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Abstract
This paper presents speech quality results to characterize the
state of the art and technological advance of recent neural au-
dio codecs targeting low bitrates. Audio quality was evaluated
in one clean speech experiment (in French). Degradation Mean
Opinion Score (DMOS) results are reported and discussed for
neural audio codecs (LPCNet, Lyra V2, EnCodec, AudioCraft,
AudioDec, Descript Audio Codec) – traditional codecs (Opus,
EVS) are also included as performance yardsticks. We also dis-
cuss observed codec complexity to complement subjective test
results.
Index Terms: speech and audio coding, subjective test, neural
audio coding

1. Introduction
The development of generative audio models (e.g., WaveNet
[1], SampleRNN [2], WaveRNN [3]) and autoencoders with
discretized latent space (VQ-VAE in [4]) has led to a new gen-
eration of vocoders or audio codecs based on neural networks
[5, 6, 7]. Significant progress has been made thanks to advanced
architectures based on generative adversarial networks (GAN)
[8, 9] and recent methods also consider the use of diffusion
models [10]. Such neural audio codecs address various appli-
cations, including voice/video calling [11, 12], text-to-speech
synthesis [13], or music generation [14, 15].

It is of great interest to assess the audio quality of this new
generation of codecs and characterize the state of the art and
technological advance. To the best of our knowledge, there is
no comprehensive benchmarking of neural audio codec qual-
ity in the literature. Until now, limited quality assessments have
been reported as part of model proposals [16, 17, 18], often rely-
ing on objective evaluations (e.g., ViSQOL [19] or STOI [20]),
or the MUSHRA test methodology [21] which limits the num-
ber of test conditions and test samples and requires experienced
listeners. In this work we consider the evaluation of neural au-
dio codecs with a test methodology (P.800 DCR [22]) relying
on naive subjects and allowing a more comprehensive compar-
ison. To get performance ”yardsticks”, we include ”traditional”
speech/audio codecs: Opus [23, 24] and EVS [25].

Subjective quality is evaluated here in terms of listening au-
dio quality. Different input types and channel conditions should
be considered, including clean and noisy speech (with different
languages and noise types and levels), music and mixed con-
tent, noisy channels. In this work, we only report test results
for one clean speech experiment (in French); more experiments
should be conducted for a complete characterization.

This article is organized as follows. In Section 2, we present
the audio codecs selected for the subjective evaluation. In Sec-
tion 3, the use of DCR is justified, and relevant test plan aspects

are described. Experimental results are presented in Section 4,
before concluding in Section 5.

2. Speech/audio codecs under test
2.1. Neural speech/audio codecs

For this evaluation, we selected neural codecs which have a pub-
licly available implementation. For this reason we did not con-
sider codecs such as SoundStream [16], MDCTNet [26], CBRC
[27] or LMCodec [28]. Codecs considered below operate at
constant bitrates (CBR), either at a single bitrate or in a multi-
rate fashion. We used ”default” versions that sometimes are not
”streamable”, i.e., they do not process one input frame at a time
in a sequential manner. Note some codecs such as HiFi-Codec
[29] could not be considered due to limitations in number of test
conditions.

2.1.1. GAN-based autoencoders

Lyra V2 [12], EnCodec [17], AudioDec [30] and Descript Au-
dio Codec (DAC) [18] are based on a VQ-VAE architecture [4],
i.e. an autoencoder whose latent vectors are quantized. Au-
dio sampled at a frequency fs is converted to fl = fs

S
latent

vectors per second, where S is the product of the convolution
strides present in the encoder. Note that DAC makes use of
non-causal convolution layers. Generally, the same strides are
present in reverse order in the decoder to generate audio with
the same sampling frequency fs. The product of strides S also
determines the frame length. The quantization technique used
is the Residual Vector Quantization (RVQ) proposed in [16],
inspired from multistage vector quantization [31]. It consists
of a cascade of vector quantizers (VQs), allowing to choose the
trade-off between quality of reconstruction and bitrate as a func-
tion of the number of quantizer stages. The bitrate of the codec
is then fl×N×B where N is the chosen number of VQs in the
RVQ and B is the number of bits per VQ. The other interest of
RVQ is to enable multi-rate coding. For Lyra V2 and EnCodec
we selected all available bitrates. For DAC, we only included
the model at 44.1 kHz and evaluated the four bitrates studied in
[18], using the value of bitrates computed as fl ×N × B. For
AudioDec, we selected the ”default” autoencoder models at 24
and 48 kHz described in [30], and no vocoder variant.

2.1.2. Hybrid codec: LPCNet

LPCNet [7] is based on the source–filter model, where the
source (excitation) is modeled by WaveRNN [3] and the filter
is represented using linear prediction coding (LPC). LPCNet is
known to be a lightweight vocoder model that can run in real-
time on a CPU. Many variants of LPCNet have been developed,
here we only used the original LPCNet at 1.6 kbps.



2.1.3. Neural coding with diffusion-based synthesis

An extension of EnCodec (limited to 1.5, 3, and 6 kbps) has
been proposed using multiband diffusion [10]. The audio wave-
form is generated by the diffusion model using the latent vectors
from EnCodec. We will later refer to this extension as ”Au-
dioCraft” [32].

2.2. Traditional speech/audio codecs

2.2.1. Opus

Opus [23, 24] is standardized by IETF and used in WebRTC and
various Internet applications. It supports different applications
(VoIP, audio, restricted low-delay), mono and stereo input sig-
nals (as well as multistream frames), a wide range of bitrates,
sampling rates from 8 to 48 kHz, frame lengths from 2.5 to
120 ms, different complexity levels, etc. Audio bandwidth de-
pends on bitrate and goes from narrowband (NB) to fullband
(FB), including superwideband (SWB) for signals sampled at
24 kHz. Note that recent versions of Opus include blocks using
neural networks (e.g. speech/music classification, and even en-
hancement and redundancy [33]), however the version of Opus
available for processing (see Tab. 1) does not qualify as a neural
audio codec for this evaluation. For Opus testing, we selected
the VoIP application, since clean speech is tested. CBR opera-
tion was used from 12 to 24 kbps.

2.2.2. EVS

The EVS codec [25, 34] is standardized by 3GPP and deployed
in mobile telephony. It operates with 20 ms frames and it sup-
ports several input/output sampling frequencies (8, 16, 32, 48
kHz) with mono input signals. The EVS codec supports 4 types
of audio bandwidth: NB, wideband (WB), SWB, FB. For EVS
testing, we focus on EVS ”Primary modes” with CBR opera-
tion. We selected main operation points (EVS-SWB at 13.2 and
24.4 kbps), and we included lower bitrates used in comparisons
[16]: EVS-WB at 7.2 and 8 kbps and EVS-SWB at 9.6 kbps.
Note that SWB is only supported at bitrates starting at 9.6 kbps.
Discontinuous transmission (DTX) was disabled.

2.3. Summary of tested codecs

The selected codec conditions for testing are listed in Tab. 1,
where the input sampling frequency (fs), frame length (in ms),
tested bitrates, and codec versions are also specified.

Table 1: List of tested codec operation points.

Codec
fs

(kHz)
L

(ms)
bitrate
(kbps)

Version

LPCNet 16 10 1.6 0.1
Lyra V2 16 20 3.2, 6, 9.2 v1.3.2
EnCodec 24 13.3 1.5, 3, 6, 12, 24 [35] Nov. 2023
AudioCraft 24 13.3 1.5, 3, 6 [32] v1.0.0
AudioDec 24 12.5 6.4 libritts sym
DAC 44.1 11.6 1.7, 2.6, 5.2, 7.8 v1.0.0
AudioDec 48 6.25 12.8 vctk sym
Opus 48 20 12, 16, 24 v1.4
EVS-WB 16 20 7.2, 8 [36] v16.3.0
EVS-SWB 32 20 9.6, 13.2, 24.4 [36] v16.3.0

3. Test methodology
3.1. Justification for DCR

The aim of the test is to compare several codecs operating with
different coded bandwidths and a large range of bitrates (from
1.5 to 24.4 kbps). It is important to select a proper test method-
ology to assess (listening) speech quality. A comparison of test
methodologies for speech quality can be found in [37]; general
guidance on subjective quality evaluation of audio codecs can
be found in [38].

Two methodologies in ITU-T P.800 [22] could be consid-
ered: Absolute Category Rating (ACR) [22] based on a five-
category scale: Excellent=5, Good=4, Fair=3, Poor=2, Bad=1;
Degradation Category Rating (DCR) resulting in a Degradation
Mean Opinion Score (DMOS), based on the comparison with
the original sample on a 5-category scale defined in Tab. 2. His-
torically, the ACR method has been extensively used in speech
testing for NB and WB quality ranges for clean speech (with
and without channel errors) and for music and mixed content;
it allows potential comparisons with objective speech quality
predictions (e.g., P.863/POLQA [39]). DCR was typically used
for testing conditions with background noise where ACR is less
applicable. In test exercises such as 3GPP EVS, DCR was se-
lected to test audio quality in higher bandwidths (SWB, FB) and
multi-bandwidth scenarios. In particular, DCR is more applica-
ble than ACR to multi-bandwidth testing, because each trial is
more independent since the stimuli are presented to listeners by
pairs (A-B) where A is the reference and B is the sample pro-
cessed by the system under evaluation.

Compared to other methodologies such as MUSHRA [21],
DCR may not be as sensitive as MUSHRA and it may be sub-
ject to saturation for near-transparent quality (typically at very
high bitrates). However, DCR allows to expose listeners to a
wider range of source material and is more cost efficient while
obtaining more votes. Moreover, DCR relies on naive listeners,
which makes it more applicable to reflect the assessment of the
general population. Note that DCR is not a transparency test,
therefore other methodologies such as BS.1116 [40] should be
considered for this purpose.

We therefore selected DCR for the test to rely on a well-
established procedure, given that this method applies well to
the expected quality/bitrate range in this evaluation.

Table 2: Opinion scale for ITU-T P.800 DCR.

Scale Degradation
5 Degradation is inaudible
4 Degradation is audible but not annoying
3 Degradation is slightly annoying
2 Degradation is annoying
1 Degradation is very annoying

3.2. Details on test setup and test plan

For this evaluation, only clean speech was used to compare
codecs. The DCR method relies on naive listeners, therefore
the dataset needed to be in their native language – in French in
our case. A total of 30 listeners were recruited for the subjec-
tive test, and split in 5 panels of 6 listeners. The audio samples
presented during the test consisted of an internal database of 8s
phonetically balanced sentence pairs (in French), with 3 male
and 3 female talkers. This speech dataset is ”pristine” and pro-
prietary (owned by the test lab) because test samples shall not
be used for codec tuning or other related training tasks, however
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Figure 1: DCR scores (DMOS) – with 95% confidence intervals – as a function of codec bitrate; the horizontal dotted line indicates
the score of the ”Direct” condition (uncoded reference).

this dataset and processing samples can be shared upon request
under appropriate legal frameworks. For each talker, 5 double
sentences were used for testing and 1 for preliminaries (famil-
iarization). The samples were pre-processed by a 20-20,000 Hz
bandpass FIR filter from [41] and then normalized to -26 dB
LKFS [42]. The effect of signal level (low, nominal, high) was
not considered here. In addition to codec conditions listed in
Tab. 1, the (uncoded) original, called ”Direct” condition, was
included together with calibration conditions (i.e., to make sure
listeners will use the entire voting scale), corresponding to P.50
Modulated Noise Reference Unit (MNRU) [43] with Q = 36,
23, and 10 dB. Resampling to match the input sampling fre-
quency of codecs was realized using the ResampAudio routine
from the AFsp package [44].

Randomizations were constructed under randomized blocks
experimental design described in [38]. The test was con-
ducted in dedicated soundproof test rooms over headphones
(Sennheiser HD 380 Pro); the (diotic) listening level was set
to 73 dB SPL. The overall test duration was about 2 hours, in-
cluding orientation, instructions, familiarization, test sessions,
and rest breaks; there were 30 conditions in the test, with 180
votes per condition.

Prior to delivering processed samples to the test lab,
ViSQOL [19] was applied to test conditions to check in-
formally objective scores; expert inspection of coded wave-
forms/spectrograms was also done for sanity check. Problems
of ”warm-up time” were found in Opus (with limited initial
coded bandwidths), this was fixed by processing all conditions
using concatenated samples with the 5 samples for preliminar-
ies at the beginning of the concatenated sequence.

4. Results and discussion
4.1. Overall results

Fig. 1 shows the results of the subjective evaluation on clean
speech. Note that the 95% confidence intervals are from ±0.05
to ±0.16. DAC is the codec that ”stands out of the crowd”. It
has the best DMOS score among the codecs operating around
1.5 kbps, and increasing bitrate improves quality, to a quality
close to Direct (original quality) at less than 8 kbps. However
this comes at the price of extra complexity, and significant codec
delay (around 190 ms) due to the use of non-causal convolu-
tional layers. DCR is not a transparency test, and the high score

of DAC around 8 kbps is simply in the saturation region of the
test, given that there are also ”bad” conditions that can explain
that the high quality range may be compressed.

Regarding ”traditional” codecs, care should be taken in
making strong conclusions on the comparison between EVS
and Opus, Opus is typically used in VBR, EVS with DTX on,
and the test with CBR operation makes a fair comparison but
does not reflect typical usage. Here, EVS-SWB is close to Di-
rect at 24.4 kbps – DMOS is in the saturation region. Note that
Opus at 12 kbps has a coded bandwidth around 8–9 kHz, this
bitrate is categorized as WB in Fig. 1.

Except DAC, tested neural audio codecs suffer from lim-
ited coded bandwidth that implies a ”quality ceiling” in DCR.
For instance, EnCodec does not achieve the quality of ”Direct”
even at 24 kbps and is below EVS and Opus at such bitrate –
the bandwidth being limited to 12 kHz. As presented in [10],
AudioCraft improves EnCodec’s audio quality at low bitrates of
1.5 and 3 kbps, but the tendency is reversed at 6 kbps. When
listening informally to the degradation brought by AudioCraft,
we note an annoying residual noise in inactive periods. This
suggests that this noise is less annoying at 1.5 and 3 kbps con-
sidering the poor quality of EnCodec at such bitrates compared
to the gain in quality brought using a diffusion model. However,
this noise could be more annoying at 6 kbps.

AudioDec at 6.4 kbps/24 kHz is on par with wideband
codecs despite extra coded bandwidth; we observe a clear
degradation at 12.8 kbps/48 kHz. After inspecting the processed
samples, there is a fullband distortion that is already present in
the 24 kHz version but judged as more annoying by listeners.
Note that more recent pre-trained versions of AudioDec may
improve audio quality, however they were not tested or avail-
able when preparing this test.

Lyra V2 is better than EnCodec around 3 kbps and close to
AudioDec/24 kHz and EVS-WB in the range 6 to 9 kbps, with a
rather low complexity considering Tab. 3. LPCNet has a perfor-
mance close to some other codecs around 1.5 kbps (DAC, Au-
dioCraft); its much lower model complexity (see Tab. 3) makes
it attractive for such low bitrate.

4.2. Talker dependency

To further analyse test results, we plotted scores per test con-
dition by separating male and female talkers (scores averaged
over 3 talkers/gender), as shown in Fig. 2. The bars of the
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Figure 2: DCR scores (DMOS) per test condition – in each group of three bars, the mapping, is: first bar = overall average score,
second bar = average score for male talkers, third bar = average score for female talkers.

”Direct” condition show that there is no bias between male and
female talkers for the original. It is then possible to find a pos-
sible gender dependency for codecs under test. We observe that
some codecs show a significant gender dependency: LPCNet
and AudioDec (at 48 kHz) seem to better process female sam-
ples, while it appears to be the opposite for EnCodec, espe-
cially at high bitrates. We verified that these observations on
gender dependency are also valid for the dependency on indi-
vidual talkers. It would be interesting to study root causes for
this behaviour.

4.3. Model complexity

While the codecs under test show different performance on
speech, we should not forget about codec features (complex-
ity, frame length, delay, etc.) for such capabilities; here we only
discuss model complexity. Having a low complexity is nec-
essary when it comes to codec use, for example in a mobile
(smartphone) context. A codec needs to operate in real time, on
a CPU or dedicated chipset/platform. In order to compare (in-
formally) the computational complexity of codecs under tests,
we measured codec execution time on concatenated test sam-
ples on a CPU (11th Gen. Intel Core i5-1145G7 @ 2.60 GHz,
Windows 10). The minimum execution time was recorded for
several processing trials. It should be noted that we are using the
implementations described in Tab. 1, which are not all C/C++
implementations. Therefore such measurements are only rough
estimates of real execution time on the same platform with the
same optimization level, and care should be taken before over-
interpreting this extra information.

Tab. 3 presents the real-time factor (RTF) of the tested
codecs, i.e. the duration of the processed audio samples di-
vided by the execution time. RTF is computed for encoder
and decoder processing only, and for the complete processing
(encoder + decoder). A value higher than 1 corresponds to
real-time operation (on the computer CPU used here). As the
RTF can vary depending on the bitrate used, only the worst-
case RTF is presented. Most of the codecs operate in real time,
except DAC and AudioCraft. This is not surprising as DAC
and AudioCraft have significantly more parameters than other
autoencoder-based neural codecs. DAC and AudioCraft have
more than 75M and 1150M parameters, respectively, while the

other codecs tested here have a maximum of around 20M pa-
rameters. For AudioCraft, the limited speed also comes from
the diffusion process, as it needs many iterations to achieve a
satisfying result.

Table 3: Real-time factor – underlined values are not real-time.

Implem. Codec Encoder Decoder Enc.+Dec.

C/C++

EVS-WB 99.6 207.8 67.5
EVS-SWB 57.1 135.2 44.0
Opus 32.5 506.8 30.7
Lyra V2 86.1 108.9 48.2
LPCNet 111.1 3.8 3.7

Python

EnCodec 8.9 10.6 5.1
AudioDec 24kHz 6.04 7.66 3.38
AudioDec 48kHz 2.80 2.58 1.34
DAC 1.23 0.73 0.46
AudioCraft 8.90 0.04 0.04

5. Conclusion and final remarks
This paper presented an evaluation of speech quality for neural
audio codecs. Audio quality was evaluated in one clean speech
experiment (in French). We also reported indicative complexity
measurements showing that performance gains may come with
increased complexity.

Neural audio codecs can achieve much lower bit rates
than traditional codecs. In fixed and mobile networks the
speech/audio streams at typical bitrates (e.g., 10 to 64 kbps)
now represent a tiny portion of network bandwidth and in VoIP
the relative overhead of packet headers is significant and the real
benefit of very low bitrates (e.g. 1.5 kbps) in terms of general
network coverage or capacity may be arguable; still, such new
technologies can improve QoE of applications in networks like
2G [45], and they can be used to enhance existing codecs and/or
help mitigate packet losses with more efficient low-bitrate re-
dundancy [33]. Note that quantized latent spaces are used to
“tokenize” audio frames in other applications [14, 15]. In fu-
ture work, this study should be extended to get a more complete
characterization. A correlation analysis with objective quality
methods could also be considered.
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[17] A. Défossez, J. Copet, G. Synnaeve, and Y. Adi, “High Fidelity
Neural Audio Compression,” in arXiv:2210.13438, 2022.

[18] R. Kumar, P. Seetharaman, A. Luebs, I. Kumar, and K. Kumar,
“High-Fidelity Audio Compression with Improved RVQGAN,” in
Advances in Neural Information Processing Systems, 2023.

[19] M. Chinen et al., “ViSQOL v3: An Open Source Production
Ready Objective Speech and Audio Metric,” in Proc. QoMEX,
2020.

[20] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “A short-
time objective intelligibility measure for time-frequency weighted
noisy speech,” in Proc. ICASSP, 2010.

[21] ITU-R Rec. BS.1534–3, “Method for the subjective assessment of
intermediate quality level of audio systems,” Oct. 2015.

[22] ITU-T Rec. P.800, “Methods for subjective determination of
transmission quality,” Aug. 1996.

[23] IETF RFC 6716, “Definition of the Opus Audio Codec,” Sep.
2012.

[24] IETF RFC 8251, “Updates to the Opus Audio Codec,” Oct. 2017.

[25] M. Dietz et al., “Overview of the EVS codec architecture,” in
Proc. ICASSP, 2015.

[26] G. Davidson, M. Vinton, P. Ekstrand, C. Zhou, L. Villemoes, and
L. Lu, “High Quality Audio Coding with MDCTNet,” in Proc.
ICASSP, 2023.

[27] L. Xu et al., “An intra-BRNN and GB-RVQ based end-to-end
neural audio codec,” in Proc. Interspeech, 2023.

[28] T. Jenrungrot, M. Chinen, W. B. Kleijn, J. Skoglund, Z. Bor-
sos, N. Zeghidour, and M. Tagliasacchi, “LMCodec: A Low Bi-
trate Speech Codec with Causal Transformer Models,” in Proc.
ICASSP, 2023.

[29] D. Yang, S. Liu, R. Huang, J. Tian, C. Weng, and Y. Zou, “Hifi-
codec: Group-residual vector quantization for high fidelity audio
codec,” arXiv:2305.02765, 2023.

[30] Y.-C. Wu, I. D. Gebru, D. Marković, and A. Richard, “Audiodec:
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