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Abstract. Up to the first years of the next millennium, several observation 
programs of the troposphere are scheduled, including the Infrared Atmospheric 
Sounding Interferometer, which uses Fourier transform spectroscopy to record the 
radiance of the Earth-atmosphere system with a nadir-viewing geometry. The In- 
terferometric Monitor for Greenhouse Gases (IMG), launched aboard the Advanced 
Earth Observing System in August 1996• was a precursor of these forthcoming 
missions. A new inversion algorithm based on neural network techniques is in 
development to retrieve tr•ce gases from high-resolution n•dir radiances. Neural 
networks offer a technical alternative to classical methods and allow efficient inver- 

sion calculations as required to treat the huge volume of data which will be provided 
by continuous observation of the atmosphere from space. To develop a network 
to retrieve the carbon monoxide total column• realistic simulations of the IMG 
measurements were obtained by coupling a three-dimensionM chemicM-transport 
model with a high-resolution line-by-line radiative transfer code adjusted to the 
•nstrumental features. The application of the algorithm on simulated data allowed 
the checking of its performance: for about 99% of the cases, the relative inversion 
error was less than 10%. This algorithm h•s been applied to the spectra recorded 
by the IMG instrument between June 16 and 19, 1997. GlobM-scMe distributions of 
CO total columns were obtained for the first time by using a neural network, and 
this technique proved its ability to achieve reM-time inversion of •tmospheric CO. 

1. Introduction 

Carbon monoxide (CO) is important in tropospheric 
chemistry. CO affects the concentrations and distri- 
butions of the atmospheric oxidants: hydroxyl radi- 
cal (OH), hydroperoxyl radical (HOe), and ozone (Oa) 
[Novelli et al., 1998]. CO is directly removed by the ox- 
idation cycles initiated by chemical reactions with OH, 
and it is produced by oxidation of methane (CIt4) and 
nonmethane hydrocarbons (NMHC). As about 75% of 
the OH radicals react with about 90% of CO [Logan et 
al., 1981; Crutzen and Zimmermann, 1991], these ox- 
idation reactions are the main sinks for CO and OH. 

Depending on nitrogen oxide ([NOz]- [NO] q- [NO2]) 
concentrations, the oxidation cycles of CO, CH4, and 
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NMHC either produce or destroy Oa in the troposphere. 
If the NO• abundance is sufficient (the threshold is 
not fixed and depends on concentrations of other atmo- 
spheric constituents), the hydroperoxyl radical (HO2), 
which is produced in the oxidation cycles of CO, CH4, 
and NMHC, reacts preferably with NO to form O•. If 
the NO• level is low, HO2 destroy Os [Novelli et al., 
19981o Therefore it appears clearly that CO has an im- 
portant influence on the oxidizing capacity of the atmo- 
sphere. 

If the nature of the CO sources and sinks is well 

known, it remains difficult to quantify their magnitudes. 
The primary sources of CO are emissions from techno- 
logical sources, biomass burning, biogenic sources, and 
oceans, where the technological sources include trans- 
portation, combustion, industrial processes, and refuse 
incinerations. Estimated strengths for the technological 
sources range from 300 to 900 Tg yr -• and the contri- 
bution of biomass burning is estimated to be between 
400 and 700 Tg yr -• [World Meteorological Organiza- 
tion (WMO,), 1995]. The biogenic sources (vegetation, 
soils, and animals) and the emissions from oceans con- 
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tribute with lower strengths. The secondary sources of 
CO are the oxidation of CH4 and NMHC. These reac- 
tions produce between 400 and 1000 Tg yr -• and be- 
tween 300 and 1300 Tg yr- • of CO, respectively [ WMO, 
1995]. The main sink of CO is the oxidation by OH 
which removes from 1400 to 2600 Tg yr- • of CO [ WMO, 
1995]. The remaining losses are distributed between soil 
uptake and transport to the stratosphere with weaker 
strengths. All these estimates have large uncertainties. 
To improve the knowledge of the CO spatial and tem- 
poral distributions, it is necessary to measure its con- 
centration on the global scale and continuously in time. 
This observation can be provided only by using satellite 
instruments. 

Up to now, the only measurement of the tropospheric 
CO concentration from space was made during the Mea- 
surement of Air Pollution from Satellites (MAPS) ex- 
periment with a first flight on November 12-14, 1981, 
and two flights in 1994 which occurred during April 9-19 
and September 30 to October 14 [Reichle et el., 1986, 
1990; Connors et al., 1996, 1999]. Several other ob- 
servation programs of the troposphere are in progress 
or are scheduled for the forthcoming years. The Inter- 
ferometric Monitor for Greenhouse Gases (IMG) instru- 
ment was launched aboard the Advanced Earth Observ- 

ing System (ADEOS) platform in August 1996. The 
IMG instrument is designed to observe the distributions 
of greenhouse and other trace gases in the atmosphere: 
H20, CO2, CH4, N20, CO, and Oa. From its data, 
it is also possible to retrieve the vertical profile of at- 
mospheric temperature [Ogewe et el., 1994]. The Mea- 
surement of Pollution in the Troposphere (MOPITT), 
which uses the same gas correlation technique as MAPS, 
is scheduled for launch on the NASA EOS Terre space- 
craft in summer 1999. MOPITT will measure both tro- 

pospheric CO profile and CO total column [Drummond 
end Mend, 1996; Weng et el., 1999]. At the beginning 
of the next millennium, in 2003, the Infrared Atmo- 
spheric Sounding Interferometer (IASI) instrument will 
be launched aboard the European Meteorological Op- 
erational (METOP) platform to measure temperature 
and humidity and will also provide information on trace 
gases. The Tropospheric Emission Spectrometer (TES) 
is scheduled for launch on the NASA EOS CHEM space- 
craft in 2003. TES will also measure tropospheric CO 
and CO total column [Beer end Glevich, 1989]. IMG, 
IASI, and TES all use Fourier transform spectroscopy 
to record, by nadir-viewing, the spectrum of the Earth- 
atmosphere system radiation in the thermal infrared 
spectral range from the top of the atmosphere. 

Various inversion algorithms, based on fitting meth- 
ods adapted from the one proposed by Rodgers [1976], 
are in development to retrieve vertical profiles of atmo- 
spheric temperature or concentrations of trace gases for 
nadir-looking instruments [Clough et el., 1995; Ameto 
et el., 1996; McMillen et el., 1997; Pen et el., 1998; 
Clerbeux et el., 1999]. In the framework of the IMG 
and IASI missions, we have started to develop a new 

inversion algorithm based on neural network techniques 
[Clerbeux et el., 1995]. Neural networks offer a technical 
alternative to retrieve geophysical variables. Because of 
their adaptability, they can model a large range of phys- 
ical functions [Thirie et al., 1993]. Moreover, after the 
long preliminary learning phase, the inversion is very 
efficient during the operktional phase. This feature is 
of particular interest in treating the important volume 
of data provided by the continuous measurements from 
space. During the last few years, the use of neural net- 
work techniques has increased in the atmospheric and 
oceanic fields. Among others, applications using neural 
networks have been described for cloud classification 

[Lee et el., 1990; Benkerr, t994], retrieval of vertical at- 
mospheric temperature profiles [Escober-Munoz et el., 
1993; Churnside et el., 1994; Butler et el., 1996], radia- 
tive transfer modelization for climate studies [Chevel- 
lief et el., 1998], and retrieval of oceanic surface winds 
[Bedten et el., 1991; Thirie et el., 1993; Stogryn et el., 
1994]. Cheboureeu et el. [1998] have developed an algo- 
rithm based on a neural network scheme to retrieve the 

vertical distribution of atmospheric water vapor and its 
total content, but, to our knowledge, these techniques 
have never been used before to retrieve CO atmospheric 
concentrations. 

This paper describes a new neural network algorithm 
to retrieve the atmospheric CO total columns from 
the radiance spectra measured by the IMG instrument 
[Clerbeux et el., 1995, 1998a]. After the description 
of the IMG instrument in section 2, we pose the geo- 
physical problem and explain the forward and inverse 
problems in section 3. In section 4, some basic elements 
on the multilayer networks are provided. A detailed de- 
scription of our inversion algorithm follows in section 5. 
In section 6, the performance of the inversion method 
on simulated data is presented along with the results 
of the retrieval of CO total columns on the global scale 
from the IMG spectra recorded between June 16 and 
19, 1997. 

2. IMG Instrument 

The IMG instrument was launched on the Japanese 
ADEOS platform in August 1996. The satellite stopped 
sending information at the end of June 1997, providing 
about 9 months of data. The ADEOS platform had a 
Sun synchronous orbit and flew at an altitude of 800 
km. A good global coverage of the Earth is obtained 
in 4 days. The IMG instrument was a Michelson inter- 
ferometer which recorded the interferogram of the radi- 
ation of the Earth-atmosphere system. The spectrum 
was calculated by Fourier transform. The spectral res- 
olution after apodization was 0.1 cm-1, and the optical 
path difference was about 10 cm. The interferogram 
acquisition by the IMG instrument was organized in a 
cycle: it alternated series of six consecutive atmospheric 
measurements with phases of calibration with the on- 
board blackbody and with deep space lOgewe et el., 
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1994]. Each measurement took 10 s, during which the 
IMG instrument looked at a fixed point using an Im- 
age Motion Compensator (IMC) mirror, and the scan- 
ning mirror came back to its initial position in 3 s. For 
the calibration, the necessary time was 32 s. Between 
two consecutive atmospheric measurements, the satel- 
lite covered 86 km horizontally by projecting its orbit 
on the Earth surface, and between two series of six mea- 
surements, it covered about 297 km. This instrument 
used three detectors to cover the total spectral range 
from about 665 to about 3030 cm -•' band 3 spread 
from 665 to 2000 cm -•, band 2 spread from about 1875 
to 2500 cm -•, and band i spread from about 2190 to 
3030 cm -•. Each detector looked at a square of 8 km 
sides on the Earth surface. To retrieve the CO total 

columns, we work on the spectral range between 2000 
and 2250 cm -• (band 2), where the strong absorption 
lines of the CO 1-0 vibrational transition occur among 
absorption features associated with other constituents 
(H20, CO2, 03, N20)[Clerbaux et al., 1998a]. Figure 1 
illustrates a spectrum recorded in this spectral range by 
the IMG instrument at 60.138øE, 24.503øN on June 16, 
1997o 

3. Geophysical Problem 

The satellites carrying nadir-viewing instruments like 
IMG or IASI have Sun synchronous orbits and fly at 
an altitude of about 800 km (in the forthcoming equa- 
tion, we will note Zm the altitude of the measure). In 
the spectral range between 2000 and 2250 cm -• (4.44- 
5 /•m), where we work to retrieve CO total columns, 
the solar contribution to the radiative budget of the 
Earth-atmosphere system is negligible with respect to 
the Earth's surface emission at the top of the atmo- 
sphere [Lenoble, 1993]. At the altitude of the measure, 
the radiance coming from the Earth-atmosphere sys- 

tem can be modeled by the radiative transfer equation, 
which can be written, in a simplified manner, for one 
spectral channel as 

= t,) 

zm Or•(z, gin) dz + T(z)) Oz ' 

where Lv(Zm) is the radiance of the Earth-atmosphere 
system at the wave number y observed at the altitude 
Zm of the satellite, ev is the Earth surface emissivity, 
B(y, T) is the Planck function at the temperature T, 
rv(z, Zm) is the atmospheric vertical transmittance be- 
tween the measure height (z = Zm) and the level z, 
and z• and T• are the altitude and the temperature 
of the Earth surface, respectively. The first part of 
this equation represents the contribution of the radi- 
ation emitted by the Earth surface; the second part is 
the atmospheric contribution. The weighting function, 
[Or•(z, Zm)]/Oz, varies between 0 and 1 according to 
the importance of the contribution of each atmospheric 
layer to the total radiation at a given wave number. By 
using radiances measured at different spectral channels, 
we can reach different parts of the atmosphere in the 
inversion process. The data recorded by an instrument 
are the results of a complex function depending on dif- 
ferent parameters: the emissivity of the Earth surface, 
the vertical profile of atmospheric temperature through 
the Planck function, the vertical profiles of atmospheric 
constituents, in particular, the water vapor which ab- 
sorbs strongly in infrared, through the transmittance 
and the weighting function, and also the instrumental 
features (the noise and the instrumental function). 

The solution of a data inversion problem consists in 
linking the studied physical variables with the measured 
quantities by a transfer function. The radiative trans- 
fer equation describes the forward problem. The inverse 

X 10 -7 
7 

6 

200100 
i i I 

2050 2100 2150 

Wavenumber (crn -•) 
2200 2250 

Figure 1. Radiance spectrum (W (cm 2 cm -• sr)-X), in the 2000-2250 cm- x spectral range used 
for CO retrieval, recorded by the IMG instrument at 60.138øE, 24.503øN on June 16, 1997. 
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problem is the analytical inversion of this expression. It 
is ill-posed. Because of the strongly nonlinear behavior 
of the equation and the uncertainties on the measure- 
ments, there is more than one possible solution to this 
problem. Therefore we must find the best estimate of 
the function between the desired variables and the mea- 

surements. In classical methods, a priori information is 
used as criteria to determine the solution of the studied 

problem among all possible ones [Rodgers, 1976]. Neu- 
ral network techniques allow the solution of regression 
problems by estimating a transfer function from a set 
of known situations which constitutes the a priori in- 
formation necessary to solve the problem. Blum and 
Li [1991] prove that three-layer feed-forward percep- 
trons are "universal approximators" of functions and 
are then able to model a large range of physical phenom- 
ena. They demonstrate that any real multidimensional 
function, continuous on a compact subset or integrable 
on a measurable subset in R", can be uniformly approx- 
imated by a three-layer feed-forward network, including 
two hidden layers of Heaviside function neurons and a 
linear output unit, with error less than e, for any pos- 
itive e. This universality property can be extended for 
networks with hidden neurons with sigmoid transition 
functions. Thiria et al. [1993] have shown how neural 
networks can model a wide range of complex transfer 
functions. The authors provide a practical framework 
for the use of the neural networks to solve actual regres- 
sion problems. 

To develop a first version of our inversion algorithm 
based on neural networks, we assumed that we knew 
the instrumental function and the noise associated with 

the instrument. We started by fixing the Earth surface 
emissivity and the profiles of the other absorbing con- 
stituents. The three variables of our problem were then 
the measured spectra of radiance and the vertical pro- 
files of atmospheric temperature and CO. We assumed 
that the temperature profiles associated with the spec- 
tra were provided. We then had to estimate the transfer 
function, allowing us to invert CO total columns from 
radiances measured at different wave numbers and tem- 

peratures measured at different vertical levels. 

4. Multilayer Networks 

In this work, a neural network is used to model a 
transfer function. This is a problem of multivariate non- 
linear function approximation. This kind of problem is 
treated, in the literature, with multilayer networks, also 
called feed-forward networks. Before we describe our 

inversion algorithm, we will give some theoretical ele- 
ments on the formal neuron, the neural network, and 
its development for a simple architecture as the one we 
have developed. 

4.1. Neural Network Architecture 

The formal neuron is the basic element of the network 

which calculates the desired function approximation. It 

is an elementary transfer function. Figure 2 presents a 
schematic diagram of a neuron. Its total input is the 
weighted sum A of the inputs xi' 

A- • wi xi - w . x, 
i=1 

where w is the vector of the weights wi of the links 
reaching the neuron and x is the vector of the neuron 
inputs xi. The weights measure the contributions of the 
neuron. The output y of the neuron, called its state, is 
a function of its total input: 

y = y(w, x) = f(A). 

The transition function f is chosen according to the 
problem that is to be solved. 

A neural network is a set of neurons linked in a certain 

way depending on the network architecture. Figure 3 
presents the diagram of a simple multilayer network. In 
this case, the neurons are organized in fully connected 
layers: a layer's units are not connected, but each of 
them is linked with all those of the next layer. In this 
way, signals are transmitted through the network from 
the first layer, called the input layer, which recopies the 
network inputs values, to the last layer, called the out- 
put layer, which provides, to the outside of the network, 
the results of the function approximation. Between the 
input and output layers, the network includes one or 
more layers, called hidden layers. The hidden layers 
realize, with the output one, the approximation calcu- 
lations through the transmission process of each neu- 
ron as described previously. The network output Y is 
a function of the network inputs, which we gather to- 
gether in a vector x, and of the set of the weights, which 
we gather together in a matrix W: 

Y = x). 

f 

Figure 2. Diagram of a formal neuron. The inputs 
xi reach the neuron through links associated with the 
weights wi. The neuron state y is the result of the 
transition function f applied to the total input A, the 
weighted sum of the inputs xi. 
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Plate 1. CO global distribution (total columns in molecules cm -2) (top) as obtained by the 
IMAGES model for June and (middle) as retrieved by the network after simulation of Interfer- 
ometric Monitor for Greenhouse Gases (IMG) measurements. (bottom) The relative differences 
(%) are also provided. 
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x I 

input hidden output 
layer layer layer 

Figure 3. Diagram of a neural network composed of 
an input layer with n neurons, a hidden layer, and an 
output layer with q neurons. 

To solve a particular problem, an adapted network 
architecture must be chosen. It consists in determin- 

ing the number of network hidden layers, the number 
of units, their transition functions, and the topology of 
their connections. In the case of multilayer networks, 
the more commonly used transition functions are sig- 
moid ones, like f(x)= 1/(1 + e -•) or f(x) = tanh(x), 
for the hidden layers, the transition function of the out- 
put neurons being linear with f(x) = x. The definition 
of the architecture corresponds to the choice of a fam- 
ily of functions, Y = F(W, x), in which the best esti- 
mate of the studied function must be sought by fitting 
the weights' values in the learning phase [Thirie et el., 
1993]. The use of sigmoid functions as neuron transi- 
tion functions gives to the algorithm its ability to model 
nonlinear phenomena. The number of neurons in the in- 
put and output layers is directly related to the physical 
problem being solved. The number of units in the hid- 
den layers depends on the mathematical properties of 
the functions associated with the physics of the prob- 
lem. It is determined carefully by using cross-validation 
methods [Bishop, 1995]. 

4.2. Network Learning Phase 

To train the network, we need a database: 

D= {xn,d "} n= 1,...,N, 

where x n is a vector gathering together the inputs of 
the example n and d" is the corresponding desired out- 
put. This database must include the information on 
the physics of the problem. The goal of the network 
training is to build a statistical model of the process 
which joins the inputs x" with the desired outputs d" 
by fitting the weights W. The weights are calibrated to 
minimize a cost function C(W): 

N N 

c(w) - y] c(w) - y] II - Y112, 
n=l n=l 

where Y" - F(W, x") is the output calculated by the 
network using x". The database D is divided into three 
sets with no common elements. The first set, called 
the training (or learning) set, is used to minimize the 
cost function C(W). The second one, called the valida- 
tion set, allows selection of the suitable architecture and 
stopping of the training phase. The final performance 
is evaluated with the last set, called the test set. The 
learning set must be sufficiently large and statistically 
representative of all the situations which the network 
could meet to allow a successful generalization during 
the operational phase. 

We use, in a sequential mode, the minimization meth- 
od of the gradient descent with a back-propagation al- 
gorithm to calculate the gradient of the cost function 
in accordance with the weights. Further details on this 
minimization algorithm and on other training methods 
are given by Bishop [1995]. After the presentation of 
each element of the learning set, the network weights 
are modified according to 

W t _ Wt-•_ qV'C t, 
where W t is the matrix collecting the weights modified 
at the end of the iteration t and r/is the learning rate. 
To follow the training progress, after each presentation 
of the whole learning set, an error E is calculated for 
the validation set according to 

where Nv• is the number of examples in the validation 
set. We apply the cross-validation method to determine 
the end of the learning phase [Bishop, 1995]. 

To find an efficient network, the training described 
previously is realized with different architectures, the 
best one being chosen by cross-validation using the test 
set and computing E. In theory, if the architecture is 
well chosen and if the network training is well achieved, 
the total transfer function modeled by the neural net- 
work is an accurate approximation of the conditional 
average of the output for each input. After the train- 
ing phase, the weights of the network are fixed, and 
the operational phase can start. The learning phase is 
long because of the minimization process and the im- 
portant number of weights to be determined. In the 
operational phase, the computations are faster because 
they are only simple algebraic operations. 

5. CO Retrieval Algorithm 

A multilayer neural network is used to find a func- 
tion approximation to invert CO total columns from 
radiances measured at different wave numbers and tem- 

peratures at different levels. Clerbeux et el. [1998a] 
provided a selection of the relevant spectral channels to 
be used for CO inversion from IMG data. Among the 
intense CO absorption features, we have isolated those 
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for which the influence of other absorbing constituents 
is the weakest. This selection lowers the strong influ- 
ence of the water vapor on the inversion results. There 
are 132 spectral channels satisfying this condition. We 
have chosen nine vertical levels, 0, 1, 3, 4, 5, 7, 10, 
14, and 20 km, to represent the shape of the temper- 
ature profiles. The input layer includes 141 neurons, 
among which 132 are dedicated to radiances and nine 
are dedicated to temperatures. The network output, 
with a single neuron, provides the CO total column. In 
between, there are two hidden layers with five neurons 
each. The transition functions of the neurons are tanh 

functions for the hidden layers and a linear function for 
the output layer. We have used the neural network tool- 
box (version 2) of the MATLAB software (version 4) to 
develop our algorithm [Demuth and Beale, 1994]. 

We have seen that the development of a neural net- 
work requires a database. As there is a lack of mea- 
surements of CO on the global scale, we have chosen 
to work with simulated data. To provide realistic sim- 
ulations of the IMG measurements, we have coupled 
a three-dimensional chemical-transport model with a 
line-by-line radiative transfer code as described by Cler- 
baux et al. [1998a]. The database includes, for differ- 
ent realistic geographical conditions, the radiances for 
the selected spectral channels, the temperatures at the 
nine vertical levels, and the corresponding CO total col- 
umn value. The CO vertical profiles calculated by the 
Intermediate Model of the Annual and Global Evolu- 

tion of Species (IMAGES) in the troposphere [M•'ller 
and Brasseur, 1995], and their colocated temperature 
profiles provided by the European Centre for Medium- 
Range Weather Forecasts (ECMWF), are used as inputs 
of the high-resolution Line-By-Line Radiative Transfer 
Model (LBLRTM) [½1ouah et al., 1992; Clou9h and Ia- 
cono, 1995], adjusted to the IMG instrumental features 
(nadir view, optical path difference of 10 cm, satellite 
altitude of 800 km). The IMAGES model is driven by 
monthly averaged ECMWF fields of temperature, wind, 
and boundary conditions and provides the global dis- 
tribution of chemical species on a 50 x 50 horizontal 
resolution and on 25 vertical levels from the surface to 

an altitude of about 20 km. In this study, the monthly 
averaged distributions of CO calculated by IMAGES 
were used as inputs of the radiative transfer code. We 
started by assuming that the Earth behaved as a per- 
fect blackbody (with an emissivity of 1) and that the 
instrumental function was an ideal sin(x)/x. Mean at- 
mospheric profiles of other absorbing constituents were 
set to the Air Force Geophysics Laboratory (AFGL) 
U.S. Standard Atmosphere 1976. Measurements were 
simulated for clear sky and aerosol-free conditions. As 
a first step, the network has been trained without con- 
sidering the effect of the topography. In order to invert 
the IMG data recorded in June 1997, the IMG measure- 
ments were simulated for June, July, and August condi- 
tions. The noise of the IMG instrument, which is of the 
order of 2 x 10 -9 W (cm 2 cm -• st)- • in the CO spec- 

tral range, was simulated by generating series of random 
numbers, uniformly distributed between -2 x 10 -9 and 
2 x 10 -9. This randomly simulated noise was added to 
the radiances coming from the radiative transfer model. 
In the database, we have collected the simulations with 
noise and the ones without noise. To complete the 
database• we have associated with each simulated mea- 
surement the corresponding ECMWF temperature pro- 
file and CO total column value. This latter was calcu- 

lated from the IMAGES CO profile and its associated 
ECMWF temperature profile. The chemical-transport 
model used to simulate the measurements of the instru- 

ment must be chosen carefully. It must be as realistic as 
possible because the distribution retrieved by the net- 
work will be driven by the distribution provided by the 
model. 

The simulation of the IMG measurements provided 
9753 different cases composed of 132 corresponding ra- 
diances, nine temperature levels, and one CO total col- 
umn. To select the elements of the training set, we 
added up the 132 radiances to reduce the dimensions 
of the problem. In the space formed by this sum and 
the temperature at ground level, we chose 6000 different 
cases representative of the dispersion of the sum of the 
radiances. After the composition of the learning set, 
the elements remaining in the database were included 
in the validation set. The test set was constituted with 

simulations with noise which had not been used in the 

learning set or in the validation one. For the three sets, 
the 141 network inputs were normalized between -1 and 
1 to allow the use of sigmoid functions in the hidden lay- 
ers. The learning, validation, and test sets include 6000, 
3753, and 40,140 elements, respectively. 

6. Results 

We now describe the network operational phase. We 
show results of the algorithm on the test data set con- 
taining only simulations of IMG measurements never 
used for the network training phase or for the valida- 
tion procedure. The network performance is checked 
with data which were not learned. The algorithm is 
then applied to invert real IMG measurements for four 
consecutive days of June 1997. 

6.1. Inversion of Simulated Data 

Each element of the test set has been presented to 
the network. The scatterplot for the 40,140 elements of 
the test set is provided in Figure 4. The cloud of points 
shows the comparison of the CO total columns calcu- 
lated from the IMAGES profiles, which are the desired 
outputs, with the CO total columns retrieved by the 
network. If the inversion was perfect, all points would 
have been on the first bisector drawn in black. If a suit- 

able network architecture is found, if the learning set is 
statistically representative, and if the learning phase is 
well achieved, the total transfer function of the network 
provides the conditional mean of the CO total column 
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Figure 4. Scatterplot of the network for the test set. The cloud of points illustrates the 
comparison between the CO total columns (molecules cm -2) calculated from the Intermediate 
Model of the Annual and Global Evolution of Species (IMAGES) model profiles and the CO 
total columns (molecules cm -2) retrieved by the network. The first bisector is drawn in black. 
The gray scale highlights the four areas used to estimate the distribution of the inversion relative 
errors as a function of the CO total columns. 

given the radiance spectrum and the temperature pro- 
file. For the middle values of CO total column, this 
approximation is well realized; the dots are well dis- 
persed around the bisector. The performance decreases 
in the extreme limits, where the network has a tendency 
to overestimate the low CO total columns and to un- 

derestimate the high ones. 
For each element of the test set, we have estimated a 

relative error between the CO total column calculated 

from the IMAGES profiles, the desired output, and the 
one retrieved by the network. This error is expressed as 
follows 

d k _ yk 
e- x 100 

d • 

where d • is the desired output of the example k of the 
test set and Y• is the output calculated by the network 
from the example k input. We have checked the distri- 
bution of the results: for about 99% of the profiles, the 
absolute value of the error is less than 10%, and for more 
than 90%, it is less than 5%. As a 10% level of accuracy 
for CO retrieval was set as a requirement for the IASI 
mission [Camy-Peyret and Eyre, 1998], these results are 
quite satisfactory. The distribution of these inversion 
relative errors as a function of the CO total column is 

summarized in Table 1. We have divided the range of 
CO total column covered by the test set in four parts 
highlighted by the gray scale in Figure 4' low values 
(less than 1.19 x 10 +•s molecules cm-2), "middle-low" 

Table 1. Distribution of Inversion Relative Errors as a 
Function of the CO Total Column 

Ranges of CO Total Column 

Low Middle Middle High 
Low High 

Mean, % 1.32 0.20 0.18 -2.01 
Standard deviation, % 1.21 2.72 4.30 7.45 

values (between 1.19 x 10 +x8 and 1.67 x 10 +x8 molecules 
cm-2), "middle-high" values (between 1.67 x 10 +x8 and 
1.97 x 10 +18 molecules cm-2), and high values (higher 
than 1.97 x 10 +x8 molecules cm-2). The results pre- 
sented are coherent with the observations on the scat- 

terplot. For the low CO total columns, there is a small 
positive bias. For the middle values, the mean errors 
are close to 0. For the high values, there is a negative 
bias. The systematic error in the extreme limits can 
be attributed to the lack of low and high values of CO 
total column in the training set in comparison with the 
important number of middle values. The dispersion of 
the error increases with the CO total column. This re- 

sults from the fact that the more the CO concentrations 

increase, the more particular CO profiles appear owing 
to strong CO emissions and redistribution by transport 
processes. These special events are probably not suffi- 
ciently represented in the training set. 
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Our algorithm is designed to invert data measured 
from space on the global scale. To check the network 
performance on a realistic case, we have studied the 
distribution of the calculated errors on the global scale. 
Plate 1 shows the CO total columns calculated for June 

conditions from the CO IMAGES profiles and the CO 
total columns retrieved by the neural network from the 
simulated spectra based on the same CO profileso If we 
compare the two distributions, we note that the results 
provided by the algorithm well represent the distribu- 
tion of CO total columns calculated from the IMAGES 

profiles except over relief areas. The relative error e be- 
tween the two distributions is also shown in Plate 1. On 

most parts of the world, the inversion error is less than 
5% in absolute value. These results are coherent with 
those achieved on the test set. In each case where the 

error was found to exceed 5%, we studied in detail why 
the network failed to retrieve CO properly. As the to- 
pography was not considered during the training phase, 
important errors are found over the Himalaya, Green- 
land, the Andes, the Rocky Mountains, South Africa, 
and New Guinea island, where the algorithm underes- 
timates CO total columns, and over Antarctica, where 
it overestimates them. In the vicinity of Greenland, the 
Rocky Mountains, and the Himalaya, there are isolated 
points where the error is higher than 10% (red points) 
close to errors of-10% (dark blue points). This fea- 
ture results from the vertical interpolation required to 
change the a pressure scale of the IMAGES model into a 
regular i km altitude grid needed for radiative calcula- 
tions. In South America and South Africa, close to the 
relief areas, we find errors lower than -5% which corre- 
spond to emissions of CO by biomass burning. In these 
cases, the CO profiles present important CO concentra- 
tions in the boundary layer which are difficult to detect 
with instruments like IMG, as reported by Clerbaux et 
al. [1998a]. This is also the case over Australia and 
Sumatra, in two specific locations. The errors between 
5 and 10% near the Rocky Mountains, the Andes, the 
Sahara desert, Siberia, and Japan in the Pacific Ocean 
result from the transport of the emitted CO which is 
associated with profiles whose shapes are very peculiar 
in IMAGES. Around the Himalaya, errors between 5 
and 10% are due to emission profiles which are different 
from those met in South America and South Africa. An 

increase of the number of all these particular cases in 
the training set would probably improve the quality of 
the results. 

This comparison with the chemical-transport model 
IMAGES could probably be improved by the calcula- 
tion of the averaging kernels associated with IMG, as 
the instrument is not equally sensitive to the different 
atmospheric layers [Pougatchev et al., 1995, 1998]. This 
will be implemented for the next version of the algo- 
rithm in order to efficiently compare our retrieval re- 
sults with those of other inversion methods and with 

other atmospheric measurements. 

6.2. Inversion of IMG Data 

Very preliminary results of CO inversion using IMG 
data were presented by Clerbaux et al. [1999]. Here we 
have applied the algorithm to retrieve CO total columns 
from the data recorded by the IMG instrument between 
June 16 and 19, 1997. The inputs of the network were 
the selected spectral channels [Clerbaux et al., 1998a] 
for the IMG spectra (IMG data Level 1C) and the nine 
levels of atmospheric temperature for retrieved profiles 
(IMG data Level 2). To check the rapidity of our algo- 
rithm, we have estimated the time necessary to retrieve 
CO total columns from the IMG data available for June 

17, 1997 (318 series of six measurements). This global 
inversion took less than 3 min of CPU time on a DEC 

Alpha workstation. 
The results of the inversion for the four consecutive 

days are presented in Plate 2. As expected, the higher 
columns appear in the Northern Hemisphere in polluted 
regions, and lower values are retrieved in the Southern 
Hemisphere. To illustrate this feature, we have isolated 
a succession of series of measurements along one orbit 
from 151.091øE, 73.062øS to 48.146øE, 80.359øN and 
crossing the equator at a longitude of about 1160 E. The 
retrieved CO total column is shown in Figure 5 (solid 
line) against latitude (both averaged on six successive 
measurements) and compared to the IMAGES simula- 
tions for June at a longitude of 116øE (dashed line). 
To extend the comparison, we have also drawn the lat- 
itudinal variation of the Model for Ozone and Related 

Chemical Tracers (MOZART) simulations [Brasseur et 
al., 1998; Hauglustaine et al., 1998] for June 16 at a 
longitude of 116øE (dashed-dotted line). MOZART is 
a global chemical-transport model driven by dynamical 
and physical fields precalculated by a general circulation 
model (GCM) and provided every 3 hours. MOZART 
simulates the distribution of chemical species in the tro- 
posphere with a time step of 20 min. The horizontal 
resolution of this model is about 2.80 in both longitude 
and latitude, and it extends from the surface to an alti- 
tude of about 35 km with 25 vertical levels. The ampli- 
tude of the latitudinal variation in IMAGES is weaker 

than the one in MOZART. This feature is mainly asso- 
ciated with different transport schemes and dynamical 
fields used in the two models. An intercomparison of 
the CO distributions provided by current tropospheric 
models is discussed by Kanakidou et al. [1999] (part of 
a special issue on CO). In the Northern Hemisphere, the 
distribution of the inversion results is between those of 

the models. In the Southern Hemisphere, the CO total 
columns retrieved by the network are higher than the 
values provided by the two models. This could result 
from the fact that the two models are driven by dynam- 
ical fields representative of a mean climatological state 
rather than actual meteorological conditions prevailing 
during the measurement period. 

By checking the results shown in Plate 2 in more de- 
tail, we note some anomalies. In some cases, wrong 
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Figure 5. Latitudinal variations of the CO total columns (molecules cm -2) as retrieved by 
the network for June 16, 1997 (solid line), as calculated from the IMAGES simulations for 
June (dashed line) and as calculated from the Model for Ozone and Related Chemical Trac- 
ers (MOZART) simulations for June 16 (dashed-dotted line) for a longitude of 116øE at the 
equator. 

interferograms result in poor quality spectra. They are 
very distorted and present too low intensities. They are 
outside of the range covered by the learning database, 
the sigmoid transfer functions of the neurons are sat- 
urated, and the network provides very high values of 
CO total column. A second source of error comes from 

the fact that neither clouds nor aerosols were considered 

during the learning phase. In these cases, the signal is 
more or less attenuated according to the cloud covering. 
Plate 3 presents an example of measurements recorded 
by IMG on June 16, 1997. The spectra were recorded 
every 86 km between 60.900øE, 21.433øN and 60.138øE, 
24.503øN. The attenuation of the signal increases from 
the first spectrum to the second one and decreases from 
the second spectrum to the fifth one. So, we can note 
that the measure was little disturbed by the presence of 
clouds during the acquisition of the first interferogram 
and more affected during the acquisition of the second 
and third interferograms. In the case of the presence 
of clouds, sensitivity studies are in progress to estimate 
their impact on the inversion results. As complemen- 
tary information on the cloud covering is not provided 
with the IMG spectra, a detailed study of the impact of 
the clouds on the radiances recorded between 2000 and 

2250 cm- [ will be undertaken. 

7. Conclusions and Discussion 

In order to treat the measurements provided by the 
new generation of remote sensors recording the radiance 

of the Earth-atmosphere system by nadir-viewing us- 
ing Fourier transform spectrometry, we have developed 
a new inversion algorithm based on neural networks. 
This method allows to work with radiances associated 

with different wave numbers simultaneously and conse- 
quently lowers interfering contributions of instrumental 
noise and other absorbing species, in particular, the wa- 
ter vapor. Using a first version of the algorithm, we have 
checked its performance against simulated data. These 
first results are quite satisfying with regard to the ex- 
pected errors after the preliminary sensitivity studies. 
This first version has been applied to the data recorded 
by the IMG instrument during four consecutive days in 
June 1997 to retrieve CO total columns. This algorithm 
has proved its efficiency in retrieving realistic CO val- 
ues in a short amount of time, which would allow to 
its use for operational CO inversion. We have started 
to compare the performance of this new algorithm with 
algorithms currently developed for other instruments, 
using a common data set [Clerbau• et al., 1998b]. The 
results of this study will be provided in a forthcoming 
paper. 

Improvements will be brought to this algorithm to 
increase its performance on some specific cases (clouds, 
topography, biomass burning, and highly polluted re- 
gions) identified in this study. We plan to train the 
network using a realistic topography. A preliminary 
sorting of the spectra, before the inversion, will allow 
separate treatment of the measurements too much af- 
fected by the presence of clouds and the elimination of 

 21562202d, 1999, D
19, D

ow
nloaded from

 https://agupubs.onlinelibrary.w
iley.com

/doi/10.1029/1999JD
900431 by B

ibliothèque de Sorbonne U
niversité, W

iley O
nline L

ibrary on [30/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



23,852 HADJI-LAZARO ET AL.: RETRIEVAL OF CO COLUMNS WITH NEURAL NETWORKS 

x lO -? 
7 i i i ! 

61 2 

' , 4 

...5 , ' i 5 

li tl I •11t•t •. 
2000 2050 2100 2150 2200 2250 

Wavenumber (cm 

Plate 3. Succession of six radiance spectra (W cm 2 cm- • sr - • ( ) , in the 2000-2250 cm- • spectral 
interval, recorded by the IMG instrument between 60.900øE, 2 .433øN and 60.138øE, 24.503øN 
on June 16, 1997. The three first spectra are attenuated in comparison with the two last ones. 
On the satellite orbit, the interferogram acquisition was perturbed by the presence of clouds. 

those corresponding to wrong interferograms. To im- 
prove the results of the algorithm on specific high and 
low CO abundances, we will replace, for the develop- 
ment phase, the results of the IMAGES model (about 
2500 profiles per month) with the results of the newly 
developed MOZART model. By using CO global dis- 
tributions of MOZART averaged on each day, we will 
obtain about 8192 x 30 - 245,760 profiles per month. 
Furthermore, available ground-based and airborne mea- 
sured CO profiles could be added to the database to take 
into account real vertical variability of atmospheric pro- 
files in the development of the algorithm. This increase 
of the realistic cases in the CO data base will allow us 

to improve the training of the network. In spite of the 
problems highlighted in this study, the retrieval of the 
CO total columns from high-resolution nadir radiances 
seems to be workable by using an algorithm based on 
the neural network techniques. 
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