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Abstract

This contribution presents an exponential stability criterion for linear systems with multiple pointwise and
distributed delays. This result is obtained in the Lyapunov-Krasovskii framework via the approximations of the
argument of the functional by projection on the first Legendre polynomials. The reduction of the number of
mathematical operations in the stability test is a benefit of the supergeometric convergence of Legendre polynomials
approximation. For a single-delay linear system with a constant distributed kernel, a new computational procedure
for the solution of the integrals involved in the stability test is developed considering the case of Jordan nilpotent
blocks. This strategy is the basis for developing new procedures that allow the numerical construction of the
stability test for different classes of kernels, such as polynomial, exponential, or γ distribution.

Keywords: linear functional differential equation, necessary and sufficient stability condition, Legendre poly-
nomials approximation.

1 Introduction

Time delays inevitably arise in all systems that involve data and signals processing, propagation phenomena,
measurement of variables, or due to the intrinsic nature of the system’s behavior. Particularly, distributed delays
are a special class of time delays that model the cumulative effect of past history on the dynamics of a system,
and thus the interactions between its different components [16]. Consequently, systems with distributed delays are
realistic models of various phenomena arising in physics [29], engineering [18], biology [24], ecology [11], and other
disciplines. Motivated by its potential applications, the effect of distributed delay on the stability of time-delay
systems has been a problem of general interest from both theoretical and practical perspectives.

The Lyapunov-Krasovskii framework which uses, instead of Lyapunov functions, functionals that capture the
true state of the system is widely used to derive stability conditions. A first approach consists of the proposal
of functionals of prescribed form leading to sufficient stability conditions formulated in terms of linear matrix
inequalities (see for example [12, 23, 26], and the references therein). A second approach is based on converse
results: it consists of determining the form of the functional with a given prescribed negative quadratic derivative
along the solutions of the system (see [9, 28, 15, 25]).

In [17], Lyapunov-Krasovskii functionals of complete type are presented. These functionals are defined in terms
of a matrix function called delay Lyapunov matrix which satisfies the continuity, dynamic, symmetric, and algebraic
properties [16]. Moreover, the functional admits a quadratic lower bound if the system is exponentially stable. This
approach opens the way to finding necessary and sufficient stability conditions.

A first progress was to present necessary stability conditions expressed in terms of the system delay Lyapunov
matrix for several classes of delay systems [21]. The result is achieved by replacing the functional argument by an
approximation depending on the system’s fundamental matrix. The new stability/instability theorems on a special
set of bounded functional arguments introduced in [20, 19] are crucial for estimating the approximation order
required to ensure sufficiency. Unfortunately, the poor convergence properties of the fundamental matrix-based
approximations resulted in high-order estimates that often exceed computer capacity. For retarded type systems,
recent research revealed that the methodology presented in [13, 21] can be applied to other approximation techniques
of the functional argument, significantly reducing the numerical complexity. In particular, new necessary and
sufficient conditions were formulated using Legendre polynomials [4] and piecewise linear functions approximations
[1]. Nevertheless, for systems with multiple pointwise and distributed delays, the problem remains open.

For the case of systems with distributed delays, through fundamental matrix-based approximations, stability
criteria are presented in terms of point values of the delay Lyapunov matrix and the system’s fundamental matrix [6];
nevertheless, limited by the discretization schema, the overlarge orders of approximation prompt that its numerical
implementation demands a high computational effort. This contribution overcomes this dimensional issue by
approximating the Lyapunov-Krasovskii functional’s argument through projection on a Legendre polynomial basis.
Therefore, a stability criterion that depends on integrals of the Lyapunov matrix, the first Legendre polynomials,
and the kernel of distributed delay is derived. The reason for using Legendre polynomials approximation is to exploit
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the following underlying properties: 1) rapid convergence for smooth arguments, 2) orthogonality concerning the
Lebesgue measure, and 3) second-order recurrence satisfied by the coefficients. These properties help to significantly
reduce the dimension of the stability test, which is numerically tractable.

The criterion presented is deduced from three key elements: 1) generalization of the stability/instability theorems
on a bounded set of the class of distributed delay systems, 2) determination of the quadratic form resulting
from the substitution of the Legendre approximation of the argument, and estimation of the resulting functional
approximation error, 3) use of the stability/instability theorems to determine the approximation order guaranteeing
sufficiency. The numerical evaluation of the stability criterion depends on the delay Lyapunov matrix, the first
Legendre polynomials, and the kernel class in the distributed delay; therefore, a particular recursive method must
be developed for each kernel type. We present an efficient computational procedure based on the Jordan canonical
form to solve the first Legendre coefficient delay Lyapunov matrix-based integrals involved in the stability test for
a single-delay linear system with a constant distributed kernel delay. This procedure provides the methodology
for obtaining recursive methods for different systems with pointwise delays multiple of a basic one and distributed
terms with piecewise constant, polynomial, exponential, or combinations such as γ distribution.

The organization of the paper is as follows: 2 is devoted to some preliminaries on systems with distributed delays,
and to the generalization of the fundamental stability theorems. Additionally, the approximation of functions by
Legendre polynomials and their supergeometric convergence are presented. The main results and their proofs
are presented in 3. In 4, recursive relations for the effective computation of the quadratic form resulting from
the substitution of the Legendre approximation into the functional are presented, emphasizing the special case of
Jordan nilpotent blocks. The paper ends with illustrative examples in 5, followed by concluding remarks.

Notation: We denote the space of piecewise continuous, continuous, continuously differentiable, and smooth
functions defined from X with values in Y by PC(X,Y ), C(X,Y ), C1(X,Y ), C∞(X,Y ), respectively and let PCh =
PC([−h, 0],Rnx). In the paper, the Euclidean 2-norm for vectors and the induced norm for matrices are denoted
by ∥ · ∥. For functions φ, we use the uniform norm ∥φ∥h = sup

θ∈[−h,0]
∥φ(θ)∥. The transpose of a matrix A is denoted

by AT , and the q× q identity matrix by Iq. The minimum and maximum eigenvalues of a symmetric matrix Q are
represented by λmin(Q) and λmax(Q), respectively. The notation Q > 0 (Q ≥ 0, Q ≱ 0) means that the symmetric
square matrix Q is positive definite (positive semidefinite, not positive semidefinite). The symbol ⌈·⌉ represents
the ceiling function, and δjk denotes the Kronecker delta function. The symbols ⊗, ⊕ stand for the Kronecker
product, and the direct sum operator of matrices, respectively, while vec and vec−1 indicate the vectorization and
devectorization operations.

2 Preliminaries

This section recalls essential concepts for the time-domain stability analysis of linear systems with pointwise and
distributed delays and for the numerical analysis based on Legendre polynomials approximation.

2.1 System and stability concept

Consider linear time-delay systems of the form ẋ(t) =

m∑
j=0

Ajx(t− hj) +

∫ 0

−h

G(θ)x(t+ θ)dθ, ∀t ⩾ 0,

x(t) = φ(t), ∀ t ∈ [−h, 0], φ ∈ PCh.

(1)

where Aj , j = 0, . . . ,m, are given real nx × nx matrices and 0 = h0 < h1 < · · · < hm = h are time delays, and
the function G ∈ PC([−h, 0],Rnx×nx) represents the kernel of the distributed delay. The restriction of the solution
x(t) of initial-value problem (1) on the segment [t − h, t] is defined by xt : θ → x(t + θ), θ ∈ [−h, 0]. When the
initial condition φ must be indicated explicitly, we use the notations x(t, φ) and xt(φ).

Definition 1 (see [5]) System (1) is said to be exponentially stable if there exist γ ≥ 1 and σ > 0 such that every
solution of the system satisfies the inequality

∥x(t, φ)∥ ≤ γeσt∥φ∥h, t ≥ 0.

Fundamental results concerning the Lyapunov-Krasovskii approach are presented hereafter.

2.2 Lyapunov-Krasovskii functional

In this contribution, we make use of special matrix-based functionals with a prescribed quadratic negative derivative.
According to [17, 8], for any matrix W > 0, the unique functional v(xt) satisfying

d

dt
v(xt(φ)) = −xT (t− h, φ)Wx(t− h, φ),
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along the trajectories of system (1) has the form

v(φ) = φT (0)U(0)φ(0) +

6∑
j=1

Ij (2)

where we defined the following integrals

I1 = 2φT (0)

m∑
j=1

∫ 0

−hj

UT (θ + hj)Ajφ(θ)dθ,

I2 =

m∑
k=1

m∑
j=1

∫∫
R1

φT (θ1)A
T
k FU (θ1, θ2,−hk,−hj)Ajφ(θ2)dR1 ,

I3 = 2φT (0)

∫ 0

−h

∫ θ

−h

UT (θ − ξ)G(ξ)dξφ(θ)dθ,

I4 = 2

m∑
k=1

∫∫∫
R

2

φT (θ1)A
T
j FU (θ1, θ2,−hk, ξ)G(ξ)φ(θ2)dR2,

I5 =

∫∫∫∫
R

3

φT (θ1)G
T (ξ1)FU (θ1, θ2, ξ1, ξ2)G(ξ2)φ(θ2)dR3, I6 =

∫ 0

−h

φT (θ)Wφ(θ)dθ,

with the function FU (θ1, θ2, ξ1, ξ2) = U(θ1 − θ2 − ξ1 + ξ2), and the integration regions

R1 := {θ1 ∈ [−hk, 0], θ2 ∈ [−hj , 0]} ,
R2 := {θ1 ∈ [−hk, 0], θ2 ∈ [−h, 0], ξ ∈ [−h, θ2]} ,
R3 := {θ1 ∈ [−h, 0], θ2 ∈ [−h, 0], ξ1 ∈ [−h, θ1], ξ2 ∈ [−h, θ2]} ,

dR1 = dθ2dθ1, dR2 = dξdθ2dθ1, dR3 = dξ2dξ1dθ2dθ1.

The matrix-valued function, U(τ), is known as the delay Lyapunov matrix of system (1), associated to W . It
satisfies the following set of properties:

1. Dynamic property for τ > 0

d

dτ
U(τ) =

m∑
j=0

U(τ − hj)Aj +

∫ 0

−h

U(τ + θ)G(θ)dθ.

2. Symmetry property for τ ∈ R
U(τ) = UT (−τ),

3. Algebraic property

−W =

m∑
j=0

[
AT

j U
T (−hj) + U(−hj)Aj

]
+

∫ 0

−h

[
GT (θ)UT (θ) + U(θ)G(θ)

]
dθ.

The characteristic equation of system (1) is [5]

det

[
sI −

m∑
j=0

Aje
−shj −

∫ 0

−h

esθG(θ)dθ

]
= 0.

Let Λ̃ be the spectrum of system (1), that is the set of its characteristic roots. It is said that system (1) satisfies the
Lyapunov condition, if s ∈ Λ̃ implies −s /∈ Λ̃. The Lyapunov condition guarantees the existence and uniqueness of
the delay Lyapunov matrix [16].

Remark 1 The delay Lyapunov matrix U(τ), τ ∈ [−h, h] can be computed using the dynamic, symmetric, and
algebraic properties by a semi-analytic procedure when the delays are multiple of a basic one, and G is a piecewise
continuous polynomial [16, 2]. In the numerical part, examples with a single delay and constant kernel G are
considered.

2.3 Fundamental stability theorems

The main attribute of the functional v is that it admits a quadratic lower bound on the set of functions PCh when
the system is stable [10, 6]. This condition is established in the following result.

Theorem 1 [10, Theorem 1] If system (1) is exponentially stable, then there exist positive numbers α0 and α1

such that

v(φ) ⩾ α0∥φ(0)∥2 + α1

∫ 0

−h

∥φ(θ)∥2dθ, φ ∈ PCh. (3)
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We introduce the following compact set in the space of continuously differentiable functions parameterized by µ > 0

Sµ :=
{
φ ∈ C∞([−h, 0],Rnx) | ∥φ∥h = ∥φ(0)∥ = 1, ∥φ(k)∥h ⩽ µk, ∀ k ∈ N

}
. (4)

The following theorem, given in the framework of the set Sµ, establishes that if the system is unstable, the functional
v does not admit a nonnegative lower bound.

Theorem 2 [10, Theorem 2] Let µ =
∑m

j=0 ∥Aj∥+ h∥G∥h. If system (1) is unstable and the Lyapunov condition
holds, then there exists φ̂ ∈ Sµ such that

v(φ̂) ≤ −β⋆ = −λmin(W )

8µe2hµ
(1 + cos b), (5)

where b ∈ (0, π) is a unique solution of the equation

((2hµ)2 + b2)(1− cos b)2 = 4(2hµ)2 (6)

The preceding result reveals the crucial role of the set Sµ. Indeed, by negation, 2 provides a sufficiency stability
theorem, which is decisive for proving the main result of this contribution.

2.4 Legendre polynomials approximation

Key concepts about the Legendre polynomials and their use in the approximation of the initial function φ ∈ PCh

are introduced.
Legendre polynomials on [−h, 0] are defined as

lk(θ) =

k∑
i=0

uk
i

(
θ+h
h

)i
, ∀ k ∈ N, (7)

with uk
i = (−1)k+i

(
k
i

)(
k+i
i

)
, where

(
k
i

)
stands for the binomial coefficient. Legendre polynomials are a system of

complete and orthogonal polynomials that span the space of square-integrable functions.
For θ ∈ [−h, 0], we introduce the matrix Ln(θ) ∈ Rn·nx×nx defined by

Ln(θ) :=
[
l0(θ) l1(θ) · · · ln−1(θ)

]T
⊗ Inx , ∀ θ ∈ [−h, 0].

For any function φ ∈ PCh and for any approximation order n ∈ N, let us decompose ∀ θ ∈ [−h, 0]

φ(θ) = φn(θ) + φ̃n(θ)

where φn(θ) = LT
n (θ)Φn is the polynomial approximation and φ̃n(θ) = φ(θ) − φn(θ) is the residual error. The

vector Φn represents the normalized n first polynomial coefficients of the function φ and is defined by

Φn = diag
( 1
h
, . . . ,

2n− 1

h

)
⊗ Inx

∫ 0

−h

Ln(θ)φ(θ)dθ ∈ Rn·nx .

Next, we prove that the Legendre approximation φn converges uniformly towards φ with respect to θ and we
also quantify its convergence rate on the set Sµ defined in (4).

2.5 Convergence of the Legendre polynomials approximation

The following convergence lemma allows us to estimate the order that ensures that, for any φ ∈ Sµ, the approxi-
mation error φ̃n(θ) = φ− φn is upper bounded by ε > 0.

Lemma 1 Let µ > 0 and consider φ ∈ Sµ. For any ε > 0, the Legendre truncated error function φ̃n satisfies the
following inequality

∥φ̃n∥h ⩽ ε, ∀ n ⩾ Nµ(ε)

where

Nµ(ε) =

⌈
µ̄ exp

[
1 +W

(
(eµ̄)−1 log

(ϱ
ε

))]⌉
. (8)

with ϱ = 5
3min(1,(hµ)2)

, µ̄ = 2
3
hµ and W :

{
R+ → R+

y = zez 7→ z
Lambert’s function [7].
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Proof : For n = {1, 2}, we have roughly
∥φ̃1∥h ≤ 2∥φ∥h = 2,

∥φ̃2∥h ≤ 5∥φ∥h = 5.
(9)

For n ≥ 3 and d ≤ n−1, according to [3, Lemma 2.2], for any φ ∈ Sµ an upper bound of the Legendre approximation
error is given by

∥φ̃n∥h ≤ (hµ)d+1

2d(d−1)

(
n− 3

2

)
...

(
n−d+

1
2

) ,
and, with the largest possible value d = n−1, which takes advantage of a maximum number of bounded derivatives
and leads to the smallest bound when h or µ are small, we have

∥φ̃n∥h ≤
2

(
hµ
2

)n

n!
n(n−1)...2

(n−2)(n− 3
2
)...

(
3
2

) ≤
2

(
hµ
2

)n
3

(
4
3

)n−1

n!
=

9
2

(
2hµ
3

)n

n!
. (10)

Merging (9)-(10) leads to

∥φ̃n∥h ⩽ ϱ
µ̄n

n!
, (11)

where ϱ = 5
3min(1,(hµ)2)

and µ̄ = 2
3
hµ are set at the beginning.If we apply the logarithm function “log” to the

foregoing inequality, then

log (∥φ̃n∥h) ⩽ log (ϱ) + n log(µ̄)−
n∑

k=1

log(k).

The Maclaurin integral test gives the following upper-bound

log (∥φ̃n∥h) ⩽ log (ϱ) + n log(µ̄)−
∫ n

0

log(s)ds = log (ϱ)− n log
(

n
eµ̄

)
.

Defining zn := log
(

n
eµ̄

)
, imply that ezn =

n

eµ̄
and

log (∥φ̃n∥h) ⩽ log (ϱ)− eµ̄(zne
zn). (12)

Therefore, for that (12) is bounded by log(ε), the following inequality need to be satisfied

zne
zn ⩾ (eµ̄)−1 log

(ϱ
ε

)
.

By definition of W Lambert’s function [7] and its increasing behavior on R+, we have

zn = log

(
n

eµ̄

)
≥ W

(
(eµ̄)−1 log

(ϱ
ε

))
,

or equivalently that the order n is sufficiently large to satisfy

n ⩾ µ̄ exp
[
1 +W

(
(eµ̄)−1 log

(ϱ
ε

))]
.

Hence the proof is completed. □

3 A new stability condition for systems with distributed delays

The main result of this contribution is obtained through the approximation of the Lyapunov - Krasovskii functional
v in (2) by the n first Legendre polynomials for particular functions φ from the subsets of PCh. Based on this
idea, we present a necessary and sufficient stability criterion for system (1), whose test requires a finite number of
mathematical operations.

3.1 Approximated Lyapunov-Krasovskii functional

For any φ ∈ PCh, the approximated Lyapunov-Krasovskii functional at order n is given by

vn(φ) = γT
n

[
U(0) Qn +Rn

QT
n +RT

n Tn + Sn + ST
n +Dn + I−1

n

]
γn = γT

nPnγn, (13)

with γn =
[
φT (0) ΦT

n

]T ∈ R(n+1)nx , and Pn ∈ R(n+1)nx×(n+1)nx .
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In the foregoing expression, we have

Qn :=

m∑
j=1

∫ 0

−hj

UT (θ + hj)AjL
T
n (θ)dτ, I−1

n :=

∫ 0

−h

Ln(τ)WLT
n (τ)dτ,

Rn :=

∫ 0

−h

∫ θ

−h

UT (θ − ξ)G(ξ)LT
n (θ)dξdθ,

Tn :=

m∑
k=1

m∑
j=1

∫∫
R

1

Ln(θ1)A
T
k FU (θ1, θ2,−hk,−hj)AjL

T
n (θ2)dR1,

Sn :=

m∑
k=1

∫∫∫
R

2

Ln(θ1)A
T
k FU (θ1, θ2,−hk, ξ)G(ξ)LT

n (θ2)dR2,

Dn :=

∫∫∫∫
R3

Ln(θ1)G
T (ξ1)FU (θ1, θ2, ξ1, ξ2)G(ξ2)L

T
n (θ2)dR3,

(14)

where the function FU and the regions R1, R2, R3 are defined in 2.2.

Remark 2 Functional vn is a Legendre polynomials approximation of the Lyapunov - Krasovskii functional v
defined by (2). It is a quadratic form composed of a finite number of coefficients stored in matrix Pn. The
difference between vn and v depends on the Legendre residual error φ̃n.

3.2 Convergence of the approximated Lyapunov - Krasovskii functional

The convergence of the functional vn towards the Lyapunov-Krasovskii functional v is now established. The result
follows from Legendre polynomials approximation presented in the previous section.

For φ ∈ PCh, we define the Lyapunov-Krasovskii functional remainder as

ṽn(φ) := v(φ)− vn(φ) =

6∑
j=1

Ĩj , (15)

where the remained integrals are expressed using symmetry properties in terms of the original function φ and the
residual error φ̃n as follows

Ĩ1 =2φT (0)

m∑
j=1

∫ 0

−h
j

UT (θ + hj)Ajφ̃n(θ)dθ, Ĩ6 = −
∫ 0

−h

φ̃T
n (θ)Wφ̃n(θ)dθ,

Ĩ2 =

m∑
k=1

m∑
j=1

∫∫
R

1

(
2φT (θ1)A

T
k − φ̃T

n (θ1)A
T
k

)
FU (θ1, θ2,−hk,−hj)Ajφ̃n(θ2)dR1,

Ĩ3 =2φT (0)

∫ 0

−h

∫ θ

−h

UT (θ − ξ)G(ξ)dξφ̃n(θ)dθ,

Ĩ4 =2

m∑
k=1

∫∫∫
R

2

(
2φ(θ1)A

T
j − φ̃n(θ1)A

T
j

)
FU (θ1, θ2,−hk, ξ)G(ξ)φ̃n(θ2)dR2,

Ĩ5 =

∫∫∫∫
R

3

(
2φT (θ1)G

T (ξ1)− φ̃T
n (θ1)G

T (ξ1)

)
FU (θ1, θ2, ξ1, ξ2)G(ξ2)φ̃n(θ2)dR3,

where the function FU (·) and the integration regions R1, R2, R3 are defined in 2.2. The next step is to bound the
functional approximation error. We prove that in the compact set Sµ, ṽn converges to zero with a guaranteed and
quantified convergence rate.

Lemma 2 Let µ > 0. For any φ ∈ Sµ, we have

∥ṽn∥ ⩽ β, ∀n ≥ Nµ(E(β))

where ṽn is given by (15), Nµ is given by (8), and

E(β) := −κ1
κ2

+

√(
κ1
κ2

)2
+ β

κ2
,
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with scalars

κ1 :=∥U∥h
(
h

m∑
j=1

∥Aj∥+h2∥G∥h
)(

1+h

m∑
j=1

∥Aj∥+h2∥G∥h
)
,

κ2 :=∥U∥h
(
h

m∑
j=1

∥Aj∥+h2∥G∥h
)2

+h∥W∥.

Proof : We estimate an upper bound of each summand of ṽn by the use of Cauchy-Schwarz inequality

Ĩ1⩽2∥U∥hh
m∑

j=1

∥Aj∥∥φ̃n∥h∥φ∥h, Ĩ2⩽∥U∥h
(
h

m∑
j=1

∥Aj∥
)2
(2∥φ∥h+∥φ̃n∥h)∥φ̃n∥h,

Ĩ3⩽2∥U∥hh2∥G∥h∥φ̃n∥h∥φ∥h, Ĩ4⩽2∥U∥hh3∥G∥h
m∑

j=1

∥Aj∥(2∥φ∥h+∥φ̃n∥h)∥φ̃n∥h,

Ĩ5⩽∥U∥hh4∥G∥2h(2∥φ∥h+∥φ̃n∥h)∥φ̃n∥h, Ĩ6⩽h∥W∥∥φ̃n∥2h,

yielding

∥ṽn(φ)∥ ⩽ κ2∥φ̃n∥2h + 2κ1∥φ̃n∥h∥φ∥h. (16)

Having ∥φ∥h ≤ 1, we assess that ∥ṽn∥ ≤ β holds under the following quadratic constraint

∥φ̃n∥2h + 2
κ1

κ2
∥φ̃n∥h − β

κ2
⩽ 0

which is satisfied for ∥φ̃n∥ ≤ E(β). Finally, applying 1 and considering φ ∈ Sµ, we have ∥φ̃n∥h ⩽ E(β) for
n ⩾ Nµ(E(β)) which concludes the proof. □

We are now in a position to present the main contribution of this research. This result, inspired by [13, 3, 1],
provides necessary and sufficient stability conditions expressed in terms of the positive definiteness of the matrix
Pn defined in (13). The resulting criterion requires the verification of just one condition evaluated at a fixed and
explicitly given approximation order n⋆.

3.3 Necessary stability condition

It is evident that the substitution of any particular initial function into the functional (2) combined with the
quadratic lower bound on the functional will provide a set of necessary stability conditions.

Theorem 3 If system (1) is exponentially stable, then

Pn > 0 ∀ n ∈ N,

where matrix Pn is given by (13).

Proof : For any vector γn =
(
xT ΦT

n

)T ∈ R(n+1)nx and n ∈ N, we define the initial function φ̄ ∈ PCh as

φ̄(θ) =

{
LT

n (θ)Φn, ∀ θ ∈ [−h, 0),
x, if θ = 0.

The evaluation of the functional v(φ) on the special function φ̄ reduces to v(φ̄) = γT
nPnγn. As system (1) is

assumed to be exponentially stable, inequality (3) in 1 holds, therefore v(φ̄) > 0, which yields Pn > 0, for all
n ∈ N, since x and Φn are arbitrary vectors. Hence the theorem is proven. □

Remark 3 The necessary stability condition in 3 can be used as a sufficient condition of instability: if Pn ≯ 0 then
system (1) is unstable. In practice, it leads to an over estimation of the stability regions in the state of parameters.

3.4 Sufficient stability condition

It is interesting and novel to see that a positive quadratic bound for vn that depends on the approximation order
n can be used as a sufficient condition for exponential stability.
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Theorem 4 Let µ =
∑m

j=0 ∥Aj∥+h∥G∥h and order n ∈ N. If the Lyapunov condition holds and if the positiveness
semi-definite test Pn − Pn ⩾ 0 is true where Pn is given in (13), β∗ in (5),

Pn :=

[
(δn − β⋆) Inx 0

0 0

]
,

δn :=
(
∥U∥h(hµ)2 + h∥W∥

)(5µ̄n

n!

)2

+ 2∥U∥h(hµ)(1 + hµ)

(
5µ̄n

n!

)
,

and µ̄ = max
(
1, 2

3
µ
)
, then system (1) is exponentially stable.

Proof : The proof is done by contradiction. We assume that system (1) is not exponentially stable, but Pn−Pn > 0
and the Lyapunov condition holds. The application of 2 for this particular value of the parameter µ implies that
there exists a function φ ∈ Sµ such that

v(φ) ⩽ −β⋆ = −β⋆∥φ(0)∥2. (17)

Next, it follows from (13) that

v(φ) = γT
nPnγn + ṽn(φ) ⩾ γT

nPnγn − ∥ṽn(φ)∥.

Owing to (16) allows us to obtain

v(φ) ⩾ γT
nPnγn − κ2∥φ̃n∥2h − 2κ1∥φ̃n∥h∥φ∥h,

where κ1 = ∥U∥h(hµ)(1 + hµ)), κ2 = ∥U∥h(hµ)2 + h∥W∥ and ∥φ∥h = 1. Then, the application of (11) gives

v(φ) ⩾ γT
nPnγn − δn∥φ(0)∥2. (18)

Lastly, merging (17) and (18) yields
γT
n (Pn − Pn) γn < 0,

and contradicts the positiveness semi-definite assumption on Pn − Pn. □

Remark 4 The sufficient stability condition in Theorem 4 can be used to ensure stability, even for low order n.
In practice, it leads to an under estimation of the stability regions in the state of parameters. Note that, when the
order n is sufficiently large to obtain δn < β⋆, the condition amounts to a positivity test on the matrix Pn.

3.5 Necessary and sufficient stability condition

The following result is a necessary and sufficient stability condition for systems with pointwise and distributed
delays, that can be verified in a finite number of mathematical operations.

Theorem 5 Let µ =
∑m

j=0 ∥Aj∥+h∥G∥h. System (1) is exponentially stable if and only if the Lyapunov condition
and

Pn⋆ > 0, (19)

with n⋆ = Nµ(E(β⋆)), where β⋆, Nµ, E are determined by ??, respectively.

Proof : We prove separately the necessity and the sufficiency.
Necessity: The necessity directly follows from 3, since (19) holds for every integer n, and in particular n⋆.
Sufficiency: The sufficiency directly follows from 4 since inequality δn ⩽ β⋆ holds for all integer n ≥ n∗. □
In the next section, we introduce an algorithm to solve the problem of the numerical computation of matrix Pn.

4 Legendre projection computations

It is evident that the availability of a computational scheme for the numerical test of the stability conditions pre-
sented in 3 is required. However, analytically constructing the matrix Pn is a numerically complicated task due
to the presence of polynomial sequences, integral terms, and especially the distributed delay. To overcome this
difficulty, we can develop effective inductive relations for the computation of Pn using the following process. First,
we introduce, depending on kernel type, the semianalytic expression for the computation of the delay Lyapunov
matrix U(τ), τ ∈ [−h, h] associated with W = Inx [2]. Second, we decompose the matrix Pn given by (13) in terms
of integrals of quasi-polynomials kernels. Third, we develop a recursive method for computing these integrals using
the properties of Legendre polynomials (orthogonality, point-wise values, and differentiation properties [27]). This
procedure provides the methodology for obtaining recursive methods for different systems with point-wise delays
multiple of a basic one and distributed terms with piecewise constant, polynomial, exponential, or combinations
such as γ distribution. For the case of systems with constant distributed kernel delay and a single point-wise delay
(G(θ) = G, h1 = h), we present the corresponding recursive relations.
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4.1 Delay Lyapunov matrix: semianalytic method

The delay Lyapunov matrix U ∈ Rnx×nx is given by U = vec−1(U), where U = vec(U) is defined by [2]

U(τ) = E1e
τLX0, τ ∈ [0, h]

with W1 = vec(W ), and

X0 =

M + [−ET N1 ] e

[
0
n2
x

E
0
3n2

x
L

]
h
[

0
n2
x×3n2

x
I
3n2

x

]−1 [
0
n2
x

0
n2
x

−W1

]
, E = [ 0n2

x
I
n2
x

0
n2
x ] ,

L =

[
AT

0 ⊗Inx AT
1 ⊗Inx GT⊗Inx

−Inx⊗AT
1 −Inx⊗AT

0 −Inx⊗GT

Inx⊗Inx −Inx⊗Inx 0n⊗0nx

]
, M =

[
I
n2
x

0
n2
x

0
n2
x

0
n2
x

0
n2
x

I
n2
x

AT
0 ⊗Inx AT

1 ⊗Inx GT⊗Inx

]
,

N1 =

[
0
n2
x

−I
n2
x

0
n2
x

0
n2
x

0
n2
x

0
n2
x

Inx⊗AT
1 Inx⊗AT

0 Inx⊗GT

]
, E1 = [ In2

x
0
n2
x

0
n2
x ] .

(20)

For the solution of the integrals defined in (14) there exist recursive relations only for the case where L is nonsingular
[3]. A technical challenge in the case of distributed delay systems is that matrix L in (20) is, for most systems
parameters, a singular matrix. By introducing its canonical Jordan form, we guarantee that the analytical-recursive
solution of the integrals in (14) can be computed for the invertible and non-invertible parts of matrix L.

Lemma 3 (See [14]) Let L ∈ Rnx×nx defined by (20). There exist a nonsingular PL ∈ Cnx×nx , positive integers
q, m1, . . . ,mq with m1 +m2 + · · ·+mq = nx, and distinct eigenvalues s1, . . . , sq ∈ C of L, such that

L = PL

(
Jm1(s1)⊕ Jm2(s2)⊕ · · · ⊕ Jmq (sq)︸ ︷︷ ︸

JL

)
P−1
L .

A Jordan block Jmi(si) is a mi-by-mi upper triangular matrix where the scalar si appears mi times on the main
diagonal (algebraic multiplicity); if mi > 1, there are mi − 1 entries “+1” in the super-diagonal; all other entries
are zero.

Remark 5 Notice that the matrix JL defined in 4 can be expressed by

JL =

[
B 0
0 N

]
,

where B is a direct sum of all the nonsingular Jordan blocks and N is a direct sum of all the nilpotent blocks. The
direct summand B is absent if L is nilpotent; N is absent if L is nonsingular. Then, the exponential matrix of
L = PLJLP

−1
L is defined by

eLτ = PLe
τJLP−1

L = PL

[
eBτ 0
0 eNτ

]
P−1
L .

The exponential matrix of the nilpotent Jordan block Jmi(0), contained in matrix Pn, is given by

eJmi
(0)τ =


1
0!
τ0 1

1!
τ1 · · · 1

(mi−1)!
τmi−1

0 1
0!
τ0 · · · 1

(mi−2)!
τmi−2

...
...

. . .
...

0 0 · · · 1
0!
τ0

 . (21)

where mi represents the algebraic multiplicity.

4.2 Components of the matrix Pn

Each coefficient of matrix Pn given by (13) needs to be evaluated numerically, which is more complicated since
matrices Qn,Rn,Tn,Sn and Dn contain the first Legendre coefficients of the delay Lyapunov matrix. Therefore,
substituting the semianalytic expression of U in each component of the matrix Pn, and considering the Jordan
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canonical form of L described in 4, we obtain

Qn =
[
QT

0 A1 QT
1 A1 · · · QT

n−1A1

]
, Rn =

[
RT

0 G RT
1 G · · · RT

n−1G
]
,

Tn =


AT

1 T00A1 AT
1 T01A1 · · · AT

1 T0n−1A1

⋆ AT
1 T11A1 · · · AT

1 T1n−1A1

...
...

. . .
...

⋆ ⋆ ⋆ AT
1 Tn−1,n−1A1

 ,

Sn =


AT

1 S00G AT
1 S01G · · · AT

1 S0,n−1G
AT

1 S10G AT
1 S11G · · · AT

1 S1,n−1G
...

...
. . .

...
AT

1 Sn−1,0G AT
1 Sn−1,1G · · · AT

1 Sn−1,n−1G

 ,

I−1
n = h · diag

(
1, 1

3
, 1
5
, · · · , 1

2n−1

)
⊗ Inx ,

Dn =


GTD00G GTD01G · · · GTD0,n−1G

⋆ GTD11G · · · GTD1,n−1G
...

...
. . .

...
⋆ ⋆ · · · GTDn−1,n−1G

 ,

where Qk, Rk,Tjk = Tjk+T ♭T

jk ,Sjk = Sjk+S♭T

jk andDjk = Djk +D♭T

jk are the Legendre coefficients of the Lyapunov
matrix U given in the vector form as follows

Qk = vec(Qk) = E1PLΓkP
−1
L X0,

Rk = vec(Rk) = E1PLΛkP
−1
L X0,

Tjk = vec(Tjk) = E1PLΓ̄jkP
−1
L X0,

T ♭
jk = vec(T ♭

jk) = E1PLΓ̄
♭
jkP

−1
L X0,

Sjk = vec(Sjk) = E1PLΛ̄jkP
−1
L X0,

S♭
jk = vec(S♭

jk) = E1PLΛ̄
♭
jkP

−1
L X0,

Djk = vec(Djk) = E1PL∆̄jkP
−1
L X0,

D♭
jk = vec(D♭

jk) = E1PL∆̄
♭
jkP

−1
L X0,

with

Γk =

∫ 0

−h

e(h+θ)JL lk(θ)dθ, Λk =

∫ 0

−h

∫ θ

−h

e(θ−ξ)JLdξlk(θ)dθ,

Γ̄jk =

∫ 0

−h

∫ θ1

−h

lj(θ1)e
(θ1−θ2)JL lk(θ2)dθ2dθ1, Γ̄♭

jk =

∫ 0

−h

∫ 0

θ1

lj(θ1)e
(θ2−θ1)JL lk(θ2)dθ2dθ1,

Λ̄jk =

∫ 0

−h

∫ 0

−h

∫ θ1+h

0

lj(θ1)e
ξJL lk(θ2)dξdθ2dθ1,

Λ̄♭
jk =

∫ 0

−h

∫ 0

−h

∫ 0

θ1−θ2

lj(θ1)e
−ξJL lk(θ2)dξdθ2dθ1,

∆̄jk=

∫ 0

−h

lj(θ1)

∫ 0

−h

lk(θ2)

∫ θ1+h

0

∫ ξ1

0

e(ξ1−ξ2)JLdξ2dξ1dθ2dθ1,

∆̄♭
jk=

∫ 0

−h

lj(θ1)

∫ 0

−h

lk(θ2)

∫ θ1+h

0

∫ θ2+h

ξ1

e(ξ2−ξ1)JLdξ2dξ1dθ2dθ1,

(22)

where PL, JL are defined by 4. In the following section, by the properties of the Legendre polynomials, we present a
recursive numerical scheme for the calculation of the integrals involved in the determination of the matrices defined
in (22). The reduction of the computational burden makes the stability conditions numerically tractable.

4.3 Iterative calculation of Legendre exponential coefficients

The following propositions address the recursive computation of the integrals defined in (22). The highly technical
proofs are given as Supplementary material.

Proposition 1 The matrices Γk and Λk can be computed by

Γk = Γk(B)⊕ Γk(N), Λk = Λk(B)⊕ Λk(N),
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where the matrices B,N are defined in 7.
For the case of B, the following recursive relation holds

Γk(B) = Γk−2(B)− 2(2k−1)
h

B−1Γk−1(B), ∀k ⩾ 2,

Λk(B) = B−1Γk(B), ∀ k ⩾ 1,

initialized with [
Γ0(B)
Γ1(B)
Λ0(B)

]
=

[
B−1(ehB−Imi

)

B−1(ehB+Imi
)− 2

h
B−1Γ0(B)

B−1(Γ0(B)−hImi
)

]
,

For the case of the nilpotent matrix N , we have that

Γk(N) = Γk,1(0)⊕ Γk,2(0)⊕ · · · ⊕ Γk,b(0),

Λk(N) = Λk,1(0)⊕ Λk,2(0)⊕ · · · ⊕ Λk,b(0),

with

Γk,i(0) =


γk,0 γk,1 ··· γk,mi−1

0 γk,0 ··· γk,mi−2

...
...

. . .
...

0 0 ··· γk,0

 , Λk,i(0) =


λk,0 λk,1 ··· λk,mi−1

0 λk,0 ··· λk,mi−2

...
...

. . .
...

0 0 ··· λk,0

 ,

γk,p =

k∑
i
1
=0

uk
i
1
hp+1

(i1 + p+ 1)p!
, λk,p = γk,p+1,

where uk
i
1
is given by (7), p = 0, . . . ,mi, mi is the algebraic multiplicity of nilpotent blocks i, i = 1, 2, . . . , b, b the

number of nilpotent blocks of L, and k = 0, . . . , n− 1.

Proposition 2 For any matrix JL, and for matrices Γ̄jk, Γ̄
♭
jk the following equality holds

Γ̄jk = (−1)j+kΓ̄♭
jk ∀(j, k) ∈ {0, 1, . . . , n− 1}2.

Proposition 3 The matrices Γ̄jk and Γ̄♭
jk are calculated by

Γ̄jk = Γ̄jk(B)⊕ Γ̄jk(N), Γ̄♭
jk = Γ̄♭

jk(B)⊕ Γ̄♭
jk(N),

where the matrices B,N are defined in 7.
The matrices Γ̄jk(B) are computed as follows relations

Γ̄jk(B) =


(−1)j+kΓ̄kj(B), k < j,(
Γ̄jk−2(B) + 2(2k+1)

h
B−1Γ̄jk−1(B)

− h
2k+1

B−1 (δjk − δjk−2)

)
, k ≥ max(2, j),

initialized with [
Γ̄00(B)

Γ̄01(B)

Γ̄11(B)

]
=

[
B−1(Γ0(B)−hImi

)

−B−1Γ1(B)

B−1(( 2
hB−1−Imi

)Γ1(B)−h
3 Imi)

]
.

For the case of a nilpotent N , we have that

Γ̄jk(N) = Γ̄jk,1(0)⊕ Γ̄jk,2(0)⊕ · · · ⊕ Γ̄jk,b(0),

with

Γ̄jk,i(0) =


γ̄jk,0 γ̄jk,1 · · · γ̄jk,mi−1

0 γ̄jk,0 · · · γ̄jk,mi−2

...
...

. . .
...

0 0 · · · γ̄jk,0

 ,

γ̄jk,p =
1

p!

j∑
i
1
=0

k∑
i
2
=0

p∑
i
3
=0

(
p

i
3

) (−1)i3uj
i
1
uk
i2
hp+2

i
1
+ i

2
+ p+ 2

,

where uj
i
1
, uk

i
2
are given by (7), p = 0, . . . ,mi − 1, mi is the algebraic multiplicity of nilpotent blocks i,

i = 1, 2, . . . , b, b the number of nilpotent blocks of L, and k = 0, . . . , n− 1.
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Proposition 4 The matrices Λ̄jk and Λ̄♭
jk are given by

Λ̄jk = Λ̄jk(B)⊕ Λ̄jk(N), Λ̄♭
jk = Λ̄♭

jk(B)⊕ Λ̄♭
jk(N),

where

Λ̄jk(B) =

{
hB−1Γj(B) if k = 0, j ⩾ 1,
0 if k ≥ 1,

Λ̄♭
jk(B) = (−1)jB−1Γk(B)Γj(B)e−hB , j ⩾ 1, k ⩾ 1,

and [
Λ̄00(B)

Λ̄♭
00(B)

]
=
[

hB−1Γ0(B)−h2B−1

Γ0(B)Γ0(B)e−hB−h2B−1

]
.

For the case of nilpotent matrix N , we have

Λ̄jk(N) = Λ̄jk,1(0)⊕ Λ̄jk,2(0)⊕ · · · ⊕ Λ̄jk,b(0)

Λ̄♭
jk(N) = Λ̄♭

jk,1(0)⊕ Λ̄♭
jk,2(0)⊕ · · · ⊕ Λ̄♭

jk,b(0)

with

Λ̄jk,i(0) =


λ̄jk,0 λ̄jk,1 ··· λ̄jk,mi−1

0 λ̄jk,0 ··· λ̄jk,mi−2

...
...

. . .
...

0 0 ··· λ̄jk,0

 , Λ̄♭
jk,i(0) =


λ̄♭
jk,0 λ̄jk,1 ··· λ̄jk,mi−1

0 λ̄jk,0 ··· λ̄jk,mi−2,

...
...

. . .
...

0 0 ··· λ̄jk,0

 ,

λ̄jk,p =

{
hγj,p+1 if k = 0,
0 if k ⩾ 1,

λ̄♭
jk,p =

(−1)p+1

(p+ 1)!

j∑
i
1
=0

k∑
i
2
=0

p∑
i
3
=0

(
p
i
3

)
(−1)i3uj

i1
uk
i2
hp+2

(i1 − i3 + p+ 1)(i2 + i3 + 1)
,

where uj
i1
, uk

i
2
are given by (7), p = 0, . . . ,mi−1, mi is the algebraic multiplicity of nilpotent blocks i, i = 1, 2, . . . , b,

b the number of nilpotent blocks of L, and k = 0, . . . , n− 1.

Proposition 5 The matrices ∆̄jk and ∆̄♭
jk are computed as

∆̄jk = ∆̄jk(B)⊕ ∆̄jk(N), ∆̄♭
jk = ∆̄♭

jk(B)⊕ ∆̄♭
jk(N),

where

∆̄jk(B) =

{
hB−2Γj(B) if k = 0, j ⩾ 2,
0 if k ⩾ 1,

∆̄♭
jk(B) =

{
−Λ̄♭

jk(B) if j > 0, k ⩾ 1,

−Λ̄♭
jk(B) + hB−2Γk(B) if j = 0, k ⩾ 1,

with Ω00(B)
Ω10(B)

Ω♭
00(B)

Ω♭
10(B)

 =


hB−1

(
B−1Γ0(B)−h2

2
Imi

−hB−1

)
−h3

6
B−2+hB−2Γ1(B)

−B−2

(
Γ2
0(B)e−hB−hΓ0(B)+h3

2
B

)
B−2Γ0(B)Γ1(B)e−hB−h3

6
B−1

 .

For the case of a nilpotent matrix N , we have

∆̄jk(N) = ∆̄jk,1(0)⊕ ∆̄jk,2(0)⊕ · · · ⊕ ∆̄jk,b(0),

∆̄♭
jk(N) = ∆̄♭

jk,1(0)⊕ ∆̄♭
jk,2(0)⊕ · · · ⊕ ∆̄♭

jk,b(0),

where

∆̄jk,i(0) =


δ̄jk,0 δ̄jk,1 ··· δ̄jk,mi−1

0 δ̄jk,0 ··· δ̄jk,mi−2

...
...

. . .
...

0 0 ··· δ̄jk,0

 , ∆̄♭
jk,i(0) =


δ̄♭jk,0 δ̄♭jk,1 ··· δ̄♭jk,mi−1

0 δ̄♭jk,0 ··· δ̄♭jk,mi−2

...
...

. . .
...

0 0 ··· δ̄♭jk,0

 ,

δ̄jk,p = λ̄jk,p+1, δ̄♭jk,p = λ̄kj,p+1 − λ̄♭
jk,p+1,

with p = 0, . . . ,mi − 1, mi the algebraic multiplicity of nilpotent block i, i = 1, 2, . . . , b, b the number of nilpotent
blocks of L, and k = 0, . . . , n− 1.

Remark 6 A worthy of mention fact is that the numerical scheme developed in this contribution for the calculation
of the integrals (14) can be applied to compute the integrals required in [3, Theorem 1] when the matrix M of the
semianalytic method is singular, a case that has not been treated before in the literature.
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(a) Necessary condition (3). (b) Required orders of n⋆ with respect to (k1, k2).

Figure 1: Necessary and sufficient stability condition of 5 for 1.

Table 1: Stability criteria of 5, and Theorem 7 and 8 in [6], for some parameters (k1, k2) (highlighted in 1b), 1.

(k1, k2) n⋆ Thm 5 r⋆ [6, Thm 8] r̂ [6, Thm 7] Result

(−200,−200)♦ 15 3473 16664261 Stable

(−60,−50)♦ 9 107 6102 Stable

(100,100)♦ 10 599 119286 Unstable

(−250,250)♦ 18 185498 ≃ 109 Unstable

5 Numerical Examples

In this section, we illustrate how the stability conditions of ?? can be applied to determine the stability region
in the space of parameters, including delays. The numerical implementation of the recursive scheme presented in
4 is carried out in MATLAB. The numerical errors in the recurrence relations, accumulated as n increases, are
reduced by using the vpa function. The positivity of Pn is verified with the chol function, while the solution of
(6) is computed with the fzero function. In each figure, the system parameters that satisfy the stability conditions
are represented by isolated points, while the solid lines indicate the stability/instability boundaries obtained by the
D−Partition method [22]. It is essential to clarify that, unlike in frequency-domain methods, Theorem 5 allows the
independent analysis of the stability of any isolated point of system (1). The numerical computations are performed
on a desktop computer with Intel Core i9-9900, 3.10 GHz, 6 cores, and 32 GB RAM processor. For comparison
purposes, we also present the number r̂, r⋆ of the stability test for systems with distributed delays introduced in
[6].

Example 1 Consider the following system with an exponential kernel

ẋ(t) =

(
1 0
0 1

)
x(t) +

(
0 −2.5

−2.5 0

)
x(t− h) +

(
k1 0
0 k2

)∫ 0

−h

eγθx(t+ θ)dθ

with h = 0.1, γ = −2.5, and k1, k2 ∈ R are free parameters.

The points where the conditions of 3 are satisfied for different values of n are depicted in 1a. As the conditions
are necessary for any n, an outer estimate of the stability region is obtained. Consequently, points that do not
satisfy the condition for some n are not evaluated for greater values of n. 1b represents the map of the order n⋆

for which the conditions of 5 become sufficient, considering only the parameter region obtained from 3 with n = 2.
The estimation order n⋆ and the estimates of r̂, r⋆ found in [6] are given in 1 for several parameter pairs (k1, k2).
The reduction of the estimation order and the gain in numerical complexity is clear.

Example 2 Consider the following two-dimensional example:

ẋ(t) =

(
−1 0.5
0 p

)
x(t− h) +

(
0 0
−1 0

)∫ 0

−h

x(t+ θ)dθ,

where p ∈ R and h ⩾ 0 are free parameters.

1a illustrates the stability regions obtained through the necessary condition of 5. The number n⋆ defined in 5
is depicted in 2b for pairs (h, p) in the space of parameters. 2 presents a comparison of the orders required to
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(a) Necessary condition (3). (b) Required orders of n⋆ with respect to (h, p).

Figure 2: Necessary and sufficient stability condition of 5 for 23.

Table 2: Stability criteria of 5, and Theorem 7 and 8 in [6], for some parameters (h, p), highlighted in 2b, 23.

(h, p) n⋆ Thm 5 r⋆ [6, Thm 8] r̂ [6, Thm 7] Result

(0.1,−0.1)♦ 6 4 13 Stable

(0.3,0.1)♦ 8 90 873 Stable

(1.5,−1)♦ 20 15819 2188460189 Unstable

(2.5,1)♦ 41 144859603 ≃ 1018 Unstable

guarantee the sufficiency of 5 and [6, Theorem 7, Theorem 8] for selected pairs of parameters (h, p). We can see
that our stability criterion is much more efficient for low orders. We also note that, as in other stability criteria,
the order increases along the stability boundaries.

Example 3 Now, we consider a liquid monopropellant rocket motor with a pressure feeding system [29]. A lin-
earized version of the dynamic equation of its feeding system and combustion chamber, assuming nonsteady flow
and taking nonuniform lag consideration, is given by

ẋ(t) =

( γ−1 0 0 0
0 0 0 −5

−κ 0 −κ κ
0 1 −1 0

)
x(t)−

(
γ
h

0
1
h

0

0 0 0 0
0 0 0 0
0 0 0 0

)∫ 0

−h

x(t+ θ)dθ (23)

where κ = 0.5556, γ ∈ R, and h > 0 are system parameters.

The test of the conditions of 3 allows inferring that the stability region in the parameter space {(h, γ) : 0 < h <
6.5, 0 ⩽ γ ⩽ 6.5} can be obtained with n = 1 (see 3a). In addition, the estimated order n⋆, as expressed in 5, is
illustrated in 3b. It is worth mentioning that although n⋆ can be large in some cases where the Lyapunov condition
is almost violated, as shown in 3, it is still finite and less conservative compared to the values of r̂ and r⋆ reported
in [6].

6 Conclusion

This contribution presents a new necessary and sufficient stability condition for linear systems with pointwise and
distributed delays. The formulated criterion links the system’s stability with the positivity of a particular matrix,
and its verification only requires n⋆ finite number of operations. This result is based on the approximation by the

Table 3: Stability criteria of 5, and Theorem 7 and 8 in [6], for several parameters (h, γ), highlighted in 3b, 3.

(h, γ) n⋆ Thm 5 r⋆ [6, Thm 8] r̂ [6, Thm 7] Result

(0.1,0.3)♦ 8 1935 32440 Stable

(0.7,1.5)♦ 24 253553 167248147506 Stable

(0.5,5)♦ 25 1018773 1033202905518 Unstable

(1.2,3)♦ 43 173260910 ≃ 1018 Unstable
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Figure 3: Necessary and sufficient stability condition of 5 for 3.

first n Legendre polynomials of the initial function argument in the Lyapunov-Krasovskii functional with prescribed
derivative and recent fundamental stability theorems. The supergeometric convergence rate satisfied by the Legen-
dre polynomials demonstrates that Theorem 5 requires fewer operations than the results in [6]. Furthermore, the
recursive numerical scheme guarantees an efficient implementation of the stability conditions, which is numerically
tractable. Research perspectives consist of reducing the computational effort of the stability test by improving the
estimation of n⋆ whose conservatism derives from the overestimations of the bounds of the fundamental stabil-
ity/instability theorems. An ongoing objective is to develop numerical schemes for systems with distributed delays
with non-constant kernels and multiple-point delays. Future work also consists of studying the computational
complexity of the recursive relationships of the stability test to improve the efficiency of the developed algorithms.
Another main line of research consists of finding estimates of the exponential decay rates of these systems. Finally,
this contribution is a significant step in continuously improving stability theory for linear systems with distributed
delays.

A Proofs of the new recursive method for projection computa-
tion: Propositions 4.3 - 4.7

In this section, we present the technical details corresponding to the proofs of the recursive relations of the numerical
scheme for the calculation of the integrals involved in the construction of the matrix Pn. These results are obtained
using the properties of the Legendre polynomials and the Jordan canonical form of the matrix L of the semi-
analytical method for systems with distributed delays.

In order to present the results clearly, we recall the following results.

Lemma 4 (See [14]) Let L ∈ Rnx×nx . There exist a nonsingular PL ∈ Cnx×nx , positive integers q, m1, . . . ,mq

with m1 +m2 + · · ·+mq = nx, and distinct eigenvalues s1, . . . , sq ∈ C of L, such that

L = PL

(
Jm1(s1)⊕ Jm2(s2)⊕ · · · ⊕ Jmq (λq)︸ ︷︷ ︸

JL

)
P−1
L .

A Jordan block Jmi(si) is a mi-by-mi upper triangular matrix where the scalar si appears mi times on the main
diagonal (algebraic multiplicity); if i > 1, there are i − 1 entries “+1” in the super-diagonal; all other entries are
zero.

Remark 7 Notice that the matrix JL defined in 4 can be expressed by

JL =

[
B 0
0 N

]
,

where B is a direct sum of all the nonsingular Jordan blocks and N is a direct sum of all the nilpotent blocks. The
direct summand B is absent if L is nilpotent; N is absent if L is nonsingular. Then, the exponential matrix of
L = PLJLP

−1
L is defined by

eLτ = PLe
τJLP−1

L = PL

[
eBτ 0
0 eNτ

]
P−1
L
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The exponential matrix of the nilpotent Jordan block Jmi(0), contained in matrix Pn, is given by

eJmi
(0)τ =


1
0!
τ0 1

1!
τ1 · · · 1

(mi−1)!
τmi−1

0 1
0!
τ0 · · · 1

(mi−2)!
τmi−2

...
...

. . .
...

0 0 · · · 1
0!
τ0

 . (24)

where mi represent the algebraic multiplicity.

The proofs of the recursive relations of the numerical scheme for the construction of Pn are presented below.
Proof : [Proposition 4.3] The key point of the proof is the relation

l′k − l′k−2 =
2(2k − 1)

h
lk−1, ∀k ≥ 2, (25)

satisfied by Legendre polynomials. To compute Γk(B), partial integration shows that

Γk(B)− Γk−2(B) =

∫ 0

−h

e(h+θ)B(lk(θ)− lk−2(θ))dθ

= −2(2k − 1)

h
B−1

∫ 0

−h

e(h+θ)Blk−1(θ)dθ +B−1
[
e(h+θ)B(lk(θ)− lk−2(θ))

]∣∣∣0
−h

,

and using the boundary conditions lk(−h) = lk−2(−h) = (−1)k and lk(0) = lk−2(0) = 1, the last term vanishes.
Now, for k = {0, 1}, we have that

Γ0(B) =

∫ 0

−h

e(h+θ)Mdθ = B−1
(
ehB − I

)
Γ1(B) =

∫ 0

−h

e(h+θ)M

(
2θ + h

h

)
dθ = B−1

(
ehB + I

)
− 2

h
B−1Γ0(B)

The solution of Λk(B) leads to the following equality

Λk(B) = −B−1

∫ 0

−h

(
e(θ−ξ)B

∣∣∣θ
−h

)
lk(θ)dθ = B−1Γk(B)−B−1

∫ 0

−h

lk(θ)dθ,

where the second term vanishes for k ⩾ 1, therefore

Λ0(B) = B−1

(
Γ0(B)−

∫ 0

−h

dθ

)
= B−1Γ0(B)− hB−1.

Finally, for Γk,i(0),Λk,i(0) associated with the nilpotent matrix N , we have that

Γk,i(0) =

∫ 0

−h

e(h+θ)Jmi
(0)lk(θ)dθ

Λk,i(0) =

∫ 0

−h

∫ θ

−h

e(θ−ξ)Jmi
(0)lk(θ)dξdθ.

Replacing the exponential matrix Jmi(0) by (24) leads to (4.4). Each component of Γk,i(0),Λk,i(0) is defined by

γk,p =
1

p!

∫ 0

−h

(h+ θ)plk(θ)dθ,

and substituting lk(θ) given by (2.7) yields the solution of γk,p. □

Proof : [Proposition 4.4] Using the symmetry property of Legendre Polynomials, i.e. lk(−θ − h) = (−1)klk(θ),
θ ∈ [−h, 0], and the successive changes of variables τ1 = −(θ1 + h) and τ2 = −(θ2 + h), we have that

Γ̄jk =

∫ −h

0

∫ τ1

0

lj(−τ1 − h)e(t2−τ1)JL lk(−τ2 − h)dτ2dτ1

=

∫ 0

−h

∫ 0

τ1

(−1)j lj(τ1)e
(τ2−τ1)JL(−1)klk(τ2)dτ2dτ1 = (−1)j+kΓ̄♭

jk.

□
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Proof : [Proposition 4.5] As in the proof of Proposition 4.3, an integration by parts and (25) ensure that Γ̄jk(B)
satisfies the recursive relation

Γ̄jk(B)− Γ̄jk−2(B) =

∫ 0

−h

∫ θ1

−h

lj(θ1)e
(θ1−θ2)B(lk(θ2)− lk−2(θ2))dθ2dθ1

= −B−1

∫ 0

−h

lj(θ1)

(
(lk(θ2)− lk−2(θ2)) e

(θ1−θ2)B
∣∣∣θ1
−h

)
dθ1

+B−1

∫ 0

−h

lj(θ1)

∫ τ1

−h

e(θ1−θ2)B
(
l′k(θ2)− l′k−2(θ2)

)
dθ2dθ1

= − h

2k + 1
B−1 (δjk − δjk−2) +

2(2k + 1)

h
B−1Γ̄jk−1(B).

Note that the region of integration of Γ̄jk is defined by

R4 =
{
θ1 ∈ [−h, 0], θ2 ∈ [−h, θ1]

}
=
{
θ2 ∈ [−h, 0], θ1 ∈ [θ2, 0]

}
,

which means that using the change of coordinates τ2 = θ1, τ1 = θ2, implies

Γ̄jk(B) =

∫ 0

−h

∫ 0

τ1

lk(τ1)e
(τ2−τ1)Blj(τ2)dτ2dτ1 = Γ̄♭

kj(B) = (−1)j+kΓ̄kj(B)

An integration by parts yields the initial values. The expression (4.5) is obtained by applying the procedure
described in the proof of Proposition 4.3 for the case of the nilpotent matrix N , where

γ̄jk,p =
1

p!

∫ 0

−h

∫ θ1

−h

lj(θ1)(θ1 − θ2)
plk(θ2)dθ2dθ1.

□

Proof : [Proposition 4.6] By integration, we have

Λ̄jk = B−1

∫ 0

−h

lj(θ1)e
(θ1+h)Bdθ1

∫ 0

−h

lk(θ2)dθ2 −B−1

∫ 0

−h

lj(θ1)dθ1

∫ 0

−h

lk(θ2)dθ2

=

(
B−1Γj(B)−B−1

∫ 0

−h

lj(θ1)dθ1

)∫ 0

−h

lk(θ2)dθ2.

Therefore, the first expression of (4.6) is obtained knowing that∫ 0

−h

lk(θ)dθ =

{
h if k = 0
0 if k ⩾ 1

. (26)

For the term Λ̄♭
jk(B), we have, for all (j, k) ∈ {0, 1, . . . , n− 1}2

Λ̄♭
jk = −B−1

∫ 0

−h

∫ 0

−h

lj(θ1)

(
e−ξB

∣∣∣0
θ1−θ2

)
lk(θ2)dθ2dθ1

Λ̄♭
jk = −B−1

∫ 0

−h

lj(θ1)dθ1

∫ 0

−h

lk(θ2)dθ2 +B−1

∫ 0

−h

∫ 0

−h

lj(θ1)e
−(θ1−θ2)Blk(θ2)dθ2dθ1

Then for j ⩾ 1, k ⩾ 1, the change of variable τ1 = −θ1−h, and by the symmetry property of Legendre polynomials
implies that Λ̄♭

jk satisfies the following equality

Λ̄♭
jk = B−1

∫ 0

−h

lk(θ2)e
(θ2+h)Bdθ2

∫ 0

−h

e−θ1Blk(θ1)dθ1e
−hB

= B−1Γk(B)

∫ 0

−h

e(τ1+h)Blk(−τ1 − h)dθ2e
−hB

= (−1)jB−1Γk(B)Γj(B)e−hB

Finally, the procedure described in the proof of Proposition 4.3 is applied to nilpotent matrix N , where each
component of Γ̄jk,i(0) is given by

λ̄jk,p =
1

p!

∫ 0

−h

∫ 0

−h

∫ θ1+h

0

lj(θ1)ξ
plk(θ2)dξdθ2dθ1

=
1

(p+ 1)!

∫ 0

−h

lj(θ1)(θ1 + h)p+1dθ1

∫ 0

−h

lk(θ2)dθ2 = γp+1,j

∫ 0

−h

lk(θ2)dθ2,
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and for Γ̄♭
jk,i(0) we have

λ̄♭
jk,i,p =

1

p!

∫ 0

−h

∫ 0

−h

∫ 0

θ1−θ2

lj(θ1)(−ξ)plk(θ2)dξdθ2dθ1

=
(−1)p+1

(p+ 1)!

∫ 0

−h

∫ 0

−h

lj(θ1)(θ1 − θ2)
p+1lk(θ2)dθ2dθ1

whose solution is obtained by integration, replace lk given by expression (2.7). □

Proof : [Proposition 4.7] The next result follows immediately from of solution of ∆̄jk(B)

∆̄jk(B) =

∫ 0

−h

∫ 0

−h

∫ θ1+h

0

∫ ξ1

0

lj(θ1)e
(ξ1−ξ2)Blk(θ2)dξ2dξ1dθ2dθ1

= −B−1

∫ 0

−h

lj(θ1)
(
h
2
l1(θ1) +

h
2
l0(θ1)

)
dθ1

∫ 0

−h

lk(θ2)dθ2

+

(
B−2Γj(B)−B−2

∫ 0

−h

lj(θ1)dθ1

)∫ 0

−h

lk(θ2)dθ2.

By the property expressed in (26) we obtain directly the first expression of (4.7) for k = 0, j ⩾ 2. Otherwise,
∆̄jk(B) = 0. The same procedure is applied to ∆̄♭

jk(B) using Legendre polynomials properties, thus by integration
by parts we obtain the initial values expressed in (4.8).
Finally, replace the exponential matrix of N by (24) into ∆̄jk(N), leads to the expression (4.9), where each com-
ponent is defined by

δ̄jk,i,p =
1

p!

∫ 0

−h

∫ 0

−h

∫ θ1+h

0

∫ ξ1

0

lj(θ1)(ξ1 − ξ2)
plk(θ2)dξ2dξ1dθ2dθ1

=
1

(p+ 2)!

∫ 0

−h

lj(θ1)(θ1 + h)p+2dθ1

∫ 0

−h

lk(θ2)dθ2 = λ̄p+1,jk

and for Ω♭
j,k,i(0) we have

δ̄♭jk,i,p =
1

p!

∫ 0

−h

∫ 0

−h

∫ θ1+h

0

∫ θ2+h

ξ1

lj(θ1)(ξ2 − ξ1)
plk(θ2)dξ2dξ1dθ2dθ1

=− (−1)p+2

(p+ 2)!

∫ 0

−h

∫ 0

−h

lj(θ1)(θ1 − θ2)
p+2lk(θ2)dθ2dθ1

+
1

(p+ 2)!

∫ 0

−h

lj(θ1)dθ2

∫ 0

−h

(θ2 + h)p+2lk(θ2)dθ1

= λ̄p+1,kj − λ̄♭
p+1,jk.

□

Remark 8 The authors have created a repository on the Git-Hub platform where we include the created codes (sys-
tems with distributed delays with constant and exponential kernel.): https://github.com/AlexCasHer/TDS Test Stability
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