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Abstract 7

We introduce a new approach to perform curve reconstruction in microscopy 8

images via vector field optimization. By formulating the problem in a suitable 9

functional space, we establish equivalence in terms of solutions with the functional 10

developed in a previous work within the divergence measure fields space. This allows 11

for the use of traditional convex optimization algorithms for optimization. 12

Keywords: Inverse problem, curve reconstruction, divergence measure fields, ima- 13

ging. 14

1. Introduction 15

In ill-posed inverse problems, finding a regularizer that promotes curve structures is of 16

great interest in many applications, including the super-resolution of filament structures 17

in fluorescence microscopy images. 18

Recent work by Laville et al. [7] introduced a new regularizer, defined by the norm: 19

∥·∥V(X ) = ∥·∥M(X )2 + ∥div(·)∥M(X ),

on the space of divergence-measure fields: 20

V(X ) =
{
m ∈ M(X )2 : div(m) ∈ M(X )

}
,

where X is a locally compact Hausdorff topological space, and M(X )2 and M(X ) de- 21

note the spaces of 2-dimensional and 1-dimensional finite signed Radon measures on X , 22

respectively. Elements of this space V(X ) can be decomposed into curves, as established 23

in [10, 2, 9]. They proposed an optimization functional called CROC (Curves Represented 24

on Charges): 25

argmin
m∈V(X )

Tλ(m)
def.
=

1

2
∥y − Φ(m)∥2H + λ ∥m∥V(X ) , (CROC)
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where y represents the observed data, Φ : V(X ) → H is the linear and continuous forward 1

operator, H is the Hilbert space of observations, which can be L2(X ) or RN (for discrete 2

measurements, with N ∈ N∗), and λ ∈ R+ is the regularization parameter. This functional 3

has a solution that is a linear combination of measures supported by curves, making it 4

suitable for performing curve reconstruction. Specifically, for a discrete measurement y 5

of dimension N ∈ N∗, a solution is given by: 6

N∑
i=1

aiµγi ,

where ai ∈ R and µγi is a vector measure supported by a parametrized curve γi. In the 7

distributional sense, µγi is defined as: 8

∀g ∈ C0(X ,R2), ⟨µγi , g⟩M(X )2×C0(X ,R2) =

∫ 1

0

g(γi(t)) · γ̇i(t) dt.

While this theoretical framework is well-established, the challenge lies in developing an 9

algorithm to effectively reconstruct these curve-based solutions. In [6], the authors in- 10

troduced a Curve Sliding Frank-Wolfe algorithm, which is an extension of the Sliding 11

Frank-Wolfe algorithm (a conditional gradient-based algorithm) developed in [5], to solve 12

the CROC functional. The key step in this algorithm involves addressing the certificate 13

of the functional by solving an optimization problem in the space of curves, formulated 14

as: 15

argmax
γ

(
|⟨µγ, η⟩|
∥µγ∥V(X )

)
,

where η, the certificate, is defined as: 16

η =
1

λ
Φ∗(Φm− y),

with Φ∗ : H → C0(X ,R2) being the adjoint operator of Φ, and m ∈ V(X ) a solution 17

of the CROC functional. This optimization problem in the space of curves is challen- 18

ging. Furthermore, the algorithm incorporates a non-convex step over the set of curves 19

and their amplitudes. These considerations raise an important question within the sci- 20

entific community: is it possible to discretize the convex CROC functional to enable its 21

implementation using classical convex optimization algorithms? 22

This work aims to provide a relaxation of the CROC functional within a more tractable 23

space, than the measure space M(X )2 enabling the use of traditional convex optimization 24

algorithms for implementation. 25
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1.1 Contributions 1

We introduce a new space of vector-valued Lebesgue measures, whose densities are vector- 2

valued functions in L1 with divergence also in L1: 3

W(X ) =
{
f dx | f ∈ L1(X ,R2), div(f) ∈ L1(X ,R)

}
,

and prove that W(X ) is dense in V(X ) under the weak-* topology in Section 3. 4

Next, in Section 4, we reformulate the original CROC functional in the space W(X ), 5

leading to the definition of the relaxed functional CROCR: 6

argmin
f dx ∈ W(X )

Dλ(f)
def.
=

1

2
∥y − Φ(f dx)∥2H + λ

(
∥f∥L1(X ,R2) + ∥div(f)∥L1(X ,R)

)
, (CROCR)

and establish the equivalence of their infima (Theorem 4.3): 7

inf
m∈V(X )

Tλ(m) = inf
m∈W(X )

Dλ(m).

This result ensures that every minimizing sequence of CROCR converges to a solution 8

of the original CROC functional (Proposition 4.4). This finding provides a theoretical 9

foundation for the practical use of CROCR. 10

Finally, in Section 5, we perform numerical implementations based on this new ap- 11

proach and present and discuss experiments in the case of curve reconstruction on blurry 12

and noisy fluorescent microscopy images. 13

2. Preliminary Concepts and Notations 14

This section provides a brief overview of mathematical concepts relevant to this topic, 15

which are detailed in [1, 8, 4]. 16

Notation 2.1. We denote by X an open bounded subset of R2. 17

Definition 2.2. Let n ∈ N∗. We denote by Cc(X ,Rn) the space of continuous functions 18

from X to Rn with compact support. The space C0(X ,Rn), called the space of evanescent 19

continuous functions, consists of continuous functions f : X → Rn that vanish at infinity. 20

That is, a function f ∈ C0(X ,Rn) if 21

∀ϵ > 0, ∃ K compact subset of X , ∀x ∈ X \K, ∥f(x)∥Rn ≤ ϵ.

This space is equipped with the supremum norm ∥.∥∞,X , defined as: 22

∀f ∈ C0(X ,Rn), ∥f∥∞,X := sup
x∈X

∥f(x)∥Rn .

Moreover the closure of Cc(X ,Rn) under the supremum norm ∥.∥∞,X is C0(X ,Rn). 23
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Definition 2.3 (Topological dual space). Let E be a normed vector space. The dual space 1

of E, denoted E∗, is the set of all continuous linear functionals from E into R or C. The 2

weak-* topology topology on E∗, is defined by: 3

A sequence (fn)n∈N in E∗ is said to weak-* converge to f ∈ E∗, denoted by fn
∗
⇀ f , 4

if: 5

∀x ∈ E, fn(x) −−−−→
n→+∞

f(x) (pointwise convergence).

Definition 2.4 (Finite Radon measure). Let n ∈ N∗. We denoted M(X )n the set of n- 6

dimensional vector-valued finite Radon measures, which is the topological dual of C0(X ,Rn) 7

endowed with the supremum norm. The duality bracket ⟨·, ·⟩ on M(X )n is defined as: 8

∀m ∈ M(X )n, ∀f ∈ C0(X ,Rn), ⟨m, f⟩ =
∫
X
f dm.

The norm of the strong topology on M(X )n is called total variation norm and is defined 9

as: 10

∀m ∈ M(X )n, ∥m∥TVn = sup {⟨m, f⟩ , f ∈ C0(X ,Rn), ∥f∥∞,X ≤ 1} .

Definition 2.5 (Total variation measure). Let m be an n-dimensional vector-valued 11

Radon measure on X . Denote by B(X ) the Borel σ-algebra of subsets of X . The total 12

variation measure of m, denoted |m|, is defined as: 13

∀A ∈ B(X ), |m|(A) = sup {⟨m,φ⟩ : φ ∈ C0(A,Rn), ∥φ∥∞ ≤ 1} .

The total variation norm satisfies: 14

∥m∥TVn = |m|(X ).

Definition 2.6 (local weak*-convergence of Radon measures). Let n ∈ N∗. We say that 15

a sequence (µh)h ⊂ M(X )n locally weak* converges to µ ∈ M(X )n (µh
∗
⇀ µ locally) if 16

lim
h→∞

∫
X
u dµh =

∫
X
u dµ, for every u ∈ Cc(X ,Rn).

Remark 2.7. We say that a sequence (µh)h ⊂ V(X ) weak* converges to µ ∈ V(X ) if 17

µh
∗
⇀ µ in M(X )2 and div(µh)

∗
⇀ div(µ) in M(X ).

Proposition 2.8 ((local weak* and weak*)-convergence). The weak*-convergence of a 18

sequence (µh)h ⊂ M(X )n is equivalent to the local weak*-convergence together with the 19

condition suph |µh|(X ) < ∞. 20

Definition 2.9 (Space of distributions). The space of distributions D′(X ) is the topolo- 21

gical dual of the space of smooth functions with compact support denoted C∞
c (X ,R). Note 22

that C∞
c (X ,R)

∥·∥∞ = C0(X ,R) and M(X ) is a subset of D′(X ). 23
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Definition 2.10 (Parametrized curve). A curve is the image of an interval of R to a 1

topological space by a continuous function. This function is called a curve parametrization. 2

In the following, we will often use the term "curve" to refer interchangeably to both the 3

parameterization function and the curve itself. 4

Lemma 2.11. Let E ⊂ R2. Then E =
⋃

ϵ>0K
E
ϵ , where KE = {x ∈ R2 | d(x,Ec) ≥ 2ϵ} 5

is a compact subset of E. 6

Notation 2.12 (Standard mollifier). We denote by (ρϵ)ϵ>0 the standard symmetric mol- 7

lifier satisfying ρϵ ∈ C∞
c (R2), spt(ρϵ) ⊂ B(0, ϵ), and

∫
R2 ρϵ dx = 1. This notation will be 8

used throughout this work. 9

Lemma 2.13. Let u ∈ L∞(X ). Then, there exists a sequence (un)n in C∞
c (X ) such that: 10

∥un∥∞ ≤ ∥u∥∞ ∀n, un → u almost everywhere in X , and un
∗
⇀ u in L∞(X ) under the 11

weak-* topology. 12

To develop a more tractable optimization algorithm for the CROC functional (CROC), 13

we propose working within a subspace of V(X ) consisting of Lebesgue measures with 14

vector-valued densities. While one might initially consider using vectors of finite linear 15

combinations of Dirac masses to approximate vector measures, this space, although weak*- 16

dense in M(X )2 [3], does not belong to V(X ) [7]. However, as also pointed out in [3], the 17

space of Lebesgue measures with vector-valued densities in L2(X )2 is dense in M(X )2. 18

This inspired us to define a new space W(X ), which is weak*-dense in V(X ). This will 19

be the focus of the following section. 20

3. The Space W: Definition and Analysis 21

Definition 3.1. We denote by W(X ) the space of Lebesgue measures on X ⊆ R2 with 22

densities that are vector functions in L1(X ,R2), whose divergence (in the distributional 23

sense) belongs to L1(X ,R): 24

W(X ) =
{
f dx | f ∈ L1(X ,R2), div(f) ∈ L1(X ,R)

}
.

Here, f dx represents a measure whose density f is defined with respect to the Lebesgue 25

measure on R2. We write dx := dx1 dx2, where x = (x1, x2) ∈ R2. 26

Proposition 3.2. W(X ) is a subset of the space of divergence measure fields V(X ). 27

Proof. Let fdx ∈ W(X ). Denote by f1 and f2 the components of the vector function f . 28

By definition of W(X ), f ∈ L1(X ,R2). 29

• fdx is a finite Radon measure since the map T defined by 30

T : C0(X ,R2) −→ R

φ 7−→
2∑

i=1

∫
X
φifi dx.
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is a linear continuous operator on C0(X ,R2). In fact, for φ = (φ1, φ2) ∈ C0(X ,R2), 1

|⟨T, φ⟩| ≤ max

(
sup
x∈X

|φ1(x)|, sup
x∈X

|φ2(x)|
)∫

X
|f1(x)|+ |f2(x)| dx.

implying 2

|⟨T, φ⟩| ≤ ∥φ∥C0(X ,R2) ∥f∥L1(X ,R2), ∀φ ∈ C0(X ,R2).

Moreover, since f ∈ L1(X ,R2), and based on the density of C∞
c (X ) in L∞(X ) as 3

stated in Lemma 2.13, it follows that the total variation ∥fdx∥TV2 of the measure 4

fdx given by sup
{∫

X f · φdx | φ ∈ C∞
c (X ,R2), ∥φ∥∞ ≤ 1

}
equals to ∥f∥L1(X ,R2). 5

• Note that div(fdx) = div(f) since for all φ ∈ C∞
c (X ,R), 6

⟨div(f)dx, φ⟩ = −⟨fdx,∇φ⟩M(X ,R2)×C0(X ,R2) = −
∫
X
f(x)·∇φ(x) dx = ⟨div(f), φ⟩D′(X )×D(X ).

Since div(f) ∈ L1(X ,R), sup
{∫

X div(f)φ dx | φ ∈ C∞
c (X ,R), ∥φ∥∞ ≤ 1

}
equals to 7

∥div(f)∥L1(X ,R) and thus, the map 8

L : C∞
c (X ,R) −→ R

φ 7−→
∫
X
div(f)φ dx

is a bounded linear functional on C∞
c (X ,R). As C∞

c (X ,R)
∥·∥∞ = C0(X ,R), by the 9

Riesz Representation Theorem, L extends to a bounded continuous functional L̃ on 10

C0(X ,R). Therefore, div(f dx) is a finite Radon measure with total variation equal 11

to ∥div(f)∥L1(X ,R2). 12

Hence, W(X ) is included in V(X ). 13

14

Proposition 3.3. The space W(X ) is dense in V(X ) for the weak-* topology. 15

Proof. The detailed proof of Proposition 3.3 is given in Appendix A. It is inspired by 16

the proof of the density of the space of elements g dx, where g ∈ L2(X ), within M(X ), 17

provided in the appendix of [3]. The main steps are as follows: 18

For all ϵ > 0, we define a sequence gϵ = 1K 2ϵ
3

∗ρ 2ϵ
3
, where Kϵ = {x ∈ R2 | d(x,X c) ≥ 2ϵ}. 19

This guarantees that gϵ ∈ C∞(R2,R) and that it has compact support within X . 20

Next, we introduce the map 21

Zϵ : L
1(X ,R2) −→ C0(X ,R2),

f 7−→ gϵf ∗ ρ ϵ
3
,

(1)

which is well-defined, linear, and continuous. Its adjoint operator, denoted Z∗
ϵ , defined 22
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by: 1

Z∗
ϵ : M(X )2 −→ L∞(X ,R2) ⊂ L1(X ,R2),

µ 7−→ Z∗
ϵ µ,

(2)

is also linear and continuous. It helps to construct a family of L1-vector functions from a 2

vector measure field. 3

Finally, we show that for all µ ∈ V(X ), the sequence (Z∗
ϵ µ)ϵ>0 lies in W(X ) and 4

converges to µ in the weak-* topology of V(X ), thereby concluding the proof of density. 5

Remark 3.4. More generally, for all p ∈ N, the space Wp(X ), defined by 6

Wp(X ) =
{
f dx | f ∈ Lp(X ,R2), div(f) ∈ Lp(X ,R)

}
,

is dense in V(X ) for the weak*-topology. 7

The proof is obtained by following the same process as above, since (Z∗
ϵ µ)ϵ>0 also lies 8

in Wp(X ) ⊂ W(X ), as X is a bounded subset of R2. 9

In the following section, we define a relaxation of the CROC functional on W(X ) 10

and provide a proof of its connection with the original CROC functional. This allows 11

to explore new optimization strategies while ensuring consistency with the established 12

functional framework. 13

4. CROC Relaxation Functional 14

Before defining the relaxation of the CROC functional in W(X ), we first revisit its defin- 15

ition. 16

Definition 4.1 (CROC functional). Let y ∈ H := L2(X ) and let Φ : V(X ) → H be a 17

linear map. The CROC (Curves Represented on Charges) functional is defined as: 18

argmin
m ∈ V(X )

Tλ(m)
def.
=

1

2
∥y − Φ(m)∥2H + λ ∥m∥V(X ) ,

where m ∈ V(X ), and λ ∈ R+ is the regularization parameter. The operator Φ(m) is 19

defined as: Φ(m) :=
∫
X ϕ(x) dm(x), where ϕ ∈ L1(X ,H) is the kernel of the operator Φ. 20

Specifically, ϕ is often given by: 21

∀x ∈ X , ϕ(x) : X → R, with ϕ(x)(y) = φ(x− y), ∀y ∈ X .

For Φ to be well-defined and weak*-to-weak continuous, φ must be in L2(X )2 and, for 22

any q ∈ L2(X )2, φ ∗ q must belong to C0(X ,R2). Note that φ ∈ C0(X ,R2) is a sufficient 23

condition. Under these conditions, as justified in the introduction section, the CROC 24

functional admits a solution that is a linear combination of measures supported on curves 25

lying in X . 26
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Definition 4.2 (The CROCR functional). The CROC functional in the space W(X ), 1

denoted as CROCR, is given by: 2

argmin
fdx ∈ W(X )

Dλ(f)
def.
=

1

2
∥y − Φ(fdx)∥2H + λ

(
∥f∥L1(X ,R2) + ∥div(f)∥L1(X ,R)

)
(3)

The following theorem establishes that the infimum of the CROC functional coincides 3

with the infimum of its relaxed version, CROCR. 4

Theorem 4.3 (Infimum Equivalence between CROC and CROCR).

inf
m∈V(X )

Tλ(m) = inf
m∈W(X )

Dλ(m). (4)

Proof. We will consider a given kernel ϕ and its associated φ ∈ C0(X ,R2), as an acquisi- 5

tion kernel for the CROC problem. 6

Since W(X ) ⊂ V(X ), it follows that 7

inf
m∈V(X )

Tλ(m) ≤ inf
m∈W(X )

Dλ(m). (5)

To establish equality, it remains to demonstrate the reverse inequality. The remainder of 8

the proof will therefore focus on this. 9

Let m ∈ V(X ) be a solution of the CROC problem, represented as a linear combination 10

of measures supported on curves within X . Since the curves involved in this decomposition 11

are also naturally defined in R2, it follows that m also belongs to V(R2). 12

Indeed: Consider the measure m =
∑N

i=1 aiµγi , where each γi : [a, b] → X is a para- 13

meterized curve with support in X . Since X ⊂ R2, each γi can also be viewed as a 14

parameterized curve in R2, with its support remaining within X . 15

Additionally, the divergence of m can be expressed in the sense of distributions as 16

div(m) =
∑N

i=1 ai
(
δγi(a) − δγi(b)

)
, where δγi(a) and δγi(b) are Dirac measures supported at 17

the endpoints of the curves γi. This is a finite Radon measure on R2. Hence, m ∈ V(R2). 18

1. Step 1: Mollification of m 19

Let mϵ = m ∗ ρϵ for all ϵ > 0. Since m ∈ M(R2)2, this convolution is well defined 20

on R2, mϵ ∈ C∞(R2), and mϵ
∗
⇀ m locally on R2. 21

Additionally, div(mϵ) = div(m) ∗ ρ ϵ
3
, since div(m) ∈ M(R2) and div(m) ∗ ρ ϵ

3

∗
⇀ 22

div(m) locally on R2. These properties are discussed in [1]. 23
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Note also that: 1

|mϵ|(X ) =

∫
X
|mϵ(x)| dx

=

∫
X

∣∣∣∣∫
R2

ρϵ(x− y) dm(y)

∣∣∣∣ dx

≤
∫
X

∫
R2

ρϵ(x− y) d|m|(y) dx

=

∫
X

∫
X
ρϵ(x− y) d|m|(y) dx (since supp(m) ⊂ X )

=

∫
X

(∫
X
ρϵ(x− y) dx

)
d|m|(y)

≤ |m|(X ) (since
∫
X
ρϵ(x− y) dx ≤

∫
R2

ρϵ(z) dz = 1).

Thus, 2

|mϵ|(X ) ≤ |m|(X ), for all ϵ > 0. (6)

Applying the same argument to |div(mϵ)|(X ), we obtain: 3

|div(mϵ)|(X ) ≤ |div(m)|(X ), for all ϵ > 0. (7)

2. Step 2: Convergence of Tλ(mϵ|X) to Tλ(m) 4

Since mϵ
∗
⇀ m locally on R2, it follows that 5

lim inf
ϵ→0

|mϵ|(X ) ≥ |m|(X ),

due to the lower semicontinuity of the total variation norm with respect to the local 6

weak-* convergence on every open set. Consequently, we have 7

|m|(X ) ≤ lim inf
ϵ→0

|mϵ|(X ) ≤ lim sup
ϵ→0

|mϵ|(X ) ≤ |m|(X ),

where the last inequality follows from equation (6). Therefore, we conclude that 8

lim
ϵ→0

|mϵ|(X ) = |m|(X ). (8)

By applying the same argument and using equation (7), we also deduce that 9

lim
ϵ→0

|div(mϵ)|(X ) = |div(m)|(X ). (9)

Remark that 10

∥y − Φ(mϵ|X )∥2L2(X ) = ∥y∥2L2(X ) − 2⟨y,Φ(mϵ|X )⟩L2(X ) + ∥Φ(mϵ|X )∥2L2(X ) . (10)

9



Since mϵ
∗
⇀ m locally in M(R2)2, the restriction mϵ|X also satisfies mϵ|X

∗
⇀ m|X = 1

m locally in M(X )2, due to the inclusion Cc(X ;R2) ⊂ Cc(R2;R2). 2

Moreover, the uniform bound 3

sup
ϵ>0

|mϵ|X |(X ) = sup
ϵ>0

|mϵ|(X ) ≤ |m|(X ) < ∞

guarantees that the conditions of Proposition 2.8 are satisfied. Consequently, mϵ|X
∗
⇀ 4

m in M(X )2. This implies 5

⟨y,Φ(mϵ|X )⟩L2(X )

ϵ→0−−→ ⟨y,Φ(m)⟩L2(X ). (11)

since Φ is weak*-to-weak continuous from M(X )2 to L2(X ). 6

Furthermore, 7

∥Φ(mϵ|X )∥2L2(X ) =

∫
X
(Φ(mϵ|X )(x))2 dx =

∫
X
|⟨mϵ|X , φ(· − x)⟩|2 dx. (12)

Since ∀x ∈ X , φ(· − x) ∈ C0(X ,R2) , and mϵ|X
∗
⇀ m in M(X )2, then 8

∀x ∈ X , ⟨mϵ|X , φ(· − x)⟩ ϵ→0−−→ ⟨m,φ(· − x)⟩ . (13)

Moreover, for all x ∈ X , 9

|⟨mϵ|X , φ(· − x)⟩| =
∣∣∣∣∫

X
φ(y − x) dmϵ(y)

∣∣∣∣
≤ ∥φ∥∞ |mϵ|(X )

≤ ∥φ∥∞|m|(X ).

(14)

Due to equation (13) and equation (14), we can apply the Lebesgue Dominated 10

Convergence Theorem to the integral in equation (12), to get: 11

lim
ϵ→0

∫
X
⟨mϵ|X , φ(· − x)⟩2 dx =

∫
X
⟨m,φ(· − x)⟩2 dx, (15)

meaning that 12

∥Φ(mϵ|X )∥2L2(X )

ϵ→0−−→ ∥Φ(m)∥2L2(X ). (16)

From the equations (10), (11) and (16), we get 13

1

2
∥y − Φ(mϵ)∥2L2(X )

ϵ→0−−→ 1

2
∥y − Φ(m)∥2L2(X ) . (17)

10



Hence, from equations (6) and (7), we conclude that: 1

Tλ(mϵ|X ) =
1

2
∥y − Φ(mϵ|X )∥2L2(X ) + λ |mϵ|(X ) + λ |div(mϵ)|(X )

converges as ϵ → 0 to 2

Tλ(m) =
1

2
∥y − Φ(m)∥2L2(X ) + λ |m|(X ) + λ |div(m)|(X ).

3. Step 3: Inequality between infima 3

By the definition of convergence, for any δ > 0, there exists ϵ0 > 0 such that for all 4

ϵ ∈ (0, ϵ0), 5

Tλ(mϵ|X ) ≤ Tλ(m) + δ.

Since mϵ|X ∈ W(X ) (as mϵ ∈ C∞(R2;R2)), we deduce that for any δ > 0, there 6

exists ϵ0 > 0 such that for all ϵ ∈ (0, ϵ0), the following holds: 7

inf
m∈W(X )

Tλ(m) ≤ Tλ(m) + δ = inf
m∈V(X )

Tλ(m) + δ.

By letting δ → 0, we obtain: 8

inf
m∈W(X )

Dλ(m) ≤ inf
m∈V(X )

Tλ(m),

which completes the proof of Theorem 4.3. 9

10

Proposition 4.4. Any minimizing sequence for the functional CROCR in W(X ) has a 11

subsequence that converges to a minimizer of the functional CROC in V(X ). 12

Proof. Let (mn) be a minimizing sequence for Dλ in W(X ), meaning 13

Dλ(mn) → inf
m∈W(X )

Dλ(m) as n → ∞.

Since Dλ is coercive, the sequence (mn)n is bounded. Thus, we can extract a subsequence 14

(mnk
) that converges to a limit point m in V(X ). 15

Since Tλ is lower semicontinuous with respect to the weak-* topology, we have 16

Tλ(m) ≤ lim inf
k→∞

Tλ(mnk
) = lim inf

k→∞
Dλ(mnk

) = inf
m∈W(X )

Dλ(m) = inf
m∈V(X )

Tλ(m).

This implies Tλ(m) = infm∈V(X ) Tλ(m), meaning that m is a minimizer of CROC. 17

In conclusion, every minimizing sequence of CROCR has a subsequence that converges 18

to a minimizer of CROC. 19

11



Having defined CROCR and established some of its properties, we now proceed with 1

numerical simulations. 2

5. Numerical Illustration 3

Data term Modeling 4

To optimize the functional CROCR, we first need to define the observed quantity y and 5

the forward model Φ. 6

Note that, while this functional is designed to recover curves in images, the optimiza- 7

tion process does not directly identify the curve itself. Instead, it optimizes vector field 8

functions within W(X ). Once the optimal vector field is determined, the curve must be 9

derived from it. Therefore, it is essential to design a model that specifies how the curve 10

can be extracted from the recovered vector field. 11

We assume that curves we are looking for are the integral curves of the optimal vector 12

field f . These curves are defined as solutions to the ordinary differential equation: 13

dγ(t)

dt
= f(γ(t)), γ(0) = x0,

where γ(t) represents the trajectory of a point x0 ∈ X under the flow induced by f . Thus, 14

the vector field that we aim to recover should represent the velocity vector field along the 15

curve we wish to reconstruct, so that by integrating , we can obtain the desired curve. As 16

a velocity vector field involves the derivative operator, we consider a data term based on 17

the gradient of the observed image. 18

Therefore, we define Φ as the vector acquisition operator, which maps a vector field 19

f = (f1, f2) from the space W(X ) to the Hilbert space H2, as follows: 20

Φ : W(X ) −→ H2, f = (f1, f2) 7−→ Φ(f) := (f1 ∗ h, f2 ∗ h),

where ∗ denotes the convolution operation, and h is a blur kernel. 21

The optimization functional is then given by: 22

argmin
fdx ∈W(X )

1

2
∥y1 − f1 ∗ h∥2H +

1

2
∥y2 − f2 ∗ h∥2H + α ∥f∥L1(X ,R2) + α ∥div(f)∥L1(X ,R) ,

where y1 and y2 represent the derivatives of the observed image O with respect to the 23

first and second directions, respectively. 24

Implementation 25

We perform simulations on simulated noisy images that present blurry curves accord- 26

ing to the fluorescent microscopy principles. We consider the blur function h as a two- 27

dimensional Gaussian kernel, and Gaussian noise, denoted η. 28

12



To implement this functional, we discretize the space of positions X into a grid of 1

N = Nx×Ny pixels, denoted (Pi)1≤i≤N , where Nx and Ny represent the number of pixels 2

in the x- and y-directions, respectively. 3

Assuming the function f is constant within each pixel, we express it as: 4

f(x) =
N∑
i=1

fi1Pi
(x),

where 1Pi
(x) is the indicator function of the pixel domain Pi. The divergence of the 5

vector field f is then discretized using finite differences. To make the functional convex 6

and differentiable, we relax the absolute value function using a smooth approximation 7

given by: 8

x 7→
√
x2 + ϵ−

√
ϵ,

where ϵ is a small positive constant. 9

We use the L-BFGS (Limited-memory Broyden–Fletcher–Goldfarb–Shanno) for optimiz- 10

ation. 11

5.0.1 Image Simulation 12

In fluorescence microscopy, the observed curve is the convolution of the ideal filament 13

curve with a blur kernel h, which accounts for the thickening of the curve in the image 14

due to diffraction. This can be modeled as follows: 15

Definition 5.1 (Blurry curve). Let γ : [0, 1] → X be a parametrized, simple, Lipschitz 16

curve with support Γ. We define a blurry curve as δΓ ∗ h, given by: 17

δΓ ∗ h : x ∈ X 7→
∫ 1

0

h(γ(t)− x) · ∥γ̇(t)∥ dt,

where δΓ is the scalar Radon measure defined by: 18

δΓ : C0(X ,R) → R

φ 7→
∫
Γ

φ(y) dy =

∫ 1

0

φ(γ(t)) · ∥γ̇(t)∥ dt.
(18)

In practice, we consider the polygonal discretization of γ : [0, 1] → X . That is, γ is 19

regarded as a polygonal curve, characterized by its vertices (γ(tj))
n
j=0, with t0 = 0 and 20

tn = 1. A simulated blurry and noisy image O presenting the curve structure γ is then 21

given by O = (Oi)1≤i≤N , where: 22

Oi =
N∑
j=1

∥γ(tj+1)− γ(tj)∥h
(
γ(tj+1) + γ(tj)

2
− ci

)
+ ηi, (19)

with ci being the center of the pixel domain Pi, and (ηi)1≤i≤N representing a random 23

13



sample of Gaussian noise η. 1

To simulate a noisy image y that presents a blurry set of simple curves (γk)
K
k=1 with 2

varying amplitudes (ak)
K
k=1, ak ∈ R, we compute each pixel Oi as follows: 3

Oi =
K∑
k=1

ak

(
N∑
j=1

∥γk(tj+1)− γk(tj)∥h
(
γk(tj+1) + γk(tj)

2
− ci

))
+ ηi.

5.1.1 Simulation Results 4

a) Simulated Observed Scalar Image b) Reconstructed vector field

Figure 1: Simulation results using the CROCR functional with vector observation modeled
as the orthogonal of the image gradient. The standard deviations of the Gaussian blur
kernel and noise are σPSF = 3× 10−2 and σ = 1× 10−2, respectively.

In Figure 1, it can be observed that the reconstruction, obtained by taking the ob- 5

served vector field as the orthogonal of the gradient of the observed image, results in a 6

velocity vector field associated with closed curves. This velocity vector field corresponds 7

to the contour of the region characterized by the blurred curves in the image, rather than 8

representing the velocity vector field of the curves themselves. 9

This is due to the fact that the orthogonal of the gradient of the observed scalar image 10

does not characterize the blurred velocity field associated with the curves. It is important 11

to note that this does not undermine our functional, which is well-suited for the super- 12

resolution of blurred and noisy vector fields, as shown in Figure 2. Instead, it highlights 13

the necessity of being able to effectively extract an observed vector field from the image 14

that represents the blurred and noisy velocity field of the curves present in the image. 15

Since extracting appropriate vector information from a scalar image is challenging, 16

we define a new data-term model based directly on the observed scalar image. The new 17

functional is then given by: 18

argmin
m∈V(X )

Tscalar
λ (m)

def.
=

1

2
∥y − Λ(m)∥2H + λ ∥m∥V(X ) , (20)

14



a) Blurry and noisy velocity vector field b) Reconstructed vector field

Figure 2: Simulation results using the CROCR functional, assuming a blurry and noisy
velocity vector field for the curves in Figure 1 a) .

where Λ(m) is defined as |m| ∗ h , y the observed image and h the blur kernel. 1

The corresponding relaxed functional is given by: 2

argmin
fλ2∈W(X )

Dscalar
λ (f)

def.
=

1

2
∥y − Λ(fλ2)∥2H + λ

(
∥f∥L1(X ,R2) + ∥div(f)∥L1(X ,R)

)
(21)

Although the new functional is no longer linear and convex like the previously defined 3

one, simulation results, as shown in Figure 3 and Figure 4, demonstrate its potential and 4

promising performance in handling blurred and noisy scalar image data presenting curve 5

structures. Further theoretical investigations into its properties will be presented in our 6

upcoming article. 7

The implementation code presented in this work is available in the repository https:// 8

gitlab.inria.fr/atsafack/implementation-of-croc_relaxed-functional-on-w. 9

a) Simulated observed im-
age

b) Reconstructed vector
field

c) Integral curves from the
reconstructed vector field

Figure 3: Simulation results for two curves with a distance smaller than the diffraction
limit, using the new scalar-based relaxed functional. The standard deviations of the
Gaussian blur kernel and noise are σPSF = 3× 10−2 and σ = 1× 10−2, respectively.

15

https://gitlab.inria.fr/atsafack/implementation-of-croc_relaxed-functional-on-w
https://gitlab.inria.fr/atsafack/implementation-of-croc_relaxed-functional-on-w
https://gitlab.inria.fr/atsafack/implementation-of-croc_relaxed-functional-on-w


a) Simulated observed im-
age

b) Reconstructed vector
field

c) Integral curves from the
reconstructed vector field

Figure 4: Simulation results for three crossed curves using the new scalar-based relaxed
functional. The standard deviations of the Gaussian blur kernel and noise are σPSF =
3× 10−2 and σ = 1× 10−2, respectively.

6. Conclusion 1

This work aimed to design a relaxed convex functional, associated with the original CROC 2

functional in the divergence measure field V(X ), which can be implemented using classical 3

optimization techniques. We successfully achieved this by introducing the space W(X ), 4

dense in V(X ). As the acquisition operator is linear, given that we are working with vector 5

measures, the main challenge was to derive a vector acquisition from the scalar observed 6

image that accurately represents the blurry curves in images. We proposed using the 7

orthogonal of the image gradient. Though it reveals limitations, as it leads to vector 8

field solutions that characterize the contour of the blurry region rather than the curves 9

themselves. Future work will investigate how to extract a more accurate observed vector 10

field that truly represents the blurry and noisy velocity vector fields from the images as 11

the functional is suitable to perform super-resolution of blurry and noisy vector fields. 12

Additionally, we present a new optimization functional with a data term based on the 13

scalar image. This new functional shows significant potential, and further theoretical 14

investigations will be the focus of an upcoming paper. 15

A. Proof of Proposition 3.3 16

Proof. We first recall by Lemma 2.11 that, X can be written as a union of compact 17

subsets: 18

X =
⋃
ϵ>0

Kϵ, where Kϵ =
{
x ∈ R2 | d(x,X c) ≥ 2ϵ

}
.

16



Let ϵ > 0. Since the function x 7→ d(x,X c) is continuous and Kϵ is compact, then 1

∃tϵ ∈ Kϵ, such that 2

min
x∈Kϵ

d(x,X c) = d(tϵ,X c)

= 2ϵ.

We define gϵ = 1K 2ϵ
3

∗ ρ 2ϵ
3
. Then, gϵ ∈ C∞(R2,R), and spt(gϵ) ⊂ K 2ϵ

3
+ B

(
0, 2ϵ

3

)
, since 3

the support of the convolution is contained in the sum of the supports of 1K 2ϵ
3

and ρ 2ϵ
3
. 4

Moreover, K 2ϵ
3
+ B

(
0, 2ϵ

3

)
⊂ K ϵ

3
. Indeed: Let z = x+ y with x ∈ K 2ϵ

3
and y ∈ B

(
0, 2ϵ

3

)
. 5

We have: 6

d(z,X c) = d(x+ y,X c) ≥ d(x,X c)− d(x+ y, x)

≥ 4ϵ

3
− ∥y∥

≥ 4ϵ

3
− 2ϵ

3
= 2

( ϵ
3

)
.

Thus, z ∈ K ϵ
3
, implying spt(gϵ) ⊂ K ϵ

3
⊂ X . Consequently, spt(gϵ) ⊂ K ϵ

3
. 7

Figure 5: Illustration of the set-theoretic considerations used in the proof of Proposi-
tion 3.3 in Appendix A.

Furthermore, gϵ = 1 on Kϵ. Indeed, for any x ∈ Kϵ, 8

gϵ(x) =

∫
R2

1K 2ϵ
3

(x− y)ρ 2ϵ
3
(y) dy =

∫
x−K 2ϵ

3

ρ 2ϵ
3
(y) dy =

∫
B(0, 2ϵ3 )

ρ 2ϵ
3
(y) dy = 1.

This holds because the support of ρ 2ϵ
3
, that is B

(
0, 2ϵ

3

)
, is included in x −K 2ϵ

3
: for any 9

u ∈ B
(
0, 2ϵ

3

)
, u = x − (x − u), and d(x − u,X c) ≥ d(x,X c) − d(x − u, x) ≥ 2ϵ − ∥u∥ ≥ 10

4ϵ
3
= 2

(
2ϵ
3

)
. 11
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Note also that gϵ is non-negative and ∥gϵ∥∞ ≤ ∥1K 2ϵ
3

∥
∞
× ∥ρ 2ϵ

3
∥
1
= 1. 1

Consider the map 2

Zϵ : L
1(X ,R2) −→ C0(X ,R2)

f 7−→ gϵf ∗ ρ ϵ
3

(22)

1. Zϵ is well-defined. 3

Since ρ ϵ
3
∈ C∞

c (R2,R) and gϵf ∈ L1(R2,R2) as ∥gϵ∥∞ ≤ 1, it follows that gϵf ∗ ρ ϵ
3

is 4

well-defined and continuous on R2. Moreover, 5

spt(gϵf ∗ ρ ϵ
3
) ⊂ spt(gϵf) + spt(ρ ϵ

3
) ⊂ spt(gϵ) + spt(ρ ϵ

3
) ⊂ K ϵ

3
+B

(
0,

ϵ

3

)
,

the latter being compact and included in X . 6

Indeed: Let z = x+ y with x ∈ K ϵ
3

and y ∈ B(0, ϵ
3
). We have: 7

d(z,X c) ≥ d(x,X c)− d(x, z)

≥ 2ϵ

3
− ϵ

3
= 2

( ϵ
6

)
So, z ∈ K ϵ

6
. Then spt(gϵf ∗ ρ ϵ

3
) ⊂ K ϵ

6
⊂ X . Thus, gϵf ∗ ρ ϵ

3
is continuous with 8

compact support in X . Therefore, Zϵ is well-defined. 9

2. Zϵ is a continuous linear operator. 10

It is easily seen that Zϵ is linear. Let f ∈ L1(X ,R2). 11

We have: sup
x∈X

|(Zϵf)1(x)| = sup
x∈X

∣∣gϵf1 ∗ ρ ϵ
3
(x)
∣∣

= sup
x∈X

∣∣∣∣∫
R2

gϵ(y)f1(y)ρ ϵ
3
(x− y) dy

∣∣∣∣
≤ sup

x∈X

∫
K ϵ

3

gϵ(y) |f1(y)| ρ ϵ
3
(x− y) dy

≤ sup
y∈K ϵ

3

gϵ(y)× sup
x∈X

(
sup
y∈K ϵ

3

ρ ϵ
3
(x− y)

)
×
∫
K ϵ

3

|f1(y)| dy

≤ ∥gϵ∥∞ × ∥ρ ϵ
3
∥∞ × ∥f1∥L1(X ,R)

≤ ∥ρ ϵ
3
∥∞ × ∥f1∥L1(X ,R).

Thus, 12

sup
x∈X

|(Zϵf)(x)| = max

(
sup
x∈X

|(Zϵf)1(x)| , sup
x∈X

|(Zϵf)2(x)|
)

≤ sup
x∈X

|(Zϵf)1(x)|+ sup
x∈X

|(Zϵf)2(x)|

≤
(
∥f1∥L1(X ,R) + ∥f2∥L1(X ,R)

)
× ∥ρ ϵ

3
∥∞

≤ ∥f∥L1(X ,R2) × ∥ρ ϵ
3
∥∞.

18



Therefore, Zϵ is a continuous linear operator. 1

We then consider its adjoint operator denoted Z∗
ϵ defined by: 2

Z∗
ϵ : M(X )2 −→ L∞(X ,R2) ⊂ L1(X ,R2)

µ 7−→ Z∗
ϵ µ.

(23)

which is a continuous linear map. It helps to construct a family of L1 vector functions 3

from a vector measure field. 4

3. Let µ in V(X ). Then (Z∗
ϵ µ)dx ∈ W(X ). 5

We already know that (Z∗
ϵ µ)dx ∈ L1(X ,R2). 6

Let us denote by µ1 and µ2 the different components of the vector µ. Let φ ∈ 7

C∞
c (X ). We have 8

⟨div(Z∗
ϵ µ), φ⟩ = −⟨µ, Zϵ∇φ⟩

= −
〈
µ1, Zϵ

∂φ

∂x1

〉
−
〈
µ2, Zϵ

∂φ

∂x2

〉
and for i ∈ {1, 2}, 9〈

µi, Zϵ
∂φ

∂xi

〉
=

∫
X

(
gϵ
∂φ

∂xi

∗ ρ ϵ
3

)
(x)dµi(x)

=

∫
X

∫
X
gϵ(y)

∂φ

∂xi

(y)ρ ϵ
3
(x− y) dy dµi(x)

=

∫
X
gϵ(y)

∂φ

∂xi

(y)

(∫
X
ρ ϵ

3
(x− y)dµi(x)

)
dy

=

∫
X
gϵ(y)

∂φ

∂xi

(y)(ρ̂ ϵ
3
∗ µi)(y)dy where ρ̂ ϵ

3
(x) = ρ ϵ

3
(−x)

=

∫
X
gϵ(y)

∂φ

∂xi

(y)(ρ ϵ
3
∗ µi)(y)dy because ρ ϵ

3
is symmetric

=

〈
gϵ(ρ ϵ

3
∗ µi),

∂φ

∂xi

〉
= −

〈
∂

∂xi

(
gϵ(ρ ϵ

3
∗ µi)

)
, φ

〉
Thus, 10

⟨div(Z∗
ϵ µ), φ⟩ =

〈
∂

∂x1

(
gϵ(ρ ϵ

3
∗ µ1)

)
, φ

〉
+

〈
∂

∂x2

(
gϵ(ρ ϵ

3
∗ µ2)

)
, φ

〉
=

〈
∂

∂x1

(
gϵ(ρ ϵ

3
∗ µ1)

)
+

∂

∂x2

(
gϵ(ρ ϵ

3
∗ µ2)

)
, φ

〉
∀φ ∈ C∞

c (X ).

Hence, 11

div(Z∗
ϵ µ) = div(gϵ(ρ ϵ

3
∗ µ)). (24)
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It is known that ρ ϵ
3
∗ µi is C∞ on X ϵ

3
, where 1

X ϵ
3
:=
{
x ∈ X | d(x, ∂X ) >

ϵ

3

}
= K̊ ϵ

6
.

Additionally, K ϵ
3
⊂ K̊ ϵ

6
. 2

So, ρ ϵ
3
∗ µi ∈ C∞(K ϵ

3
). It follows that gϵ(ρ ϵ

3
∗ µi) ∈ C∞(K ϵ

3
), for all i ∈ {1, 2}. 3

For all i ∈ {1, 2}, ∂
∂xi

(
gϵ(ρ ϵ

3
∗ µi)

)
is continuous with support in X , the latter 4

having finite Lebesgue measure. Therefore, div(Z∗
ϵ µ) ∈ L1(X ,R). In conclusion, 5

(Z∗
ϵ µ)dx ∈ W(X ). 6

4. Z∗
ϵ µ converges to µ for the weak-* topology in M(X )2. 7

Let φ ∈ Cc(X ,R2). Assume ϵ is sufficiently small such that spt(φ) ⊂ Kϵ. Then 8

gϵφ = φ, as gϵ = 1 on Kϵ. Therefore, Zϵφ = gϵφ ∗ ρ ϵ
3
= φ ∗ ρ ϵ

3
. 9

Given δ > 0, we are looking for ϵ0 > 0 such that for all ϵ ≤ ϵ0, 10

|(Zϵφ− φ)(x)| ≤ δ, ∀x ∈ X .

We have: 11

|(Zϵφ− φ)(x)| =
∣∣(φ ∗ ρ ϵ

3
)(x)− φ(x)

∣∣
=

∣∣∣∣∫
R2

φ(y)ρ ϵ
3
(x− y) dy − φ(x)

∣∣∣∣
=

∣∣∣∣∣
∫
{|x−y|≤ ϵ

3}
ρ ϵ

3
(x− y) (φ(y)− φ(x)) dy

∣∣∣∣∣
≤ sup

{|x−y|≤ ϵ
3}

|φ(y)− φ(x)|
∫
{|x−y|≤ ϵ

3}
ρ ϵ

3
(x− y) dy

≤ sup
{|x−y|≤ ϵ

3}
|φ(y)− φ(x)| because

∫
{|x−y|≤ ϵ

3}
ρ ϵ

3
(x− y) dy = 1.

Since φ is continuous with compact support, it is uniformly continuous. Therefore, 12

there exists ηδ > 0 such that 13

∀x, y ∈ X , |x− y| ≤ ηδ =⇒ |φ(y)− φ(x)| ≤ δ.

To ensure 14

sup
{|x−y|≤ ϵ

3}
|φ(y)− φ(x)| ≤ δ,

it suffices to have ϵ
3
≤ ηδ. Set ϵ0 = 3ηδ. 15

Thus, the sequence (Zϵφ)ϵ>0 converges to φ in C0(X ,R2) for all φ ∈ Cc(X ,R2). 16

Consequently, 17

⟨µ, Zϵφ⟩
ϵ→0−−→ ⟨µ, φ⟩ , ∀φ ∈ Cc(X ,R2). (25)
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This implies that Z∗
ϵ µ locally weakly* converges to µ. 1

To prove that Z∗
ϵ µ weakly* converges to µ, it suffices (Proposition 2.8) to show that 2

sup
ϵ
|Z∗

ϵ µ|(X ) < ∞.

We have: 3

|Z∗
ϵ µ|(X ) = sup

{
⟨Z∗

ϵ µ, φ⟩ | φ ∈ C0(X ,R2), ∥φ∥∞ ≤ 1
}

= sup
{
⟨µ, Zϵφ⟩ | φ ∈ C0(X ,R2), ∥φ∥∞ ≤ 1

}
.

4

∀ϵ > 0, ⟨µ, Zϵφ⟩ ≤ |⟨µ, Zϵφ⟩|

≤ ∥µ∥TV2 × ∥Zϵφ∥∞

= ∥µ∥TV2 ×max

(
sup
x∈X

|(Zϵφ)1(x)| , sup
x∈X

|(Zϵφ)2(x)|
)
, ∀φ ∈ C0(X ,R2).

Denoting φ = (φ1, φ2), 5

sup
x∈X

|(Zϵφ)1(x)| = sup
x∈X

∣∣∣∣∫
X
gϵ(y)φ1(y)ρ ϵ

3
(x− y) dy

∣∣∣∣
≤ ∥φ1∥∞ × ∥gϵ∥∞ × sup

x∈X

∫
X

∣∣ρ ϵ
3
(x− y)

∣∣ dy
≤ ∥φ1∥∞ × ∥gϵ∥∞ × sup

x∈X

∫
R2

∣∣ρ ϵ
3
(x− y)

∣∣ dy
= ∥φ1∥∞ × ∥gϵ∥∞ × sup

x∈X

∫
R2

∣∣ρ ϵ
3
(z)
∣∣ dz

≤ ∥φ1∥∞ × ∥gϵ∥∞ ×
∥∥ρ ϵ

3

∥∥
1

≤ ∥φ1∥∞ since ∥gϵ∥∞ ≤ 1 and
∥∥ρ ϵ

3

∥∥
1
= 1.

Applying the same majoration for supx∈X |(Zϵφ)2(x)|, we get 6

∀ϵ > 0, ⟨µ, Zϵφ⟩ ≤ ∥µ∥TV2 × ∥φ∥∞,∀φ ∈ C0(X ,R2).

So, ∀ϵ > 0, |Z∗
ϵ µ|(X ) = sup {⟨µ, Zϵφ⟩ | φ ∈ C0(X ,R2), ∥φ∥∞ ≤ 1} ≤ ∥µ∥TV2 and 7

therefore 8

sup
ϵ
|Z∗

ϵ µ|(X ) ≤ ∥µ∥TV2 < ∞.

Thus, Z∗
ϵ µ converges to µ for the weak-* topology in M(X )2. 9

5. div(Z∗
ϵ µ) converges to div(µ) in the weak-* topology in M(X ). 10

We have ⟨µ, Zϵ∇φ⟩ ϵ→0−−→ ⟨µ, ∇φ⟩ , ∀φ ∈ C∞
c (X ,R) from equation (25), since 11

∀φ ∈ C∞
c (X ,R),∇φ ∈ C∞

c (X ,R2) ⊂ Cc(X ,R). We can also extend this result by 12

21



density, to have 1

⟨µ, Zϵ∇φ⟩ ϵ→0−−→ ⟨µ, ∇φ⟩ , ∀φ ∈ C∞
0 (X ,R).

So, 2

⟨div(Z∗
ϵ µ), φ⟩ ϵ→0−−→ ⟨div(µ), φ⟩ , ∀φ ∈ C∞

0 (X ,R).

From µ ∈ V(X ), we have constructed a sequence (Z∗
ϵ µ)ϵ>0 in W(X ), which converges to 3

µ in the weak-* topology in V(X ). 4
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