
HAL Id: hal-04921888
https://hal.science/hal-04921888v1

Preprint submitted on 1 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Keras Sig: Efficient Path Signature Computation on
GPU in Keras 3

Rémi Genet, Hugo Inzirillo

To cite this version:
Rémi Genet, Hugo Inzirillo. Keras Sig: Efficient Path Signature Computation on GPU in Keras 3.
2025. �hal-04921888�

https://hal.science/hal-04921888v1
https://hal.archives-ouvertes.fr


Keras Sig: Efficient Path Signature Computation on
GPU in Keras 3

Rémi Genet
DRM

Université Paris Dauphine
Paris, France

remi.genet@dauphine.psl.eu

Hugo Inzirillo
Finance-Insurance
CREST-IP Paris

Palaiseau, France
hugo.inzirillo@ensae.fr

Abstract

In this paper we introduce Keras Sig a high-performance pythonic library designed
to compute path signature for deep learning applications. Entirely built in Keras 3,
Keras Sig leverages the seamless integration with the mostly used deep learning
backends such as PyTorch, JAX and TensorFlow. Inspired by Kidger and Lyons
[2021],we proposed a novel approach reshaping signature calculations to leverage
GPU parallelism. This adjustment allows us to reduce the training time by 55% and
5 to 10-fold improvements in direct signature computation compared to existing
methods, while maintaining similar CPU performance. Relying on high-level
tensor operations instead of low-level C++ code, Keras Sig significantly reduces
the versioning and compatibility issues commonly encountered in deep learning
libraries, while delivering superior or comparable performance across various
hardware configurations. We demonstrate through extensive benchmarking that
our approach scales efficiently with the length of input sequences and maintains
competitive performance across various signature parameters, though bounded by
memory constraints for very large signature dimensions.

1 Introduction

The signature transform, a central object in rough path theory Lyons [1998, 2014], has emerged as a
powerful tool for feature extraction in machine learning tasks involving sequential data. By capturing
nonlinear interactions and temporal dependencies in data streams, the signature transform has been
successfully applied to a wide range of applications, including time series analysis Kidger et al. [2020],
handwriting recognition Yang et al. [2016], and medical diagnostics Morrill et al. [2019]. Despite its
theoretical appeal, the practical adoption of the signature transform in machine learning has been
hindered by computational challenges, particularly in scaling to large datasets and integrating with
modern deep learning frameworks. Existing libraries for computing signatures, such as Signatory
Kidger and Lyons [2021], have made significant strides in optimizing these computations. However,
these implementations often rely on low-level C++ code and are tightly coupled to specific versions
of deep learning frameworks like PyTorch. For instance, the latest version of Signatory is only
compatible with PyTorch 1.9.0, which was released in June 2021. This creates significant versioning
and maintenance challenges, limiting the long-term usability of these libraries. Furthermore, the
reliance on low-level optimizations, such as fused operations and handwritten backpropagation,
complicates the integration of signature computations into modern machine learning pipelines.
In this paper, we introduce Keras Sig, a pure Python library. Using high-level tensor operations
and avoiding low-level primitives, our library achieves competitive performance and is seamless
for Python developers. Our key contributions are threefold. First, we present a GPU-optimized
implementation of the signature transform that strategically reorganizes computations to maximize
parallelism, resulting in substantial speedups compared to existing libraries. Second, we introduce

Preprint. Under review.

ar
X

iv
:2

50
1.

08
45

5v
1 

 [
cs

.L
G

] 
 1

4 
Ja

n 
20

25



a backend-agnostic design that ensures compatibility with various deep learning frameworks such
as Pytorch, Tensorflow, and JAX, addressing versioning challenges and simplifying long-term
maintenance. Finally, we provide a user-friendly API that seamlessly integrates with the Keras
ecosystem, empowering researchers and practitioners to easily incorporate signature methods into
diverse machine learning techniques. The library has already demonstrated its practical value in our
concurrent research Inzirillo and Genet [2024], where it successfully replaced a developed TensorFlow
wrapper over iisignature Reizenstein and Graham [2020], leading to enhanced performance. Our
experiments demonstrate that Keras Sig outperforms existing libraries on GPU hardware, while
maintaining comparable performance on CPUs. By eliminating the need for low-level optimizations
and framework-specific dependencies, our library provides a robust and future-proof solution for
incorporating signature transforms into machine learning workflows.

2 Related Work

Introduced in the context of rough path theory Lyons [1998], the signature transform has gained
popularity in machine learning as a feature extraction tool for sequential data. Chevyrev and
Kormilitzin [2016] and Levin et al. [2013] demonstrated the utility of signatures in tasks such as
time series classification and handwriting recognition. More recently, the signature transform has
been integrated into deep learning architectures, with various applications: from neural differential
equations Kidger et al. [2020] to generative adversarial networks Ni et al. [2020]. Several libraries
have been developed to facilitate the computation of signatures in machine learning. Signatory
proposed by Kidger and Lyons [2021] is the most widely used library, offering CPU and GPU support,
as well as handwritten backpropagation for efficient gradient computation. However, Signatory’s
reliance on C++ code and its tight coupling with specific versions of PyTorch have led to significant
versioning issues. For example, the latest version of Signatory is only compatible with PyTorch
1.9.0, which is now outdated (torch v2.5.0 available). This limits the library’s usability in modern
deep learning pipelines, where compatibility with the latest framework versions is crucial. Other
libraries, such as esig Lyons [2017] and iisignature Reizenstein and Graham [2018], provide CPU-
based implementations of the signature transform but lack GPU support and are not optimized for
deep learning workflows. Even more recently, Signax Anh-Tong [2023] introduced a pure JAX
implementation of the signature transform, demonstrating that high-level tensor operations can
achieve competitive performance without the need for low-level optimizations. However, Signax is
limited to the JAX backend and does not provide the same level of framework flexibility as Keras
Sig. Our work builds on these prior efforts by introducing a backend-agnostic library that combines
the performance benefits of GPU-optimized computations with the simplicity and maintainability of
high-level tensor operations. By leveraging the Keras 3 framework, Keras Sig ensures compatibility
with multiple backends (JAX, TensorFlow, and PyTorch), reducing versioning issues and simplifying
integration into existing machine learning pipelines. This approach addresses a critical gap in the
existing ecosystem, providing a robust and future-proof solution for computing signatures in deep
learning applications.

3 A New View on Signature Computation

The signature transform, by its mathematical definition, involves computing iterated integrals over a
path. For a path X : [0, T ] → Rd, its signature up to depth N is defined as:

SigN (X) =

(
1,

∫ T

0

dXt,

∫ T

0

∫ t2

0

dXt1 ⊗ dXt2 , . . . ,

∫ T

0

∫ tN

0

· · ·
∫ t2

0

dXt1 ⊗ · · · ⊗ dXtN

)
(1)

In practice, we work with discretized paths, transforming these integrals into finite sums over path
increments. Traditional implementations, such as those in Signatory Kidger and Lyons [2021],
compute these sums sequentially by iterating over path increments and applying fused operations at
each step. This approach, while memory-efficient and well-suited for CPU execution, fails to fully
exploit the parallel processing capabilities of modern GPU architectures. In this section, we present a
novel reformulation of signature computation that fundamentally changes how these iterated sums
are evaluated. Our approach reorganizes the computation to maximize parallel operations while

2



maintaining mathematical equivalence with the traditional sequential method. Instead of processing
path increments sequentially, we leverage the associative property of tensor operations to express
each degree of the signature as a combination of parallel matrix operations and efficient cumulative
sums. This reformulation is particularly well-suited for GPU execution, where parallel operations on
large tensors can be performed with high efficiency.

3.1 Traditional Approach: Sequential Fused Operations

The traditional approach computes signatures sequentially along the path. For a path X =
(X1, X2, . . . , XL) ∈ RL×d, with increments ∆Xi = Xi+1 −Xi, we compute signatures for each
prefix of the path using an iterative process.

First, for any increment ∆X , we compute its restricted exponential up to depth N :

expN (∆X) =

(
1,∆X,

∆X ⊗∆X

2!
, . . . ,

∆X⊗n

n!
, . . . ,

∆X⊗N

N !

)
(2)

Then, for the path prefix up to index k, we compute recursively:

SigN1 = expN (∆X1)

SigNk = SigNk−1 ⊠ expN (∆Xk) for k = 2, . . . , L
(3)

where ⊠ denotes the multiplication of tensors defined as:

(a1, . . . , aN )⊠ (b1, . . . , bN ) = (c1, . . . , cN )

with cn =
∑

i+j=n

ai ⊗ bj (4)

For a batch of paths X ∈ RB×L×d, this becomes:

SigNb,1 = expN (∆Xb,1)

SigNb,k = SigNb,k−1 ⊠ expN (∆Xb,k) for k = 2, . . . , L
(5)

where b indexes the batch dimension. An important property of this approach is that computing SigNk
only requires access to SigNk−1 and ∆Xk, allowing memory-efficient processing of long sequences.
However, this sequential computation pattern, requiring L− 1 iterations of tensor products for each
path, becomes a performance bottleneck on GPU architectures designed for parallel operations.

3.2 GPU-Optimized Approach: Parallel Sequence Processing

Our approach reorganizes the signature computation to maximize parallel operations across the
sequence dimension. For a path X ∈ RB×L×d, we compute signatures of different depths simultane-
ously using cumulative sums and parallel tensor operations. Key to our approach is the observation
that the n-th degree term of the signature can be expressed as:

Sign(X) =
∑

1≤i1<···<in≤L

∆Xi1 ⊗ · · · ⊗∆Xin (6)

This can be computed efficiently using cumulative sums and pre-divided increments. For each degree
n, we define:

∆X(n) =
∆X

n!
(7)

3



Our parallel computation then proceeds as follows:

S1,i =

i∑
j=1

∆Xj

S2,i =

i∑
j=1

(∆Xj ⊗ S1,j)

S3,i =

i∑
j=1

(
∆Xj ⊗

(
S2,j +∆X(2) ⊗ S1,j

))

S4,i =

i∑
j=1

(
∆Xj ⊗

(
S3,j +∆X(2) ⊗ S2,j +∆X(3) ⊗ S1,j

))
...

(8)

where cumsum operates along the sequence dimension and ⊗ represents batched tensor product
operations preserving both batch and sequence dimensions:

(∆X ⊗ S)b,k = ∆Xb,k ⊗ Sb,k for all b, k (9)

For a given prefix length k, the signature up to depth N is then obtained by concatenating:

SigNb,k = [S1,b,k, S2,b,k, . . . , SN,b,k] (10)

This formulation replaces sequential operations with parallel matrix multiplications and cumulative
sums, operations highly optimized on GPU architectures. While this approach requires more memory
to store intermediate results, it significantly reduces the number of sequential operations required,
leading to substantial performance improvements on GPU hardware.

3.3 Advantages of the GPU-Optimized Approach

Our approach offers several advantages over traditional methods:

• Optimized Sequential Operations: While our method still requires one sequential opera-
tion—the cumulative sum along the sequence dimension—this operation is highly optimized
in modern GPU architectures compared to the more complex fused tensor operations used
in traditional approaches.

• Parallel Processing: By reorganizing the computation to parallelize operations across
the sequence dimension, our method leverages GPU’s strength in performing large matrix
operations simultaneously. The only sequential dependency occurs in the cumulative sum,
which is implemented efficiently using parallel scan algorithms.

• Efficient Memory Access: Although our approach requires more memory to store interme-
diate results, it benefits from GPU’s high memory bandwidth and coalesced memory access
patterns, as most operations are performed on contiguous blocks of memory.

• Scalability: The use of batched tensor operations allows efficient processing of multiple
sequences simultaneously, making our method particularly effective for the large batch sizes
common in deep learning applications.

3.4 Automatic Backend Selection

Our library automatically selects the most appropriate implementation based on the available hardware.
On GPUs, it employs the parallel approach described above, leveraging the hardware’s capability for
efficient cumulative sum operations and parallel matrix computations. On CPUs, where the memory
access patterns and parallel processing capabilities differ significantly, the library switches to an
implementation following the traditional sequential approach used by Signatory and Signax. This
automatic selection ensures optimal performance across different hardware configurations without
requiring user intervention.

4



3.5 Limitations and Trade-offs

While our GPU-optimized approach significantly improves performance on GPUs, it comes with
certain trade-offs:

• Memory Requirements: The parallel nature of our approach necessitates storing intermedi-
ate results for the entire sequence, leading to higher memory usage compared to sequential
methods. This can become a limiting factor for very long sequences or high-dimensional
data.

• Hardware Specificity: The performance benefits are specifically tied to GPU architectures
with efficient parallel scan operations and high memory bandwidth. On CPUs or older GPU
architectures with less efficient cumulative sum implementations, the traditional sequential
approach may be more appropriate.

In the following section, we present experimental results that quantify these trade-offs and demonstrate
the substantial performance benefits our approach achieves on modern GPU hardware.

4 Performance Analysis

To assess the improvements in our path signature computation approach, we conducted two distinct
tests. The first test compares the computation time required by different libraries to process signature
batches, varying both sequence length and signature degree. Since this package is primarily designed
for integration with Keras models, our second test embeds the signature computation within deep
learning models, incorporating learnable weights both before and after the signature layer. While
our primary innovation focuses on GPU optimization, we performed tests on both GPU and CPU
architectures to demonstrate our approach’s versatility. Though optimized for GPU computation,
our implementation automatically falls back to a CPU implementation when no GPU is detected,
using a method similar to Signax but implemented with Keras operations instead of JAX, ensuring
compatibility across different hardware configurations. One of Keras 3’s key strengths is its ability to
operate with multiple backends, so we tested our package across all supported backends. However,
it’s important to note that while our package runs on any backend, the underlying implementation
differences create certain constraints. For instance, models using Keras Sig with PyTorch backend
cannot be JIT compiled (a limitation also present in Signatory), whereas the JAX backend can take
full advantage of XLA optimizations.To ensure consistent and comparable results, all experiments
were conducted on machines rented from vast.ai, equipped with a Ryzen 5900X CPU and an RTX
4090 GPU. We established specific software environments for each library under test:

• Signatory: Implemented using Docker image
pytorch/pytorch:1.9.0-cuda11.1-cudnn8-runtime,
running Signatory version 1.2.6.1.9.0.

• TensorFlow: Deployed using Docker image
tensorflow/tensorflow:2.16.1-gpu.

• Keras Sig (JAX and PyTorch backends): Built on Docker image
nvidia/cuda:12.6.0-runtime-ubuntu22.04, utilizing
Keras version 3.7.0, Signax version 0.2.1, Keras Sig version 1.0.2,
JAX version 0.4.38, and PyTorch version 2.5.1+cu124.

In addition to deep learning-specific libraries, we evaluated standard signature computation packages:
esig (version 1.0.0) and iisignature (version 0.24). For the model training evaluation, we also included
iisignature_tensorflow_2 (version 0.1.0), a TensorFlow 2 wrapper built around iisignature.

4.1 Direct Signature Computation

We evaluated computation times across different batch sizes, sequence lengths, and signature depths,
comparing our library with existing implementations. Our results demonstrate the efficiency and
scalability of our approach, with particularly strong performance on GPU hardware.

5



4.1.1 GPU Performance

Table 1 presents signature computation times on GPU across various configurations. For brevity,
Keras Sig is abbreviated as KS in the following tables. It’s important to note that KS GPU refers
to our pure JAX implementation of the GPU-optimized function, while other KS entries represent
implementations using standard Keras functions. The first notable observation is the significant

Table 1: Signature Computation Time (ms) on GPU

Batch Size Seq. length Depth KS Jax KS GPU KS Torch KS Tensorflow Signax Signatory

32 100 4 12.61 0.1312 1.11 16.49 0.6496 1.991
64 100 4 13.19 0.1424 1.109 16.29 0.6338 1.992

128 100 4 12.81 0.1785 1.159 16.39 0.656 2.015
256 100 4 15.0 0.1833 1.099 16.33 0.6906 2.696
512 100 4 14.0 0.2621 1.113 16.37 0.6789 3.211
128 50 4 13.58 0.1399 1.094 16.45 0.358 1.985
128 100 4 14.01 0.1437 1.09 16.38 0.6266 2.269
128 200 4 13.92 0.1798 1.09 16.31 1.194 3.565
128 500 4 14.31 0.5718 1.096 16.38 2.916 5.464
128 1000 4 15.79 0.5417 1.096 16.41 5.663 8.78
128 100 2 4.966 0.1689 0.44 5.917 0.659 0.9017
128 100 3 8.584 0.1712 0.722 10.5 0.8249 1.383
128 100 4 13.43 0.1485 1.086 16.39 0.6221 2.027
128 100 5 20.27 0.1585 1.516 23.69 0.7668 2.862
128 100 6 28.16 0.2903 2.024 32.91 1.229 3.919

variation in Keras Sig’s performance across different backends. This variation stems from Keras’s
architecture, which is primarily designed for training deep learning models rather than pure scientific
computation. When using JAX or TensorFlow backends, Keras compiles the function for each
execution without caching the compilation, necessitating costly recompilation for every call and
resulting in suboptimal performance. However, with the PyTorch backend, where this compilation
behavior differs, our GPU implementation (which is automatically detected) demonstrates significant
performance improvements over Signatory, despite both using PyTorch as their foundation. This
improvement, reducing computation time by a factor of 2 to 3, provides initial validation of our
approach’s effectiveness. Furthermore, Signax, which employs computation methods similar to
Signatory, achieves remarkable performance gains through its use of JAX, delivering 3 to 6 times
faster computation times. This highlights how modern computational libraries like JAX, despite their
high-level abstraction, can leverage XLA compilation to outperform lower-level C++ implementations
while maintaining more readable and maintainable code. To fully appreciate the impact of our GPU
optimization, we can directly compare KS GPU with Signax, as both are implemented in pure
JAX. When GPU hardware is available, the performance gains are substantial, with our approach
showing 5 to 10-fold improvements over Signax, which translates to 10 to 20-fold improvements
over Signatory.To better understand how different parameters affect performance, we created several
visualizations analyzing key metrics. Figure 1 illustrates the average signature computation time
on GPU as a function of batch size, with sequence length fixed at 100 and depth at 4. While
Keras Sig GPU demonstrates the fastest computation times across all batch sizes, its performance
curve shows a steeper slope compared to other implementations. This behavior can be attributed to
different parallelization strategies: Signax primarily parallelizes across batch dimensions, meaning
its efficiency increases with batch size as long as memory constraints are not exceeded. In contrast,
Keras Sig may encounter memory congestion at larger batch sizes. However, this limitation is less
significant in practice, as deep learning models typically perform better with moderate batch sizes,
even though larger batches might offer faster training times. Figure 2 demonstrates how sequence
length affects computation time, with batch size fixed at 128 and depth at 4. Keras Sig exhibits a
markedly different behavior compared to its batch size performance. While Signatory and Signax
show linear increases in computation time as sequence length grows, our GPU approach maintains
nearly constant computation time across different sequence lengths, with only a single notable
increase at a specific threshold—likely due to matrix computation constraints. This pattern validates
our innovative approach of processing the entire sequence as a single matrix multiplication operation,
resulting in computation times that remain largely independent of sequence length, provided the data
fits within available memory.

6



Figure 1: Average signature computation time on GPU as a function of batch size (Seq. Length=100,
Depth=4).

Figure 2: Average signature computation time on GPU as a function of sequence length (Batch
Size=128, Depth=4).

Figure 3 examines the relationship between signature depth and computation time, with batch size
fixed at 128 and sequence length at 100. The results present a more complex pattern than initially
anticipated, deviating from expected uniform trends across implementations. For lower signature
degrees, Signatory exhibits a nearly linear increase in computation time, while Signax and our GPU
approach show more gradual growth. At higher degrees, all implementations demonstrate increased
computation times, though JAX-based implementations maintain a performance advantage, likely
due to JAX’s superior optimization capabilities for operations with fewer degrees

4.1.2 CPU Performance

Table 2 presents signature computation times across different configurations on CPU hardware. For
this analysis, we expanded our comparison to include standard signature libraries—iisignature and
esig—which were excluded from GPU testing due to their lack of GPU support.The results show
similar backend-related effects as observed in GPU testing, with JAX and TensorFlow backends
exhibiting performance limitations that make them suboptimal for CPU computation. Notably, Signax
and Signatory demonstrate comparable performance levels on CPU, with their relative efficiency
varying by use case due to backend-specific optimizations. Two significant observations emerge
regarding Keras Sig: First, the PyTorch backend implementation performs slightly worse than

7



Figure 3: Average signature computation time on GPU as a function of signature depth (Batch
Size=128, Seq. Length=100).

Signatory, a consequence of additional abstraction layers introduced to maintain backend agnosticism.
Second, and more notably, our JAX GPU-optimized version shows reduced performance compared
to Signax on CPU—a reversal of our GPU results. This performance inversion clearly demonstrates
how our optimization strategy’s effectiveness is hardware-dependent.

Table 2: Signature Computation Time (ms) on CPU

Batch size Seq. length Depth KS Jax KS GPU KS Torch KS Tensorflow Signax Signatory iisignature esig

32 100 4 143.5 2.032 1.472 214.4 0.2862 1.092 2.417 7.135
64 100 4 144.5 4.713 2.928 216.0 0.824 1.316 4.843 14.31

128 100 4 146.0 6.12 3.966 219.5 1.588 1.512 9.658 28.56
256 100 4 146.9 14.46 6.831 227.3 3.104 2.099 19.28 57.12
512 100 4 147.1 32.92 12.34 245.0 6.602 3.095 38.66 114.1
128 50 4 100.5 2.94 1.625 110.3 0.8289 1.001 4.774 19.32
128 100 4 151.8 7.009 2.113 226.1 2.035 1.697 9.653 28.63
128 200 4 43.53 14.1 4.548 453.2 2.262 3.092 19.44 47.27
128 500 4 45.99 45.64 14.61 1124.0 7.419 7.181 48.69 102.2
128 1000 4 132.6 75.98 32.26 2230.0 15.78 14.09 97.63 194.8
128 100 2 51.73 0.419 0.6012 73.93 0.1508 1.148 1.331 11.97
128 100 3 92.97 1.509 1.116 137.8 0.5496 1.276 3.805 15.74
128 100 4 156.9 6.745 1.879 223.1 1.773 1.528 9.649 28.73
128 100 5 217.8 34.51 5.25 347.7 4.18 2.149 25.81 75.72
128 100 6 321.6 96.95 25.09 520.6 10.46 3.952 75.45 268.5

Figure 4 presents the average signature computation time on CPU as a function of batch size, with
sequence length fixed at 100 and depth at 4. The results reveal Signatory’s superior handling of
increasing batch sizes on CPU architecture. This advantage likely stems from the fundamental
differences in parallelization strategies: while Signax employs batch-level vectorization—highly
effective on GPUs but less impactful on CPUs—Signatory’s native parallelism management appears
better suited for CPU execution.

Figure 5 demonstrates the relationship between sequence length and computation time, with batch
size fixed at 128 and depth at 4. On CPU, Keras Sig loses its distinctive advantage observed in
GPU testing, instead exhibiting a linear increase in computation time similar to other packages.
This performance shift occurs because the CPU architecture cannot support the simultaneous matrix
multiplications that enable our GPU optimization’s efficiency.

Figure 6 examines how signature depth affects computation time, with batch size fixed at 128 and
sequence length at 100. The results largely mirror those observed in the sequence length analysis,
with one notable distinction: Signatory demonstrates superior performance when handling increased
signature depths, suggesting its implementation is particularly well-optimized for managing higher-
order signatures on CPU architecture.

8



Figure 4: Average signature computation time on CPU as a function of batch size (Seq. Length=100,
Depth=4).

Figure 5: Average signature computation time on CPU as a function of sequence length (Batch
Size=128, Depth=4).

In conclusion, our analysis demonstrates that our proposed GPU optimization significantly improves
signature computation performance, though its effectiveness is highly hardware-dependent. For
CPU-based computations, Signax emerges as the most practical and efficient solution, offering
both easier installation compared to Signatory and freedom from Keras’s compilation management
overhead.

4.2 Signature in deep neural networks

As Keras Sig is specifically designed for integrating signatures into deep learning models, this section
presents our most significant results.

To thoroughly evaluate both forward and backward computation, we designed a simple yet represen-
tative model with trainable layers both before and after the signature computation. We implemented
this architecture using Keras for Keras Sig and Signax (the latter exclusively with JAX backend), and
PyTorch for Signatory. The model architecture can be formally described as follows. Given an input
sequence X ∈ RB×L×20, where B is the batch size and L is the sequence length, the model applies
these transformations:

9



Figure 6: Average signature computation time on CPU as a function of signature depth (Batch
Size=128, Seq. Length=100).

Input: X ∈ RB×L×20

Layer 1: Z = ϕ(XW1 + b1), W1 ∈ R20×d, b1 ∈ Rd,

Signature: S = Sig(Z), Z ∈ RB×L×d, S ∈ RB×D,

Layer 2: Y = SW2 + b2, W2 ∈ RD×10, b2 ∈ R10,

(11)

where,d represents the signature input size (ranging from 2 to 10) and D is the signature output
dimension determined by d and the signature depth. The final output Y produces 10-dimensional
vectors for each element in the batch. This architecture provides a clear framework for evaluating
the impact of signature computation within a neural network context. For benchmarking purposes,
we generated synthetic data consisting of input tensors X ∈ R12765×L×20 and target tensors Y ∈
R12765×10, where L represents the sequence length. The training process used a batch size of 128,
resulting in 99 complete batches and one final batch of 65 samples. This deliberate choice of an
incomplete final batch helped verify the signature layer’s robustness in handling varying batch sizes
during training. The performance assessment consisted of training each model configuration for 10
epochs across different backends, measuring the total training time for completion.

4.2.1 GPU Performance

Table 1 shows model training times on GPU across various configurations of signature input size,
sequence length, and signature degree. In contrast to direct signature computation, where Keras’s
compilation management posed challenges, all Keras Signature configurations demonstrate viable
performance in the training context. For shorter sequence lengths, Keras Sig with JAX backend
achieves training times comparable to the Signax package. However, as sequence length increases,
our implementation demonstrates significant improvements, reducing training times by up to 55%
compared to Signax, which itself already outperforms Signatory by a factor of 2.However, these
performance gains come with certain limitations, particularly regarding signature output dimen-
sionality. When training models with larger signatures (e.g., input size of 10 and depth of 4), the
performance gap between methods narrows significantly. This convergence can be attributed to
memory constraints: for instance, with these parameters, the signature output dimension reaches
11,110 values. During computation, this must be maintained across the full sequence for the entire
batch, resulting in substantial memory requirements—for a sequence length of 500 and batch size
of 128, the intermediate computations involve more than 700 million values. Examining Signa-
tory’s performance, we observe that it consistently runs approximately twice as slow as its Signax
counterpart across all tested configurations, demonstrating JAX’s XLA compilation advantages over
traditionally optimized C++ code. A crucial distinction emerges in model compilation capabilities:

10



Table 3: Model Training Time (seconds) on GPU

Seq. length Sig input size depth KS Jax Signax Signatory KS Torch KS Tensorflow

100 2 2 3.376 3.314 5.945 4.242 4.173
100 2 3 4.938 3.95 7.273 7.339 4.981
100 2 4 5.092 5.438 10.15 8.086 6.249
100 4 2 3.212 3.089 5.2 3.58 4.448
100 4 3 4.523 3.942 7.392 6.375 5.849
100 4 4 6.118 5.578 10.09 8.724 7.325
100 6 2 3.388 2.94 5.264 3.641 4.719
100 6 3 4.186 3.947 7.299 4.827 6.6
100 6 4 5.662 5.709 10.18 9.086 11.51
100 10 2 3.514 2.872 5.241 4.213 5.399
100 10 3 4.47 4.341 7.376 4.541 7.905
100 10 4 9.79 7.528 10.24 17.69 25.06
200 2 2 3.249 4.232 7.459 4.024 4.164
200 2 3 3.78 5.424 10.93 5.019 4.934
200 2 4 5.396 7.768 15.72 9.434 5.944
200 4 2 2.783 4.152 7.409 4.012 4.716
200 4 3 3.826 5.439 10.95 8.502 5.241
200 4 4 5.005 8.146 15.75 6.352 6.883
200 6 2 2.83 3.968 7.399 4.006 4.388
200 6 3 3.73 5.549 11.0 5.308 5.592
200 6 4 5.378 8.496 15.78 8.924 19.17
200 10 2 3.039 3.655 7.429 4.022 4.528
200 10 3 4.216 6.112 11.05 5.885 11.96
200 10 4 12.41 11.61 17.97 33.73 85.96
350 2 2 3.496 5.774 10.43 7.378 4.782
350 2 3 4.645 7.623 16.49 8.392 5.584
350 2 4 5.612 11.22 24.68 10.52 6.729
350 4 2 3.239 5.612 10.45 7.956 4.98
350 4 3 4.663 7.878 16.54 9.613 6.464
350 4 4 6.222 12.07 24.83 10.17 9.307
350 6 2 3.675 5.175 10.42 7.382 5.101
350 6 3 4.397 7.866 16.59 8.424 7.24
350 6 4 7.075 12.49 24.9 14.19 50.6
350 10 2 3.42 5.188 10.48 7.37 5.437
350 10 3 5.143 8.904 16.64 11.34 27.11
350 10 4 17.69 17.57 30.63 60.83 287.1
500 2 2 3.27 7.164 10.44 7.422 5.422
500 2 3 4.559 9.844 16.62 8.408 6.379
500 2 4 5.194 14.86 24.77 9.573 7.526
500 4 2 3.324 7.153 10.48 7.173 5.675
500 4 3 4.365 10.26 16.66 8.124 7.481
500 4 4 5.958 16.02 24.92 9.813 13.53
500 6 2 3.678 6.62 10.47 7.15 5.928
500 6 3 4.655 10.24 16.6 8.635 9.125
500 6 4 7.812 16.52 25.05 17.67 95.44
500 10 2 3.811 6.622 10.47 7.134 6.465
500 10 3 5.305 11.43 16.73 13.6 48.33
500 10 4 22.35 23.23 33.51 84.28 596.5

while models using Signax or Keras Sig can be compiled, PyTorch models incorporating Signatory
cannot. Though this limitation appears minor in our simple benchmark model with its modest 2x
performance penalty, the impact becomes more significant in complex architectures like transformers,
where signature computation represents only a fraction of the total computational load. In such
cases, the inability to compile the entire model could lead to substantial performance degradation.
Regarding other backends, while they show slightly reduced performance compared to JAX, they
remain competitive with Signax’s execution times. This is in line with our expectations, given JAX’s
more recent development and optimization-focused design. The PyTorch backend implementation of
Keras Sig outperforms Signatory, confirming that our GPU optimization strategy translates effectively
across different backends. TensorFlow presents an interesting case: it slightly outperforms the
PyTorch backend for small signature sizes but exhibits exponential performance degradation with

11



larger signatures. While this behavior likely stems from TensorFlow’s internal architecture, the
precise mechanism remains unclear and warrants further investigation.

To provide deeper insight into performance characteristics, we developed visualizations analyzing the
impact of various parameters.

Figure 7 illustrates training time as a function of signature input size, with sequence length fixed at
200 and signature degree at 3. The visualization reveals distinct performance patterns across backends
and implementations. Most approaches demonstrate similar scaling behavior with respect to signature
input size, with TensorFlow being a notable exception, showing significant performance degradation
at larger signature dimensions. Notably, our PyTorch backend implementation, despite PyTorch’s
generally lower performance compared to JAX, achieves comparable speeds to the JAX-based Signax
implementation. This equivalence demonstrates the effectiveness of our optimization strategy, which
successfully compensates for underlying backend performance differences.

Figure 7: Model Trainig time on GPU as a function of Sig. Input Size (Seq. Length=200, Depth=3).

Figure 8 examines the relationship between sequence length and training time, with signature input
size fixed at 6 and degree at 3. The results validate our earlier findings from direct signature
computation: our approach demonstrates significantly better scaling with sequence length compared
to both Signax and Signatory. This improved scaling behavior can be attributed to our optimized
matrix multiplication strategy, which processes sequences more efficiently than traditional iterative
approaches.

Figure 8: Model Trainig time on GPU as a function of Seq. Length (Sig. Input Size=6, Depth=3).

12



Figure 9 analyzes the impact of signature degree on training time, with signature input size fixed at
6 and sequence length at 200. A notable observation is that for moderate signature input sizes, all
implementations except TensorFlow exhibit similar scaling behavior with respect to signature degree.
This uniform scaling suggests that signature degree alone does not account for the performance
differences between Signax and our approach. Rather, the performance divergence emerges from the
interaction between signature input size and degree, becoming particularly pronounced when their
combination approaches memory capacity limits.

Figure 9: Model Trainig time on GPU as a function of Depth (Sig. Input Size=6, Seq. Length=200).

4.2.2 CPU Performance

Finally, we evaluated model training performance on CPU hardware. For CPU execution, Keras
Sig automatically switches to a computation method similar to Signax’s approach, with the primary
difference being the use of Keras API rather than JAX primitives. The TensorFlow implementation in
Keras Sig differs from other backends due to its handling of loop operations. While Keras provides a
scan operation for implementing loops with controlled compiler optimization, its interaction with
TensorFlow presents unique challenges. Loop unrolling—a compiler optimization technique that
reduces loop overhead by replicating the loop body—becomes particularly problematic here. While
scan operations typically allow fine-grained control over how much unrolling occurs, TensorFlow
attempts to fully unroll loops by default. For long sequences, this aggressive unrolling strategy
leads to prohibitively expensive compilation times, as the compiler attempts to create an expanded
version of the entire loop. Consequently, while TensorFlow models can technically be compiled, the
compilation overhead becomes impractical compared to training time, forcing us to use uncompiled
models for TensorFlow benchmarks. For completeness, we included the iisignature TensorFlow
2 wrapper in our CPU benchmarks, running it within the Keras framework using the TensorFlow
backend. Table 4 presents model training times across different configurations of signature input
size, sequence length, and signature degree on CPU hardware. The results show that Keras Sig with
JAX backend achieves performance nearly identical to Signax, which is expected given their shared
computational foundation. A notable observation is that despite both JAX-based implementations
and Signatory using similar algorithmic approaches, the JAX versions consistently outperform
Signatory’s optimized C++ implementation by margins ranging from 10% to 300%, depending
on the configuration. This performance advantage demonstrates JAX’s sophisticated optimization
capabilities on CPU hardware. Performance across other backends exhibits interesting patterns. The
PyTorch backend shows variable performance relative to JAX implementations, sometimes marginally
outperforming and sometimes underperforming depending on specific parameter configurations.
The TensorFlow backend presents a particularly interesting case: while it generally shows the
slowest execution times among Keras Sig variants, for small signature sizes, the iisignature wrapper
paradoxically demonstrates better performance than the native TensorFlow implementation. However,
this advantage rapidly diminishes as signature complexity increases—with larger input sizes and
higher degrees, the iisignature wrapper either becomes computationally prohibitive or fails to execute
entirely. We provide the same visualization as before to highlight the effects. Figure 10 illustrates

13



Table 4: Model Training Time (seconds) on CPU

Seq. length Sig input size depth KS Jax Signax Signatory KS Torch KS Tensorflow iisignature Tensorflow

100 2 2 2.834 1.641 6.856 3.753 13.08 5.697
100 2 3 5.316 3.481 8.727 5.36 24.18 8.139
100 2 4 11.56 5.793 10.96 7.621 38.97 12.23
100 4 2 2.511 2.184 7.923 3.749 14.01 7.419
100 4 3 6.791 4.301 10.6 5.69 23.98 17.0
100 4 4 25.19 13.93 19.52 18.64 41.96 52.95
100 6 2 4.168 3.609 7.964 3.847 14.76 9.35
100 6 3 15.77 15.52 14.74 9.537 26.07 35.6
100 6 4 65.97 62.51 45.43 120.0 58.31 206.5
100 10 2 8.734 8.457 9.697 4.272 18.46 15.93
100 10 3 47.65 50.22 30.4 83.58 37.05 126.1
100 10 4 351.7 235.1 208.4 890.9 273.0 1470.0
200 2 2 2.544 2.67 11.48 4.437 26.81 7.646
200 2 3 5.47 5.387 15.09 6.473 48.38 12.5
200 2 4 10.75 10.12 19.43 9.32 80.89 20.0
200 4 2 3.099 3.035 13.17 4.274 31.74 10.81
200 4 3 7.393 7.291 18.59 7.638 54.17 28.01
200 4 4 31.38 31.5 36.61 38.22 91.43 98.14
200 6 2 5.945 5.834 14.04 4.798 39.15 15.64
200 6 3 28.67 28.84 27.09 28.1 61.75 64.85
200 6 4 135.8 129.7 88.19 251.7 130.1 407.1
200 10 2 15.34 15.26 17.11 7.983 51.23 27.4
200 10 3 106.2 105.4 58.07 167.8 94.57 238.8
200 10 4 404.2 406.9 414.9 1748.0 596.3 2952.0
350 2 2 3.55 3.644 17.15 5.123 52.83 11.36
350 2 3 8.787 8.644 23.63 7.7 92.64 19.15
350 2 4 17.95 17.59 32.01 11.44 153.0 55.67
350 4 2 4.314 4.325 20.26 5.345 75.42 17.62
350 4 3 12.48 12.45 30.53 14.82 113.7 46.04
350 4 4 50.75 50.67 62.66 101.2 183.1 351.8
350 6 2 9.364 9.204 22.79 6.618 94.81 23.75
350 6 3 47.53 47.64 45.33 64.51 136.7 109.2
350 6 4 232.8 230.9 151.7 465.4 260.2 1523.0
350 10 2 25.19 25.18 27.65 16.28 133.2 44.59
350 10 3 176.3 175.9 100.0 302.9 206.6 416.0
350 10 4 656.8 653.6 723.7 3027.0 1079.0 _
500 2 2 4.623 4.678 24.53 5.825 91.13 26.26
500 2 3 11.76 11.77 33.38 9.148 145.8 45.63
500 2 4 25.17 25.47 43.45 14.34 232.2 80.74
500 4 2 5.708 5.757 29.94 6.684 132.9 38.08
500 4 3 17.28 17.33 42.85 28.64 191.4 122.2
500 4 4 63.76 62.61 89.04 153.5 287.1 505.0
500 6 2 12.63 12.75 30.25 9.513 180.2 56.89
500 6 3 65.35 64.81 64.34 100.5 232.2 318.2
500 6 4 327.9 327.5 215.2 674.5 409.1 2176.0
500 10 2 35.25 35.25 39.11 25.47 244.6 124.4
500 10 3 253.5 252.4 141.7 434.4 350.8 1285.0
500 10 4 905.0 904.9 1032.0 4354.0 1517.0 _

training time as a function of signature input size, with sequence length fixed at 200 and signature
degree set to 3. The results show the expected performance parity between Keras Sig with JAX
backend and Signax. However, an interesting pattern emerges with larger signature input dimension:
Signatory’s performance begins to show advantages over the JAX-based implementations. This
reversal of the GPU results highlights how JAX’s XLA compilation optimizations, while extremely
effective for GPU computation, may not fully match the efficiency of carefully optimized C++ code
for CPU-specific operations when dealing with larger signature dimensions. Figure 11 examines
how training time scales with sequence length, maintaining a fixed signature input size of 6 and
signature degree of 3. The results reveal remarkably consistent scaling behavior across Signax, Keras
Sig, and Signatory implementations. This uniformity in performance scaling is expected, as all
implementations fundamentally employ similar computational strategies when processing sequences
on CPU architecture, without the parallel processing advantages that distinguish GPU performance.
Figure 12 analyzes the relationship between training time and signature degree, with signature input
size fixed at 6 and sequence length at 200. The results mirror the patterns observed in our sequence
length analysis, showing consistent scaling behavior across all implementations. This similarity in
performance characteristics across different parameter variations reinforces our understanding that on
CPU hardware, the fundamental computational approaches of all implementations converge to similar
efficiency levels. The model training experiments demonstrate several key findings about signature
computation in deep learning environments. On GPU hardware, our optimized implementation
shows substantial performance improvement, particularly for longer sequences, achieving up to 55%
reduction in training time compared to existing methods. However, these improvements are bounded

14



Figure 10: Model Trainig time on CPU as a function of Sig. Input Size (Seq. Length=200, Depth=3).

Figure 11: Model Trainig time on CPU as a function of Seq. Length (Sig. Input Size=6, Depth=3).

by memory constraints when dealing with large signature dimensions, highlighting the trade-off
between computational efficiency and memory usage. The backend comparison reveals important
practical considerations: JAX-based implementations consistently deliver superior performance
through effective XLA optimization, while PyTorch and TensorFlow implementations show varying
degrees of efficiency. Notably, the inability to compile PyTorch models could become a significant
limitation in more complex architectures. On CPU hardware, the performance landscape shifts
considerably. The advantages of our GPU-optimized approach diminish, and all implementations
demonstrate similar scaling characteristics. JAX-based implementations maintain a slight edge in
most cases, though Signatory’s optimized C++ code shows competitive performance, particularly
with larger signature dimensions.

5 Conclusion

This work introduces Keras Sig, a pure Python implementation of the signature transform that ad-
dresses key challenges in integrating signature-based methods into modern deep learning workflows.
Through our comprehensive evaluation, we have demonstrated that high-level tensor operations,
when properly optimized for GPU architectures, can match or exceed the performance of traditional
low-level implementations while offering greater flexibility and maintainability.Our GPU-optimized
approach achieves significant performance improvements, showing up to 55% reduction in training

15



Figure 12: Model Trainig time on CPU as a function of Depth (Sig. Input Size=6, Seq. Length=200).

time compared to existing methods for long sequences, and 5 to 10-fold improvements in direct signa-
ture computation. These gains stem from our innovative reorganization of computations to maximize
parallel processing through large matrix operations, although the benefits are bounded by memory
constraints for large signature dimensions. The backend-agnostic design of Keras Sig, enabled by
the Keras 3 framework, offers several practical advantages. While JAX-based implementations
consistently deliver the best performance through XLA optimization, our PyTorch and TensorFlow
implementations remain competitive, providing users flexibility in their choice of deep learning
framework. This flexibility, combined with pure Python implementation, significantly reduces the
versioning and maintenance issues that have historically plagued signature computation libraries.
However, our approach also reveals important trade-offs that practitioners should consider. The mem-
ory requirements of our GPU-optimized implementation can become significant for large signature
dimensions or sequence lengths. Additionally, on CPU hardware, the performance advantages of our
approach diminish, with all implementations showing similar scaling characteristics. These limita-
tions highlight the importance of automatic backend selection in Keras Sig, which ensures optimal
performance across different hardware configurations. Looking forward, this work opens several
promising directions for future research. The success of our GPU optimization strategy suggests
potential for similar reorganizations of other sequential computations in deep learning. Addition-
ally, the demonstrated benefits of high-level tensor operations over low-level C++ implementations
may encourage a broader shift towards more maintainable, framework-agnostic implementations of
mathematical tools in deep learning.Through its combination of performance, flexibility, and ease
of use, Keras Sig represents a significant step forward in making signature-based methods more
accessible to the deep learning community, while establishing new standards for the implementation
of mathematical tools in modern machine learning frameworks.

References
Anh-Tong. Signax: Computing signatures in jax. https://github.com/Anh-Tong/signax, 2023.

Ilya Chevyrev and Andrey Kormilitzin. A primer on the signature method in machine learning. arXiv
preprint arXiv:1603.03788, 2016.

Hugo Inzirillo and Remi Genet. Sigkan: Signature-weighted kolmogorov-arnold networks for time
series. arXiv preprint arXiv:2406.17890, 2024.

Patrick Kidger and Terry Lyons. Signatory: differentiable computations of the signature and logsig-
nature transforms, on both cpu and gpu. arXiv preprint arXiv:2001.00706, 2021.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equations
for irregular time series. Advances in Neural Information Processing Systems, 33:6696–6707,
2020.

16



David Levin, Terry Lyons, and Hao Ni. Learning from the past, predicting the statistics for the future,
learning an evolving system. arXiv preprint arXiv:1309.0260, 2013.

Terry Lyons. Rough paths, signatures and the modelling of functions on streams. arXiv preprint
arXiv:1405.4537, 2014.

Terry Lyons. esig: A python library for computing signatures. https://github.com/patrick-
kidger/signatory, 2017.

Terry J. Lyons. Differential equations driven by rough signals. Revista Matemática Iberoamericana,
14(2):215–310, 1998.

James Lewis Morrill, Andrey Kormilitzin, Alejo J Nevado-Holgado, Sumanth Swaminathan, Sam
Howison, and Terry Lyons. The signature-based model for early detection of sepsis from electronic
health records in the intensive care unit. International Conference in Computing in Cardiology,
2019.

Hao Ni, Lukasz Szpruch, Magnus Wiese, Shujian Liao, and Baoren Xiao. Conditional sig-wasserstein
gans for time series generation. arXiv preprint arXiv:2006.05421, 2020.

Jeremy Reizenstein and Benjamin Graham. The iisignature library: efficient calculation of iterated-
integral signatures and log signatures. arXiv preprint arXiv:1802.08252, 2018.

Jeremy Reizenstein and Benjamin Graham. Algorithm 1004: The iisignature library: Efficient
calculation of iterated-integral signatures and log signatures. ACM Transactions on Mathematical
Software (TOMS), 2020.

Weixin Yang, Lianwen Jin, and Manfei Liu. Deepwriterid: An end-to-end online text-independent
writer identification system. IEEE Intelligent Systems, 31(2):45–53, 2016.

17


	Introduction
	Related Work
	A New View on Signature Computation
	Traditional Approach: Sequential Fused Operations
	GPU-Optimized Approach: Parallel Sequence Processing
	Advantages of the GPU-Optimized Approach
	Automatic Backend Selection
	Limitations and Trade-offs

	Performance Analysis
	Direct Signature Computation
	GPU Performance
	CPU Performance

	Signature in deep neural networks
	GPU Performance
	CPU Performance


	Conclusion

