposition of irreducible Markov chains into circuit processes by MacQueen

[1981]. This algorithm applies only to strongly connected graphs, and to address this challenge, we

first select a strongly connected component of the envy graph that has no incoming edges (which

always exists), and run the algorithm on the induced subgraph. Details regarding the randomization

of the second phase are given in Section 3.3.

Following the explanation of the main algorithm’s design, we now focus on the components of

the analysis of its ex-ante fairness guarantees. We first identify two key properties of the algorithm.
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First, the random allocation obtained in the first phase satisfies a property that we term strong
separation (see Lemma 3.10). This property states that every agent prefers her bundle in any

allocation in the support of the random allocation to any item that may be unallocated in any

(possibly different) allocation in the support. Second, we show that after any step of the algorithm,

the value of every agent 𝑖 for her own bundle stochastically dominates the value of 𝑖 for (a specific
part of) any other agent’s bundle (see Lemma 3.15).

To establish our main result, we first use the stochastic dominance property (Lemma 3.15) to

show that two copies of 𝑋𝑖 can “cover” a specific subset of 𝑋 𝑗 , in a way that is captured by the

definition of stochastic coverage that we introduce in Section 3.4. The proof is by induction on the

execution tree, i.e., the tree representing all possible random choices that the algorithm makes on a

given input. Moreover, using strong separation (Lemma 3.10), we extend this property to show that

the two copies of 𝑋𝑖 can also cover the remaining part of 𝑋 𝑗 , from which our main result follows

easily. The full analysis of the main algorithm is given in Section 3.4.

1.2 Related Work
While the fair division problem has been central to human society since antiquity, its formal study

began with the work of Banach, Knaster and Steinhaus [Steinhaus, 1948], who analyzed the cake-
cutting problem: how can a heterogeneous cake be divided fairly amongst agents? With 𝑛 = 2 agents,

the folklore cut-and-choose method results in a proportional allocation of the cake, i.e., one in which

each agent is allocated a piece of value at least
1

𝑛
of their value (

1

2
in the case of 𝑛 = 2) for the whole

cake. This result was extended to 𝑛 > 2 agents with the last diminisher procedure [Steinhaus, 1948].
Subsequent decades witnessed the emergence of envy-freeness (Foley [1967], Varian [1974]) as the

main criterion for fairness in economics. An allocation is envy-free if each agent prefers her own

bundle to the bundle of any other agent. For the settings with divisible items, which generalize the

cake-cutting problem, envy-free allocations are known to exist under mild assumptions (Stromquist

[1980]), and many algorithms have been devised for their computation [Aziz and Mackenzie, 2016,

Brams and Taylor, 1995].

The Envy Cycles Procedure. For the complementary setting with indivisible items, both

proportionality and envy-freeness are impossible to achieve: consider the simple instance with two

agents and one item, where any allocation leaves one agent envying the other. A breakthrough

development in the area occurred almost two decades ago, when Lipton et al. [2004] introduced

the now-ubiquitous envy cycles procedure for the fair division of indivisible items. This led to the

development of relaxed fairness notions such as the EF1 guarantee, formally defined by Budish

[2011]. The envy cycles procedure computes, in polynomial time, an EF1 allocation even for the

very general class of monotone valuations. This work subsequently spawned a large body of

research in the fair division of indivisible items, and the envy cycles procedure (along with its

variations) has since been used in a wide variety of studies in fair division, including in algorithms

for finding approximate MMS allocations [Barman and Krishnamurthy, 2020], EF1 allocations for

chore division [Bhaskar et al., 2021], approximate EFX allocations [Plaut and Roughgarden, 2018],

and partial EFX allocations (“EFX with charity”) [Chaudhury et al., 2020b], among several others.

The EFX and MMS Fairness Notions. The EFX guarantee was introduced by Caragiannis et al.

[2016]. Despite its apparent similarity to EF1, the existence of EFX allocations remains a notoriously

hard open problem even for additive agents. Complete EFX allocations are known to exist for

instances with at most three additive agents (Chaudhury et al. [2020a]), and in the case where the

agents have identical valuation functions (Plaut and Roughgarden [2018]). Beyond these results,

only improvements for special cases or for various relaxations have been found [Akrami et al., 2022,
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Ghosal et al., 2023, Mahara, 2021, Plaut and Roughgarden, 2018]. Because of the limited progress

on the existence of complete EFX allocations, both partial- and approximate-EFX allocations have

also been studied. Numerous works have studied the existence of partial allocations that provide

some EFX guarantee while allocating almost all of the items [Akrami et al., 2022, Berger et al., 2022,

Chaudhury et al., 2021, 2020b, Feldman et al., 2024]. For approximately-EFX fair division, Plaut and

Roughgarden [2018] showed that a
1

2
-EFX allocation exists even for subadditive valuations. For

additive valuations, Amanatidis et al. [2020] improved this approximation factor to 𝜑 − 1 ≈ 0.618.

Another related fairness notion for the indivisible setting, defined by Budish [2011], is the

maximin share (MMS) guarantee. It is known that allocations that give each agent its MMS value

do not exist even for additive agents (Feige et al. [2021], Procaccia and Wang [2014]), but there

are allocations that give each agent a constant factor of the MMS value, and these allocations

can be efficiently computed even for submodular and XOS valuations (see, e.g., [Barman and

Krishnamurthy, 2020, Ghodsi et al., 2018]).

Best-of-Both-Worlds Fairness. A recent line of research, titled best-of-both-worlds fairness,

aims to achieve envy-freeness for indivisible items via randomization. The leading question is

whether it is possible to simultaneously achieve some ex-ante fairness guarantee while ensuring

ex-post guarantees for every realized outcome of the random process. Aleksandrov et al. [2015] first

studied this problem in a food bank setting, where they gave an algorithm with ex-ante and ex-post

fairness guarantees for the special case of additive valuations with binary (0/1) marginals. For

additive valuations, Freeman et al. [2020] gave a randomized polynomial-time algorithm that outputs

an EF1 allocation, while being envy-free ex-ante. Ensuing work by Aziz [2020] showed that there

exists a similar randomized algorithm that additionally implements the well-known Probabilistic
Serial fractional outcome described by Bogomolnaia and Moulin [2001]. This randomized algorithm

also preserves a weak notion of efficiency. Babaioff et al. [2022] also study the case of additive

valuations and find a distribution over ex-post proportional up to one item and
1

2
-MMS allocations

that is ex-ante proportional, i.e., the expected value of each agent’s bundle is at least a
1

𝑛
-fraction

of her value for the set of all items.

Best-of-both-worlds results have also been analyzed for other settings, including the case where

the agents have binary marginals, and the case of additive valuations with arbitrary entitlements.
For the special case of additive valuations with binary marginals, the algorithm of Aziz [2020]

improves upon the guarantees of Aleksandrov et al. [2015] and is group-strategyproof, ex-ante

fractionally-PO and envy-free, and ex-post fractionally PO and EF1. In a similar vein, for additive

valuations with binary marginals, Halpern et al. [2020] independently showed that there is a

distribution over ex-post Nash-welfare-maximizing allocations that also ex-ante maximizes the

fractional Nash welfare, implying the same fairness guarantees as Aziz [2020] for this setting. For

matroid rank valuations, Babaioff et al. [2021] present a randomized truthful mechanism that is

ex-ante envy-free and ex-post Lorenz dominating (and thus ex-post Nash-welfare-maximizing

and EFX for this specific class). For the case of agents with arbitrary entitlements, both Hoefer

et al. [2023] and Aziz et al. [2023a] show that weighted ex-ante envy-freeness along with ex-post

weighted envy-freeness up to 1 item is impossible to achieve. Both Hoefer et al. [2023] and Aziz

et al. [2023a] then give polynomial time algorithms that instead achieve some weaker fairness

properties. Additionally, Hoefer et al. [2023] show that ex-ante EF and ex-post EF1 can be achieved

for multi-demand valuations. Finally, Akrami et al. [2023] study best-of-both-worlds fairness for

the MMS guarantee for XOS valuations.

Beyond item allocation, best-of-both-worlds approaches have been utilized in other areas, such

as committee voting [Aziz et al., 2023b] and participatory budgeting [Aziz et al., 2024].
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2 Preliminaries
An instance of the resource allocation problem consists of a set [𝑛] = {1, . . . , 𝑛} of 𝑛 agents,

a set [𝑚] = {1, . . . ,𝑚} of 𝑚 indivisible items, and a valuation profile (𝑣𝑖 )𝑖∈[𝑛] . The valuation

function 𝑣𝑖 : 2
[𝑚] → R≥0 of agent 𝑖 gives a non-negative real value 𝑣𝑖 (𝑆) for every bundle of items

𝑆 ⊆ [𝑚]. We assume that all valuation functions are monotone, i.e., 𝑣𝑖 satisfies 𝑣𝑖 (𝑆) ≤ 𝑣𝑖 (𝑇 ) for
any 𝑆 ⊆ 𝑇 ⊆ [𝑚] and every agent 𝑖 . The valuation functions we consider in this work are either

• additive, i.e., it holds that 𝑣𝑖 (𝑆) =
∑

𝑥∈𝑆 𝑣𝑖𝑥 for some 𝑣𝑖1, . . . , 𝑣𝑖𝑚 ≥ 0, or

• subadditive, i.e., it holds that 𝑣𝑖 (𝑆 ∪𝑇 ) ≤ 𝑣𝑖 (𝑆) + 𝑣𝑖 (𝑇 ) for any two 𝑆,𝑇 ⊆ [𝑚].
We use the following standard notation for singleton sets: for any 𝑔 ∈ [𝑚] and 𝑆 ⊆ [𝑚], we write
𝑣𝑖 (𝑔) = 𝑣𝑖 ({𝑔}) and 𝑆 + 𝑔 = 𝑆 ∪ {𝑔} and 𝑆 − 𝑔 = 𝑆 \ {𝑔}.

A deterministic partial allocation 𝑋 = (𝑋1, . . . , 𝑋𝑛) of items to agents is a partition of the items

into 𝑛 bundles where all bundles are disjoint, i.e., it holds that 𝑋𝑖 ∩𝑋 𝑗 = ∅ for all 𝑖 ≠ 𝑗 . We say that

𝑋 is complete if no items are unallocated, i.e., it holds that

⋃
𝑖∈[𝑛] 𝑋𝑖 = [𝑚].

We say that a deterministic allocation 𝑋 is 𝛼-EF1 (for some 𝛼 ∈ [0, 1]) if for all agents 𝑖 and 𝑗 , it
holds that 𝑣𝑖 (𝑋𝑖 ) ≥ 𝛼 · 𝑣𝑖 (𝑋 𝑗 − 𝑔) for some item 𝑔 ∈ 𝑋 𝑗 . We say that an allocation 𝑋 is 𝛼-EFX (for

some 𝛼 ∈ [0, 1]) if it holds that 𝑣𝑖 (𝑋𝑖 ) ≥ 𝛼 · 𝑣𝑖 (𝑋 𝑗 − 𝑔) for all items 𝑔 ∈ 𝑋 𝑗 . An allocation is EF1

(resp., EFX) if it is 1-EF1 (resp., 1-EFX).

Random allocations, ex-post and ex-ante fairness. A random allocation 𝑋 = (𝑋1, . . . , 𝑋𝑛) is
a random variable 𝑋 whose every random outcome is a deterministic allocation. Here, 𝑋1, . . . , 𝑋𝑛

are the associated random variables whose every random outcome is a bundle of items. A random

allocation 𝑋 is ex-post 𝛼-EF1 (resp., 𝛼-EFX) if every random outcome of 𝑋 (that happens with

non-zero probability) is an 𝛼-EF1 (resp., 𝛼-EFX) deterministic allocation. We say that 𝑋 is ex-ante
𝛼-EF (for some 𝛼 ∈ [0, 1]) if E[𝑣𝑖 (𝑋𝑖 )] ≥ 𝛼 · E[𝑣𝑖 (𝑋 𝑗 )] for all 𝑖, 𝑗 . An allocation is EF if it is 1-EF.

Envy graph and strongly connected components. For every deterministic partial allocation

𝑋 = (𝑋1, . . . , 𝑋𝑛), we define the envy graph 𝐺𝑋 = ( [𝑛], 𝐸𝑋 ) where the set of nodes is the set of
agents [𝑛] and the set of directed edges 𝐸𝑋 = {(𝑖, 𝑗) ∈ [𝑛]2 : 𝑣𝑖 (𝑋 𝑗 ) > 𝑣𝑖 (𝑋𝑖 )} includes an edge

from agent 𝑖 to agent 𝑗 if 𝑖 envies 𝑗 , i.e., agent 𝑖 prefers agent 𝑗 ’s bundle over her own bundle.

A directed graph is strongly connected if there exists a directed path from any node to any

other node. A strongly connected component of a directed graph𝐺 is any maximal (in the sense of

inclusion) subgraph of 𝐺 that is strongly connected.

Stochastic dominance. Let 𝑋 and 𝑌 be any two non-negative real random variables. We say

that 𝑋 stochastically dominates 𝑌 , and we write 𝑋 ⪰SD 𝑌 , if it holds that P[𝑋 ≥ 𝑡] ≥ P[𝑌 ≥ 𝑡] for
every 𝑡 ≥ 0.

3 Our Main Result: Ex-Ante 1

2
-EF, Ex-Post 1

2
-EFX, Ex-Post EF1

In this section, we describe our main result: the existence of a distribution over
1

2
-EFX and EF1

allocations that is ex-ante
1

2
-EF for every instance with subadditive valuations, and a randomized

algorithm that outputs a random allocation with this distribution in polynomial time. This result is

presented in Theorem 3.1, which we restate below.

Theorem 3.1. For every instance with subadditive valuations, Algorithm 1 outputs a random
allocation that is ex-ante 1

2
-EF, ex-post 1

2
-EFX, and ex-post EF1 in polynomial time.

We may assume without loss of generality that there are more than 𝑛 items. Indeed, if there

are𝑚 ≤ 𝑛 items, then we may add 𝑛 −𝑚 dummy items with value 0 for all agents, and choose
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a random allocation that assigns one item per agent. The resulting allocation is EFX (since each

agent is assigned at most one item) and ex-ante EF (by symmetry).

3.1 A Deterministic Envy Cycles Procedure
In this section we describe a deterministic algorithm for constructing

1

2
-EFX and EF1 allocations

(but, with no EF guarantees) when the agents have subadditive valuations. As we will show in

the following subsections, our main algorithm is a carefully randomized implementation of this

deterministic algorithm.

The existence of
1

2
-EFX and EF1 allocations for subadditive agents was first shown by Plaut

and Roughgarden [2018]. Their proof is constructive and involves the use of an algorithm that is

based on the envy cycles procedure. We have modified the presentation of the algorithm to suit our

analysis, and we present it here as a deterministic two-phase algorithm that runs in polynomial

time, see Algorithm 2 in Appendix B.

In the first phase, the algorithm constructs a matching between the agents and the items, in

which exactly one item is assigned to each agent. The matching must satisfy the following property,

called weak separation: each agent prefers the item she receives in the matching to any of the

remaining unassigned items. The formal definition of this property was explicitly given in Feldman

et al. [2024], but was implicitly used in previous studies on EFX allocations [Amanatidis et al., 2020,

Barman et al., 2018, Chan et al., 2019].

Definition 3.2 (Weak separation). A partial allocation 𝑋 = (𝑋1, . . . , 𝑋𝑛) with the set 𝑈 = [𝑚] \⋃
𝑖∈[𝑛] 𝑋𝑖 of unallocated items satisfies weak separation if for every agent 𝑖 ∈ [𝑛] and every

unallocated item 𝑢 ∈ 𝑈 it holds that 𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣𝑖 (𝑢).

In the second phase, the algorithm performs the widely-known envy cycles procedure of Lipton

et al. [2004] to allocate the remaining unassigned items, as follows. Suppose that the algorithm has

already constructed a partial allocation 𝑋 = (𝑋1, . . . , 𝑋𝑛). Then, in the next step, if there exists an

unenvied agent 𝑗 (i.e., an agent 𝑗 such that 𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣𝑖 (𝑋 𝑗 ) for all 𝑖 ≠ 𝑗 ), then the algorithm selects

an arbitrary unallocated item 𝑔 (i.e., 𝑔 is not in the set

⋃
𝑖∈[𝑛] 𝑋𝑖 ), and assigns item 𝑔 to agent 𝑗 . If

there is no unenvied agent, the algorithm finds a directed cycle 𝐶 = (𝑢1, 𝑢2, . . . , 𝑢𝑘 ) in the envy

graph, where agent 𝑢1 envies agent 𝑢2, agent 𝑢2 envies agent 𝑢3, . . . , and agent 𝑢𝑘 envies agent 𝑢1.

Observe that such a cycle always exists; indeed, if there is no unenvied agent, every node in the

envy graph has an incoming edge. The algorithm then performs a cycle elimination step, in which

the fixed bundles are redistributed along the cycle (namely, every agent 𝑢𝑖 receives the bundle 𝑋𝑢𝑖+1 ,

where 𝑢𝑘+1 = 𝑢1).
We first show the following monotonicity lemma, whose proof is deferred to Appendix B.

Lemma 3.3. For any agent 𝑖 , the value of 𝑖 for her own bundle weakly increases at each step of the
envy cycles procedure.

Next, we show that the final allocation of this algorithm is
1

2
-EFX and EF1. This is shown by

Plaut and Roughgarden [2018] for their algorithm, but as our algorithm is presented in a slightly

different way, we provide the proof in Appendix B to ensure completeness.

Lemma 3.4 ([Plaut and Roughgarden, 2018]). The allocation returned by Algorithm 2 is 1

2
-EFX

and EF1.

We also show in Appendix B that our algorithm runs in polynomial time.

Lemma 3.5. Algorithm 2 terminates after polynomially many steps.
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3.2 A Distribution over Matchings
For the first phase of the algorithm, we follow the approach of Bogomolnaia and Moulin [2001],

who study the allocation of 𝑛 items among 𝑛 agents, where every agent receives exactly one item.

Their algorithm applies Probabilistic Serial, followed by Birkhoff-von Neumann rounding, described

below.

In Probabilistic Serial, the allocation is constructed via the simultaneous eating procedure, where
every agent 𝑖 “consumes” her favorite item, i.e., the item 𝑔 that maximizes 𝑣𝑖 (𝑔) among all available

items (with ties between multiple items of the same value broken arbitrarily), at a constant rate

of one item per one unit of time. During this process, all of the agents have the same eating rate.

After any item is fully consumed (possibly by multiple agents), each agent independently and

instantaneously switches to her next-best item (again, with ties broken arbitrarily) and continues

eating at the same constant rate.

Bogomolnaia and Moulin [2001] study the setting where 𝑛 items are allocated to 𝑛 agents, and

every agent receives exactly one item. In our case, however, the number of items 𝑚 might be

greater than the number of agents 𝑛, and we apply this procedure for exactly one time unit (i.e.,

at the point where each agent has consumed a total fractional mass of exactly one item). This is

in contrast to the generalization of Freeman et al. [2020] and Aziz [2020], who repeatedly apply

probabilistic serial until all𝑚 items are allocated. We refer the reader to Appendix C for a more

detailed explanation of Probabilistic Serial and the algorithms of Freeman et al. [2020] and Aziz

[2020].

The output of the algorithm is a fractional allocation of items to agents (see Figure 4(a)). It is

represented by a matrix 𝑍𝑖 𝑗 ∈ [0, 1] for 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚, satisfying

∑
𝑗∈[𝑚] 𝑍𝑖 𝑗 = 1 for

every agent 𝑖 ∈ [𝑛] and ∑
𝑖∈[𝑛] 𝑍𝑖 𝑗 ≤ 1 for every item 𝑗 ∈ [𝑚].

We then apply a classic theorem of Birkhoff [Birkhoff, 1946] and von Neumann [Von Neumann,

1953] (which we restate here in a form that is relevant to our algorithm) to decompose the fractional

allocation returned by the eating procedure into a distribution over integral allocations.

Theorem 3.6 (Birkhoff-von-Neumann). Let 𝑍 be the fractional allocation returned after one time
step of Probabilistic Serial. There is a strongly-polynomial-time algorithm that computes permutation
matrices𝑋 1, . . . , 𝑋𝑞 (where𝑋𝑘

𝑖 𝑗 ∈ {0, 1} for all 𝑖, 𝑗, 𝑘 , and every row and column of each𝑋𝑘 has exactly
one 1-entry) and probabilities 𝑝1, . . . , 𝑝𝑞 ∈ (0, 1] (where ∑𝑘∈[𝑞 ] 𝑝

𝑘 = 1) such that 𝑍 =
∑

𝑘∈[𝑞 ] 𝑝
𝑘𝑋𝑘 ,

i.e., the distribution ((𝑋𝑘 , 𝑝𝑘 ))𝑘∈[𝑞 ] over integral allocations is a weighted decomposition of the
fractional allocation 𝑍 .

The above theorem implies the following corollary.

Corollary 3.7. For the fractional allocation 𝑍 returned by one time step of Probabilistic Serial,
and its decomposition ((𝑋𝑘 , 𝑝𝑘 ))𝑘∈[𝑞 ] obtained in Theorem 3.6, we have

(i) for every agent 𝑖 ∈ [𝑛] and 𝑘 ∈ [𝑞], it holds that ∑𝑗∈[𝑚] 𝑋
𝑘
𝑖 𝑗 = 1, i.e., each agent is assigned

exactly one item in every integral allocation 𝑋𝑘 in the support of the decomposition.
(ii) for every item 𝑗 ∈ [𝑚] for which ∑

𝑖∈[𝑛] 𝑍𝑖 𝑗 = 0, it holds that
∑

𝑖∈[𝑛] 𝑋
𝑘
𝑖 𝑗 = 0, i.e., the item 𝑗 is

unallocated in every integral allocation 𝑋𝑘 in the support of the decomposition.
(iii) for every item 𝑗 ∈ [𝑚] for which ∑

𝑖∈[𝑛] 𝑍𝑖 𝑗 = 1, it holds that
∑

𝑖∈[𝑛] 𝑋
𝑘
𝑖 𝑗 = 1, i.e., the item 𝑗 is

allocated in every integral allocation 𝑋𝑘 in the support of the decomposition.

Sampling an integral allocation 𝑋 = (𝑋1, . . . , 𝑋𝑛) from the distribution given by Theorem 3.6 has

several advantages. First, it has strong ex-ante properties, captured by the following lemma.
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Lemma 3.8 ([Bogomolnaia and Moulin, 2001]). For any allocation 𝑋 obtained by Theorem 3.6,
it holds that 𝑣𝑖 (𝑋𝑖 ) ⪰SD 𝑣𝑖 (𝑋 𝑗 ) for any two agents 𝑖 and 𝑗 .

Proof. We show that P[𝑣𝑖 (𝑋𝑖 ) ≥ 𝑡] ≥ P[𝑣𝑖 (𝑋 𝑗 ) ≥ 𝑡] for any 𝑡 ≥ 0. Let A = {𝑎 ∈ [𝑚] : 𝑣𝑖 (𝑎) ≥
𝑡}. Note that P[𝑣𝑖 (𝑋𝑖 ) ≥ 𝑡] =

∑
𝑎∈A P[𝑋𝑖 = {𝑎}] = ∑

𝑎∈A 𝑍𝑖𝑎 and P[𝑣𝑖 (𝑋 𝑗 ) ≥ 𝑡] =
∑

𝑎∈A 𝑍 𝑗𝑎 .

Suppose for the purpose of contradiction that 𝑡1 =
∑

𝑎∈A 𝑍𝑖𝑎 <
∑

𝑎∈A 𝑍 𝑗𝑎 = 𝑡2. This means that

after 𝑡1 units of time, agent 𝑖 started consuming an item of value less than 𝑡 . However, between time

𝑡1 and 𝑡2, agent 𝑗 was still consuming some items in A which means that at least one of them was

still not fully consumed during that time. This contradicts the assumption that 𝑖 always switches to

eat the next most valuable item that is not fully consumed yet. □

Moreover, it is easy to see that any integral allocations in the support of the distribution given by

Theorem 3.6 is weakly separated (Definition 3.2). Hence, the ex-post guarantees given in Section 3.1

are always satisfied.

However, to prove the desired ex-ante guarantees given in Section 3.4, weak separation is not

enough, and we use the following stronger notion.

Definition 3.9 (Strong separation). A random partial allocation 𝑋 = (𝑋1, . . . , 𝑋𝑛) with the corre-

sponding random collection𝑈 = [𝑚] \⋃𝑖∈[𝑛] 𝑋𝑖 of unallocated items satisfies strong separation if it

holds that for any allocation 𝑌 in the support of 𝑋 , we have 𝑣𝑖 (𝑌𝑖 ) ≥ 𝑣𝑖 (𝑤) for every agent 𝑖 ∈ [𝑛]
and every item𝑤 such that P[𝑤 ∈ 𝑈 ] > 0.

Clearly, any strongly separated allocation is also weakly separated. We now show that the

outcome of the first phase is strongly separated.

Lemma 3.10. The (random) allocation 𝑋 = (𝑋1, . . . 𝑋𝑛) is strongly separated.

Proof. Fix any agent 𝑖 . Let 𝑎 ∈ [𝑚] be any item that agent 𝑖 ate a positive fraction of, i.e., it holds

that 𝑍𝑖𝑎 = P[𝑋𝑖 = {𝑎}] > 0. Let 𝑏 ∈ [𝑚] be any item that was not fully consumed during the eating

process, i.e., it holds that 1 − ∑𝑘∈[𝑛] 𝑍𝑘𝑏 = P[𝑏 ∈ 𝑈 ] > 0. Then, it is the case that 𝑣𝑖 (𝑎) ≥ 𝑣𝑖 (𝑏).
Otherwise, agent 𝑖 would have started eating 𝑏 before eating any fraction of 𝑎. □

3.3 A Distribution over Envy Cycles
Having described the implementation of the first phase of the algorithm, let us now discuss the

second phase. Suppose that the algorithm already selected a partial allocation (𝑋1, . . . , 𝑋𝑛) and at

the current step, the algorithm must either (1) assign an unallocated item to an unenvied agent if

there is such an agent, or (2) eliminate an envy cycle by reallocating the bundles along the cycle if

there is such a cycle.

First, it is important to note that the ex-post guarantees of the deterministic algorithm given by

Lemma 3.4 do not depend on the specific choices of the algorithm. The algorithm can follow an

arbitrary rule to decide (a) whether to perform operation (1) or (2) if at some point both of them

can be executed, (b) which unenvied agent to give a new item to, (c) which unallocated item to

assign to an unenvied agent, and (d) which envy cycle to eliminate.

However, when it comes to ex-ante guarantees, arbitrary choices regarding the above dimensions

can lead to an arbitrarily high ex-ante envy. This is demonstrated in the following example.

Example 3.11. Consider an instance with 𝑛 agents having additive valuations over 2𝑛 + 1 items,

as described in the table below.
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apple banana celery durians × (𝑛 − 3) eggplants × (𝑛 + 1)
𝑣1 10 3𝜀 2𝜀 0 . . . 0 2𝜀 . . . 2𝜀

𝑣2 10 2𝜀 3𝜀 0 . . . 0 2𝜀 . . . 2𝜀

𝑣3 10 8 0 9 . . . 9 3 . . . 3

𝑣4 10 8 0 9 . . . 9 3 . . . 3

...
...

...
...

...
. . .

...
...

. . .
...

𝑣𝑛 10 8 0 9 . . . 9 3 . . . 3

Observe that in this example, the apple is the most-preferred item for every agent. Suppose

that in the first phase of the algorithm, the following allocation is chosen: agent 𝑖 (for some

3 ≤ 𝑖 ≤ 𝑛) gets the apple, agent 1 gets the banana, agent 2 gets celery, and each of the remaining

agents 3, . . . , 𝑖 − 1, 𝑖 + 1, . . . , 𝑛 gets a durian. This is, for instance, exactly the allocation that is chosen

with high probability (i.e., probability 1 − 𝑜 (1)) by both the probabilistic serial method and the

serial dictatorship algorithm with a uniformly random permutation of the agents.

Furthermore, suppose that in the first step of the second phase, agent 1 (who is unenvied at

the moment) gets an eggplant (which is unallocated at the moment). After this operation, there is

an envy cycle: agent 1 (who has the banana and an eggplant) envies agent 𝑖 (who has the apple),

who in turn envies agent 1. However, if the algorithm eliminates this cycle, then agent 2 (who has

the celery) envies agent 1 (who now has the apple) by an arbitrarily large factor. Moreover, for

sufficiently small 𝜀, once agent 1 receives the apple she will not be included in any envy cycles in

the subsequent steps, so the apple will stay with her until the termination of the algorithm.

Example 3.11 shows that during a cycle elimination step, selecting the envy cycle in an arbitrary

way does not give ex-ante 𝛼-EF for any 𝛼 > 0. To overcome this problem, we employ two ideas.

First, we only eliminate envy cycles if there are no unenvied agents. In Example 3.11, this means

that we do not immediately allow agent 1 to trade for the apple, because agent 2 remains unenvied.

The second (and key) idea is the following. Suppose that there are two agents 𝑖1 and 𝑖2 who both

envy some bundle 𝑋 𝑗 . We want to avoid selecting an envy cycle containing the arc (𝑖1, 𝑗) where 𝑖1
gets 𝑋 𝑗 , unless, with sufficiently high probability, we also select some other envy cycle containing

the arc (𝑖2, 𝑗), where 𝑖2 gets 𝑋 𝑗 . Otherwise, agent 𝑖2 might have high ex-ante envy towards agent 𝑖1.

The corresponding intuition in Example 3.11 is that we only allow agent 1 to trade for the apple if

agent 2 also has a sufficiently high probability of getting the apple.

Now, if the envy graph is strongly connected, then applying the following key lemma to the

envy graph gives a “fair” distribution over the envy cycles. The proof of this lemma is inspired by

the work of MacQueen [1981] on circuit processes. Figure 2 provides an illustration for this proof.

Lemma 3.12. (Key Lemma) Let 𝐺 = (𝑉 , 𝐸) be a strongly connected directed graph with |𝑉 | ≥ 2.
There exists a probability distribution ((𝑐𝑡 , 𝑝𝑡 ))𝑡 ∈[𝑟 ] over the set of simple cycles 𝑐𝑡 in 𝐺 such that for
all 𝑗 ∈ 𝑉 and (𝑖1, 𝑗), (𝑖2, 𝑗) ∈ 𝐸 it holds that

∑
𝑡 :(𝑖1, 𝑗 ) ∈𝑐𝑡 𝑝𝑡 =

∑
𝑡 :(𝑖2, 𝑗 ) ∈𝑐𝑡 𝑝𝑡 , i.e., the total probability of

all cycles containing the edge (𝑖1, 𝑗) is equal to total probability of all cycles containing the edge (𝑖2, 𝑗).
Moreover, such a distribution can be computed in polynomial time.

Proof. Consider a Markov chain with the set of states 𝑉 and the transition probabilities

𝑝 ( 𝑗, 𝑖) =
{
1/in-deg𝑗 if (𝑖, 𝑗) ∈ 𝐸
0 otherwise

The probabilities 𝑝 are well-defined because

∑
𝑖∈𝑉 𝑝 ( 𝑗, 𝑖) = 1 for all 𝑗 ∈ 𝑉 . Since 𝐺 is strongly

connected, this Markov chain is irreducible and therefore has a stationary distribution 𝜋 = (𝜋𝑖 )𝑖∈𝑉 .
Note that the stationary distribution is unique [Norris, 1998, Section 1.7], and we can therefore

compute the distribution in polynomial time with a direct method such as Gaussian elimination.
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(iii) Cycle distribution

Fig. 2. Illustration of the proof of Lemma 3.12 for a strongly connected graph. The graph in (i) induces
the stationary distribution in the Markov chain presented in (ii), which can be used to compute the cycle
distribution presented in (iii). The multiplicity of each arrow in (ii) is proportional to its flow, as defined by𝑤
in the proof, i.e., each line represents a flow of 1/13.

Define the flow𝑤 ( 𝑗, 𝑖) = 𝜋 ( 𝑗) · 𝑝 ( 𝑗, 𝑖) and observe that𝑤 is a balanced flow, i.e., the flow that

goes into 𝑖 is equal to the flow that goes out of 𝑖 . This is true because∑︁
𝑖∈𝑉

𝑤 ( 𝑗, 𝑖) = 𝜋 ( 𝑗) =
∑︁
𝑖∈𝑉

𝜋 (𝑖) · 𝑝 (𝑖, 𝑗) =
∑︁
𝑖∈𝑉

𝑤 (𝑖, 𝑗),

where the second equality follows from the properties of the stationary distribution 𝜋 .

Next, we show that there is a probability distribution ((𝑐𝑡 , 𝑝𝑡 ))𝑡 ∈[𝑘 ] over the set of simple cycles

𝑐𝑡 in 𝐺 such that for all (𝑖, 𝑗) ∈ 𝐸 it holds that

∑
𝑡 :(𝑖, 𝑗 ) ∈𝑐𝑡 𝑝𝑡 = 𝑤 ( 𝑗, 𝑖) ·𝐶 for some constant 𝐶 > 0.

This implies that for any two edges (𝑖1, 𝑗), (𝑖2, 𝑗) ∈ 𝐸 it holds that∑︁
𝑡 :(𝑖1, 𝑗 ) ∈𝑐𝑡

𝑝𝑡 ·𝐶−1 = 𝑤 ( 𝑗, 𝑖1) = 𝜋 ( 𝑗) · 𝑝 ( 𝑗, 𝑖1) = 𝜋 ( 𝑗)/in-deg𝑗 = 𝑤 ( 𝑗, 𝑖2) =
∑︁

𝑡 :(𝑖2, 𝑗 ) ∈𝑐𝑡

𝑝𝑡 ·𝐶−1 .

We construct our collection of cycles in the following manner. We start with an empty collection

of cycles. In each step 𝑡 , we find a cycle ((𝑖1, 𝑖2), (𝑖2, 𝑖3), . . . , (𝑖𝑘−1, 𝑖𝑘 ), (𝑖𝑘 , 𝑖1)) on which every arc

has positive flow (this can be done in polynomial time via, e.g., depth-first search), and then

find the minimum flow 𝑤𝑡 over any arc in this cycle. We add the pair (𝑐𝑡 , 𝑝𝑡 ) to our collection

where 𝑐𝑡 = ((𝑖1, 𝑖𝑘 ), (𝑖𝑘 , 𝑖𝑘−1), . . . , (𝑖3, 𝑖2), (𝑖2, 𝑖1)) and 𝑝𝑡 = 𝑤𝑡 , and then reduce the flow on the arcs

(𝑖1, 𝑖2), (𝑖2, 𝑖3), . . . , (𝑖𝑘−1, 𝑖𝑘 ) by𝑤𝑡 . Note that the flow is still balanced after this operation. We repeat

this process until there no longer exists a cycle with positive flow on every arc.

Since in each step of the above process, the flow on at least one arc is reduced to 0, this process

terminates after a polynomial number of steps. Additionally, since𝑤 is balanced at every step, this

process only terminates when the flow is zero everywhere and we thus obtain

∑
𝑡 :(𝑖, 𝑗 ) ∈𝑐𝑡 𝑝𝑡 = 𝑤 ( 𝑗, 𝑖).

Finally, we normalize the probabilities over the cycles in our collection so that they sum to 1. □

It remains to consider the case where the envy graph is not strongly connected. In this case, we

apply the key lemma to a strongly connected component 𝐺 with no incoming arcs, in order to

avoid generating ex-ante envy for the agents outside of 𝐺 . Such a component must always exist

since the connectivity graph of the strongly connected components is acyclic. Moreover, since we

only eliminate envy cycles if all the agents are envied, the selected component contains at least

two agents, since otherwise, the single agent in the component would be unenvied.

1248



EC ’24, July 8–11, 2024, New Haven, CT, USA Michal Feldman, Simon Mauras, Vishnu V. Narayan, and Tomasz Ponitka

The distribution over the envy cycles in 𝐺 given by Lemma 3.12 satisfies the following property:

if any agent 𝑖 prefers some bundle 𝑋 𝑗 to her own bundle 𝑋𝑖 , then no other agent is more likely to

get 𝑋 𝑗 than 𝑖 . We use this property in the proof of the following lemma.

Lemma 3.13. Let (𝑋 ′
1
, . . . , 𝑋 ′𝑛) be the (random) allocation obtained after eliminating an envy cycle

chosen according to the probability distribution given by Lemma 3.12 applied to the strongly connected
component 𝐺 . Then, for any two agents 𝑖 and 𝑗 , it holds that

𝑣𝑖 (𝑋 ′𝑖 ) ⪰SD 𝑣𝑖 (𝑋 ′𝑗 ) · 1[𝑋 ′𝑗 ≠ 𝑋 𝑗 ] .

Proof. Let𝐶 be the (random) envy cycle chosen according to the distribution given in Lemma 3.12.

First, observe that for any 𝑡 ≤ 𝑣𝑖 (𝑋𝑖 ), it holds that P[𝑣𝑖 (𝑋 ′𝑖 ) ≥ 𝑡] = 1 since 𝑣𝑖 (𝑋 ′𝑖 ) ≥ 𝑣𝑖 (𝑋𝑖 ) ≥ 𝑡 by
Lemma 3.3, and hence P[𝑣𝑖 (𝑋 ′𝑖 ) ≥ 𝑡] ≥ P[𝑣𝑖 (𝑋 ′𝑗 ) · 1[𝑋 ′𝑗 ≠ 𝑋 𝑗 ] ≥ 𝑡].
Let 𝑡 > 𝑣𝑖 (𝑋𝑖 ) and K = {𝑘 ∈ [𝑛] : 𝑣𝑖 (𝑋𝑘 ) ≥ 𝑡}. Note that 𝑣𝑖 (𝑋 ′𝑖 ) ≥ 𝑡 if and only if 𝑋 ′𝑖 = 𝑋𝑘 for

some 𝑘 ∈ K , i.e., it holds that (𝑖, 𝑘) ∈ 𝐶 . Similarly, 𝑣𝑖 (𝑋 ′𝑗 ) · 1[𝑋 ′𝑗 ≠ 𝑋 𝑗 ] ≥ 𝑡 if and only if 𝑋 ′𝑗 = 𝑋𝑘

for some 𝑘 ∈ K − 𝑗 , i.e., it holds that ( 𝑗, 𝑘) ∈ 𝐶 . By the properties of𝐶 given in Lemma 3.12, it holds

that

P[𝑣𝑖 (𝑋 ′𝑖 ) ≥ 𝑡] =
∑︁
𝑘∈K

P[(𝑖, 𝑘) ∈ 𝐶] ≥
∑︁

𝑘∈K− 𝑗
P[( 𝑗, 𝑘) ∈ 𝐶] = P[𝑣𝑖 (𝑋 ′𝑗 ) · 1[𝑋 ′𝑗 ≠ 𝑋 𝑗 ] ≥ 𝑡]

which gives the result. □

3.4 The Main Algorithm
We now present the main algorithm (Algorithm 1) that combines the ideas discussed above.

To analyze the execution of the algorithm, we first define the execution tree of all the possible

random choices that the algorithm makes on a given input.

Definition 3.14 (Execution tree). LetH 𝑡
be the collection of all the possible choices of the algorithm

up to the 𝑡-th round, and letH =
⋃

𝑡≥0H 𝑡
. The set of vertices in the execution tree isH and any

vertex 𝑢 ∈ H 𝑡
is connected with an edge to all the vertices 𝑢′ ∈ H 𝑡+1

such that the first 𝑡 rounds

in 𝑢′ are identical to 𝑢.

In particular, note that there is a single element in H 0
, and 𝑞 elements in H 1

, one for each

allocation in the support of the random outcome of the first phase. Every node 𝑢 ∈ H 𝑡
in the

execution tree is naturally associated with the probability P[𝑢] that the algorithm reaches the state

𝑢, i.e., the realization of the random choices of the algorithm in the first 𝑡 rounds is exactly as

specified by 𝑢.

We say that a vertex 𝑢 ∈ H is a leaf if it has no children, i.e., the algorithm terminates given the

history of 𝑢. In particular, every leaf corresponds to a complete allocation. Let L be the set of all

leaves of the execution tree, and let L𝑢 denote the set of leaves in the subtree rooted at 𝑢.

For each node 𝑢, we denote by (𝑋𝑢
1
, . . . , 𝑋𝑢

𝑛 ) the partial allocation when the algorithm is in state

𝑢. For each 𝑗 , we split the bundle 𝑋𝑢
𝑗 into two parts 𝑌𝑢

𝑗 and 𝑔𝑢 in the following way which depends

on whether 𝑗 was given an item in line 9 or not. If the last time that 𝑗 ’s bundle changes in the

history of 𝑢 is due to an operation in line 9, i.e., 𝑗 gets an item because 𝑗 is an unenvied agent, then

we let 𝑔𝑢 be the item that was given to 𝑗 during that operation and 𝑌𝑢
𝑗 = 𝑋𝑢

𝑗 − 𝑔𝑢 . Otherwise, we
let 𝑌𝑢

𝑗 = 𝑋𝑢
𝑗 and 𝑔𝑢 = ⊥. Note that in both cases it holds that 𝑋𝑢

𝑗 = 𝑌𝑢
𝑗 + 𝑔𝑢 .

Let us first combine the observations made during the analysis of the randomization of the first

and the second phase of the algorithm into the following useful lemma.
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Algorithm 1 Fair Envy Cycles.

1: Input A set [𝑚] of items, a set [𝑛] of agents, and a profile (𝑣𝑖 )𝑖∈[𝑛] of valuation functions.

2: Output A complete allocation (𝑋1, . . . , 𝑋𝑛) that is ex-ante 1

2
-EF, ex-post

1

2
-EFX and EF1.

First Phase
3: 𝑍 ← One-Step-PS(𝑚,𝑛, (𝑣𝑖 )𝑖∈[𝑛])
4: (𝑋𝑘 , 𝑝𝑘 )𝑘∈[𝑞 ] ← Birkhoff-Rounding(𝑍 )
5: 𝑋 ← an integral allocation sampled from (𝑋𝑘 , 𝑝𝑘 )𝑘∈[𝑞 ]

Second Phase
6: while there is an unallocated item do
7: 𝑥 ← an arbitrary unallocated item

8: if there is an unenvied agent then
9: 𝑖 ← an arbitrary unenvied agent

10: 𝑋𝑖 ← 𝑋𝑖 + 𝑥
11: else
12: 𝐺 ← an arbitrary strongly connected component of

13: the envy graph, without any incoming edges

14: 𝑐 ← a cycle sampled from the distribution obtained

15: from Lemma 3.12 applied to 𝐺

16: reallocate the bundles along 𝑐

17: end if
18: end while

19: return (𝑋1, . . . , 𝑋𝑛)

Lemma 3.15. Consider a node 𝑢 ∈ H of the execution tree, and let 𝑢′ be the random child of 𝑢
obtained after performing the next step of the algorithm. Then,

𝑣𝑖 (𝑋𝑢′
𝑖 ) ⪰SD 𝑣𝑖 (𝑌𝑢′

𝑗 ) · 1[𝑋𝑢
𝑗 ≠ 𝑋𝑢′

𝑗 ] .
Proof. If 𝑢 is the root of the tree, the result follows from Lemma 3.8. Otherwise, given the

history of 𝑢, the algorithm either performs an envy cycle elimination step, in which case the result

follows from Lemma 3.13, or the algorithm assigns an unallocated item to an unenvied agent, in

which case either 𝑗 is unenvied or 𝑗 ’s bundle does not change, and the result follows. □

The proof of the ex-ante fairness of themain algorithm relies on a newnotion of stochastic coverage
which generalizes the notion of stochastic dominance. In order to show the desired inequality

2 · E[𝑣𝑖 (𝑋𝑖 )] ≥ E[𝑣𝑖 (𝑋 𝑗 )], we first show that 2 · P[𝑣𝑖 (𝑋𝑖 ) ≥ 𝑡] ≥ P[𝑣𝑖 (𝑌𝑗 ) ≥ 𝑡] + P[𝑣𝑖 (𝑔 𝑗 ) ≥ 𝑡]
which is neatly captured in terms of stochastic coverage as (𝑣𝑖 (𝑋𝑖 ), 𝑣𝑖 (𝑋𝑖 )) ⪰SC (𝑣𝑖 (𝑌𝑗 ), 𝑣𝑖 (𝑔 𝑗 )). See
the following definition.

Definition 3.16 (Stochastic coverage). Given two collections 𝑈 = (𝑥𝑖 )𝑖∈[𝑟 ] and 𝑉 = (𝑦 𝑗 ) 𝑗∈[𝑠 ] of
non-negative random variables (not necessarily independent) for some 𝑟, 𝑠 ≥ 1, we say that 𝑈

stochastically covers 𝑉 , and we write𝑈 ⪰SC 𝑉 , if∑︁
𝑖∈[𝑟 ]

P[𝑥𝑖 ≥ 𝑡] ≥
∑︁
𝑗∈[𝑠 ]

P[𝑦 𝑗 ≥ 𝑡] for all 𝑡 > 0

This definition captures the standard notion of stochastic dominance between random variables

by taking 𝑟 = 𝑠 = 1. Moreover, note that the definition requires 𝑡 to be strictly positive, which means,
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for instance, that any (even empty) collection of random variables covers any other collection of

random variables that are always equal to 0.

Remark 1. An alternative way to think about stochastic coverage is in terms of a “credit scheme”.
In terms of stochastic coverage, our goal is to show that (𝑣𝑖 (𝑋𝑖 ), 𝑣𝑖 (𝑋𝑖 )) ⪰SC (𝑣𝑖 (𝑌𝑗 ), 𝑣𝑖 (𝑔 𝑗 )). The
given random variables are defined on the probability space where every outcome is associated with a
leaf in the execution tree. Imagine that initially each leaf 𝑢 ∈ L holds two divisible tokens of mass
P[𝑢] each and that it can use some fraction of these tokens to compensate another leaf 𝑣 ∈ L if
either 𝑣𝑖 (𝑋𝑢

𝑖 ) ≥ 𝑣𝑖 (𝑌 𝑣
𝑗 ) or 𝑣𝑖 (𝑋𝑢

𝑖 ) ≥ 𝑣𝑖 (𝑔𝑣𝑗 ). The statement (𝑣𝑖 (𝑋𝑖 ), 𝑣𝑖 (𝑋𝑖 )) ⪰SC (𝑣𝑖 (𝑌𝑖 ), 𝑣𝑖 (𝑔 𝑗 )) is then
equivalent to the existence of a credit scheme where each leaf 𝑣 ∈ L receives a total mass of P[𝑣] tokens
to compensate 𝑣𝑖 (𝑌 𝑣

𝑗 ) and a total mass of P[𝑣] tokens to compensate 𝑣𝑖 (𝑔𝑣𝑗 ). Hence, we essentially show
that the leaves where 𝑖 is assigned a valuable bundle can compensate all the leaves where 𝑗 is assigned
a valuable bundle (from 𝑖’s perspective).

The following lemma (whose proof is deferred to Appendix E) establishes several useful properties

of stochastic coverage.

Lemma 3.17. Stochastic coverage satisfies the following properties:

(i) transitivity: for all collections𝑈 ,𝑉 ,𝑊 , if𝑈 ⪰SC 𝑉 and 𝑉 ⪰SC𝑊 , then𝑈 ⪰SC𝑊 .
(ii) concatenability: for all collections 𝑆,𝑇 ,𝑈 ,𝑉 , if 𝑆 ⪰SC 𝑇 and𝑈 ⪰SC 𝑉 , then (𝑆,𝑈 ) ⪰SC (𝑇,𝑉 ).
(iii) disjoint additivity: for all non-negative random variables 𝑥 and 𝑦 that are positive on disjoint

events, it holds that (𝑥,𝑦) ⪰SC (𝑥 + 𝑦) and (𝑥 + 𝑦) ⪰SC (𝑥,𝑦).

We also establish a way to extend stochastic coverage if the covering collection contains strictly

more random variables than the covered one, which we use in the form of the following lemma.

The proof is deferred to Appendix E.

Lemma 3.18 (Extendability). For all non-negative random variables 𝑥,𝑦, 𝑧, if

(i) it holds that (𝑥, 𝑥) ⪰SC 𝑦,
(ii) there is an event 𝑆 such that 𝑥 , 𝑦 and 𝑧 are non-zero only if 𝑆 holds, and
(iii) there is some constant threshold 𝛿 such that whenever 𝑆 holds, it also holds that 𝑥 ≥ 𝛿 ≥ 𝑧,
then it holds that (𝑥, 𝑥) ⪰SC (𝑦, 𝑧).

Next, we prove the following lemma which is the main ingredient in the proof of Theorem 3.1.

The proof proceeds by induction on the execution tree, as illustrated by Figure 3.

Lemma 3.19. Letting𝑤 ∈ L denote the random leaf reached by the algorithm, we have

(𝑣𝑖 (𝑋𝑤
𝑖 ), 𝑣𝑖 (𝑋𝑤

𝑖 )) ⪰SC (𝑣𝑖 (𝑌𝑤
𝑗 ), 𝑣𝑖 (𝑔𝑤𝑗 )) .

Proof. Let𝑤 ∈ L be the random leaf reached by a random execution of the algorithm. For any

node 𝑢 ∈ H , we define the following random variables

𝑥𝑢 = 1[𝑤 ∈ L𝑢] · 𝑣𝑖 (𝑋𝑤
𝑖 ), 𝑧𝑢 = 1[𝑤 ∈ L𝑢] · 𝑣𝑖 (𝑋𝑢

𝑖 ), 𝑦𝑢 = 1[𝑤 ∈ L𝑢] · 𝑣𝑖 (𝑌𝑤
𝑗 ) · 1[𝑋𝑢

𝑗 ≠ 𝑋𝑤
𝑗 ] .

Note that 𝑦𝑢 includes 𝑣𝑖 (𝑌𝑗 ) from all the yellow and green leaves in Figure 3 but not from the red

ones. Observe that it always holds that 𝑥𝑢 ≥ 𝑧𝑢 by Lemma 3.3.

First, we use induction on the execution tree to show that for every node 𝑢 it holds that

(𝑥𝑢, 𝑥𝑢) ⪰SC (𝑦𝑢, 𝑧𝑢).

This statement holds for all the leaves 𝑢 ∈ L since 𝑥𝑢 = 𝑧𝑢 and 𝑦𝑢 = 0.
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𝑢𝑘

Fig. 3. Illustration of the entire execution tree (left) and its subtrees (right). Paths on which 𝑗 ’s bundle changes
are represented by plain edges, and paths on which 𝑗 ’s bundle does not change are represented by dashed
edges. The first step is probabilistic serial (top right) and subsequent operations include either assigning an
item to an unenvied agent (middle right), or eliminating an envy cycle (bottom right). Let 𝑢 be some node,
and let 𝑢1, . . . , 𝑢𝑘 be its children. Consider a leaf 𝑤 in the subtree rooted at 𝑢𝑡 . The leaf 𝑤 is colored red if
𝑋𝑤
𝑗

= 𝑋𝑢
𝑗
, i.e., 𝑗 ’s bundle does not change after reaching 𝑢. It is colored yellow if 𝑋𝑤

𝑗
= 𝑋

𝑢𝑡
𝑗

and 𝑋𝑢𝑡
𝑗

≠ 𝑋𝑢
𝑗
, i.e.,

𝑗 ’s bundle changes only during the first iteration after reaching 𝑢. Finally, it is colored green if 𝑋𝑤
𝑗

≠ 𝑋
𝑢𝑡
𝑗
, i.e.,

𝑗 ’s bundle changes during one of the subsequent iterations. Note that a leaf’s color is always with respect to
some node 𝑢, and it can thus be colored differently depending on the chosen node 𝑢.

Consider a non-leaf node 𝑢 and its children 𝑢1, . . . , 𝑢𝑘 . By the inductive assumption, it holds that

(𝑥𝑢𝑡 , 𝑥𝑢𝑡 ) ⪰SC (𝑦𝑢𝑡 , 𝑧𝑢𝑡 ) for all 1 ≤ 𝑡 ≤ 𝑘 . This means that 𝑣𝑖 (𝑌𝑗 ) from the green leaves in Figure 3

is covered by our induction hypothesis. Observe that

(𝑥𝑢, 𝑥𝑢) = (𝑥𝑢1
+ · · · + 𝑥𝑢𝑘 , 𝑥𝑢1

+ · · · + 𝑥𝑢𝑘 ) (since 𝑥𝑢 = 𝑥𝑢1
+ . . . + 𝑥𝑢𝑘 )

⪰SC (𝑥𝑢1
, . . . , 𝑥𝑢𝑘 , 𝑥𝑢1

, . . . , 𝑥𝑢𝑘 ) (by disjoint additivity)
⪰SC (𝑦𝑢1

, . . . , 𝑦𝑢𝑘 , 𝑧𝑢1
, . . . , 𝑧𝑢𝑘 ) (by concatenability)

⪰SC (𝑦𝑢1
+ · · · + 𝑦𝑢𝑘 , 𝑧𝑢1

+ · · · + 𝑧𝑢𝑘 ) (by disjoint additivity)
Next, for each child 𝑢𝑡 of 𝑢, define

𝜇𝑢𝑡 = 1[𝑤 ∈ L𝑢𝑡 ] · 𝑣𝑖 (𝑌
𝑢𝑡
𝑗
) · 1[𝑋𝑢

𝑗 ≠ 𝑋
𝑢𝑡
𝑗

= 𝑋𝑤
𝑗 ] for 1 ≤ 𝑡 ≤ 𝑘

so that 𝑦𝑢 = 𝑦𝑢1
+ . . . +𝑦𝑢𝑘 + 𝜇𝑢1

+ . . . + 𝜇𝑢𝑘 . The variables 𝜇𝑢𝑡 include 𝑣𝑖 (𝑌𝑗 ) from the yellow leaves

in Figure 3, which need to be covered at this induction step. Now, observe that

𝑧𝑢1
+ · · · + 𝑧𝑢𝑘 =

𝑘∑︁
𝑡=1

1[𝑤 ∈ L𝑢𝑡 ] · 𝑣𝑖 (𝑋
𝑢𝑡
𝑖
) (by the definition of 𝑧𝑢𝑡 )

1252



EC ’24, July 8–11, 2024, New Haven, CT, USA Michal Feldman, Simon Mauras, Vishnu V. Narayan, and Tomasz Ponitka

⪰SD
𝑘∑︁
𝑡=1

1[𝑤 ∈ L𝑢𝑡 ] · 𝑣𝑖 (𝑌
𝑢𝑡
𝑗
) · 1[𝑋𝑢

𝑗 ≠ 𝑋
𝑢𝑡
𝑗
] (by Lemma 3.15)

≥
𝑘∑︁
𝑡=1

1[𝑤 ∈ L𝑢𝑡 ] · 𝑣𝑖 (𝑌
𝑢𝑡
𝑗
) · 1[𝑋𝑢

𝑗 ≠ 𝑋
𝑢𝑡
𝑗

= 𝑋𝑤
𝑗 ]

= 𝜇𝑢1
+ . . . + 𝜇𝑢𝑘 (by the definition of 𝜇𝑡 )

Combining the statements above gives

(𝑥𝑢, 𝑥𝑢) ⪰SC (𝑦𝑢1
+ . . . + 𝑦𝑢𝑘 , 𝑧𝑢1

+ . . . + 𝑧𝑢𝑘 )
⪰SC (𝑦𝑢1

+ . . . + 𝑦𝑢𝑘 , 𝜇𝑢1
+ . . . + 𝜇𝑢𝑘 )

⪰SC 𝑦𝑢1
+ . . . + 𝑦𝑢𝑘 + 𝜇𝑢1

+ . . . + 𝜇𝑢𝑘 (by disjoint additivity)
= 𝑦𝑢

so that 𝑣𝑖 (𝑌𝑗 ) from all the green and yellow leaves is covered. To complete the inductive proof, we

use the extendability of stochastic coverage (Lemma 3.18) with the event 𝑆 = {𝑤 ∈ L𝑢} and the

threshold 𝛿 = 𝑣𝑖 (𝑋𝑢
𝑖 ) to get

(𝑥𝑢, 𝑥𝑢) ⪰SC (𝑦𝑢, 𝑧𝑢)
which completes the induction step.

Now to prove the statement of the lemma, it remains to account for 𝑣𝑖 (𝑔𝑤𝑗 ). By disjoint additivity,

we get

(𝑥root, 𝑥root) ⪰SC (𝑦root, 𝑧root) ⪰SC 𝑦root
since 𝑧root = 0. Note that by strong separation (Lemma 3.10), it holds that 𝑥root ≥ max𝑞∈Lroot

𝑣𝑖 (𝑔𝑞𝑗 ) ≥
𝑣𝑖 (𝑔𝑤𝑗 ). Hence, we use extendability (Lemma 3.18) once again, now with the full event 𝑆 = {𝑤 ∈
Lroot} and the threshold 𝛿 = max𝑞∈Lroot

𝑣𝑖 (𝑔𝑞𝑗 ), to get

(𝑥root, 𝑥root) ⪰SC (𝑦root, 𝑣𝑖 (𝑔𝑤𝑗 ))
which proves the lemma. □

We are now ready to prove the main theorem.

Proof of Theorem 3.1. The allocation of Algorithm 1 is ex-post
1

2
-EFX and ex-post EF1 by

Lemma 3.4. To show that the outcome is ex-ante
1

2
-EF, observe that

2 · E[𝑣𝑖 (𝑋𝑖 )] =
∫
𝑡≥0

P[𝑣𝑖 (𝑋𝑖 ) ≥ 𝑡] + P[𝑣𝑖 (𝑋𝑖 ) ≥ 𝑡] d𝑡 (by the properties of expectation)

≥
∫
𝑡≥0

P[𝑣𝑖 (𝑌𝑖 ) ≥ 𝑡] + P[𝑣𝑖 (𝑔 𝑗 ) ≥ 𝑡] d𝑡 (by Lemma 3.19)

= E[𝑣𝑖 (𝑌𝑗 )] + E[𝑣𝑖 (𝑔 𝑗 )] (by the properties of expectation)
= E[𝑣𝑖 (𝑌𝑗 ) + 𝑣𝑖 (𝑔 𝑗 )] (by additivity of expectation)
≥ E[𝑣𝑖 (𝑋 𝑗 )] (by subadditivity of 𝑣𝑖 )

which is the desired inequality.

Finally, we prove that Algorithm 1 runs in polynomial time. First, recall that probabilistic serial

can be implemented in polynomial time [Bogomolnaia and Moulin, 2001], and that the resulting

fractional allocation can be rounded in polynomial time (Theorem 3.6). Second, each iteration

of our randomized algorithm can be carried out in polynomial time by Lemma 3.12. Finally, the

deterministic envy cycles procedure terminates after polynomially many steps (Lemma 3.5), and
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since we only randomize choices that are made arbitrarily in this deterministic procedure, the

polynomial running time applies to every outcome of our randomized algorithm. □

4 Concluding Remarks and Further Directions
Our results significantly advance the state-of-the-art in best-of-both-worlds fairness. We demon-

strate that strong ex-ante and ex-post fairness guarantees can be achieved even in settings with

subadditive valuations and even with respect to the stronger envy-freeness notion of EFX. Our

work suggests several natural problems for future research.

First, while our analysis is tight for our algorithm (see Example D.1), the existence of an allocation

that is ex-ante 𝛼-EF and ex-post
1

2
-EFX for any 𝛼 > 1

2
remains open.

Second, many of the existing results on EFX rely on the envy cycles procedure, e.g., the existence

of a (𝜑−1)-EFX allocation for any number of additive agents [Amanatidis et al., 2020]. An interesting

direction to investigate is whether our techniques can be combined with these results to obtain

best-of-both-worlds guarantees for these settings.

Third, while our algorithm produces an execution tree of polynomial depth, and it computes

the random allocation in polynomial time, the resulting distribution might have exponential-size

support. By Carathéodory’s theorem, it is possible to reduce the support size of the final distribution

to 𝑛 · (𝑛 − 1) + 1. However, it remains a challenge to construct this polynomial-size distribution in

polynomial time. Unfortunately, techniques similar to those of Freeman et al. [2020] (who reduce

the support size after each iteration) and Aziz [2020] do not apply easily beyond additive valuations.

Fourth, it is possible that further improvements of our bound can be found when considering

only ex-post EF1 without EFX. The existence of an ex-ante EF and ex-post EF1 allocation remains

an open problem for subadditive valuations. Our investigation did not find any counterexamples for

this setting. Although there are several methods to obtain an EF1 allocation for additive valuations,

to the best of our knowledge envy-cycles is the only known technique that extends to subadditive

valuations. An exciting direction for future work is to examine whether another randomization

of envy-cycles could lead to full ex-ante EF. We suspect that this requires finding the right way

to randomize the choice of the unenvied agent when assigning the next item. As Example D.1

suggests, the main difficulty in making this improvement is that such randomization cannot simply

consider the set of unenvied agents, and must instead take the entire execution tree into account.

Finally, it would be intriguing to explore whether our positive results can be augmented with any

type of efficiency guarantees. Prior work shows that random allocations that are ex-ante fractionally-

Pareto optimal, ex-ante EF, and ex-post EF1 don’t exist even for additive valuations [Freeman et al.,

2020]. Similarly, there are instances with additive valuations that admit no allocations that are EFX

and Pareto optimal [Plaut and Roughgarden, 2018].

Indeed, the example from [36] shows that ex-post Pareto optimality is incompatible with 𝛼-EFX

for any 𝛼 > 0 when an instance has 0-valued items. It is plausible that stronger impossibility results

than those of Freeman et al. [2020] and Aziz [2020], for weaker notions of efficiency, may apply in

our setting. To the best of our knowledge, an approach based on envy cycles is the only known

method to obtain the EF1 guarantee for subadditive valuations, and it is well-known that this

method does not provide efficiency guarantees. Consequently, positive results in this direction will

require the development of new techniques.
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A The Case of Two Agents
In this section, we provide tradeoffs between ex-post EFX and ex-ante EF for the case of two agents.

Our results are demonstrated in Figure 1 (left).

In our algorithms and analysis we use the notion of a 𝛽-EFX partition, defined as follows.

Definition A.1 (𝛽-EFX partition). A partition of the items 𝑋 = (𝑋1, 𝑋2) is a 𝛽-EFX partition for

agent 𝑖 if 𝑣𝑖 (𝑋1) ≥ 𝛽 · 𝑣𝑖 (𝑋2 − 𝑔) for all 𝑔 ∈ 𝑋2 and 𝑣𝑖 (𝑋2) ≥ 𝛽 · 𝑣𝑖 (𝑋1 − 𝑔) for all 𝑔 ∈ 𝑋1.

Clearly, given a 𝛽-EFX partition (𝑋1, 𝑋2) for agent 𝑖 , we can allocate either 𝑋1 or 𝑋2 to agent 𝑖

and preserve 𝛽-EFX with respect to agent 𝑖 .

A.1 Additive Valuations
First, we provide a complete analysis of the case of two agents with additive valuations. Our analysis

uses the following technical lemma.

Lemma A.2 (Partition for additive). Assume that the valuations are additive. For any agent 𝑖 ∈
{1, 2}, let𝑋 = (𝑋1, 𝑋2) be a partition of the items with 𝑣𝑖 (𝑋1) ≥ 𝑣𝑖 (𝑋2) that minimizes |𝑣𝑖 (𝑋1)−𝑣𝑖 (𝑋2) |
and, subject to this, minimizes |𝑋1 |. Then, 𝑋 is an EFX partition for agent 𝑖 .

Proof. Suppose that 𝑣𝑖 (𝑋1) ≥ 𝑣𝑖 (𝑋2) and that it holds that 𝑣𝑖 (𝑋1 − 𝑔) > 𝑣𝑖 (𝑋2) for some 𝑔 ∈ 𝑋1,

i.e., 𝑋 is not an EFX partition for agent 𝑖 . Consider the partition 𝑋 ′ = (𝑋1 − 𝑔,𝑋2 + 𝑔). If 𝑣𝑖 (𝑔) = 0,

then this contradicts the assumption since |𝑋1 − 𝑔| < |𝑋1 |. Note that

𝑣𝑖 (𝑋 ′1) − 𝑣𝑖 (𝑋 ′2) = 𝑣𝑖 (𝑋1 − 𝑔) − 𝑣𝑖 (𝑋2 + 𝑔) = 𝑣𝑖 (𝑋1) − 𝑣𝑖 (𝑋2) − 2 · 𝑣𝑖 (𝑔)

and

0 < 𝑣𝑖 (𝑔) < 𝑣𝑖 (𝑋1) − 𝑣𝑖 (𝑋2).
It follows that

−𝑣𝑖 (𝑋1) + 𝑣𝑖 (𝑋2) < 𝑣𝑖 (𝑋 ′1) − 𝑣𝑖 (𝑋 ′2) < 𝑣𝑖 (𝑋1) − 𝑣𝑖 (𝑋2),
which contradicts the assumption that 𝑋 is chosen to minimize |𝑣𝑖 (𝑋1) − 𝑣𝑖 (𝑋2) |. □

The following proposition provides fairness guarantees for two additive valuations.

Proposition A.3. Every instance with two additive valuations admits a randomized allocation
that is ex-ante EF and ex-post EFX.

Proof. Let agents 1 and 2 choose EFX partitions 𝐴 = (𝐴1, 𝐴2) and 𝐵 = (𝐵1, 𝐵2) respectively, as
specified in Lemma A.2. Observe that if agent 2 prefers 𝐴2 over 𝐴1 or agent 1 prefers 𝐵2 over 𝐵1,

then there is a deterministic EF allocation.

Assume that both agents prefer 𝐴1 over 𝐴2 and 𝐵1 over 𝐵2. Consider the following randomized

allocation. With probability 1/2 give 𝐴1 to 2 and 𝐴2 to 1, and with probability 1/2 give 𝐵1 to 1 and

𝐵2 to 2. Both of the deterministic allocations are EFX by the assumption.

The expected value of agent 1 for the allocation that agent 1 gets is (1/2) · (𝑣1 (𝐵1) + 𝑣1 (𝐴2)). The
expected value of agent 1 for the allocation that agent 2 gets is (1/2) · (𝑣1 (𝐴1) + 𝑣1 (𝐵2)). Since 𝐴 is

chosen to minimize |𝑣1 (𝐴1) − 𝑣1 (𝐴2) |, it holds that

𝑣1 (𝐴1) − 𝑣1 (𝐴2) ≤ 𝑣1 (𝐵1) − 𝑣1 (𝐵2)

and so

(1/2) · (𝑣1 (𝐴1) + 𝑣1 (𝐵2)) ≤ (1/2) · (𝑣1 (𝐵1) + 𝑣1 (𝐴2))
which implies that agent 1 is ex-ante EF. The same argument applies to agent 2. □
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A.2 Subadditive Valuations
In this section, we analyze the case of two agents with subadditive valuations. We begin with the

following construction of a
1

2
-EFX partition that we will use to obtain improved tradeoffs for the

case of two agents.

Lemma A.4 (Partition for subadditive). Assume that the valuations are subadditive. For any
agent 𝑖 ∈ {1, 2}, let 𝑋 = (𝑋1, 𝑋2) be a partition of items with 𝑣𝑖 (𝑋1) ≥ 𝑣𝑖 (𝑋2) that minimizes
|𝑣𝑖 (𝑋1) − 𝑣𝑖 (𝑋2) |, and, subject to this, minimizes |𝑋1 |. Then, 𝑋 is a 1

2
-EFX partition for agent 𝑖 .

Proof. For the purpose of contradiction, assume that there is some 𝑔 ∈ 𝑋1 so that 𝑣𝑖 (𝑋1 − 𝑔) >
2 · 𝑣𝑖 (𝑋2). First, suppose that 𝑣𝑖 (𝑋2 + 𝑔) ≤ 𝑣𝑖 (𝑋1 − 𝑔). Then,

𝑣𝑖 (𝑋2) ≤ 𝑣𝑖 (𝑋2 + 𝑔) ≤ 𝑣𝑖 (𝑋1 − 𝑔) ≤ 𝑣𝑖 (𝑋1).

This implies that

𝑣𝑖 (𝑋1 − 𝑔) − 𝑣𝑖 (𝑋2 + 𝑔) ≤ 𝑣𝑖 (𝑋1) − 𝑣𝑖 (𝑋2),
contradicting the assumption since |𝑋1 − 𝑔| < |𝑋1 |.
Next, suppose that 𝑣𝑖 (𝑋2 + 𝑔) > 𝑣𝑖 (𝑋1 − 𝑔). Observe that

𝑣𝑖 (𝑋1 − 𝑔) − 𝑣𝑖 (𝑋2) > 𝑣𝑖 (𝑋2) (since 2 · 𝑣𝑖 (𝑋2) < 𝑣𝑖 (𝑋1 − 𝑔))
≥ 𝑣𝑖 ( [𝑚]) − 𝑣𝑖 (𝑋1) (since 𝑣𝑖 (𝑋1) + 𝑣𝑖 (𝑋2) ≥ 𝑣𝑖 ( [𝑚]))
≥ 𝑣𝑖 (𝑋2 + 𝑔) − 𝑣𝑖 (𝑋1) (since 𝑣𝑖 (𝑋2 + 𝑔) ≤ 𝑣𝑖 ( [𝑚]))

which implies that

𝑣𝑖 (𝑋2 + 𝑔) − 𝑣𝑖 (𝑋1) < 𝑣𝑖 (𝑋1 − 𝑔) − 𝑣𝑖 (𝑋2)
⇐⇒ 𝑣𝑖 (𝑋2 + 𝑔) − 𝑣𝑖 (𝑋1 − 𝑔) < 𝑣𝑖 (𝑋1) − 𝑣𝑖 (𝑋2)
⇐⇒ |𝑣𝑖 (𝑋2 + 𝑔) − 𝑣𝑖 (𝑋1 − 𝑔) | < |𝑣𝑖 (𝑋1) − 𝑣𝑖 (𝑋2) | (since 𝑣𝑖 (𝑋2 + 𝑔) ≥ 𝑣𝑖 (𝑋1 − 𝑔)),

contradicting the assumption that 𝑋 is chosen to minimize |𝑣𝑖 (𝑋1) − 𝑣𝑖 (𝑋2) |. □

Moreover, there exists an instance with submodular (and hence subadditive) valuations such that

the above partition is not a 𝛽-EFX partition for agent 𝑖 for any 𝛽 > 1/2; i.e., Lemma A.4 is tight.

Proof of tightness of Lemma A.4. To see that the partition specified in Lemma A.4 cannot

provide better guarantees, consider the following submodular valuation over items 𝑎, 𝑏, 𝑐 .

∅ 𝑎 𝑏 𝑐 𝑎𝑏 𝑎𝑐 𝑏𝑐 𝑎𝑏𝑐

𝑣1 0 2 − 𝜀 2 − 𝜀 1 2 − 𝜀 3 − 𝜀 3 − 𝜀 3 − 𝜀

One can easily verify that for some small 𝜀 > 0. the unique partition 𝑋 = (𝑋1, 𝑋2) that minimizes

|𝑣1 (𝑋1) − 𝑣1 (𝑋2) | is given by 𝑋1 = {𝑎, 𝑏} and 𝑋2 = {𝑐}.
It holds that

𝑣1 (𝑋1 − 𝑏) = 𝑣1 (𝑎) = 2 − 𝜀 = (2 − 𝜀) · 𝑣1 (𝑐) = 𝑣1 (𝑋2)
which means 𝑋 is not a 𝛽-EFX partition for any 𝛽 > 1

2−𝜀 . The result follows by talking 𝜀 → 0. □

The following propositions provide fairness tradeoffs for two subadditive valuations. We first

present an algorithm that finds an allocation that is ex-ante EF and ex-post
1

2
-EFX.

Proposition A.5. Every instance with two subadditive valuations admits a randomized allocation
that is ex-ante EF and ex-post 1

2
-EFX.
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Proof. We may assume without loss of generality, by uniformly scaling the valuation functions,

that each agent’s value for the bundle containing all items is exactly 1. Suppose agent 1 and agent 2

choose
1

2
-EFX partitions 𝐴 = (𝐴1, 𝐴2) and 𝐵 = (𝐵1, 𝐵2) respectively, as specified in Lemma A.4. If

agent 2 prefers 𝐴2 over 𝐴1 or agent 1 prefers 𝐵2 over 𝐵1 then there is a deterministic EF allocation.

For the remaining case, suppose both agents prefer𝐴1 to𝐴2 and 𝐵1 to 𝐵2. Consider the allocation

which, with probability
1

2
, gives 𝐴2 to agent 1 and 𝐴1 to agent 2, and with probability

1

2
gives 𝐵1 to

agent 1 and 𝐵2 to agent 2. By construction, both allocations are
1

2
-EFX for both agents.

Agent 1’s expected value in this random allocation is (1/2) · (𝑣1 (𝐵1) + 𝑣1 (𝐴2)). The expected
value that agent 1 has for agent 2’s bundle is (1/2) · (𝑣1 (𝐴1) +𝑣1 (𝐵2)). Since𝐴 is chosen to minimize

|𝑣1 (𝐴1) − 𝑣1 (𝐴2) |, we have
𝑣1 (𝐵1) − 𝑣1 (𝐵2) ≥ 𝑣1 (𝐴1) − 𝑣1 (𝐴2)

⇐⇒ (1/2) · (𝑣1 (𝐵1) + 𝑣1 (𝐴2)) ≥ (1/2) · (𝑣1 (𝐴1) + 𝑣1 (𝐵2))
so the allocation is ex-ante EF for agent 1. A similar argument holds for agent 2. □

We next give an algorithm that finds an allocation that is ex-ante
2

3
-EF and ex-post EFX.

Proposition A.6. Every instance with two subadditive valuations admits a randomized allocation
that is ex-ante 2

3
-EF and ex-post EFX.

Proof. Once again, we may assume without loss of generality, by uniformly scaling the valu-

ations, that each agent’s value for the bundle containing all items is exactly 1. Suppose agent 1

chooses any EFX partition 𝐴 = (𝐴1, 𝐴2) and agent 2 chooses any EFX partition 𝐵 = (𝐵1, 𝐵2). We

may assume without loss of generality that 𝑣1 (𝐴1) ≥ 𝑣1 (𝐴2) and 𝑣2 (𝐵1) ≥ 𝑣2 (𝐵2). Again, if agent 2
prefers 𝐴2 over 𝐴1 or agent 1 prefers 𝐵2 over 𝐵1, there is a deterministic EF allocation.

For the remaining case, suppose both agents prefer 𝐴1 to 𝐴2 and 𝐵1 to 𝐵2. Consider the random

allocation which, with probability 1/2, gives 𝐴2 to agent 1 and 𝐴1 to agent 2, and with probability

1/2 gives 𝐵1 to agent 1 and 𝐵2 to agent 2. Both allocations in the support are 𝐸𝐹𝑋 for both agents.

Agent 1’s expected value in this random allocation is (1/2) · (𝑣1 (𝐵1) + 𝑣1 (𝐴2)). The expected
value that agent 1 has for agent 2’s bundle is (1/2) · (𝑣1 (𝐴1) + 𝑣1 (𝐵2)). By assumption, we have

𝑣1 (𝐵1) ≥ 𝑣1 (𝐵2), and by subadditivity, 𝑣1 (𝐵1) + 𝑣1 (𝐵2) ≥ 𝑣1 (𝐵1 ∪ 𝐵2) = 1. Consequently, we have

𝑣1 (𝐵1) ≥ 1/2. Similarly, we have 𝑣1 (𝐴1) ≥ 1/2.
If 𝑣1 (𝐴1) > 2 · 𝑣1 (𝐴2), then by subadditivity 𝑣1 (𝐴1) > 1/2. Additionally, the set 𝐴1 contains only

a single item: suppose for a contradiction that 𝐴1 contains at least two items, and let 𝑔1 and 𝑔2 be

two items in 𝐴1. By subadditivity, 𝑣1 (𝐴1 − 𝑔1) + 𝑣1 (𝐴1 − 𝑔2) ≥ 𝑣1 (𝐴1), thus at least one of these
items (say 𝑔1) is such that 𝑣1 (𝐴1 − 𝑔1) ≥ (1/2) · 𝑣1 (𝐴1) > 𝑣1 (𝐴2), violating the assumption that

𝐴 is an EFX partition for agent 1. Consequently, 𝐴1 contains a single item of value greater than

1/2. By monotonicity, this item is in 𝐵1 and not 𝐵2, hence 𝐴1 ⊆ 𝐵1 and 𝐵2 ⊆ 𝐴2. Thus we have

𝑣1 (𝐵1) ≥ 𝑣1 (𝐴1) and 𝑣1 (𝐴2) ≥ 𝑣1 (𝐵2), so this random allocation is ex-ante EF for agent 1.

It remains to consider agent 1’s envy in the case where 𝑣1 (𝐴1) ≤ 2 · 𝑣1 (𝐴2). We have

𝑣1 (𝐴2) + 𝑣1 (𝐵1)
𝑣1 (𝐴1) + 𝑣1 (𝐵2)

≥ 𝑣1 (𝐴2) + 𝑣1 (𝐵1)
𝑣1 (𝐴1) + 𝑣1 (𝐵1)

≥ (1/2) · 𝑣1 (𝐴1) + 𝑣1 (𝐵1)
𝑣1 (𝐴1) + 𝑣1 (𝐵1)

≥ (1/2) · 𝑣1 (𝐴1) + (1/2)
𝑣1 (𝐴1) + (1/2)

Since 𝑣1 (𝐴1) ≤ 1 the above ratio is at least
2

3
, so agent 1 is at least ex-ante

2

3
-EF. A similar argument

applies to the bundle values for agent 2. □

Finally, the following proposition establishes some impossibility results, showing, among other

results, that Proposition A.6 is tight.

Proposition A.7. For any 0.618 ≈ 𝜑 − 1 < 𝛽 ≤ 1, there exists an instance with no randomized
allocation that is simultaneously ex-ante 𝛼-EF and ex-post 𝛽-EFX, where 𝛼 =

𝛽+1
𝛽2+2𝛽 .
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Proof. Consider the following instance with three items, 𝑎, 𝑏 and 𝑐 . Take 0 < 𝜀 < 1 − 2𝛽 .

∅ 𝑎 𝑏 𝑐 𝑎𝑏 𝑎𝑐 𝑏𝑐 𝑎𝑏𝑐

𝑣1 0 1 + 𝜀 𝛽 𝛽 1 + 𝜀 1 + 𝜀 2𝛽 2𝛽

𝑣2 0 𝛽 1 + 𝜀 1 + 𝜀 1 + 𝛽 1 + 𝛽 1 + 𝜀 1 + 𝛽

It can be verified that 𝑣1 and 𝑣2 are subadditive (but observe that 𝑣1 is not submodular because

𝑣1 (𝑎𝑏𝑐) − 𝑣1 (𝑎𝑏) > 𝑣1 (𝑎𝑐) − 𝑣1 (𝑎)). There are three deterministic 𝛽-EFX allocations: 𝑋 1 = (𝑎, 𝑏𝑐),
𝑋 2 = (𝑎𝑏, 𝑐) and 𝑋 3 = (𝑎𝑐, 𝑏). Let the corresponding probabilities be 𝑝1, 𝑝2 and 𝑝3. We have

E[𝑣1 (𝑋1)] = 𝑝1 · (1 + 𝜀) + 𝑝2 · (1 + 𝜀) + 𝑝3 · (1 + 𝜀) = 1 + 𝜀
E[𝑣2 (𝑋2)] = 𝑝1 · (1 + 𝜀) + 𝑝2 · (1 + 𝜀) + 𝑝3 · (1 + 𝜀) = 1 + 𝜀
E[𝑣1 (𝑋2)] = 𝑝1 · 2𝛽 + 𝑝2 · 𝛽 + 𝑝3 · 𝛽 = 𝛽 · (1 + 𝑝1)
E[𝑣2 (𝑋1)] = 𝑝1 · 𝛽 + 𝑝2 · (1 + 𝛽) + 𝑝3 · (1 + 𝛽) = 1 + 𝛽 − 𝑝1

In particular, observe that the maximum envy is minimized when 𝛽 · (1 + 𝑝1) = 1 + 𝛽 − 𝑝1, that is,
when 𝑝1 = 1/(𝛽 + 1), in which case we have E[𝑣1 (𝑋2)] = E[𝑣2 (𝑋1)] = 1/𝛼 , with 𝛼 =

𝛽+1
𝛽2+2𝛽 . □

As a corollary, we get: (i) there is no random allocation that is ex-ante 𝛼-EF and ex-post EFX for

𝛼 > 2

3
, and (ii) there is no random allocation that is ex-ante EF and ex-post 𝛽-EFX for 𝛽 > 𝜑 − 1.

Next, we show that Proposition A.6 is tight even with respect to two submodular agents.

Proposition A.8. For any 𝛼 > 2/3, there is an instance with two submodular valuations that
admits no randomized allocation that is ex-ante 𝛼-EF and ex-post EFX.

Proof. Consider the following instance with three items, 𝑎, 𝑏, 𝑐 , for some 𝜀 > 0.

∅ 𝑎 𝑏 𝑐 𝑎𝑏 𝑎𝑐 𝑏𝑐 𝑎𝑏𝑐

𝑣1 0 1/2 + 𝜀 1/2 1/2 1 1/2 + 𝜀 1 1

𝑣2 0 1/2 1/2 + 𝜀 1/2 1 1 1/2 + 𝜀 1

It can be verified that 𝑣1 and 𝑣2 are submodular.

Observe that there are only two deterministic EFX allocations, namely 𝑋 1 = (𝑎, 𝑏𝑐) and 𝑋 2 =

(𝑎𝑐, 𝑏). Consider a lottery 𝑋 which returns 𝑋 1
with probability 𝑝 and 𝑋 2

with probability 1− 𝑝 . We

compute

E[𝑣1 (𝑋1)] = 𝑝 · 𝑣1 (𝑋 1

1
) + (1 − 𝑝) · 𝑣1 (𝑋 2

1
)

= 𝑝 · 𝑣1 (𝑎) + (1 − 𝑝) · 𝑣1 (𝑎𝑐)
= 𝑝 · (1/2 + 𝜀) + (1 − 𝑝) · (1/2 + 𝜀)
= 1/2 + 𝜀

E[𝑣1 (𝑋2)] = 𝑝 · 𝑣1 (𝑋 1

2
) + (1 − 𝑝) · 𝑣1 (𝑋 2

2
)

= 𝑝 · 𝑣1 (𝑏𝑐) + (1 − 𝑝) · 𝑣1 (𝑏)
= 𝑝 · 1 + (1 − 𝑝) · (1/2)

and so by symmetry,

E[𝑣2 (𝑋1)] = 𝑝 · (1/2) + (1 − 𝑝) · 1
E[𝑣2 (𝑋2)] = 1/2 + 𝜀.

Note that

max

(
E[𝑣1 (𝑋2)],E[𝑣2 (𝑋1)]

)
= max

(
𝑝 · 1 + (1 − 𝑝) · (1/2), 𝑝 · (1/2) + (1 − 𝑝) · (1/2)

)
≥ 3/4
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and so at least one agent is not 𝛼-EF for any 𝛼 >
1/2+𝜀
3/4 . The result follows by taking 𝜀 → 0. □

A.3 General Monotone Valuations
Finally, we complete our analysis of the two-agent case with general (monotone) valuations, for

which we show that obtaining any approximate fairness guarantee is impossible. This is cast in the

following proposition.

Proposition A.9. There exists an instance with two agents with monotone valuations that admits
no randomized allocation that is ex-ante 𝛼-EF and ex-post 𝛽-EFX, for any 𝛼 > 0 and 𝛽 > 0.

Proof. Consider the following instance with three items, 𝑎, 𝑏, and 𝑐 . Let 𝐾 > 0.

∅ 𝑎 𝑏 𝑐 𝑎𝑏 𝑎𝑐 𝑏𝑐 𝑎𝑏𝑐

𝑣1 0 1 0 0 1 1 𝐾 𝐾

𝑣2 0 0 1 0 1 𝐾 1 𝐾

It can be verified that 𝑣1 and 𝑣2 are monotone.

Observe that there are only two deterministic 𝛽-EFX allocations (for any 𝛽 > 0), namely 𝑋 1 =

(𝑎, 𝑏𝑐) and 𝑋 2 = (𝑎𝑐, 𝑏). Consider a lottery 𝑋 which returns 𝑋 1
with probability 𝑝 and 𝑋 2

with

probability 1 − 𝑝 . We compute

E[𝑣1 (𝑋1)] = 𝑝 · 𝑣1 (𝑋 1

1
) + (1 − 𝑝) · 𝑣1 (𝑋 2

1
)

= 𝑝 · 𝑣1 (𝑎) + (1 − 𝑝) · 𝑣1 (𝑎𝑐)
= 𝑝 · 1 + (1 − 𝑝) · 1
= 1

E[𝑣1 (𝑋2)] = 𝑝 · 𝑣1 (𝑋 1

2
) + (1 − 𝑝) · 𝑣1 (𝑋 2

2
)

= 𝑝 · 𝑣1 (𝑏𝑐) + (1 − 𝑝) · 𝑣1 (𝑏)
= 𝑝 · 𝐾 + (1 − 𝑝) · 0

and so by symmetry,

E[𝑣2 (𝑋1)] = 𝑝 · 0 + (1 − 𝑝) · 𝐾
E[𝑣2 (𝑋2)] = 1.

Note that

max

(
E[𝑣1 (𝑋2)],E[𝑣2 (𝑋1)]

)
= max

(
𝑝 · 𝐾, (1 − 𝑝) · 𝐾

)
≥ 𝐾/2

and so at least one of the agents is not 𝛼-EF for any 𝛼 > 2/𝐾 . The result follows by taking

𝐾 →∞. □

B The Deterministic Envy Cycles Procedure
In this section, we expand the description of the deterministic envy cycles procedure (Algorithm 2).

Lemma 3.3. For any agent 𝑖 , the value of 𝑖 for her own bundle weakly increases at each step of the
envy cycles procedure.

Proof. In each step of the second phase, agent 𝑖’s bundle can only be modified in one of the

following two ways: either agent 𝑖 is assigned a new item, in which case agent 𝑖’s value for her

bundle weakly increases by monotonicity, or agent 𝑖 is involved in a cycle elimination step, in

which case agent 𝑖 gets a bundle that she envied before the cycle elimination step. □
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Algorithm 2 Deterministic Envy Cycles.

1: Input A set [𝑚] of items, a set [𝑛] of agents, and a profile (𝑣𝑖 )𝑖∈[𝑛] of valuation functions.

2: Output A complete allocation (𝑋1, . . . , 𝑋𝑛) that is 1

2
-EFX and EF1.

First Phase
3: (𝑋1, . . . , 𝑋𝑛) ← an arbitrary weakly separated (Def. 3.2) allocation with |𝑋𝑖 | = 1 for all 𝑖

Second Phase
4: while there is an unallocated item do
5: 𝑥 ← an arbitrary unallocated item

6: if there is an unenvied agent then
7: 𝑖 ← an arbitrary unenvied agent

8: 𝑋𝑖 ← 𝑋𝑖 + 𝑥
9: else
10: 𝑖1, . . . , 𝑖𝑘 ← an arbitrary directed cycle in the envy graph

11: (𝑌1, . . . , 𝑌𝑛) ← 𝑌𝑖𝑤 = 𝑋𝑖𝑤+1 for all 1 ≤ 𝑤 < 𝑘

12: 𝑌𝑖𝑘 = 𝑋1

13: 𝑌𝑖 = 𝑋𝑖 for 𝑖 ≠ {𝑖1, . . . , 𝑖𝑘 }
14: (𝑋1, . . . , 𝑋𝑛) ← (𝑌1, . . . , 𝑌𝑛)
15: end if
16: end while

17: return (𝑋1, . . . , 𝑋𝑛)

Lemma 3.4 ([Plaut and Roughgarden, 2018]). The allocation returned by Algorithm 2 is 1

2
-EFX

and EF1.

Proof. Since any matching gives one item to each agent, the partial allocation at the end of the

first phase is EFX (which is a stronger property than both
1

2
-EFX and EF1).

We first show that assigning an unallocated item 𝑔 to an unenvied agent 𝑗 does not violate 1

2
-EFX

or EF1. Indeed, since 𝑗 is unenvied, it holds that 𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣𝑖 (𝑋 𝑗 ) for any other agent 𝑖 . Additionally,

by weak separation, we have 𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣𝑖 (𝑔). Hence, for any item ℎ ∈ 𝑋𝑖 + 𝑔 − ℎ, it holds that
𝑣𝑖 (𝑋𝑖 ) ≥ (1/2) · (𝑣𝑖 (𝑋𝑖 ) + 𝑣𝑖 (𝑔)) (by the above)

≥ (1/2) · 𝑣𝑖 (𝑋𝑖 + 𝑔) (by subadditivity)
≥ (1/2) · 𝑣𝑖 (𝑋𝑖 + 𝑔 − ℎ) (by monotonicity)

which means that
1

2
-EFX still holds, and

𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣𝑖 (𝑋 𝑗 ) = 𝑣𝑖 ((𝑋 𝑗 + 𝑔) − 𝑔)
which means that EF1 still holds.

We now show that eliminating an envy cycle preserves EF1 and
1

2
-EFX. Indeed, after this step,

the value of any agent for her own bundle can only increase, and the set of all assigned bundles

remains the same. The result follows. □

Lemma 3.5. Algorithm 2 terminates after polynomially many steps.

Proof. To prove this, we need to bound the number of steps in the second phase. Recall that

in each step, the algorithm either (1) assigns an unallocated item to an unenvied agent, or (2)
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eliminates an envy cycle. Note that the number of steps where operation (1) is executed is at most

𝑚 since the number of unallocated items strictly decreases with every operation (1).

We now show that after every 𝑛2 consecutive steps where operation (2) is executed, there must

be a step where operation (1) is executed. It then follows that the number of steps where operation

(2) is executed is at most 𝑛2𝑚. To prove the claim, consider a step that eliminates a cycle 𝐶 in

the envy graph. As a result of this step, the arcs in the cycle 𝐶 disappear from the envy graph.

Moreover, every other arc not in 𝐶 either disappears or is shifted over by one agent in the envy

graph. Thus the number of arcs in the envy graph strictly decreases with each cycle elimination

step. This proves the claim since the number of arcs in the envy graph is less than 𝑛2. □

C The Probabilistic Serial Lottery
In this section we describe the Probabilistic Serial procedure by analyzing the PS-Lottery algorithm

of Aziz [2020]. We show that while the algorithms of Aziz [2020] and Freeman et al. [2020]

produce outcomes satisfying ex-post EF1, neither of them provides any ex-post EFX guarantees.

The following running example is used to illustrate these points.

Example C.1. Consider the following example, with 2 agents having additive valuations over

four items, as described in the table below.

apple banana celery durian

𝑣1 10 3𝜀 2𝜀 0

𝑣2 10 2𝜀 3𝜀 0

The PS-Lottery algorithm works as follows. First, make the number of agents and items equal,

by possibly adding some dummy items (of zero value), and then creating 𝑘 =𝑚/𝑛 copies of each

agent. In Example C.1, the required number of copies is 𝑘 = 2 copies per agent. Denote by 11 and

12 the two copies of agent 1, and by 21 and 22 the two copies of agent 2.

Second, simulate the eating procedure of Bogomolnaia and Moulin [2001] for 𝑘 units of time.

Initially, all items are unconsumed, and during the eating process, items get fractionally consumed

by agents. For every 1 ≤ 𝑡 ≤ 𝑘 , during the 𝑡-th unit of time, the 𝑡-th copy of each agent participates

in the eating process and consumes her favourite available item at a constant rate of one item per

one unit of time. Notably, multiple agents may be consuming the same item simultaneously. If at

any point, an item is fully consumed, then each one of the agents who are currently eating this

item switches to her respective next-favorite item. Here, if an agent is indifferent between multiple

items, she selects an arbitrary one. Note that after 𝑘 units of time, every item is fully consumed.

Figure 4 illustrates the eating procedure described above by showing (a) the intermediate state

after one unit of time, and (b) the final outcome after two units of time. The outcome can be thought

of as a fractional allocation of the items to the copied agents, i.e., a real matrix (𝑍𝑖𝑟 , 𝑗 )𝑖∈[𝑛],𝑟 ∈[𝑘 ], 𝑗∈[𝑚]
where the 𝑟 -th copy of agent 𝑖 receives a 𝑍𝑖𝑟 , 𝑗 fraction of item 𝑗 .

The PS-Lottery algorithm then decomposes the fractional allocation into a lottery over integral
allocations using the Birkhoff-von Neumann theorem (see Section 3.2). The resulting lottery for

the running example is given below:

©­­­«
𝑎 𝑏 𝑐 𝑑

11 0.5 0.5 0 0

12 0 0.5 0 0.5

21 0.5 0 0.5 0

22 0 0 0.5 0.5

ª®®®¬ = 0.5 ·
©­­­«
𝑎 𝑏 𝑐 𝑑

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

ª®®®¬ + 0.5 ·
©­­­«
𝑎 𝑏 𝑐 𝑑

0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

ª®®®¬.
images: flaticon.com
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11 21

11

21

(a) After one unit of time

11 21

11 12

21 22

12 22

(b) After two units of time

Fig. 4. The eating procedure of Probabilistic Serial, applied to the instance of Example C.1.

Here, the fractional allocation obtained via the eating procedure is given on the left-hand side,

and it can be implemented by a lottery over the two integral allocations given in the middle and

right-hand side matrices, each with probability 1/2.
The algorithm then samples one integral allocation according to the obtained probability distri-

bution over integral allocations, and combines the items assigned to all copies of agent 𝑖 into one

bundle that is assigned to agent 𝑖 in the final allocation. Hence, in the running example, the final

allocation is either the allocation where agent 1 receives the bundle {𝑎, 𝑏} and agent 2 receives the

bundle {𝑐, 𝑑}, or the allocation where agent 1 receives the bundle {𝑏, 𝑑} and agent 2 receives the

bundle {𝑎, 𝑐}, each with equal probability.

The result of this process is ex-ante EF by the properties of the eating procedure [Bogomolnaia

and Moulin, 2001]. Additionally, Aziz [2020] showed that the outcome is ex-post EF1. However,

neither the algorithm of Aziz [2020] (described above) nor the algorithm of Freeman et al. [2020]

provides any EFX guarantees, as they always return balanced allocations, where all agents receive
the same number of items. In general, there may be no balanced allocations that satisfy 𝛽-EFX for

any 𝛽 > 0. This is demonstrated in our running example, where in any balanced allocation, the

agent who gets the apple also gets another item, which inevitably violates the 𝛽-EFX condition for

sufficiently small 𝜀.

D Omitted Propositions and Examples
D.1 The Analysis of Our Main Algorithm is Tight
In this section, we show that the analysis of our main algorithm is tight. We also show that the

simple modification of selecting the unenvied agent uniformly at random does not give any better

guarantees. We use the following example to demonstrate these facts.

Example D.1. Let 𝑛, 𝑘, 𝜀 > 0. Consider an instance with 𝑛 agents and 𝑛 + 𝑘 items, with the

following additive valuations:

1 2 . . . 𝑛 − 1 𝑛 𝑛 + 1 . . . 𝑛 + 𝑘
𝑣1 1 + 𝑛𝜀 1 + (𝑛 − 1)𝜀 . . . 1 + 2𝜀 1 + 𝜀 1 . . . 1

𝑣2 1 + 𝑛𝜀 1 + (𝑛 − 1)𝜀 . . . 1 + 2𝜀 1 + 𝜀 1 . . . 1

...
...

...
. . .

...
...

...
. . .

...

𝑣𝑛−1 1 + 𝑛𝜀 1 + (𝑛 − 1)𝜀 . . . 1 + 2𝜀 1 + 𝜀 1 . . . 1

𝑣𝑛 1 1 . . . 1 1 + 𝜀 1 . . . 1
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During the eating procedure, each of the agents 1, . . . , 𝑛 − 1 consumes a
1

𝑛−1 fraction of each of

the items 1, . . . , 𝑛 − 1, and agent 𝑛 consumes the entire item 𝑛. Therefore, after the first phase of

the algorithm, there are exactly two agents that no one envies: some agent 𝑖 ∈ {1, . . . , 𝑛 − 1} (who
gets item 𝑛 − 1) and agent 𝑛 (who gets item 𝑛).

Consider first the case with 𝑘 = 1 to see that no deterministic tie-breaking rule for selecting the

unenvied agent in line 9 gives 𝛼-EF for any 𝛼 > 1/2. Indeed, no matter which agent gets item 𝑛 + 1
during the second phase of the algorithm, any other agent will envy her with a factor arbitrarily

close to 2 for sufficiently small 𝜀.

We also show that selecting the unenvied agent uniformly at random from the set of unenvied

agents does not give 𝛼-EF for any 𝛼 > 1/2. Here, let us consider 𝑛 > 𝑘 > 1. Observe that agent 𝑛

is assigned one of the items 𝑛 + 1, . . . , 𝑛 + 𝑘 with probability 1 − 1/2𝑘 . Indeed, for every outcome

of the first phase of the algorithm, the only outcome of the second phase in which 𝑛 does not get

any of the additional items is where for each 1 ≤ 𝑤 ≤ 𝑘 , the agent who got item 𝑛 −𝑤 in the first

phase of the algorithm, gets item 𝑛 +𝑤 in the second phase, which happens with probability 1/2𝑘 .
Therefore, agent 1’s expected value for agent 𝑛’s bundle is (1 + 𝜀) + (1 − 1/2𝑘 ) while her expected
value for her own bundle is (1 + 𝑛+2

2
𝜀) + 𝑘

𝑛
. The claim follows by taking 𝑘 = log𝑛 and 𝑛 →∞.

D.2 Ex-ante Guarantees of Random Serial Dictatorship
In this section we establish an upper bound of

1√
2

on the ex-ante EF guarantee of random serial

dictatorship. This improves upon the known bound of
4

5
, from Bogomolnaia and Moulin [2001].

Proposition D.2. Random serial dictatorship is not ex-ante 𝛼-EF for any 𝛼 > 1/
√
2.

Proof. Let 𝜀 > 0, and consider the following instance with 𝑛 additive agents and 𝑛 items, where

𝑘 is a parameter (to be determined later) and 𝑝 = 𝑘/𝑛.

𝑎 𝑏 𝑐1 . . . 𝑐𝑘 𝑑1 . . . 𝑑𝑛−𝑘−2

𝑣1 1 + 𝜀 1 0 . . . 0 0 . . . 0

𝑣2 1 1 + 𝜀 0 . . . 0 0 . . . 0

𝑣3 1 0 1 + 𝜀 . . . 1 + 𝜀 𝜀 . . . 𝜀
...

...
...

...
. . .

...
...

. . .
...

𝑣𝑛 1 0 1 + 𝜀 . . . 1 + 𝜀 𝜀 . . . 𝜀

Consider serial dictatorship with a uniformly random order. Observe that agents 3, . . . , 𝑛 are

identical, and let us denote by 𝑡 the (𝑘 + 1)st of them to arrive. We proceed by a case analysis,

based on the relative arrival order of agents 1, 2 and 𝑡 . For each one of these events, we write its

probability, and the items chosen by agent 1 and by agent 2.

Relative ordering Probability Item chosen by 1 Item chosen by 2

1, 2, 𝑡 1

2

𝑘+1
𝑛−1

𝑘+2
𝑛
≈ 𝑝2

2
𝑎 𝑏

2, 1, 𝑡 1

2

𝑘+1
𝑛−1

𝑘+2
𝑛
≈ 𝑝2

2
𝑎 𝑏

1, 𝑡, 2 𝑘+1
𝑛−1

𝑛−𝑘−2
𝑛

≈ 𝑝 (1 − 𝑝) 𝑎 𝑏

2, 𝑡, 1 𝑘+1
𝑛−1

𝑛−𝑘−2
𝑛

≈ 𝑝 (1 − 𝑝) some 𝑑𝑖 𝑏

𝑡, 1, 2 1

2

𝑛−𝑘−2
𝑛−1

𝑛−𝑘−1
𝑛

≈ (1−𝑝 )
2

2
𝑏 some 𝑑𝑖

𝑡, 2, 1 1

2

𝑛−𝑘−2
𝑛−1

𝑛−𝑘−1
𝑛

≈ (1−𝑝 )
2

2
some 𝑑𝑖 𝑏
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We observe that agent 2 is more likely to receive one of the top items (item 𝑎 or 𝑏) than agent 1,

which creates ex-ante envy from agent 1 to agent 2. More precisely

E[𝑣1 (𝑋1)] = (1 + 𝜀) ·
(
𝑘 + 1
𝑛 − 1

)
+ 1 ·

(
1

2

· 𝑛 − 𝑘 − 2
𝑛 − 1 · 𝑛 − 𝑘 − 1

𝑛

)
≈ 1 + 𝑝2

2

+ 𝜀𝑝

E[𝑣1 (𝑋2)] = 1 ·
(
1 − 1

2

𝑛 − 𝑘 − 2
𝑛 − 1

𝑛 − 𝑘 − 1
𝑛

)
≈ 1 − (1 − 𝑝)

2

2

.

The ex-ante envy guarantee is upper-bounded by the ratio E[𝑣1 (𝑋1)]/E[𝑣1 (𝑋2)]. We take 𝑛 arbi-

trarily large, and 𝜀 arbitrarily small, to simplify the expression, which gives

E[𝑣1 (𝑋1)]
E[𝑣1 (𝑋2)]

≈ 1 + 𝑝2
2 − (1 − 𝑝)2

The above ratio reaches a minimum of 1/
√
2 when 𝑝 =

√
2 − 1. More precisely, we choose 𝑘 =

⌊𝑛 · (
√
2−1)⌋, which shows that random serial dictatorship is not ex-ante 𝛼-EF for any 𝛼 > 1/

√
2. □

E Omitted Proofs from Section 3.4
Lemma 3.17. Stochastic coverage satisfies the following properties:
(i) transitivity: for all collections𝑈 ,𝑉 ,𝑊 , if𝑈 ⪰SC 𝑉 and 𝑉 ⪰SC𝑊 , then𝑈 ⪰SC𝑊 .
(ii) concatenability: for all collections 𝑆,𝑇 ,𝑈 ,𝑉 , if 𝑆 ⪰SC 𝑇 and𝑈 ⪰SC 𝑉 , then (𝑆,𝑈 ) ⪰SC (𝑇,𝑉 ).
(iii) disjoint additivity: for all non-negative random variables 𝑥 and 𝑦 that are positive on disjoint

events, it holds that (𝑥,𝑦) ⪰SC (𝑥 + 𝑦) and (𝑥 + 𝑦) ⪰SC (𝑥,𝑦).

Proof. Properties (i) and (ii) follow directly from the definition. For property (iii), observe that

for any random variables 𝑥 and 𝑦 that are positive on disjoint events, we have

P[𝑥 + 𝑦 ≥ 𝑡] = P[𝑥 + 𝑦 ≥ 𝑡 and 𝑥 > 0] + P[𝑥 + 𝑦 ≥ 𝑡 and 𝑦 > 0] = P[𝑥 ≥ 𝑡] + P[𝑦 ≥ 𝑡]
for all 𝑡 > 0, which concludes the proof. □

Lemma 3.18 (Extendability). For all non-negative random variables 𝑥,𝑦, 𝑧, if
(i) it holds that (𝑥, 𝑥) ⪰SC 𝑦,
(ii) there is an event 𝑆 such that 𝑥 , 𝑦 and 𝑧 are non-zero only if 𝑆 holds, and
(iii) there is some constant threshold 𝛿 such that whenever 𝑆 holds, it also holds that 𝑥 ≥ 𝛿 ≥ 𝑧,
then it holds that (𝑥, 𝑥) ⪰SC (𝑦, 𝑧).

Proof. Assume that all three properties hold. For all 𝑡 > 𝛿 , we have

P[𝑧 ≥ 𝑡] = P[𝑧 ≥ 𝑡 and 𝑆 holds] + P[𝑧 ≥ 𝑡 and 𝑆 does not hold] = 0

and thus 2 · P[𝑥 ≥ 𝑡] ≥ P[𝑦 ≥ 𝑡] + P[𝑧 ≥ 𝑡]. For all 0 < 𝑡 ≤ 𝛿 , we have
2 · P[𝑥 ≥ 𝑡] = 2 · P[𝑆 holds] ≥ P[𝑦 > 0] + P[𝑧 > 0] ≥ P[𝑦 ≥ 𝑡] + P[𝑧 ≥ 𝑡],

which concludes the proof. □
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