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ABSTRACT

With the emergence of neural audio codecs and new objective
quality models based on machine learning, there is a need to
clarify which models predict accurately the perceptual quality
of coded speech. In this paper, we consider a selected sub-
set of ten objective quality models; we present a correlation
analysis based on test results from a P.800 ACR experiment
on clean speech, assessing the quality of neural speech/audio
codecs – traditional codecs (EVS, Opus) are also included as
yardsticks. The evaluation is limited to signal-based models
for listening-only quality. Overall results per condition are
analyzed in terms of Pearson’s correlation, Kendall’s Tau and
root mean squared error (RMSE); objective scores per codec
are also discussed.

Index Terms— speech quality, objective models, neural
audio codec, subjective test

1. INTRODUCTION

Audio quality evaluation is necessary when developing
speech or audio codecs, or characterizing their performance.
Subjective listening tests based on methodologies such as
P.800 ACR or DCR [1], or MUSHRA [2] remain the most
important and direct way to evaluate codec performance,
however these tests require time and resources. Besides
codec quality assessment, objective models predicting per-
ceptual speech quality are also essential in many other tasks,
such as network monitoring, drive tests, conformance testing
or phone quality certification. Different objective models
(e.g., PESQ [3], ViSQOL [4], etc.) are used in publications to
report and analyze experimental codec evaluations, and one
may wonder what objective models are the most reliable or
what is their relative performance, especially in the context
of recent developments in machine learning applied to au-
dio. With new techniques based on deep learning, the field
of audio coding has seen the emergence of new neural au-
dio codecs such as LPCNet [5], SoundStream [6], EnCodec
[7], AudioDec [8], or Descript Audio Codec [9]. In parallel,
new objective models have often been developed based on
machine learning, as seen for instance in challenges (e.g.,
VoiceMOS [10] and ConferencingSpeech [11]), standardiza-
tion activities (e.g., P.565.1 [12]), and other works [13, 14].

The aim of the present work is to benchmark objective
quality models on speech, especially when evaluating neural
speech/audio codecs. We report results from a P.800 ACR test
on clean speech comprising anchors, traditional and neural
audio codecs, and this experiment is used as ”ground truth”.
A correlation analysis is performed to evaluate a selected sub-
set of objective models. In addition to usual evaluation met-
rics (Pearson’s correlation, Kendall’s Tau, RMSE), we also
analyze objective scores per codec.

This paper is organized as follows. Section 2 provides
a brief review of objective quality models, with a focus on
speech quality, and lists models selected for the present eval-
uation. Section 3 describes the test plan and results from a
P.800 ACR subjective experiment that serves as the ”ground
truth”. Section 4 presents the correlation analysis on tested
objective models, before concluding in Section 5.

2. REVIEW OF OBJECTIVE QUALITY MODELS

A general review of quality prediction models can be found in
[15] and [16] for speech and [17] for audio. We focus here on
models predicting overall speech or audio quality in terms of
mean opinion scores (MOS) – or an equivalent scale –, espe-
cially for codec evaluation purposes. We do not review other
quality aspects such as speech naturalness [18] or intelligibil-
ity [19], or quality assessment of speech enhancement [20] or
synthesized speech [10]. Objective models for speech qual-
ity can be classified into different categories: signal-based
or parametric; intrusive (full-reference) or non-intrusive (no-
reference); conversational quality or quality in one phase (lis-
tening, speaking or interaction). In this work, we focus on
signal-based models for listening-only quality and consider
both intrusive and non-intrusive models.

Initial objective tools relied on simple criteria in time, fre-
quency, or parametric domain, such as signal to noise ratio
(SNR), segmental SNR, mean squared error (MSE), spectral
distortion, etc. It is well known that such objective metrics do
not correlate well with subjective tests [21]. Following [22],
full-reference models have been developed to predict the per-
ceptual quality of coded speech or audio – see for instance
[23, 24, 25]. The PEAQ model [26] was standardized using
this approach using both frequency and auditory transforms;
PSQM is based on similar principles [27] in the speech do-



Table 1. Tested objective models – fs used in tests in bold.
Metric Content fs (kHz) Intrusive Version
PESQ Speech 8,16 Yes pesq v0.0.4 [30]
POLQA Speech 8, 48 Yes v3.0 (in MultiDSLA)
ViSQOL-S Speech 16 Yes v3.3.3 [31]
WARP-Q Speech 8,16 Yes v1.0.0 [32]

DNSMOS Speech 16 No commit 591184a [33]
NISQA Speech 48 No commit ac83137 [34]
NORESQA Speech 16 No* commit 8d56b95 [35]
UTMOS Speech 16 No commit 2d6d612 [36]

PEAQ Audio 48 Yes Basic, AFsp v9r0 [37]
ViSQOL-A Audio 48 Yes v3.3.3 [31]
∗ Non-matching references [13] but used here with original input
signal as reference

main, using internal representation matching and time align-
ment by cross-correlation. PESQ was later developed to allow
better accuracy in end-to-end measurements (including codec
degradations as well as filtering, jitter, etc.), using auditory
transforms, improved time-delay estimation, equalization and
mapping to subjective tests. POLQA (P.863) [28] covered
bandwidths up to fullband, impairments from real network
conditions (in particular in Voice over IP) and both electri-
cal and acoustic interfaces. In ITU-T there is ongoing work
where NISQA [29] is considered and improved in P.SAMD.

In recent years, many new objective models have been
proposed. ViSQOL [4] has been developed as an alterna-
tive to POLQA, with two modes: speech and audio (denoted
ViSQOL-S and ViSQOL-A, respectively). WARP-Q [38] tar-
gets quality prediction for generative neural speech codecs.
Different objective models were submitted to challenges (e.g.,
VoiceMOS [10] and ConferencingSpeech [11]) and we retain
here only UTMOS [39] given that it scored best in the Voice-
MOS challenge. DNSMOS [40] is known for evaluation in
noise suppression tasks and is used here to predict raw SIG as
in [8]. NORESQA-MOS [13] combines neural networks and
non-matching references to estimate MOS. There are many
other objective models in the literature, e.g. SESQA [41] or
InSE-Net [14], however they are not considered here because
no public implementation is available.

For practical reasons, we selected a subset of ten models
that are often used in publications or reflecting recent propos-
als – see list in Table 1. Note that input audio was down-
sampled to fs when fs < 48 kHz. We did not include STOI
[19] in the benchmark, because this metric is meant for intel-
ligibility assessment. We chose models that have an available
implementation to maximize reproducibility, with one excep-
tion: we included POLQA (P.863), given that this model rep-
resents the state of the art of ITU-T objective models and
is still widely used in the field. Note that PESQ (P.862) is
included here even if this model is considered obsolete and
withdrawn in ITU-T; in practice, PESQ is still popular in pub-
lications. PEAQ [26] is also included in the present evalua-

tion as an ”anchor” even if it is meant for high-quality audio.
For PEAQ which output Objective Difference Grade (ODG)
scores between -4 and 0, a +5 offset is applied to get a scale
from 1 to 5.

3. TEST PLAN AND RESULTS FROM A P.800
EXPERIMENT (CLEAN SPEECH)

A good objective metric should predict MOS-LQO scores
(objective listening quality) that are as close as possible to
MOS-LQS scores (subjective listening quality) from a formal
listening test. For this study, we conducted a P.800 ACR [1]
test to get ”ground truth” MOS-LQS scores for model evalu-
ation. The test is designed to compare traditional and neural
audio codecs operating on different bandwidths – wideband
(WB), superwideband (SWB) and fullband (FB) – and bi-
trates (from 1.5 to 24.4 kbps). Four conditions are used as
anchors to calibrate the test: the uncoded original audio (or
”Direct” condition), and three P.50 Modulated Noise Refer-
ence Unit (MNRU) [45] with Q = 36, 23 and 10 dB. Two
traditional speech/audio codecs are tested: Opus [46] which
is standardized by IETF and used in WebRTC and various In-
ternet applications; and EVS [47] which is standardized by
3GPP and used in mobile telephony. For the neural audio
codecs, we chose models which have a publicly available im-
plementation, namely Lyra V2 [48], EnCodec [7], LPCNet
[5], AudioDec [8], Descript Audio Codec (DAC) [9] and an
extension of EnCodec using multiband diffusion that we refer
as AudioCraft [49]. All the tested conditions with the details
of the version and model used are summed up in Table 2 (in-
cluding frame length L and sampling rate fs). For the test,
30 naive listeners were recruited, and split in 5 panels of 6
listeners. Each panel listened and rated all conditions on a
specific and different subset of speech samples and in a dif-
ferent order. The speech samples are extracted from an inter-
nal French speech database of phonetically balanced sentence
pairs, with 3 male and 3 female speakers. The audio samples
were filtered by a 20-20,000 Hz bandpass FIR filter [50] and
normalized to -26 dB LKFS [51]. The audio fed to the codecs

Table 2. List of tested codec operation points.

Codec
fs

(kHz)
L

(ms)
bitrate
(kbps)

Version

LPCNet 16 10 1.6 0.1
Lyra V2 16 20 3.2, 6, 9.2 v1.3.2
EnCodec 24 13.3 1.5, 3, 6, 12, 24 [42] Nov. 2023
AudioCraft 24 13.3 1.5, 3, 6 [43] v1.0.0
AudioDec 24 12.5 6.4 libritts sym
DAC 44.1 11.6 1.7, 2.6, 5.2, 7.8 v1.0.0
AudioDec 48 6.25 12.8 vctk sym

Opus 48 20 12, 16, 24 v1.4 (–cbr)
EVS-WB 16 20 7.2, 8 [44] v16.3.0
EVS-SWB 32 20 9.6, 13.2, 24.4 [44] v16.3.0
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Fig. 1. Codec bitrate vs. MOS-LQS – with 95% confidence intervals; horizontal dotted line corresponds to ”Direct”.

were resampled to match their input sampling rate, using the
ResampAudio routine from the AFsp toolset [37].

The results of the ACR test are summarized in Fig. 1.
A detailed discussion of these results is beyond the scope of
this paper, given that the subjective test is only used here as
”ground truth” for benchmarking objective quality models.
Note that the dataset (processed samples and raw data) can
be shared upon request under appropriate legal frameworks.

4. EVALUATION OF OBJECTIVE MODELS

4.1. Results from overall correlation analysis

Objective models listed in Table 1 are compared based on typ-
ical evaluation metrics: Pearson correlation coefficient, root
mean squared error (RMSE) [52] and Kendall’s Tau rank cor-
relation coefficient [17]. Note that these metrics are computed
per condition, and there are 30 conditions in the ACR test re-
ported in Section 3. Pearson’s correlation is related to the lin-
earity of the relation between subjective and objective scores.
RMSE penalizes deviations from the y = x line, where x and
y are the subjective and objective scores, while Kendall’s Tau
measures the similarity between condition rankings. Note that
the Spearman rank correlation coefficient was also evaluated,
however it is redundant with Kendall’s Tau, and the latter is
better suited here given the low number of data points (condi-
tions). Moreover, there exists a variant of the RMSE denoted
RMSE⋆ that takes the confidence interval on ACR MOS into
account [52]; as the confidence intervals in ACR scores are
quite similar in our test, RMSE⋆ differs from RMSE by only
a slight offset, therefore only RMSE is presented here.

According to ITU-T P.1401 [52], a 3rd order monotonic
polynomial mapping PM(x) = a3x

3 + a2x
2 + a1x + a0,

where M is a given model, should be applied to compare
objective models. This mapping corrects a potential off-
set or gradient, and linearizes a possible ”banana shape” of
the scatter plot {(xi, yi)}, where i is the condition number
(i = 1, · · · , 30 here). In practice, some models already in-

clude an internal mapping (e.g., so-called scaling in PESQ).
The polynomial mapping PM(x) was determined here for
each model, using the implementation from the Conferenc-
ingSpeech Challenge [53]. Fig. 2a shows an example of scat-
ter plot {(xi, yi)}, taking the example of UTMOS; this figure
also shows the 3rd order polynomial line y = PUTMOS(x)
used for mapping; Fig. 2b shows the corresponding scatter
plot {(PUTMOS(xi), yi)} after mapping of UTMOS scores.
A 1st order mapping was also determined to verify that the
3rd order mapping did not lead to overly optimistic model
performance evaluation.

All evaluation metrics (Pearson, Kendall’s Tau, RMSE)
are reported for each model before and after mapping in
Fig. 3. One can note that Kendall’s Tau is not affected by
mapping, due to the monotony constraint. Mappings re-
duced outliers caused by a highly non-linear relationship on
the MOS scale, which happens for example with PEAQ and
NORESQA models. Overall, results indicate that POLQA,
UTMOS, PESQ, and WARP-Q, have here the best perfor-
mance; for these models, 1st order mapping is sufficient.

4.2. Analysis of objective scores per codec

We summarize below observations when comparing MOS-
LQS scores (see Fig. 1) with MOS-LQO scores per codec
conditions – this summary is limited to the best performing
models identified in Section 4.1 due to space constraints:

• POLQA was only trained on traditional codecs including
EVS and Opus. We observe that POLQA underpredicts
DAC, AudioDec, EnCodec (higher bitrates), Lyra V2,
while POLQA overpredicts EnCodec (lower bitrates), Au-
dioCraft, LPCNet, compared to ACR tests results in Fig. 1.

• UTMOS scores without mapping were in the [1.3, 3.7]
range (see Fig. 2a); the linear mapping really helps to
adjust to the full ACR scale. UTMOS with no mapping
underpredicts most codec conditions, but overpredicts Au-
dioCraft, possibly because there is residual coding noise



1 2 3 4 5
UTMOS

1

2

3

4

5

A
C

R

rmse = 0.66
rmse* = 0.57

pearson = 0.91
spearman = 0.90

kendall = 0.77

a) Before mapping

mapping polynomial p(x)

1 2 3 4 5
UTMOS

rmse = 0.37
rmse* = 0.29

pearson = 0.93
spearman = 0.90

kendall = 0.77

b) After 3rd order mapping

FB

SWB (32 kHz)

SWB (24 kHz)

WB

Direct

MNRU - 36, 23, 10 dB

EVS - 7.2, 8, 9.6, 13.2, 24.4 kbps

Opus - 12, 16, 24 kbps

LPCNet - 1.6 kbps

LyraV2 - 3.2, 6, 9.2 kbps

EnCodec - 1.5, 3, 6, 12, 24 kbps

AudioCraft - 1.5, 3, 6 kbps

AudioDec - 6.4, 12.8 kbps

DAC - 1.72, 2.58, 5.17, 7.75 kbps

p(x) = 0.43x3 − 2.84x2 + 7.29x− 4.59

Fig. 2. ACR vs UTMOS scores, before and after monotonic polynomial mapping.

POLQA

UTM
OS

PESQ

W
ARP-Q

DNSM
OS

NIS
QA

ViSQOL-S

NORESQA
PEAQ

ViSQOL-A
0.5

0.6

0.7

0.8

0.9

1.0
Pearson

POLQA

UTM
OS

PESQ

W
ARP-Q

NORESQA

DNSM
OS

PEAQ

ViSQOL-S

NIS
QA

ViSQOL-A

0.5

0.6

0.7

0.8

Kendall’s Tau

POLQA
PESQ

W
ARP-Q

UTM
OS

ViSQOL-S

ViSQOL-A

NIS
QA

DNSM
OS

NORESQA
PEAQ

0.5

1.0

1.5

RMSE

Before mapping After linear mapping After 3rd order mapping

Fig. 3. Pearson, Kendall’s Tau and RMSE metrics, before and after linear and 3rd order polynomial mapping.

(from the diffusion model [49]) only in inactive regions.

• PESQ underpredicts EVS, DAC (higher rates), AudioDec/24
kHz at 6.4 kbps, EnCodec (higher rates), AudioCraft, and
LPCNet, and overpredicts Opus (scored above EVS) and
EnCodec (lower rates).

• WARP-Q scores were in the [2.3, 4.2] range, which makes
it hard to discriminate codecs with no mapping – for in-
stance, Opus, EVS, and EnCodec around 24 kbps are
ranked as near-equivalent (numerically in this descending
order).

The best performing models (POLQA, UTMOS, PESQ,
WARP-Q) predicted accurately the monotonic bitrate/quality
behavior of tested multirate codecs – which was not always
the case for other tested models. It is remarkable that models
operating at 16 kHz (PESQ without mapping, UTMOS and
WARP-Q with mapping) had relatively good performance,
even for fullband codecs. Except for few models (e.g., PESQ
or POLQA), mapping helps improving accuracy (RMSE).

5. CONCLUSION

A P.800 ACR experiment on clean speech was conducted; this
test included several neural audio codecs, as well as two tra-
ditional codecs. Ten objective models were compared against
subjective scores. Results showed that the tested objective
models do not perform equivalently in terms of overall eval-
uation metrics before and after mapping; a subset of tested
models could predict quality increase as a function of codec
bitrate, and no model could predict quality ranks for all pair
comparisons between codecs, with issues of codec under- or
over-prediction. This study has some limitations as it relies
on a single P.800 ACR experiment in clean speech and clean
channel conditions. More listening test databases (with differ-
ent languages) and more test conditions (e.g., packet losses,
jitter, etc.) should be included. This study would motivate fur-
ther work considering neural audio codecs in objective model
design.
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