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Optimal Stopping with Interdependent Values

SIMON MAURAS∗, INRIA, FairPlay joint team, France

DIVYARTHI MOHAN, Tel Aviv University, Israel
REBECCA REIFFENHÄUSER, University of Amsterdam, Netherlands

We study online selection problems in both the prophet and secretary settings, when arriving agents have

interdependent values. In the interdependent values model, introduced in the seminal work of Milgrom and

Weber [1982], each agent has a private signal and the value of an agent is a function of the signals held

by all agents. Results in online selection crucially rely on some degree of independence of values, which is

conceptually at odds with the interdependent values model. For prophet and secretary models under the

standard independent values assumption, prior works provide constant factor approximations to the welfare.

On the other hand, when agents have interdependent values, prior works in Economics and Computer Science

provide truthful mechanisms that obtain optimal and approximately optimal welfare under certain assumptions

on the valuation functions.

We bring together these two important lines of work and provide the first constant factor approximations

for prophet and secretary problems with interdependent values. We consider both the algorithmic setting,

where agents are non-strategic (but have interdependent values), and the mechanism design setting with

strategic agents. All our results are constructive and use simple stopping rules.

CCS Concepts: • Theory of computation → Algorithmic game theory and mechanism design; Online
algorithms.

Additional Key Words and Phrases: Optimal Stopping, Online Selection, Truthful Mechanisms
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1 Introduction
Consider a single-item auction, say for a piece of art, where buyers arrive online. The goal is to sell

the item to the agent with the highest value, while making the decisions about whether to select

each buyer immediately on their arrival. Additionally, buyers’ values can depend on one another: a

buyer interested in decorating their living room might be influenced by the impression of those

arriving before him, and spontaneously attribute a higher value to the item if it is very popular. A

buyer that sees the item as a pure investment, on the other hand, will be interested in its resale

value alone, which is fully determined only after the arrival of the very last buyer. We analyze

settings of the above type, formally, of online selection processes with interdependent values. This

means, we combine concepts from the areas of online selection/optimal stopping with those from
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the theory on interdependent values, both of which have raised a lot of recent interest due to their

central and important applications in economics.

Online selection. In the online settings we consider, formally, a sequence of 𝑛 numbers arriving

in an online fashion. The goal is to select the highest number, with the restriction that for each one,

we have to irrevocably select or reject it at the time of arrival. Without additional assumptions, no

online algorithm can achieve nontrivial competitive ratio in this setting.

The two central models considered to enable close-to-optimal competitive ratios w.r.t. the

(expected) maximum are prophet inequalities, and the secretary model. In prophet inequalities,

originally introduced in the 70s, each of the 𝑛 numbers is assumed to be drawn independently from

a known distribution 𝐷𝑖 on arrival. This assumption allows for a (best-possible) 2−approximation

to the expected optimum via simple threshold policies (e.g., Krengel and Sucheston [1978]). In the

secretary setting, the impossibility of obtaining good online algorithms is instead circumvented by

the assumption that all numbers will arrive not adversarially, but in uniformly random order. The
famous, original secretary problem dates back even further, where an optimal

1

𝑒
-approximation

to the maximum (originally for the ordinal variant) was known since the early 60s (see Dynkin

[1963]). Both models have in past years fueled a large variety of research directions, comprising

many combinatorial problem variants and constraints on the selectable sets of online elements.

Most relevant to us, there are strong connections to economics (especially online auctions and

e-commerce) since applications comprise a large number of auction settings.

Interdependence. The celebrated interdependent values (IDV) model, introduced by Milgrom

and Weber [1982] building up on Wilson [1969],
1
is well-studied in the economics literature when

considering settings where agents have partial information and their values may depend on the

information of all bidders. For instance, suppose we have a house for sale, different potential buyers

might have different partial information about the house (e.g., one may have information regarding

the school district of the neighborhood and another might have a better assessment of the structural

integrity) and a buyer’s value for the house can be influenced by any or all of these information. In

the IDV model, for a single-item allocation problem, each agent 𝑖 has a private signal 𝑠𝑖 and a public

valuation function 𝑣𝑖 (·) that maps the signals of all buyers (𝑠1, . . . , 𝑠𝑛) to a value for the item; that

is, 𝑣𝑖 (s) is 𝑖’s value for the item given a signal profile s = (𝑠1, . . . , 𝑠𝑛). There is a long literature in
economics and computer science studying mechanism design in the interdependent values model.

While in the standard model with private values the well-known VCG auction obtains optimal

welfare truthfully, in the IDV model truthful welfare maximization is possible if and only if the

valuation functions satisfy the single-crossing condition [Ausubel et al., 1999, Dasgupta and Maskin,

2000, Maskin, 1992]. Informally, under the single-crossing condition, each agent’s signal has the

most impact on their own valuation function compared to others’ valuation functions. Recent

work in EconCS takes an algorithmic approach and investigates approximation guarantees. Of

particular interest to this paper is the result that when the valuation functions satisfy submodularity
over signals (SOS), there are truthful mechanisms that obtain a constant factor approximation to

the optimal welfare [Eden et al., 2019, 2023, Lu et al., 2022]. Informally, a valuation function is

submodular over signals if for each 𝑗 the impact of increasing 𝑠 𝑗 is higher when the other signals

𝑠− 𝑗 are lower.

Online selection with interdependence. In order to marry the two directions above and obtain

online algorithms for settings with interdependent valuations, we assume that agents arrive online,

and the algorithm has to select one of them to sell an item or service to. We make the standard

1
The 2020 Economics Nobel Prize was awarded to Milgrom and Wilson for their work on IDV and auction design [for the

Prize in Economic Sciences in Memory of Alfred Nobel, 2020].



Optimal Stopping with Interdependent Values EC ’24, July 8–11, 2024, New Haven, CT, USA

assumption that agents’ valuation functions are public and known beforehand. However, agents

have private signals (e.g., opinions they form on some specific property of a house when seeing it)

which are drawn from independent distributions
2
.

For our results on interdependent values in online selection, an important distinction is whether

or not the agents’ values can depend on future (and hence, yet undetermined) signals. We therefore

make different modeling assumptions on the nature of the underlying online market, specifically

on the set of signals that can influence each agent’s value:

• In a first setting, we consider myopic agents, who promptly consume the item once selected;

and hence receive a value dependent only on signals observed so far, minus potentially a

prompt payment charged immediately by the algorithm (which as well can only depend on

signals observed so far).

• In a second setting, we consider farsighted agents, who if selected will benefit from the item

also in the future; and hence receive a value dependent on all signals, minus potentially a

tardy payment charged only at the end of the online algorithm (which can depend on all

signals).

Note that we do not give results for myopic agents with tardy payments (since for the former,

payments can also be determined promptly), or for farsighted agents with prompt payments (since

these are only implementable when assuming that agents do not have any knowledge of other

agents’ signals or even distributions beforehand, i.e. not for the commonly used notions of incentive

compatibility).

1.1 Our results
We consider agents with interdependent values for a single item, in both the prophet and secretary

models. In contrast to previous work, we do not restrict our view to submodular-over-signals

valuations, but only make the weaker assumption of subadditivity (which, notably, constitutes a

natural boundary for constant-factor online algorithms, which are incompatible with the existence

of arbitrary complements). Our results comprise the algorithmic setting, and the strategic setting

with selfish agents for which we give (ex-post) incentive compatible mechanisms. We summarize

them in the table below. In addition to the results listed in the table, note that for the stronger

assumption of submodular over signals valuations, the factor of 2𝑒 in the secretary algorithm with

farsighted/myopic agents can be improved to a 4, see Appendix A.

Agents Algorithm Mechanism

Prophet

farsighted Ω(𝑛) (Theorem 1) Ω(𝑛)
myopic ≤ 4 (Theorem 2) ≤ 8 (Theorem 3)

Secretary

farsighted ≤ 2𝑒 (Theorem 4) ≤ 4𝑒 (Theorem 5)

myopic ≤ 2𝑒 (Theorem 4) ≤ 4𝑒 (Theorem 5)

Table 1. Approximation ratio of our algorithms (no incentive constraints) and mechanisms (EPIC), when
agents have subadditive-over-signals valuations.

In particular, we obtain constant-factor approximation algorithms and mechanisms – or prove

their impossibility – for each possible combination. This constitutes not only the first, but a close-to

complete picture of the extent to which interdependent values and central paradigms in online

selection can be combined. Notably, our algorithms exactly lose a factor of 2 compared to the

2
Note that the assumption of underlying distributions is not necessary in the secretary model, but is w.l.o.g. as long as we

make no further assumptions on the distributions themselves.
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standard independent values settings, or a factor 4 when we also consider incentives. Moreover,

when removing the dependence of the agents’ valuations on any signal except their own, our

algorithms recover the original tight ratios from the prophet inequality and secretary problem.

Our constants are in general not optimal; this is in part due to the fact that for the corresponding

offline settings with interdependence, optimal constants are also yet unknown.

1.2 Related Work
Interdependent values. There is a rich economics literature on interdependent settings over

the past 50 years. A common impossibility result emerging in the literature states that truthful

welfare maximization is only possible if the valuations satisfy a strong condition such as single-

crossing [Ausubel et al., 1999, Che et al., 2015, Dasgupta and Maskin, 2000, Ito and Parkes, 2006,

Jehiel and Moldovanu, 2001, Jehiel et al., 2006]. In recent years the computer science literature

has seen much interest in studying the IDV model through the lens of approximation, in order to

circumvent these impossibilities (e.g., [Chawla et al., 2014, Chen et al., 2022, Cohen et al., 2023,

Eden et al., 2018, 2019, 2021, 2022, Gkatzelis et al., 2021, Roughgarden and Talgam-Cohen, 2016]).

Eden et al. [2018] consider a setting with an approximate single-crossing condition and obtain

approximately optimal welfare truthfully. In a breakthrough result, Eden et al. [2019] establish

a 4-approximation when the valuations satisfy submodularity
3
over signals without any single-

crossing type assumption and also extend the results to combinatorial auctions under an additional

separability condition. Lu et al. [2022] provide an improved approximation bound of 3.315 for

single-item auctions and Amer and Talgam-Cohen [2021] provide a 2-approximation in the special

case of binary signals. More recently, works of Eden et al. [2023, 2024, 2022] consider the more

general setting where the valuations are private and establish a constant approximation under

submodular valuations for single-item and multi-unit auctions .

Roughgarden and Talgam-Cohen [2016] and Li [2013] study simple prior-independent mecha-

nisms that obtain approximately optimal revenue under different assumptions, and Chawla et al.

[2014] further minimize the assumptions needed. All these works assume some form of single-

crossing type condition on the valuations.

Prior works have also considered interdependent values in other settings beyond auctions. For

example, Chakraborty et al. [2010] study interdependence in matching markets, Cohen et al. [2023]

study the public projects setting with interdependent values and Birmpas et al. [2023] consider

interdependence in the fair division problem.

Prophet inequality. Prophet Inequalities, originally introduced by Krengel and Sucheston [1977,

1978] and Samuel-Cahn [1984], are one of the most central concepts in decision making for

stochastic settings. After being employed for algorithmic mechanism design in online markets by

Hajiaghayi et al. [2007] and Chawla et al. [2010], prophet inequalities have been obtained for a large

variety of prominent problem settings, e.g. online selection with matroid constraints [Kleinberg

and Weinberg, 2012], or online matchings [Alaei et al., 2012], with a strong focus on economic

settings like combinatorial auctions [Correa and Cristi, 2023, Dütting et al., 2020]. While most

results crucially exploit independence of the value distributions 𝐷𝑖 , few results are also known for

restricted types of dependence (see e.g. [Immorlica et al., 2023, Samuel-Cahn, 1991]). Our work, in

a similar spirit, follows a new approach to incorporating dependence between online values: here,

while the distributions of online signals are independent, valuations are obtained from signals in

a dependent fashion. A model of similar type (for myopic agents), to the best of our knowledge,

has only been captured previously by [Brunel and Krengel, 1979], who prove the existence of a

3
Eden et al. [2019] observe in their conclusion that some of their results extend to subadditive valuation functions.
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2(1+
√

3)-approximation when the valuations are subadditive over signals, with a non-constructive

proof.

Secretary problem. Following the optimal solution for the original secretary problem by Dynkin

[1963], a rich body of work has introduced extensions and applications in various directions,

perhaps most famous among which are matroid secretary problems initiated by Babaioff et al. [2007].

Similarly to prophet inequalities, one major focus has been on mechanism design. For example,

the optimal approximation factor of
1

𝑒
has been recovered for bipartite matchings [Reiffenhäuser,

2019] and XOS combinatorial auctions [Kesselheim et al., 2013]. Our results contribute to the large

body of work on the above paradigms, by extending the range of prophet and secretary algorithms

to applications with interdependent valuations.

2 Preliminaries and Model
We consider a problem where 𝑛 agents have interdependent values: each agent 𝑖 ∈ [𝑛] holds some

private signal 𝑠𝑖 ∈ R+ and a publicly known monotone valuation function 𝑣𝑖 : R𝑛
≥0

→ R≥0, where

monotonicity means that 𝑣𝑖 is non-decreasing w.r.t. the input vector. We denote s = (𝑠1, . . . , 𝑠𝑛), and
for every subset 𝑋 ⊆ [𝑛] we write s𝑋 = (11∈𝑋 · 𝑠1, . . . ,1𝑛∈𝑋 · 𝑠𝑛), that is, we replace 𝑠𝑖 by 0 if 𝑖 ∉ 𝑋 .

We focus on online settings, where agent 𝑡 ∈ [𝑛] arrives at time 𝑡 and we observe the signal 𝑠𝑡
(while, as is standard in the interdependent values literature, the valuation functions are publicly

known). We say that an agent 𝑖 is:

• myopic, if their value only depends on the signals received so far, i.e. is equal to 𝑣𝑖 (s[𝑖 ]).
• farsighted, if their value depends on all signals, i.e. is equal to 𝑣𝑖 (s[𝑛]).

Myopic agents model situations where the value is obtained instantly on selection, e.g. when agents

bid for a good and their value depends on the signals they observed from agents arriving previously.

Farsighted agents model the setting where e.g. a good is assigned right now, but the opinion of

people that have not yet arrived influences the value it has to the winning agent (for instance, an

investment they might want to re-sell later). We design online algorithms, which observe agents

one at a time, deciding whether to continue (and reject the current agent) or to stop (and select, i.e.

assign the good to the current agent). The objective is to maximize the expected social welfare, that
is, the expected value of the agent selected by the algorithm.

For approximation purposes, we compare our algorithms to the expectation of the maximum

value (in hindsight). In the secretary models, where instead of distributions, an instance is just a

set of 𝑛 fixed signal values, the benchmark accordingly reduces to be the maximum such value.

Note that this benchmark depends on whether agents are farsighted or myopic. The two settings

are not directly comparable, as both the social welfare of the algorithm and of the benchmark are

larger with farsighted agents.

2.1 Subadditive valuation functions
We consider a natural class of valuations called subadditive over signals (or simply subadditive).

It captures contexts where signals (information) are not complements, roughly referring to the

notion that they do not increase in value by combining them. This includes most settings explored

in the literature, such as the mineral rights model [Wilson, 1969] and the resale model [Klemperer,

1998, Myerson, 1981].

Definition 1 (Subadditive over signals). We say a valuation function 𝑣 (·) is subadditive over signals,
if for any signal profile s and any 𝑋 ⊆ [𝑛] we have

𝑣 (s) ≤ 𝑣 (s𝑋 ) + 𝑣 (s[𝑛]\𝑋 )
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We note that the class of subadditive valuation functions is strictly more general than the

class of valuation functions that are submodular over signals, which are well-studied in the IDV

literature [Amer and Talgam-Cohen, 2021, Cohen et al., 2023, Eden et al., 2019, 2023, 2022, Lu et al.,

2022].

2.2 Incentive compatibility
In order to incentivize the agents to report truthfully, mechanisms (usually) charge the winning

agent some payment. In general, a mechanism is an allocation algorithm together with a payment

rule. When agents are farsighted, we allow those payments to be tardy, i.e. to only specify the paid

amount after the last agent has arrived. When agents are myopic, we require the algorithm to have

prompt payments, i.e. the price is specified and paid immediately when an agent is chosen.

For each agent 𝑖 let 𝑥𝑖 (s[𝑖 ]) be the indicator variable where 𝑥𝑖 = 1 if and only if 𝑖 is selected by

the given algorithm and 𝑥𝑖 = 0 else. Let 𝑝𝑖 (s) ≥ 0 denote the payment charged (wlog 𝑝𝑖 = 0 if

𝑥𝑖 = 0). Notice that in a prompt mechanism, 𝑝𝑖 only depends on reported signals s[𝑖 ] .

Definition 2 (EPIC). A mechanism (x, p) is Ex-Post Incentive Compatible (EPIC) if truth-telling is
a Nash equilibrium, that is if for every 𝑖 ∈ [𝑛], s, 𝑠′𝑖 we have

𝑥𝑖 (s[𝑖 ]) · 𝑣 − 𝑝𝑖 (s) ≥ 𝑥𝑖 (s[𝑖−1], 𝑠
′
𝑖 ) · 𝑣 − 𝑝𝑖 (s−𝑖 , 𝑠′𝑖 )

where 𝑣 is the value of agent 𝑖 , which is equal to 𝑣𝑖 (s) if agent 𝑖 is farsighted, and equal to 𝑣𝑖 (s[𝑖 ]) if
agent 𝑖 is myopic.

Roughgarden and Talgam-Cohen [2016] give a sufficient (and necessary) condition for an alloca-

tion rule to be implementable truthfully, which we recall in Lemma 1.

Lemma 1. For any deterministic allocation rule 𝑥𝑖 (s[𝑖 ]) which is monotone in 𝑠𝑖 , that is

∀𝑖,∀s,∀𝑠′𝑖 ≥ 𝑠𝑖 , 𝑥𝑖 (s[𝑖 ]) ≤ 𝑥𝑖 (s[𝑖−1], 𝑠
′
𝑖 ),

there exists a payment 𝑝𝑖 (s) such that the mechanism (x, p) is EPIC. Moreover, if agents are myopic,
then the price 𝑝𝑖 only depends on signals s[𝑖 ] .

Proof. From Roughgarden and Talgam-Cohen [2016]. The payment is equal to

𝑝𝑖 (s) = 𝑥𝑖 (s[𝑖 ]) · inf{𝑣𝑖 (s−𝑖 , 𝑠′𝑖 ) | 𝑠′𝑖 ≥ 0 such that 𝑥𝑖 (s[𝑖−1], 𝑠
′
𝑖 ) = 1}

when agent 𝑖 is farsighted; and is equal to

𝑝𝑖 (s[𝑖 ]) = 𝑥𝑖 (s[𝑖 ]) · inf{𝑣𝑖 (s[𝑖−1], 𝑠
′
𝑖 ) | 𝑠′𝑖 ≥ 0 such that 𝑥𝑖 (s[𝑖−1], 𝑠

′
𝑖 ) = 1}

when agent 𝑖 is myopic. That is, the payment of the winning agent 𝑖 equals the minimum value of 𝑖

such that 𝑖 remains the winner, given the signals of the other agents. □

Although we make only very limited use of randomization in our results, note that (universally)

truthful, randomized mechanisms can be defined as lotteries over deterministic EPIC mechanisms.

3 The Prophet Model
We first consider the prophet model, where agents arrive online in an adversarial order and the

signals are drawn independently from a known prior distribution. Formally, we have 𝑛 agents, each

characterized by a signal distribution 𝐷𝑖 and a valuation function 𝑣𝑖 (·). An adversary dictates the

order in which agents arrive; without loss of generality, we relabel the agents so that agent 𝑡 arrives

at time 𝑡 . Upon the arrival of agent 𝑖 , their signal 𝑠𝑖 is independently drawn from the distribution 𝐷𝑖 .

At this point, we need to decide whether to irrevocably reject the agent and continue the selection

process, or to accept the agent and conclude the selection. Our goal is to design simple online
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algorithms that maximize the expected value of the accepted agent. We evaluate the performance

of our algorithms by comparing it to the expected maximum value.

In Section 3.1 we study the setting with far-sighted agents and show a strong impossibility that

no online algorithm can obtain better than Ω(𝑛)-approximation to the expected maximum value.

In Section 3.2 we consider myopic agents and provide a simple online algorithm that obtains a

4-approximation to the expected maximum welfare. Finally, we extend this result to settings with

incentive constraints in Section 3.3.

3.1 Impossibility with far-sighted agents
We show that for farsighted agents, no algorithm can guarantee a competitive ratio below Ω(𝑛).
Our proof, on a high level, captures the fact that when values are determined by the very last signal

to arrive, any choice made before that is reduced to essentially guessing.

Theorem 1. In the prophet setting with farsighted agents, any algorithm has a competitive ratio of
at least Ω(𝑛).

Proof. Assume that signal 𝑠𝑛 is drawn uniformly in [0, 1] and that each agent 𝑖 has a value

𝑣𝑖 (s) = 2
𝑖 · 1[𝑠𝑛 ≥ 1 − 1/2

𝑖 ]. Then the expected maximum value is

E[𝑂𝑃𝑇 ] =
𝑛−1∑︁
𝑖=1

2
𝑖 · P[1 − 1/2

𝑖+1 > 𝑠𝑛 ≥ 1 − 1/2
𝑖 ] + 2

𝑛 · P[𝑠𝑛1 ≥ 1 − 1/2
𝑛] = 𝑛 + 1

2

Note that in the myopic setting, all agents always have valuation 0, except for the 𝑛th agent. For

farsighted agents, however, the realized signal 𝑠𝑛 (drawn from distribution 𝐷𝑛) determines the

point in time at which the sequence of increasing (2𝑖 )-values stops (and only zeroes arrive from

then on). Any deterministic algorithm stops at a fixed 𝑖 and yields an expected value of exactly 1

(for any choice of 𝑖). This is because 𝑣𝑖 (s) = 2
𝑖
with probability 1/2

𝑖
and 0 otherwise. Using Yao’s

Lemma [Yao, 1977], randomized algorithms cannot give any improved approximation ratio on this

random instance. Thus, we cannot do better than an Ω(𝑛) approximation. □

Notice that an equivalent example, replacing 𝑠𝑛 with 𝑠1, shows that the algorithm must indeed

observe signals, and not only the agents’ values on the signals of agents arrived so far.

3.2 Algorithm with myopic agents
Given the impossibility of any constant approximation with farsighted agents, we switch our focus

to myopic agents. However, the following property observes that without any assumption (such as

subadditivity) on the complementarity of signals, it is not possible to guarantee a competitive ratio

below Ω(𝑛).

Proposition 1. In the prophet setting with myopic agents and general valuation functions, any
algorithm has a competitive ratio of at least Ω(𝑛).

Proof. Assume that all signals 𝑠𝑖 are draw i.i.d. and uniformly from {0, 2}, and that agent 𝑖 has a
value equal to 𝑣𝑖 (s[𝑖 ]) =

∏𝑖
𝑗=1

𝑠 𝑗 . This exactly reproduces the construction of Theorem 1, where the

value of an agent double at each step, until some unpredictable time when it drops to zero for all

remaining agents. Using the same argument as in the previous section, no algorithm can guarantee

better than a Ω(𝑛) approximation. □

Amodel which addresses the impossibilities raised by Theorem 1 and Proposition 1was previously

considered in the work of Brunel and Krengel [1979], who showed (non-constructively) that there

exists a 2(1 +
√

3) ≈ 5.46 approximation when agents have subadditive valuations that do not
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depend on future signals. In this section, we provide a simple stopping rules that guarantee an

improved ratio of 4.

While our algorithm’s main idea is based on the classic threshold approach from prophet inequal-

ities (where the threshold is set to half the expected optimum value), dealing with interdependent

values even in this simplest setting we consider is not without challenges. In particular, opposed

to classic prophet inequalities, the simple threshold policy does not work. Consider the following

instance: all agents except for agent 𝑛 have valuation equal to 𝑠1 + 1. Agent one’s distribution

is such that 𝑠1 = 0 with probability (1 − 𝜀), and 𝑠1 = 1

𝜀
with very small probability 𝜀. Agent 𝑛

has valuation equal to 𝑛 · 𝑠1. The expected maximum is therefore 𝑛, half of which will be set as

the algorithm’s threshold value. Consider now the rare case that indeed, 𝑠1 has nonzero value

(due to 𝑠1 =
1

𝜀
being drawn). Every agent beats the threshold of

𝑛
2
, and the algorithm will realize

only a value of
1

𝜀
while the optimum is by a factor 𝑛 higher. Given that for the above distribu-

tion, the standard threshold does not obtain constant approximation, we might attempt to use a

higher threshold instead. However, consider instead the case that 𝐷1 always returns zero. Now,

any constant-approximative threshold algorithm must choose a threshold ≤ 1. We therefore need

to take care of such phenomena, caused by the interdependence of values, in our algorithms.

We now present a simple stopping rule which achieves a 4-approximation, only losing a factor 2

compared to the standard setting with independent values. The main idea to resolve issues caused

by interdependence is that, at any point of the algorithm, we can skip the current agent if her value

is surely smaller than any one of the future agents, given the signals we observed. In particular, the

algorithm stops at time 𝑡 if and only if the value of agent 𝑡 (i.e., 𝑣𝑡 (s[𝑡 ] ) ) satisfies the following two

conditions: (1) it is at least as much as the threshold 𝑋 = E[𝑂𝑃𝑇 ]/2, and (2) it is no worse than the

current lower bound on the value of the future agents 𝑖 > 𝑡 (i.e., 𝑣𝑖 (𝑠 [𝑡 ])).

ALGORITHM 1: 4-approximation algorithm with myopic agents.

Set threshold

𝑋 = E[max

𝑖∈[𝑛]
𝑣𝑖 (s[𝑖 ] )]/2.

Stop at the first time 𝑡 such that:

• 𝑣𝑡 (s[𝑡 ] ) ≥ 𝑋 , and

• 𝑣𝑡 (s[𝑡 ] ) ≥ 𝑣𝑖 (s[𝑡 ] ) for all 𝑖 > 𝑡

Theorem 2. Algorithm 1 is 4-competitive. That is, it obtains an expected (myopic) welfare of at
least 1

4
E[max𝑖∈[𝑛] 𝑣𝑖 (s[𝑖 ])].

Proof. Let 𝐼 ∈ argmax𝑖𝑣𝑖 (s[𝑖]) be the random variable that denotes the index of the maximum

value agent and let 𝑇 ∈ {1, . . . , 𝑛,∞} be the stopping time of Algorithm 1. Notice that either the

algorithm stops at 𝑇 ≤ 𝐼 or the algorithm does not stop, i.e. 𝑇 = ∞. This is because the algorithm

does not stop by time 𝐼 only if 𝑣𝐼 (s[𝐼 ]) < 𝑋 , which implies all 𝑣𝑖 (s[𝑖 ]) < 𝑋 . By using the subadditivity

of 𝑣𝐼 , we therefore have for any fixed arrival order and fixed realization of the 𝑛 signals

𝑣𝐼 (s[𝐼 ]) ≤ 1[𝑇 = ∞] · 𝑣𝐼 (s[𝐼 ])
+ 1[𝑇 < ∞] · 𝑣𝐼 (s[𝑇 ])
+ 1[𝑇 < 𝐼 ] · 𝑣𝐼 (s[𝑇+1,𝐼 ]).

Recall that, if the algorithm did not stop then 𝑣𝐼 (s[𝐼 ]) < 𝑋 , thus bounding the first term as

1[𝑇 = ∞] · 𝑣𝐼 (s[𝐼 ]) < 1[𝑇 = ∞] · 𝑋 . (1)
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However, if the algorithm stops then 𝑣𝑇 (s[𝑇 ]) ≥ 𝑣𝐼 (s[𝑇 ]), thus bounding the second term as

1[𝑇 < ∞] · 𝑣𝐼 (s[𝑇 ]) ≤ 1[𝑇 < ∞] · 𝑣𝑇 (s[𝑇 ]) (2)

Finally, to deal with the last term we bound it in expectation as follows

E[1[𝑇 < 𝐼 ] · 𝑣𝐼 (s[𝑇+1,𝐼 ])] ≤
𝑛∑︁
𝑡=1

E[1[𝑇 = 𝑡] · max

𝑗>𝑡
𝑣 𝑗 (s[𝑡+1, 𝑗 ])]

=

𝑛∑︁
𝑡=1

E[1[𝑇 = 𝑡]] · E[max

𝑗>𝑡
𝑣 𝑗 (s[𝑡+1, 𝑗 ])]

≤ P[𝑇 < ∞] · 2𝑋

≤ P[𝑇 < ∞] · 𝑋 + E[1[𝑇 < ∞] · 𝑣𝑇 (s[𝑇 ])], (3)

where the first inequality follows by the law of total probability and using the fact that 𝐼 > 𝑡 to

upper-bound 𝑣𝐼 (s[𝑡+1,𝐼 ]), the equality observes that stopping at time 𝑡 is independent of all signals

after 𝑡 , the next inequality simply uses the definition of 𝑋 , and finally we obtain the last inequality

by observing that 𝑣𝑇 (s[𝑇 ]) ≥ 𝑋 whenever the algorithm stops.

Overall by putting together Equations (1) to (3) we have the following bound on E[𝑣𝐼 (s[𝐼 ])]
E[𝑣𝐼 (s[𝐼 ])] ≤ P[𝑇 = ∞] · 𝑋 + P[𝑇 < ∞] · 𝑋

+ 2 · E[1[𝑇 < ∞] · 𝑣𝑇 (s[𝑇 ])]
≤ 𝑋 + 2 · E[1[𝑇 < ∞] · 𝑣𝑇 (s[𝑇 ])] .

Observe that the expected welfare of the algorithm is exactly E[𝐴𝐿𝐺] = E[1[𝑇 < ∞] · 𝑣𝑇 (s[𝑇 ])]
and by definition of 𝑋 it holds

E[𝑣𝐼 (s[𝐼 ])] ≤
1

2

· E[𝑣𝐼 (s[𝐼 ])] + 2 · E[𝐴𝐿𝐺],

which simplifies to

1

2

· E[𝑣𝐼 (s[𝐼 ])] ≤ 2 · E[𝐴𝐿𝐺],
yielding a 4-approximation. □

We remark that the above analysis is indeed crucially fueled by the idea of evaluating all (even

future) agents’ values on the current set of signals in every step, and only stopping if the current

agent is the so-far maximum (including those who haven’t arrived). This is what allows us to relate

the value of the maximum agent to that selected by the algorithm. Moreover, it nicely illustrates

the importance of public valuation functions: in case they are private, the above counterexample

cannot be circumvented since there is no way to identify the presence of the better agent before
arrival.

3.3 Mechanism with myopic agents
In the previous section, we presented a simple 4-approximation in the algorithmic setting, i.e.

without considering the agents’ incentives. Next, we show how to build a truthful stopping rule

(monotone in each agent’s signal) which achieves an 8-approximation, losing an extra factor of 2

compared to the non-strategic setting.

Recall that in Algorithm 1, even if the value of agent 𝑡 exceeded the threshold 𝑋 , we did not stop

if a future agent was obviously (i.e. on the currently known set of signals) better. However, since

the future agents are evaluated (among others) on the signal 𝑠𝑡 , agent 𝑡 may have an incentive

to misreport her signal. Therefore, the translation into an incentive-compatible mechanism is no

longer immediate (as it is for pure threshold strategies). It is well-known that an allocation rule
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can be truthfully implemented if and only if each agent 𝑖’s allocation is monotone non-decreasing

in her signal 𝑠𝑖 (see Lemma 1). Hence, under the single crossing assumption,
4
we have a truthful

mechanism that is a 4-approximation by charging appropriate payments with Algorithm 1.

Corollary 1. If the valuation functions satisfy the single crossing condition, then Algorithm 1 provides
an EPIC mechanism by charging price 𝑝𝑡 for the selected agent 𝑡 , where

𝑝𝑡 = max{𝑋, inf{𝑣𝑡 (𝑠 [𝑡−1], 𝑠
′
𝑡 ) |𝑠′𝑡 ≥ 0 s.t. 𝑣𝑡 (𝑠 [𝑡−1], 𝑠

′
𝑡 ) ≥ 𝑣𝑖 (𝑠 [𝑡−1], 𝑠

′
𝑡 ) for all 𝑖 > 𝑡}}.

However, without the single crossing assumption, we cannot obtain an EPIC mechanism using

Algorithm 1. To overcome this, we use the power of randomization. In particular, if an agent 𝑡 ’s

value exceeds the threshold 𝑋 = E[𝑂𝑃𝑇 ]/2, then with probability 1/2 we accept her (and stop),

and with probability 1/2 we decide to accept a future agent with highest estimated value using the

signals observed so far, s[𝑡 ] .

ALGORITHM 2: 8-approximation mechanism with myopic agents.

Set threshold

𝑋 := E[max

𝑖∈[𝑛]
𝑣𝑖 (s[𝑖 ] )]/2.

Let 𝑇 be the first time 𝑡 such that 𝑣𝑡 (s[𝑡 ] ) ≥ 𝑋 .

• With probability 1/2, stop at time 𝑇 (and charge agent 𝑇 a price of 𝑋 ).

• With probability 1/2, wait and stop at time argmax𝑖>𝑇 𝑣𝑖 (s[𝑇 ] ).

Theorem 3. Algorithm 2 is a 8-approximation, that is, it obtains an expected (myopic) welfare of
at least 1

8
E[max𝑖∈[𝑛] 𝑣𝑖 (s[𝑖 ])].

Proof. The proof follows the same principle as that for the algorithmic setting. Let 𝐼 ∈ argmax𝑖𝑣𝑖 (s[𝑖 ])
be a random variable (index of a maximum agent value), and let 𝑇 ∈ {1, . . . , 𝑛,∞} be the first time

𝑡 such that 𝑣𝑡 (s[𝑡 ]) ≥ 𝑋 . Note that𝑇 is not the stopping time as the algorithm stops only later with

probability 1/2. By construction, it holds that either 𝑇 ≤ 𝐼 , or 𝑇 = ∞, because if 𝑣𝐼 (s[𝐼 ]) < 𝑋 then

𝑣𝑡 (s[𝑡 ]) < 𝑋 for all 𝑡 . Thus, using the subadditivity of 𝑣𝐼 , we can write

𝑣𝐼 (s[𝐼 ]) ≤ 1[𝑇 = ∞] · 𝑣𝐼 (s[𝐼 ])
+ 1[𝑇 < ∞] · 𝑣𝐼 (s[𝑇 ])
+ 1[𝑇 < 𝐼 ] · 𝑣𝐼 (s[𝑇+1,𝐼 ]).

If the algorithm did not stop, then 𝑣𝐼 (s[𝐼 ]) < 𝑋 , which bounds the first term as

1[𝑇 = ∞] · 𝑣𝐼 (s[𝐼 ]) ≤ 1[𝑇 = ∞] · 𝑋
We next bound the last term in expectation,

E[1[𝑇 < 𝐼 ] · 𝑣𝐼 (s[𝑇+1,𝐼 ])] ≤
𝑛∑︁
𝑡=1

E[1[𝑇 = 𝑡] · max

𝑗>𝑡
𝑣 𝑗 (s[𝑡+1, 𝑗 ])]

=

𝑛∑︁
𝑡=1

E[1[𝑇 = 𝑡]] · E[max

𝑗>𝑡
𝑣 𝑗 (s[𝑡+1, 𝑗 ])]

≤ P[𝑇 < ∞] · 2𝑋

≤ P[𝑇 < ∞] · 𝑋 + E[1[𝑇 < ∞] · 𝑣𝑇 (s[𝑇 ])],
4
The valuations satisfy the single crossing conditions if for all 𝑖, 𝑗 , 𝑠𝑖 , 𝑠−𝑖 , we have 𝜕𝑖 𝑣𝑖 (s)/𝜕𝑠𝑖 ≥ 𝜕𝑖 𝑣𝑗 (s)/𝜕𝑠𝑖 .
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where the first inequality follows by the law of total probability and using that 𝐼 > 𝑡 given 𝑇 = 𝑡 ,

the equality follows by the observation that the first time 𝑡 when 𝑣𝑡 (s[𝑡 ]) ≥ 𝑋 does not depend

on future signals after 𝑡 , the next inequality simply uses the definition of 𝑋 to upper-bound some

expected values, and the last inequality follows because whenever the𝑇 < ∞we have 𝑣𝑇 (s[𝑇 ]) ≥ 𝑋

by definition.

Overall, this gives the following bound on the expected optimum E[𝑣𝐼 (s[𝐼 ])]
E[𝑣𝐼 (s[𝐼 ])] ≤ P[𝑇 = ∞] · 𝑋 + P[𝑇 < ∞] · 𝑋

+ E[1[𝑇 < ∞] · 𝑣𝐼 (s[𝑇 ])]
+ E[1[𝑇 < ∞] · 𝑣𝑇 (s[𝑇 ])] .

Now, observe that by design of the algorithm we have

E[1[𝑇 < ∞] · 𝑣𝑇 (s[𝑇 ])] + E[1[𝑇 < 𝐼 ] · 𝑣𝐼 (s[𝑇 ])] ≤ 2 · E[𝐴𝐿𝐺], (4)

where we simply bound 𝑣𝐼 (s[𝑇 ]) ≤ max𝑗>𝑇 𝑣 𝑗 (s[𝑇 ]) for 𝑇 < 𝐼 .

Thus, plugging in Eq. (4) and using the definition of 𝑋 = E[𝑣𝐼 (s[𝐼 ])]/2 we get

1

2

· E[𝑣𝐼 (s[𝐼 ])] ≤ 2 · E[𝐴𝐿𝐺] + E[1[𝑇 = 𝐼 ] · 𝑣𝐼 (s[𝐼 ])] .

Finally, we bound E[1[𝑇 = 𝐼 ] · 𝑣𝐼 (s[𝐼 ])] by 2 · E[𝐴𝐿𝐺] to obtain

1

2

· E[𝑣𝐼 (s[𝐼 ])] ≤ 4 · E[𝐴𝐿𝐺],

resulting in an 8-approximation. □

We next show that Algorithm 2 is indeed a truthful mechanism.

Lemma 2. Algorithm 2 is an EPIC mechanism.

Proof. We first observe that our mechanism is essentially a posted price mechanism with fixed

price 𝑋 , except with probability half we don’t sell (and give it away for free to a future agent).

Note that, if an agent 𝑖 wins for free due to the random coin toss, this uses no information about

𝑠𝑖 . If an agent 𝑡 wins because her value exceeds 𝑋 , then she has no reason to misreport because

decreasing her signal 𝑠𝑡 can only potentially make her lose and increasing the signal doesn’t affect

her allocation or price. Crucially, we use 𝑠𝑡 to estimate the future agents only after we decided to

reject 𝑡 due to the random coin toss. □

4 The Secretary Model
We next consider the secretary model, where agents arrive in a random order. More formally, the

valuation functions and signals are formed adversarially, then agents are shuffled uniformly at

random and relabelled such that agent 𝑡 arrives at time 𝑡 . In our model, the algorithm does not

have access to the valuation functions of agents who have not arrived, but at any given time it can

query the values of all agents so far on any subset of observed signals. Our goal is to design simple

stopping rules, which guarantee a constant fraction of the maximum value, in expectation over the

random order.

In fact, we prove a much stronger statement where even when considering only the myopic

welfare of the online algorithm andmechanism (i.e., the value of the accepted agent is evaluated only

on the signals observed so far), we prove a constant approximation to the farsighted benchmark (i.e.,

the maximum value when considering all signals). Since the valuation functions are monotone over

the signals, we observe that any algorithm that obtains an 𝛼-fraction of the farsighted benchmark

also obtains an 𝛼-fraction of the myopic benchmark. Moreover, the farsighted welfare of the

algorithm is greater than or equal to the myopic welfare of the algorithm.
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In Section 4.1we provide a simple stopping rule such that the (myopic) welfare is a 2𝑒-approximation

to the maximum farsighted value in expectation. In Section 4.2 we extend our results to obtain

a truthful mechanism such that the (myopic) welfare is a 4𝑒-approximation to the maximum far-

sighted value in expectation. These results imply a 2𝑒-approximate algorithm (without incentive

constraints) and a 4𝑒-approximate truthful mechanism for both the myopic and farsighted settings.

Before we present our stopping rules we discuss two properties of interest. One crucial property

of secretary algorithms is that the probability of stopping is independent of the subset of agents

who have arrived (but depends on the ordering of that subset). This is formalized in Lemma 3,

which will be used in the analysis of Algorithms 3 and 4.

Lemma 3. In the secretary setting, a fixed set of agents𝐴 arrive in a random order 𝑎1, . . . , 𝑎𝑛 . Consider
an algorithm which stops at time 𝑡 if and only if

• 𝑡 > 𝑘 , for some fixed integer 𝑘 ≥ 0, and
• 𝑎𝑡 = best({𝑎1, . . . , 𝑎𝑡 }), where best maps each subset 𝑆 ⊆ 𝐴 to an agent 𝑎 ∈ 𝑆 .

Then the algorithm stops at time 𝑇 = 𝑡 with probability equal to 𝑘
𝑡 (𝑡−1) , and this is independent of the

(random) set of agents who arrived on or before time 𝑡 . More formally,

∀𝑡 > 𝑘,∀𝑆 ⊆ 𝐴 such that |𝑆 | = 𝑡, P[𝑇 = 𝑡 | {𝑎1, . . . , 𝑎𝑡 } = 𝑆] = 𝑘

𝑡 (𝑡 − 1) .

Proof. We will show by induction on 𝑡 ≥ 𝑘 that

∀𝑆 ⊆ 𝐴 such that |𝑆 | = 𝑡, P[𝑇 > 𝑡 | {𝑎1, . . . , 𝑎𝑡 } = 𝑆] = 𝑘

𝑡
.

This is trivially true at time 𝑡 = 𝑘 , because the stopping rule skips the first 𝑘 agents. Now, Let us

compute the probability that 𝑇 > 𝑡 + 1. For all subset 𝑆 ⊆ 𝐴 of size |𝑆 | = 𝑡 + 1, we have that

P[𝑇 > 𝑡 + 1 | {𝑎1, . . . , 𝑎𝑡+1} = 𝑆] = P[𝑇 > 𝑡 and 𝑎𝑡+1 ≠ best(𝑆) | {𝑎1, . . . , 𝑎𝑡+1} = 𝑆] .
Using the law of total probability, we pick 𝑎𝑡+1 ∈ 𝑆 , and we obtain

P[𝑇 > 𝑡 + 1 | {𝑎1, . . . , 𝑎𝑡+1} = 𝑆] = 1

|𝑆 |
∑︁
𝑎∈𝑆

𝑎≠best(𝑆 )

P[𝑇 > 𝑡 | {𝑎1, . . . , 𝑎𝑡 } = 𝑆 \ {𝑎}]

Finally, using the induction hypothesis, we have

P[𝑇 > 𝑡 + 1 | {𝑎1, . . . , 𝑎𝑡+1} = 𝑆] = |𝑆 | − 1

|𝑆 | · 𝑘
𝑡
=

𝑘

𝑡 + 1

,

which concludes the induction. Next, for all 𝑡 > 𝑘 and for all subset 𝑆 ⊆ 𝐴 of size |𝑆 | = 𝑡 we write

P[𝑇 = 𝑡 | {𝑎1, . . . , 𝑎𝑡 } = 𝑆] = P[𝑇 > 𝑡 − 1 and 𝑎𝑡 = best(𝑆) | {𝑎1, . . . , 𝑎𝑡 } = 𝑆]

=
1

|𝑆 | · P[𝑇 > 𝑡 − 1 | {𝑎1, . . . , 𝑎𝑡−1} = 𝑆 \ best(𝑆)],

because with probability 1/|𝑆 | the best of 𝑆 arrives at time 𝑡 .

We know that the probability that 𝑇 > 𝑡 − 1 is
𝑘

𝑡−1
from the above argument, and hence we

conclude that 𝑇 = 𝑡 with probability
𝑘

𝑡 (𝑡−1) . □

A second important property of secretary settings is that given a stopping rule which asymptoti-

cally achieves a constant approximation when the number of agents becomes large, one can turn it

into a stopping rule which achieves that exact constant for every value of 𝑛. Indeed, the stopping

rule can pretend to observe many dummy agents with value 0, which will never be selected but are

only here to artificially increase the value of 𝑛.
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4.1 Algorithm with myopic or farsighted agents
Equipped with Lemma 3, we propose a simple stopping rule which achieves a 2𝑒-approximation,

only losing a factor 2 compared to the standard secretary setting. The main intuition is that after

the sampling phase (first ⌊𝑛/𝑒⌋ steps), the algorithm knows sufficiently many signals to have a

good estimate of the agents true value (on all signals).

ALGORITHM 3: 2e-approximation algorithm for the secretary model.

At step 𝑡 , when agent 𝑡 arrives, stop if:

• 𝑡 > 𝑛/𝑒 (i.e., skip a constant fraction of agents), and

• 𝑣𝑡 (s[𝑡 ] ) > 𝑣𝑖 (s[𝑡 ] ) for all 𝑖 < 𝑡 .

Theorem 4. Algorithm 3 is a 2𝑒-approximation. That is, the expected (myopic) value of the accepted
agent is at least 1

2𝑒
max𝑖 𝑣𝑖 (s).

Proof. We define the random variable𝑇 ∈ {1, . . . , 𝑛,∞} to be the stopping time of the algorithm.

In the secretary setting, 𝑛 agents from a set 𝐴 arrive in a uniformly random order 𝑎1, . . . , 𝑎𝑛 . Recall

that we labeled agents according to their arrival order, that is, in the algorithm,

∀𝑖 ∈ [𝑛],∀𝐽 ⊆ [𝑛], 𝑣𝑖 (s𝐽 ) := 𝑣𝑎𝑖 (s̄{𝑎 𝑗 | 𝑗∈ 𝐽 }),

where 𝑣 and s̄ are the original, fixed valuation functions and signals (determined adversarially)

before applying the random ordering. In particular, there exists an agent 𝑎★ ∈ 𝐴 with the largest

value 𝑂𝑃𝑇 = 𝑣𝑎★ (s̄). For convenience, we define the set function

∀𝑋 ⊆ 𝐴, 𝑓 (𝑋 ) := 𝑣𝑎★ (𝑠𝑋 ),

that is, 𝑓 (𝑋 ) denotes the estimated value of 𝑎★ only using the signals of 𝑋 ⊆ 𝐴.

Next, we define the (random) set𝐴𝑡 := {𝑎1, . . . , 𝑎𝑡 } of agents who have arrived at time 𝑡 . Observe

that the stopping rule of Algorithm 3 corresponds to Lemma 3 with 𝑘 = ⌊𝑛/𝑒⌋ and

∀𝑆 ⊆ 𝐴, best(𝑆) := argmax𝑎∈𝑆𝑣𝑎 (s̄𝑆 ).

Using Lemma 3, the event where the algorithm stops at time 𝑇 = 𝑡 is independent of 𝐴𝑡 , and has

probability equal to

∀𝑡 > 𝑛/𝑒, P[𝑇 = 𝑡 |𝐴𝑡 ] =
⌊𝑛/𝑒⌋
𝑡 (𝑡 − 1) (5)

We write the expected welfare obtained by the algorithm as

E[𝐴𝐿𝐺] ≥
𝑛∑︁

𝑡=⌈𝑛/𝑒 ⌉
E[1[𝑇 = 𝑡] · 𝑣𝑡 (s[𝑡 ])] (equality holds for myopic)

≥
𝑛∑︁

𝑡=⌈𝑛/𝑒 ⌉
E[1[𝑇 = 𝑡] · 𝑣𝑡 (s[𝑡 ]) · 1[𝑎★ ∈ 𝐴𝑡 ]] (always smaller)

≥
𝑛∑︁

𝑡=⌈𝑛/𝑒 ⌉
E[1[𝑇 = 𝑡] · 𝑓 (𝐴𝑡 ) · 1[𝑎★ ∈ 𝐴𝑡 ]] (by the stopping condition)

=

𝑛∑︁
𝑡=⌈𝑛/𝑒 ⌉

⌊𝑛/𝑒⌋
𝑡 (𝑡 − 1) · E[𝑓 (𝐴𝑡 ) · 1[𝑎★ ∈ 𝐴𝑡 ]] (using Equation (5))
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=

𝑛∑︁
𝑡=⌈𝑛/𝑒 ⌉

⌊𝑛/𝑒⌋
𝑡 (𝑡 − 1) ·

𝑡

𝑛
· E[𝑓 (𝐴𝑡 ) | 𝑎★ ∈ 𝐴𝑡 ] (𝑎★ ∈ 𝐴𝑡 with probability 𝑡/𝑛)

Next we define

∀𝑡 ∈ [𝑛], 𝛼𝑡 := E[𝑓 (𝐴𝑡 ) | 𝑎★ ∈ 𝐴𝑡 ] .
which gives the inequality

E[𝐴𝐿𝐺] ≥ ⌊𝑛/𝑒⌋
𝑛

𝑛∑︁
𝑡=⌈𝑛/𝑒 ⌉

𝛼𝑡

𝑡 − 1

.

Alternatively, 𝛼𝑡 is the expected value of 𝑓 (𝑋 ∪ {𝑎★}), given a random subset 𝑋 ⊆ 𝐴 \ {𝑎★} of
size |𝑋 | = 𝑡 − 1. In particular, 𝛼𝑛 = 𝑂𝑃𝑇 , the optimal farsighted welfare, and the sequence 𝛼𝑡 is

non-decreasing. By linearity of expectation, and using the fact that 𝑓 is a monotone subadditive set

function, we have that

𝛼𝑛 = 𝑓 (𝐴) = E𝐴𝑡
[𝑓 (𝐴) | 𝑎★ ∈ 𝐴𝑡 ] (by definition)

≤ E𝐴𝑡
[𝑓 (𝐴𝑡 ) + 𝑓 (𝐴 \𝐴𝑡 ) | 𝑎★ ∈ 𝐴𝑡 ] (by subadditivity)

≤ E𝐴𝑡
[𝑓 (𝐴𝑡 ) + 𝑓 (𝐴 \𝐴𝑡 ∪ {𝑎★}) | 𝑎★ ∈ 𝐴𝑡 ] (by monotonicity)

= E𝐴𝑡
[𝑓 (𝐴𝑡 ) | 𝑎★ ∈ 𝐴𝑡 ] + E𝐴𝑛−𝑡+1

[𝑓 (𝐴𝑛−𝑡+1) | 𝑎★ ∈ 𝐴𝑛−𝑡+1] (by symmetry)

= 𝛼𝑡 + 𝛼𝑛−𝑡+1 (by definition)

Finally, we will split the sum from 𝑡0 = ⌈𝑛/𝑒⌉ to 𝑛 in three: from 𝑡0 to 𝑡1 = ⌈𝑛/(𝑒 − 1)⌉, from 𝑡1 to

𝑡2 = 𝑛 − ⌈𝑛/𝑒⌉ + 1, and from 𝑡2 to 𝑛. By monotonicity of the 𝛼𝑡 ’s, we have that∑︁
𝑡=⌈𝑛/𝑒 ⌉

𝛼𝑡

𝑡 − 1

≥ 𝛼𝑡0

𝑡1∑︁
𝑡=𝑡0

1

𝑡 − 1

+ 𝛼𝑡1

𝑡2−1∑︁
𝑡=𝑡1+1

1

𝑡 − 1

+ 𝛼𝑡2

𝑛∑︁
𝑡=𝑡2

1

𝑡 − 1

≥ 𝛼𝑡0
ln

(
𝑡1

𝑡0 − 1

)
+ 𝛼𝑡1

ln

(
𝑡2 − 1

𝑡1

)
+ 𝛼𝑡2

ln

(
𝑛

𝑡2 − 1

)
≥ 𝛼𝑡0

ln

( 𝑒

𝑒 − 1

)
+ 𝛼𝑡1

ln

(
(𝑒 − 1)2

𝑒

)
+ 𝛼𝑡2

ln

( 𝑒

𝑒 − 1

)
+ 𝛼𝑡1

Θ(1/𝑛)

≥ (𝛼𝑡0
+ 𝛼𝑡2

) ln

( 𝑒

𝑒 − 1

)
+ 2𝛼𝑡1

ln

(
𝑒 − 1

√
𝑒

)
+ 𝛼𝑡1

Θ(1/𝑛)

≥ 𝛼𝑛 ln

( 𝑒

𝑒 − 1

)
+ 𝛼𝑛 ln

(
𝑒 − 1

√
𝑒

)
+ 𝛼𝑛Θ(1/𝑛) = 𝛼𝑛/2 + 𝛼𝑛Θ(1/𝑛)

Multiplying both sides by ⌊𝑛/𝑒⌋/𝑛, we obtain that 𝑂𝑃𝑇 /E[𝐴𝐿𝐺] ≤ 2𝑒 + 𝑂 (1/𝑛). Recalling our

remark (dummy agents) from the beginning of the section, we can drop the lower-order term and

consider only the limit of the approximation ratio for 𝑛 → ∞. □

4.2 Mechanism with myopic or farsighted agents
In the previous section, we presented a simple 2𝑒-approximation in the algorithmic setting, without

considering the agents’ incentives. As before, if the valuation functions satisfy the single crossing

condition, then our 2𝑒-approximation algorithm can be implemented truthfully with appropriate

payments (which is prompt for myopic agents and tardy for farsighted agents respectively).

Corollary 2. If the valuation functions satisfy the single crossing condition, then Algorithm 3 provides
an EPIC mechanism by charging price 𝑝𝑡 for the selected agent 𝑡 , where for farsighted agents

𝑝𝑡 = inf{𝑣𝑡 (𝑠−𝑡 , 𝑠′𝑡 ) |𝑠′𝑡 ≥ 0 s.t. 𝑣𝑡 (𝑠 [𝑡−1], 𝑠
′
𝑡 ) ≥ 𝑣𝑖 (𝑠 [𝑡−1], 𝑠

′
𝑡 ) for all 𝑖 > 𝑡},
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and for myopic agents

𝑝𝑡 = inf{𝑣𝑡 (𝑠 [𝑡−1], 𝑠
′
𝑡 ) |𝑠′𝑡 ≥ 0 s.t. 𝑣𝑡 (𝑠 [𝑡−1], 𝑠

′
𝑡 ) ≥ 𝑣𝑖 (𝑠 [𝑡−1], 𝑠

′
𝑡 ) for all 𝑖 > 𝑡}.

However, without the single crossing assumption, we cannot obtain an EPIC mechanism using

Algorithm 3. In this section, we show how to achieve a 4𝑒-approximation with a truthful stopping

rule (monotone in each agent’s signal). The intuition behind our mechanism is quite simple: we

combine the random sampling mechanism of [Eden et al., 2019], which achieves a 4-approximation

in the offline setting, with the 𝑒-approximation stopping rule of the standard secretary problem.

ALGORITHM 4: 4e-approximation mechanism for the secretary model.

Define 𝑡0 = ⌊𝑛/2⌋. Stop at the first time 𝑡 such that:

• 𝑡 > 𝑡0 + ⌊𝑛/(2𝑒)⌋ (i.e., skip a constant fraction of agents), and

• 𝑣𝑡 (s[𝑡0 ]∪{𝑡 } ) > 𝑣𝑖 (s[𝑡0 ]∪{𝑖 } ) for all 𝑡0 < 𝑖 < 𝑡 .

At the end, charge 𝑡 a price of inf{𝑣𝑡 (s−𝑡 , 𝑠′𝑡 ) | 𝑠′𝑡 ≥ 0 s.t. 𝑣𝑡 (s[𝑡0 ] , 𝑠
′
𝑡 ) > max𝑡0<𝑖<𝑡 𝑣𝑖 (s[𝑡0 ]∪{𝑖 } )}.

Theorem 5. Algorithm 4 is a 4𝑒-approximation. That is, the expected (myopic) value of the accepted
agent is at least 1

4𝑒
max𝑖 𝑣𝑖 (s).

Proof. We define the random variable𝑇 ∈ {1, . . . , 𝑛,∞} to be the stopping time of the algorithm.

In the secretary setting, 𝑛 agents from a set 𝐴 arrive in a uniformly random order 𝑎1, . . . , 𝑎𝑛 . Recall

that we labeled agents according to their arrival order, that is, in the algorithm,

∀𝑖 ∈ [𝑛],∀𝐽 ⊆ [𝑛], 𝑣𝑖 (s𝐽 ) := 𝑣𝑎𝑖 (s̄{𝑎 𝑗 | 𝑗∈ 𝐽 }),
where 𝑣 and s̄ are fixed valuation functions and signals (worst case). In particular, there exists an

agent 𝑎★ ∈ 𝐴 with the largest value 𝑂𝑃𝑇 = 𝑣𝑎★ (s̄). For convenience, we define the set function
∀𝑋 ⊆ 𝐴, 𝑓 (𝑋 ) := 𝑣𝑎★ (𝑠𝑋 ).

Let 𝑡0 := ⌊𝑛/2⌋ and 𝑡1 := 𝑡0 + ⌊𝑛/(2𝑒)⌋. Now, observe that the stopping rule of Algorithm 4 does

not exactly correspond to the hypothesis in Lemma 3. Indeed, the agent arriving at time 𝑡 is only

compared to agents 𝑡0 < 𝑖 < 𝑡 , so the best agent of 𝐴𝑡 depends on the order in which they arrived.

This is easily fixed if we say that the first 𝑡0 are here to initialize the mechanism, which then only

starts at time 𝑡0 + 1. More formally, for every fixed set 𝐴𝑡0
= 𝑅 we define

∀𝑆 ⊆ 𝐴 \ 𝑅, best𝑅 (𝑆) := argmax𝑎∈𝑆𝑣𝑎 (s𝑅∪{𝑎}).
Applying Lemma 3 to the mechanism defined by best𝑅 and starting at time 𝑡0 + 1, we have

∀𝑡 > 𝑡1, P[𝑇 = 𝑡 |𝐴𝑡 , 𝐴𝑡0
] = 𝑡1 − 𝑡0

(𝑡 − 𝑡0) (𝑡 − 𝑡0 − 1) . (6)

Next, we write the expected welfare of the algorithm as

E[𝐴𝐿𝐺] ≥
𝑛∑︁

𝑡=𝑡1+1

E[1[𝑇 = 𝑡] · 𝑣𝑡 (s[𝑡 ])] (equality holds for myopic)

≥
𝑛∑︁

𝑡=𝑡1+1

E[1[𝑇 = 𝑡] · 𝑣𝑡 (s[𝑡0 ]∪{𝑡 }) · 1[𝑎★ ∈ 𝐴𝑡 \𝐴𝑡0
]] (always smaller)

≥
𝑛∑︁

𝑡=𝑡1+1

E[1[𝑇 = 𝑡] · 𝑓 (𝐴𝑡0
∪ {𝑎★}) · 1[𝑎★ ∈ 𝐴𝑡 \𝐴𝑡0

]] (stopping condition)
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≥
𝑛∑︁

𝑡=𝑡1+1

𝑡1 − 𝑡0

(𝑡 − 𝑡0) (𝑡 − 𝑡0 − 1) · E[𝑓 (𝐴𝑡0
∪ {𝑎★}) · 1[𝑎★ ∈ 𝐴𝑡 \𝐴𝑡0

]] (using Equation (6))

≥
𝑛∑︁

𝑡=𝑡1+1

𝑡1 − 𝑡0

(𝑡 − 𝑡0) (𝑡 − 𝑡0 − 1) ·
𝑡 − 𝑡0

𝑛
· E[𝑓 (𝐴𝑡0

∪ {𝑎★})],

where the last inequality follows because (P[𝑎★ ∈ 𝐴𝑡 \𝐴𝑡0
] = (𝑡 − 𝑡0)/𝑛).

Using the subadditivity of 𝑓 , we have that

𝑂𝑃𝑇 = 𝑓 (𝐴) = E[𝑓 (𝐴)] (by definition)

≤ E[𝑓 (𝐴𝑡0
∪ {𝑎★}) + 𝑓 (𝐴 \ (𝐴𝑡0

∪ {𝑎★}))] (by subadditivity)

≤ 2 · E[𝑓 (𝐴𝑡0
∪ {𝑎★})] (by symmetry)

Overall, we obtain that

E[𝐴𝐿𝐺] ≥ 𝑂𝑃𝑇

2

· (𝑡1 − 𝑡0)
𝑛

𝑛∑︁
𝑡=𝑡1+1

1

𝑡 − 𝑡0 − 1

≥ 𝑂𝑃𝑇 · (𝑡1 − 𝑡0)
2𝑛

ln

(
𝑛 − 𝑡0

𝑡1 − 𝑡0

)
≥ 𝑂𝑃𝑇 · ⌊𝑛/(2𝑒)⌋

2𝑛

Overall, we obtain 𝑂𝑃𝑇 /E[𝐴𝐿𝐺] ≤ 4𝑒 + 𝑂 (1/𝑛). Once again, using the remark made at the

beginning of the section, we can drop the lower order term 𝑂 (1/𝑛) by taking 𝑛 → ∞.

□

We observe that Algorithm 4 is a truthful mechanism by using Lemma 1.

Lemma 4. Algorithm 4 is an EPIC mechanism

Proof. This follows by observing that the allocation for agent 𝑡 is monotone non-decreasing

in her signal 𝑠𝑡 . Because: first, none of the sample agents will be allocated no matter their signal,

and second, and at time 𝑡 agent 𝑡 ’s signal is only used to to determine her own estimated value

𝑣𝑡 (s[𝑡0 ]∪{𝑡 }) and this is monotone in her signal 𝑠𝑡 . Thus we can charge the appropriate payments

given by Lemma 1 to obtain EPIC mechanism for both the myopic and farsighted settings. Moreover,

for the myopic setting the value and payments don’t depend on future signals, and hence, the

mechanism can be implemented with prompt payments. □

4.3 Extensions beyond our mechanisms
We remark that the secretary setting with myopic agents is especially well-behaved. In particular,

the random order gives (in expectation) an outlook on all agents’ valuations, since we see a random

subset of them (i.e. the yet-arrived ones), evaluated on a random subset of the signals. This continues

to hold even if the valuations are not known, but private information of the agents. Only recently,

Eden et al. [2023, 2022] give a constant approximation mechanism in the offline setting with

submodular valuations (approximation ratio 5.55). A construction similar to that of Algorithm 4

can be combined with their result to obtain a constant approximation mechanism for the secretary

problem with myopic agents and submodular valuations. However, obtaining similar results for

more challenging settings than this (secretary, myopic) seems out of reach with standard reductions,

as having private valuations gives too much strategic power to the agents interacting with the

mechanism.

5 Conclusion
Our results consider agents with interdependent valuations in context of the celebrated secretary and

prophet inequalities problems, capturing (stochastic) online versions of single-item auctions with

agents that exhibit interdependent valuations. We give the first secretary and prophet algorithms
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and mechanisms for this setting, achieving small constant-factor approximations to the according

standard benchmarks. This resolves (up to possibly improvements in the constant) the according

algorithmic and mechanism design problems for both myopic and farsighted agents with public,

subadditive valuations. The fact that our results are all constructive and obtained by simple stopping

rules especially raises hope that in future work, they can be extended to different settings. As one

direction, it is an interesting question to investigate the case of private valuations, and prove for

which settings constant approximations are/are not possible (see short discussion for the secretary

setting in Section 4.3).

Since our algorithms recover the optimal approximation ratios (for prophet and secretary) when

handling instances without interdependence, understanding if there is a separation between the

interdependent settings and the standard setting with no interdependence is an important direction.

While arguably, our considered class of subadditive valuation functions poses a natural barrier

for the performance of online algorithms, one should also investigate performance of such stopping

rules when values satisfy other properties from the hierarchy of complement-free valuations defined

by Lehmann et al. [2006] (see also the discussion for submodular valuations in Appendix A).

Finally, extending from the simple setting, where only one online agent can be chosen, towards

combinatorial problems (e.g., with cardinality/matroid constraints on the chosen subset, or for

certain combinatorial auctions) would be a consequential next step.
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A Improved bounds for submodular valuations
In this section we present an online algorithm that obtains an improved approximation ratio of 4

for the secretary model when the valuations are submodular over signals (for both the myopic and

farsighted settings).

Definition 3 (Submodular over signals). We say a valuation function 𝑣 (·) is submodular over signals,
if for any 𝑖 ∈ [𝑛] and signal profiles s ≥ s′ we have

𝑣 (𝑠𝑖 , s−𝑖 ) − 𝑣 (𝑠′𝑖 , s−𝑖 ) ≤ 𝑣 (𝑠𝑖 , s′−𝑖 ) − 𝑣 (𝑠′𝑖 , s′−𝑖 )
The following lemma is a generalization of the Key lemma from [Eden et al., 2019], which was

proved in [Lu et al., 2022].

Lemma 5. For any monotone submodular valuation function 𝑣 , and for any random subset 𝐴 ⊆ [𝑛]
such that 𝐴 is drawn uniformly among subsets of size 𝑘 , we have

E𝐴 [𝑣 (s𝐴)] ≥
𝑘

𝑛
· 𝑣 (s)

The algorithm is a slight modification of Algorithm 3. In particular, the sampling phase involves

𝑛/2 agents instead of 𝑛/𝑒 .

ALGORITHM 5: 4-approximation algorithm under submodular valuations.

At step 𝑡 , when agent 𝑡 arrives, stop if:

• 𝑡 > 𝑛/2 (i.e., skip a constant fraction of agents), and

• 𝑣𝑡 (s[𝑡 ] ) > 𝑣𝑖 (s[𝑡 ] ) for all 𝑖 < 𝑡 .

We are now ready to prove the main results of this section. In fact we prove a stronger statement

that, in expectation, the myopic value of the accepted agent is a 4-approximation to the farsighted

benchmark. This immediately implies a 4-approximation for both the myopic and farsighted

settings.

Theorem 6. Algorithm 5 is a 4-approximation under submodular valuations. That is, the expected
(myopic) values of the accepted agent is at least 1

4
max𝑖 𝑣𝑖 (s).

Proof. We define the random variable𝑇 ∈ {1, . . . , 𝑛,∞} to be the stopping time of the algorithm.

In the secretary setting, 𝑛 agents from a set 𝐴 arrive in a uniformly random order 𝑎1, . . . , 𝑎𝑛 . Recall

that we labeled agents according to their arrival order, that is, in the algorithm,

∀𝑖 ∈ [𝑛],∀𝐽 ⊆ [𝑛], 𝑣𝑖 (s𝐽 ) := 𝑣𝑎𝑖 (s̄{𝑎 𝑗 | 𝑗∈ 𝐽 }),

https://doi.org/10.1137/1.9781611975482.120
https://doi.org/10.1214/aop/1176993150
https://doi.org/10.1016/0167-7152(91)90080-B
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where 𝑣 and s̄ are the original, fixed valuation functions and signals (determined adversarially)

before applying the random ordering. In particular, there exists an agent 𝑎★ ∈ 𝐴 with the largest

value 𝑂𝑃𝑇 = 𝑣𝑎★ (s̄). For convenience, we define the set function
∀𝑋 ⊆ 𝐴, 𝑓 (𝑋 ) := 𝑣𝑎★ (𝑠𝑋 ),

that is, 𝑓 (𝑋 ) denotes the estimated value of 𝑎★ only using the signals of 𝑋 ⊆ 𝐴.

Next, we define the (random) set𝐴𝑡 := {𝑎1, . . . , 𝑎𝑡 } of agents who have arrived at time 𝑡 . Observe

that the stopping rule of Algorithm 5 corresponds to Lemma 3 with 𝑘 = ⌊𝑛/2⌋ and
∀𝑆 ⊆ 𝐴, best(𝑆) := argmax𝑎∈𝑆𝑣𝑎 (s̄𝑆 ).

Using Lemma 3, the event where the algorithm stops at time 𝑇 = 𝑡 is independent of 𝐴𝑡 , and has

probability equal to

∀𝑡 > 𝑛/2, P[𝑇 = 𝑡 |𝐴𝑡 ] =
⌊𝑛/2⌋
𝑡 (𝑡 − 1) (7)

We write the expected welfare obtained by the algorithm as

E[𝐴𝐿𝐺] ≥
𝑛∑︁

𝑡=⌈𝑛/2⌉
E[1[𝑇 = 𝑡] · 𝑣𝑡 (s[𝑡 ])] (equality holds for myopic)

≥
𝑛∑︁

𝑡=⌈𝑛/2⌉
E[1[𝑇 = 𝑡] · 𝑣𝑡 (s[𝑡 ]) · 1[𝑎★ ∈ 𝐴𝑡 ]] (always smaller)

≥
𝑛∑︁

𝑡=⌈𝑛/2⌉
E[1[𝑇 = 𝑡] · 𝑓 (𝐴𝑡 ) · 1[𝑎★ ∈ 𝐴𝑡 ]] (by the stopping condition)

=

𝑛∑︁
𝑡=⌈𝑛/2⌉

⌊𝑛/2⌋
𝑡 (𝑡 − 1) · E[𝑓 (𝐴𝑡 ) · 1[𝑎★ ∈ 𝐴𝑡 ]] (using Equation (7))

=

𝑛∑︁
𝑡=⌈𝑛/2⌉

⌊𝑛/2⌋
𝑡 (𝑡 − 1) ·

𝑡

𝑛
· E[𝑓 (𝐴𝑡 ) | 𝑎★ ∈ 𝐴𝑡 ] (𝑎★ ∈ 𝐴𝑡 with probability 𝑡/𝑛)

Next we define

∀𝑡 ∈ [𝑛], 𝛼𝑡 := E[𝑓 (𝐴𝑡 ) | 𝑎★ ∈ 𝐴𝑡 ] .
which gives the inequality

E[𝐴𝐿𝐺] ≥ ⌊𝑛/2⌋
𝑛

𝑛∑︁
𝑡=⌈𝑛/2⌉

𝛼𝑡

𝑡 − 1

.

Alternatively, 𝛼𝑡 it is the expected value of 𝑓 (𝑋 ∪ {𝑎★}), given a random subset 𝑋 ⊆ 𝐴 \ {𝑎★} of
size |𝑋 | = 𝑡 − 1. In particular, using Lemma 5 we have that 𝛼𝑡 ≥ 𝑡−1

𝑛−1
·𝑂𝑃𝑇 . Therefore

E[𝐴𝐿𝐺] ≥ ⌊𝑛/2⌋
𝑛

· 𝑛 − ⌈𝑛/2⌉ + 1

𝑛 − 1

·𝑂𝑃𝑇 ≥ 𝑂𝑃𝑇

4

,

which concludes the proof. □
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