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Section 1: Study population and logger deployment 

The studied population is a long-term monitored colony located in Kongsfjorden, Svalbard (High 

Arctic Norway; 78° 54’ N, 12° 12’ E). During the study period (2008 to 2019), nest content 

monitoring was conducted at the colony every two to six days.  We used the success of rearing 

at least one chick for 10 days after hatching (hereafter ‘reproductive success’) as a proxy of 

individual fitness. Three quarters of kittiwake chick mortality occurs within 10 days after 

hatching (Coulson & Porter, 1985) and, in some years, monitoring of nests had to stop before 

chicks fledged, so we considered this measurement to be representative of reproductive 

success. The sex of individuals was determined by molecular sexing following Fridolfsson and 

Ellegren (1999) or when paired with a known-sex partner. 

We used geolocators (Global Location Sensors, GLS) to track the non-breeding movements of 

kittiwakes. From 2008 to 2019, adults were captured on their nests using a noose attached to a 

fishing rod and equipped with geolocators. We used mk18 and mk13 (British Antarctic Survey), 

mk4083 and mk4093 (Biotrack) and Intigeo F100 and C65 (Migrate Technology) mounted on a 

Darvic leg band. Devices measured light intensity every minute and recorded the maximum 

light intensity every 5 or 10 min. They also measured saltwater immersion (that we used as a 

proxy for bird activity, i.e., whether or not the bird was in contact with the sea water) every 3 or 

30 s and stored the number of wet measurements within every 10 min period. 

We recaptured 83% of the individuals at their return to the colony and recovered the 

geolocators. The estimated adult survival rate at the study site is 85%, suggesting that the 

geolocator recovery rate closely reflected the expected adult return rate (Goutte et al., 2015). 

Only complete annual tracks were used in the analyses after filtering out tracks without 

saltwater immersion data and partial tracks caused by device failure or battery discharge. Two 

tracks were discarded because the kittiwake likely spent time on land as indicated by extensive 

periods of low saltwater immersion associated with stationary positions along the coast. This 
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pattern was not observed in any other tracks. Overall, we acquired 176 complete tracks from 

117 different individuals (see Fig. 1, 55 females and 62 males), covering 11 non-breeding 

seasons, continuously (fall 2008 to spring 2019). 

Our study does not include data on mortality because the tracking devices we used require the 

recapture of individuals to recover the data, meaning that particularly poor strategies (e.g., 

energetically costly strategies) may have been excluded from the dataset via early-life 

mortality. Particularly, juveniles may use an exploration and route refinement approach to 

migration (Guilford et al., 2011), so that breeding adults’ strategy may be good enough not to 

impact breeding success. However, adult mortality mostly occurs in winter and the link 

between energy expenditure and survival is clear and well studied (Grosbois & Thompson, 

2005; Mysterud et al., 2001; Woodworth et al., 2017). We could thus expect that a potential 

spatial trend in mortality across the winter range would parallel trends in individual energy 

expenditure and reproductive success. 

 

Section 2: Geolocation light data processing – detailed methods from Léandri-Breton et al. 

(2021) 

To infer geographic positions, geolocator data were processed according to the procedure 

developed for the SEATRACK project (Bråthen et al., 2021) and based on the threshold method 

calculating positions from twilight events (‘coord’ function from GeoLight package; Hill & Braun, 

2001; Lisovski et al., 2020; Lisovski & Hahn, 2012). The procedure automatically identifies 

twilight events from raw light data (‘twilightCalc’ function from GeoLight package; Lisovski & 

Hahn, 2012) and applies a set of filters to twilight events (removing or moving events from false 

day/night detections or noise) and positions (speed, distribution limits, angle filter). Thus, all 

the geolocator data were processed automatically and consistently for all years of the study. 

Because light sensors from different geolocator models may differ, each track was calibrated 

individually. As such, the calibration method avoided systematic bias in latitude related to 
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potential differences in light sensors among geolocator models or years of production. Based 

on the approach by Hanssen et al., (2016) and van Bemmelen et al., (2019), the calibration 

method used a set of criteria that allowed calibration of tracks from kittiwakes breeding in the 

Arctic (79° N), where constant daylight prevents calibration at the time of deployment and 

recapture. By plotting the latitude against time for a range of sun elevation angles and for each 

track (Fig. S1), the sun elevation angle that was manually selected (1) minimized the 

amplification of the latitudinal error close to the equinoxes, (2) resulted in matching latitudes at 

both sides of the equinox, (3) resulted in positions that fitted the latitude of the colony at the 

beginning and the end of the track and (4) fitted the shape and position of the oceans and 

continents when plotting the positions on a map (Fig. S2). The method also included rooftop 

calibration of geolocator models, with the purpose to select model specific thresholds that 

would result in ap proximately the same sun elevation angles among geo locator models. The 

mk-series geolocators from the British Antarctic Survey and Biotrack were as signed a threshold 

of 1 unit, while Intigeo geolocators from Migrate Technology were assigned a threshold of 11 

units. 

Although longitudes can still be determined reliably around the equinoxes, estimation of 

latitudes is inherently imprecise during this period, because day length is similar around the 

globe (Lisovski et al., 2012). Therefore, locations around equinoxes were excluded (8 Sep−20 

Oct, 20 Feb−3 Apr; Bråthen et al., 2021). Additionally, continuous daylight during the polar 

summer (or continuous night during polar winter) does not allow geolocation-based tracking 

using light-level sensors. To fill these gaps and reduce biases along the trajectories, missing 

locations were re-estimated by interpolation between known locations using an algorithm that 

was specifically developed for SEATRACK (Fauchald et al., 2019, see Fig. S3), based on a method 

originally proposed by Technitis et al., (2015). In short, this algorithm is based on the 

determination of so-called space-time prisms, which are 3- dimensional volumes defined by the 

coordinates (x,y) and time (z). The space-time prism delineates all the potential paths that can 
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be followed by an individual moving from point A to point B, given 3 parameters: the distance 

from A to B, the time budget available, and the maximum rate of movement (Miller, 1991). 

When projected onto a 2-dimensional plane, the space-time prism becomes the potential point 

area (hereafter Ppa; Technitis et al., 2015). Although the 3-dimensional representation of the 

space-time prism is useful to understand its concept (Neutens et al., 2007), it is naturally more 

convenient to work with only 2 dimensions when dealing with discrete time steps, as is the case 

in tracking studies, where locations are obtained at specific time intervals. Computing the Ppa 

in this context is straightforward (Technitis et al., 2015), given that the 3 above-mentioned 

parameters are known. Let us consider a startpoint (A) and start time (ti−1), and an endpoint 

(B) and end time (ti+1). Knowing the maximum rate of movement and the time ti at which a 

new location (Ni) is to be created, one can determine the circle defining the maximum range 

(rgi−1) from point A to the new location and the circle defining the maximum range (rgi+1) to 

point B, centered on B. The Ppa corresponds to the area of overlap between those 2 circles of 

maximum range, i.e. the area delimiting all locations that are reachable from both A and B, 

given the time budget and maximum movement rate. This process can be repeated any number 

of times, depending on the number of new locations that need to be generated. The new 

locations are generated in a random order (i.e. not chronological), thus creating a sort of 

correlated random walk respecting the constraints set by the relative position of A and B, the 

time budget, and the maximum movement rate. Here, we used a dynamic value for the 

maximum movement rate parameter, based on the distribution of observed movement rates as 

a function of time elapsed between 2 locations from the dataset. To do so we calculated, based 

on each individual track, the movement rates for random combinations of known locations 

separated by varying time-intervals. We used the 75th percentile from that distribution as the 

maximum movement rate (Fig. S4). The 75th percentile was computed by quantile regression, 

using the function ‘rq’ from package quantreg (Koenker, 2020). Finally, the algorithm uses 

additional information to constrain the new positions obtained: (1) immersion data to 
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determine attendance at the colony and force a new location to remain close to the colony 

during the breeding season, (2) land masks (land filters) to constrain positions over the ocean, 

(3) longitudes (obtained from the geolocator data, as longitude can still be estimated during the 

equinoxes), and (4) light levels to determine whether the new position was north of the 

latitudinal limit of the polar day in summer or night in winter (i.e. continuous day/night 

recorded by the loggers).  
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Figure S1: Example of sun elevation angle selection from Bråthen et al. (2021) for a black-legged 
kittiwake track (June 2011 to June 2012). For each annual track, latitude versus time is plotted 
for different sun elevation angles and the sun elevation angle selected 1) minimized the 
amplification of the latitudinal error close to the equinoxes, 2) resulted in matching latitudes at 
both sides of the equinox and 3) resulted in positions that fitted the latitude of the colony 
(Kongsfjorden, Svalbard; 78°5′N) at the beginning and the end of the track. In this example, we 
selected -3.0° as the appropriate sun elevation angle mainly from criteria 1) and 3) since the 
bird moved north during the spring equinox period, making criteria 2) less useful here. The 
horizontal dotted line shows the latitude of the colony, and the vertical grey lines indicate the 
periods around autumn and spring equinoxes. 
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Figure S2: Example of sun elevation angle selection from Bråthen et al. (2021) for a black-legged 
kittiwake track (same track as in Figure S1). Smoothed and filtered positions calculated 
with different sun elevation angles. In combination with the steps illustrated in Figure S1, these 
maps supported the selection of -3.0° as sun elevation angle as it resulted in a track that best 
fitted the shape and position of the oceans and continents. The location of the colony 
(Kongsfjorden, Svalbard; 78°N, 12°E) is marked with a filled blue symbol, and positions are 
coloured by month. Positions from the equinox periods have been excluded from the map.  
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Figure S3: Frequency distribution of daily locations of black-legged kittiwakes 
estimated from the geolocation data only and those re-estimated with the 
algorithm IRMA developed for the SEATRACK program, over the tracking period. 
 
 

 
Figure S4: Movement rate plotted against time elapsed between two locations, 
for black-legged kittiwakes. The orange curves represent the 99th, 95th, and 75th 
percentiles predicted from a quantile regression model. The more conservative 
75th percentile (lower regression curve) was selected for further analyses. 
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Figure S5: Distribution of standard conductivity counts during nighttime showing very high 
standard saltwater immersions associated to resting behaviour on water. To take this into 
account and avoid a bias towards foraging at night, a threshold of 0 < standard conductivity 
<0.98 was defined to identify the foraging activity periods. Nighttime periods were estimated 
after excluding the nautical twilights (6° and 12° below the horizon). 
 



 
 
 
 
 

11 
 

  
 
Figure S6: Proportion of time spent daily (A) foraging, (B) resting and (C) flying during the 
daytime, night time and twilight time over the non-breeding period. These periods were 
determined based on the nautical twilights (6° and 12° below the horizon). 
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Table S1: Results from beta regression models for each behavioural response, i.e. the 
proportions of time flying, foraging and resting in averaged over a 24-hr period. The coefficients 
of the predictors are reported, along with the standard error, the p-value and the 95% 
confidence intervals. Statistically significant interactions are reported in bold. In all three 
models, the individual identification and the year were included as random factors. 
 

Response Predictors Coef SE p-value 95% CI 

Flying time  

(daily 
proportion) 

Distance to range centre 
(km) 

-0.0001 0.00001 <0.0001 
[-0.00010,  

-0.00007] 

Mean daylength (scaled) -0.03 0.02 0.02 [0.004, 0.05] 

Sex (male vs female) -0.004 0.026 0.9 [-0.06, 0.05] 

Foraging time  

(daily 
proportion) 

Distance to range centre 
(km) 

0.00008 0.00001 <0.0001 
[0.00004, 
0.00011] 

Mean daylength (scaled) 0.04 0.01 <0.001 [0.16, 0.06] 

Sex (male vs female) -0.06 0.03 0.02 [-0.11, -0.01] 

Resting time  

(daily 
proportion) 

Distance to range centre 
(km) 

0.000001 0.00001 1.0 
[-0.00003, 
0.00003] 

Mean daylength (scaled) -0.05 0.01 <0.0001 [-0.07, -0.03] 

Sex (male vs female) 0.05 0.02 0.003 [0.005, 0.10] 
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Figure S7: Proportion of time spent A) flying, B) foraging and C) resting over a 24-hr period over 
the distance from the centre of the population’s wintering range. Plots show the predictions 
from beta regression models with their 95% confidence intervals, over the jittered raw data. In 
all three models, the individual identification and the year were included as random factors. 
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Figure S8: Wind intensity (m s-1) experienced by individuals during winter as a function of 
distance from the center of the population’s winter distribution. The plot shows 
predictions from an LMM, with latitudes and longitudes of individuals' wintering 
centroids included as fixed effects. Individual identity and year of tracking are included as 
random effects. 

Figure S9: Sea surface temperature (SST) experienced by individuals during winter as a 
function of distance from the center of the population’s winter distribution. The plot 
shows predictions from an LMM, with latitudes and longitudes of individuals' wintering 
centroids included as fixed effects. Individual identity and year of tracking are included as 
random effects. 
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