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Abstract: Electric vehicles are considered by many as an emission-free or low-emission solution to
meet the challenge of sustainable transportation. However, the operational input, electrical energy,
has an associated cost, greenhouse gasses, which results in indirect emissions. Given this knowledge,
we pose the following question: “Are zero-emission transportation targets achievable given our
current energy mix?” The objective of this article is to assess the impact of a grid’s energy mix on
the indirect emissions of an electric vehicle. The study considers real-world data, vehicle usage data
from an electric vehicle, and carbon intensity data for India, the USA, France, the Netherlands, Brazil,
Germany, and Poland. Linear programming-based optimization is used to compute the best charging
scenario for each of the given grids and, consequently, the indirect emissions are compared to those
of a high-efficiency 1.5 L diesel internal combustion engine for the vehicle: a 2019 Renault Clio dCi 85.
The results indicate that for grids with low renewable energy penetration, such as those of Poland and
India (Maharashtra), an electric vehicle, even when optimally charged, can be classified as neither a
low- nor zero-emission alternative to normal thermal vehicles. Also, for grids with elevated levels of
variation in their carbon intensity, there is significant potential to reduce the carbon footprint related
to charging an electric vehicle. This article provides a real-world perspective of how an electric
vehicle performs in the face of different energy mixes and serves as a precursor to the development
of robust indicators for determining the carbon reductions related to the e-mobility transition.

Keywords: e-mobility; carbon impact; linear programming; optimization; indirect emissions; electric
vehicles; sustainable transportation; grid energy mix

1. Introduction

Globally, governments, institutions, and individuals are making the shift towards
more sustainable and environmentally friendly practices. Global warming, one of the main
proponents of this shift, has necessitated a much-needed change in the conception, design,
and implementation of solutions at all levels of society. At the policy scale, the focus has
been on the reduction of greenhouse gases (GHGs, which have been identified as one of the
key drivers of global warming). Thus, more policies have been conceived and implemented
to reduce GHG emissions, especially from major GHG-emitting sectors (energy, transport,
agriculture, etc.).

The transportation sector, accounting for 23% of global emissions, ranks high among
the main contributors to global warming [1]. According to the European Environment
Agency, in 2022 cars (i.e., passenger vehicles) accounted for 60.6% of the carbon emissions
related to road transportation (see Figure 1). Thus, decarbonizing the transportation sector
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can be considered an essential and significant step to achieve our energy transition [2]
objectives.
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Figure 1. Greenhouse gas emissions from transport in the EU in 2022 (source: [3]).

Further, the European Statistics body, Eurostat, has identified the transportation sector
as the only sector with GHG emissions higher than those of 1990, notwithstanding the
mitigation efforts put in place [4], pertaining to the sector’s heavy reliance on petroleum-
based products (for fuel, lubrication, etc.) [5]. It is, therefore, not surprising that the sector
has seen major reforms following the Paris Agreement [6,7]. The re-emergence of electric
vehicles (EVs) [8] is acclaimed as an emission-free alternative to fossil fuel-driven vehicles
(i.e., the key to a carbon-free transportation sector). Therefore, it is seen to influence major
policy shifts at all levels of society.

In the international landscape, the signatories to COP26 have resolved to achieve
100% emission-free vehicle sales by 2040 [9]. Additionally, many governments (particularly
in developed economies) offer bonuses to individuals and businesses who purchase an
EV [10–12]. At the commercial level, most vehicle manufacturers have announced a shift
to a 100% electric or emission-free product lineup [13], with businesses and organizations
also making a shift to 100% electric fleets [14]. At the individual level, the sales figures of
electric vehicles show an exponential increase in the sales of EVs [14].

To provide some context, EV sales in the USA recorded a year-on-year increase of 81%
in 2018 [15,16] in response to state-level policies across the USA, such as California’s Zero-
Emissions Vehicle policy [17] which mandates that EVs should have a minimum market
share. This is a commendable effort provided there are similar efforts to increase electricity
production to match the increased demand from EVs, especially using low-emission or
zero-emission energy resources. Given that all the countries selected for this study have
committed to a net-zero scenario by 2050, Table 1 shows the change in GHG emissions
associated with the energy sector in 2022 relative to the 1990 levels as well as the current
EV stock.

Table 1. Summary of country efforts towards decarbonizing their respective energy sectors (data
sources: [18–21]).

Country % Change in GHG Emissions in the Energy
Sector Until 2021-22 Relative to 1990 Levels

% of EVs in New Vehicle Sales as of
2023

France −38% 25%

Germany −42% 24%

Poland −35% 6.6%

Brazil +142% 3%

USA −1.77% 9.5%

India +288% 2%
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While EVs by themselves have zero tank-to-wheel emissions (i.e., direct emissions
on the road), it is still important to take into consideration that, just like fossil fuel-driven
vehicles, EVs require energy to provide their core service (i.e., transporting people and
goods from one point to the other). Thus, the energy source is an essential but often ignored
parameter (see Figure 2) that impacts how emission-free an EV is.
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This article evaluates the impact of a grid’s energy mix on an EV’s carbon footprint.
The research work is based on real-world data from an electric vehicle and the electric grids
of various countries. Based on these data, an optimal strategy is computed to evaluate
the best-case scenario with the given datasets. Section 2 presents the problem statement,
Section 3 presents a literature review, Section 4 provides an overview of the data used for
this study, and Section 5 details the optimization approach as our methodology, whereas
Section 6 presents the results, Section 7 is a discussion of the results, and Section 8 presents
the conclusions.

2. Problem Statement

Given the current energy transition goals, i.e., a transition to 100% electric mobility (for
light and medium vehicles) by 2040, this article seeks to address the following questions:
“Are zero-emission transportation targets achievable given our current energy mix?”; under
what conditions can these targets be considered feasible?

We consider real-world data from an EV and various national electric grids (with
varying energy mixes) to assess the impact of the energy mix of a country’s electric supply
on the indirect emissions of the EV.

Additionally, since EVs have been demonstrated as a viable source of indirect flexibil-
ity [23], we assess the potential for indirect emission reduction by optimizing the charging
of the EV. The contributions of this article are summarized as follows:

An assessment of the grid energy mix of the respective country on the well-to-wheel
(WTW) emissions (i.e., indirect emissions) of an electric vehicle using real-world data

A comparison of a best-case scenario (optimal case) with the reference case scenario
(the real-world case).

3. Literature Review

Contrary to what is advertised by vehicle manufacturers, EVs should not be labeled
as “zero emissions”, at least not with the state of electricity grids across the globe. This
“zero-emissions” assertion is based solely on the consideration of tank-to-wheel (TTW)
emissions (i.e., operational emissions). This approach, however, neglects the upstream
emissions related to the electricity source (i.e., the wheel-to-tank (WTT) emissions). In other
words, in order to accurately represent the emissions of an EV, the well-to-wheel (WWT)
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emissions of the electrical energy used to power the EV’s drivetrain must be considered,
not just the TTW emissions, as is usually the case.

Skrúcaný et al. [24] in their works found that EVs might not always be environmentally
friendly. Their results showed a strong correlation between the efficiency of the electricity
generation technology and the main primary fuels used within the country. Interestingly,
Skrúcaný et al. [24] show that for countries with a high-carbon-intensity electrical grid,
such as Poland, an ICE is a more environmentally friendly choice as it has a lower carbon
footprint relative to an electric vehicle when the well-to-wheel emissions of both types of
cars are compared.

Additionally, the life cycle assessments (LCAs) of electric vehicles show relatively
higher embodied energy and consequently higher embodied carbon emissions of electric ve-
hicles [25]. Depending on the carbon intensity of the input electricity, this higher embodied
carbon emission can be offset relatively quickly (however, it is dependent on factors such as
energy mix and generation efficiency, as pointed out by Skrúcaný et al. [24]). LCAs allow for
the evaluation of the environmental impacts of a product during its entire life cycle, from
the extraction of raw materials until its end-of-life stages, as defined by ISO14040 [26]. This
methodology reduces the possibility of shifting burden, i.e., reducing the environmental
impact of an element might increase the environmental impact of another element. While,
on the one hand, studies like [27,28] identified a 50% and 44% improvement in overall
global warming potential given a transition to EVs, studies like Cellura et al. [29], on the
other hand, calculated an average of 500% increase in abiotic resource depletion (such as
Lithium and Cobalt [30]) for EVs when compared to internal combustion engine (ICE)
vehicles while performing an LCA assessment.

Furthermore, the burden shift phenomenon [31] can also happen between the various
stages of the vehicle’s life cycle, namely the production, utilization, and recycling stages, as
identified by Verma et al. [32]. Indeed, GHG emissions linked to EV production are 127%
to 200% greater than an equivalent ICE vehicle, as evidenced by [27,28] (both estimates
based on the SuperLightCar European project model [33]). Therefore, together the higher
depletion of resources and embodied CO2 implies that at the manufacturing phase, EVs
score lower in terms of global warming potential (GWP) relative to ICE vehicles. Further
compounding this issue is the ever-growing demand for EVs to have longer range, which
given the current storage technology constraints means bigger batteries (and consequently
heavier vehicles), in reality (to provide sustainable alternatives to urban mobility chal-
lenges). Perhaps, in the near future, EV designers might utilize and benefit from innovation
concepts such as Low-Tech Innovation [34] and Eco-Design [35].

On the other hand, A 100% EV future would also imply technical challenges on the na-
tional grids. These challenges include but are not limited to power losses, voltage instability,
etc. for electricity network operators [36]. Furthermore, there is also the issue of meeting the
increased demand for energy; National Grid estimates that by 2030, EV charging stations
along highways in the USA will require a connection capacity of over 5MW [35]. Hussain
et al. [36] review multiple strategies (coordination, EV charging functioning, fleet sharing,
etc.) for managing the envisioned technical constraints. The smart grid seeks to address
most of these challenges; however, it is also imperative that in trying to solve one problem
we do not create another (which might be even more difficult to solve).

Hybrid Electric Vehicles (HEVs) and Plug-in Hybrid Electric Vehicles (PHEVs) are
alternative solutions that exist and allow for the transition toward an ecologically viable
and sustainable future transportation landscape [37]. To illustrate this point, a study in
Indonesia compared EVs, PHEVs, HEVs, and ICEs and found that whilst EVs had the
lowest CO2 emissions, EVs contributed the most towards Nitrogen oxide (NOx) and nitrous
oxide (N2O) emissions (however, this was country-specific and highly dependent on the
energy mix) [38]. Veza et al. [38] also showed that HEVs’ and PHEVs’ CO2 emissions were
significantly reduced compared to those of conventional ICEs and that HEVs offer the best
balance between the factors of comparison considered in their work (i.e., selling price, GHG
emission cost, and maintenance cost).
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4. Data Analysis

For this study, two datasets, the EV and grid carbon intensity datasets, are considered
for the period between January 2020 and December 2020 (1 year). The data used are at a
one-hour time step and were preprocessed to remove outliers. The authors of this article
subscribe to the principles of Open Science. As such, the data, notebooks, and code related
to this study are available online and follow the Open Reproducible Use Case for Energy
(ORUCE) principles [39].

4.1. EV Dataset

This dataset (the dataset was obtained as part of an ongoing project to collect data
from electric vehicles; more information can be found here: https://entrepot.recherche.
data.gouv.fr/dataset.xhtml?persistentId=doi:10.57745/5O6QIH) was extracted from a 2013
Renault ZOE with a 22 kWh battery [40]. The vehicle was used as a personal vehicle in
southeastern France. Figure 3 shows the daily statistics related to the usage of the EV.
Charging usually occurred with a power of 7 kW (per hour) or less (see Figure 3d below)
and the vehicle was frequently used to cover a daily distance of 40 km or less, as depicted
in Figure 3f below. The charging data acquired from the EV were measured after losses;
thus, the energy from the grid was calculated as a ratio of the measured charging power to
the charging efficiency.
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Figure 3. Daily usage summary of EV: (a) energy charged, (b) energy discharged, and (c) distance
traveled. Distribution of EV data: (d) frequency of power at which EV was charged, (e) frequency
of power at which EV was discharged and, (f) frequency of hourly distance covered by EV (data
source: [40]).

Additionally, to ensure that the EV data were representative of an average driver, the
vehicle speed over the evaluation period was analyzed (see Figure 4). Also, Figure 4a,b
show that driving usually occurred at 30 and 50 km/h. However, from Figure 4a it can be
observed that higher speeds of up to 80 km/h were recorded, particularly in June and July.
Moreover, Figure 4b indicates that the vehicle was frequently used to commute less than
40 km per day. Thus, it can be inferred from Figure 4 that the vehicle conforms to average
European personal vehicle usage [41] and is typically used for short-distance commutes
(100 km or less [41,42]).

https://entrepot.recherche.data.gouv.fr/dataset.xhtml?persistentId=doi:10.57745/5O6QIH
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4.2. Grid Carbon Intensity Dataset

Electricity, as previously mentioned, also has associated GHG emissions, not only
from production but also for transportation and distribution (infrastructure and losses).
Thus, the carbon intensity of a grid’s electricity will be highly dependent on the mix of
production at a given time. Additionally, despite having a much lower carbon impact than
coal and gas, renewable energies do indeed emit GHGs.

For this study, we considered electricity carbon intensity (well-to-wheel) data from
Electricitymap [43]. Table 2 shows a summary of the dataset (the methodology used for es-
timating the carbon emissions in this dataset is detailed here: https://www.electricitymaps.
com/data-portal) used for this study.

Table 2. Summary of the grid carbon intensity data for 2020 (calculated by the authors based on the
dataset obtained from [43]).

Country Initials
Mean
Emissions
[gCO2e/kWh]

Max Emissions
[gCO2e/kWh]

Min Emissions
[gCO2e/kWh] Variance Major Sources

France FR 59.03 132.6 21.73 653.24
Nuclear
Gas
Hydro

Germany DE 329.67 513.13 108.48 8193.33
Coal
Gas
Wind

Netherlands NL 363.20 509.91 45.68 7078.21
Gas
Coal
Biomass

Poland PL 638.50 767.12 404.65 4089.20
Coal
Wind
Gas

Brazil (North) BR-N 183.33 355.40 49.35 6303.19 Hydro
Wind

India
(Maharashtra) IN-MH 728.14 757.41 588.06 779.32 Coal

USA
(California) US-CAL-CISO 260.74 387.45 98.43 3538.42

Solar
Gas
Wind

Similarly, Figure 5 shows the hourly carbon intensity of the various grids considered
for the period January to December 2021. From the presented data, it is important to

https://www.electricitymaps.com/data-portal
https://www.electricitymaps.com/data-portal
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highlight the staggering contrast between these seven electricity mixes when comparing
the average values and amplitudes of the observed data. India (Maharashtra), Figure 5b, is
seen to have the most carbon-intense grid (largely fueled by coal), while France, which has
a high use of nuclear energy, is seen to have the grid with the lowest CI. Equally interesting
are the German, Dutch, and Californian (USA) grids as they have a high proportion of
renewable energy resources in their energy mix.
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To further investigate carbon intensity variations, a Fast Fourier Transform (FFT) was
applied to the data for France, the Netherlands, California, and India, and the results are
shown in Figure 6 below. From Figure 6, the frequency domain was converted to the period
in hours to improve readability. Indeed, in all investigated countries, the daily variation is a
key component of the spectrum, represented by the peaks in magnitude for the 24, 12, and
6 h periods. Additionally, peaks at 168 and 84 h occur from the weekly variation in carbon
intensity; however, these are more visible in the European nations, where industrial and
commercial activities are much slower on weekends (particularly on Sundays) compared
to weekdays. The production profile has a similar spectrum with the same peaks as the one
identified above, as evidenced by Roux et al. [44].
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This amplitude of carbon intensity and the fundamental periods in which it varies,
notably daily and weekly, presents an opportunity for the optimizer (discussed in Section 5)
to shift EV charging not only to different hours but also to different days and weeks.

Given the characteristics of the data, particularly the grid carbon intensity, it should
be possible to determine an optimal charging schedule that minimizes the indirect carbon
associated with the charging of the EV. The subsequent section presents said optimal
strategies.

5. Methodology: Optimal EV Charging

For this article, our objective is to use real-world data to assess the carbon impact of
EVs in different energy mixes. To achieve this objective, we first assessed the emissions of
our subject EV in the chosen countries. Subsequently, we computed the best case based on
the charging and discharging (i.e., driving) behavior obtained from our EV dataset.

To compute the best-case scenario, we considered a linear programming (LP) approach
to optimize the charging of the EV. LP is one of many mathematical approaches used for
solving optimization problems (maximizing or minimizing a variable). LP formulations
are simple but can be applied to complex problems, and have been used to solve complex
industrial, military, and financial problems [45]. LP has been demonstrated to be effective
and efficient in solving energy-related optimizations with minimal computational cost.
Additionally, the linear constraints result in a convex feasible region, ensuring a global
optimum (provided the problem is well defined) [46,47]. Figure 7 depicts the system used
for the optimization and uses the OMEGAlpes graphical representation [48].
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The objective function for the optimization considered was to minimize the carbon
impact related to the charging of the EV given the data available. Two optimization
strategies were considered for this article and are detailed below.

Day strategy: For this strategy, a horizon of one year was considered; however, an
additional constraint was added in the form of a sub-horizon (one day). The goal was to
respect the charging demand associated with the charging of the vehicle. Thus, for each
day, the same quantity of energy was charged, as was the case in the dataset; however, the
goal of the new charging schedule was to reduce the carbon impact of EV charging. The
discharging of the EV was respected, implying that charging could not happen during a
time step for which discharging originally happened (i.e., the vehicle was being driven).
This approach considered (to some extent) the driver’s behavior and proposed an optimal
strategy.

Annual Strategy: For this strategy, the daily charging constraints were not considered.
Thus, it is possible to displace charging across different days provided there is sufficient
energy in the EV’s battery to meet the driver’s needs. The optimization was conducted
for the entire horizon (one year) and was expected to change the charging schedule of
the EV. The discharge schedule (as originally provided in the EV dataset) was respected.
Thus, the original driving (which directly implies the discharging schedule) of the EV was
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considered, ensuring that this strategy would still ensure that the transportation needs of
the EV owner were not violated (i.e., there is always enough energy stored in the battery to
satisfy the energy demand of the EV as it was used in real life).

Given the two strategies defined above, the objective function of the optimization was
thus defined mathematically as follows [49]:

objective =

[
pdmax

∑
pd=0

23

∑
t=0

pcharge(pd, t)× emissionsgrid(pd, t)

]
(1)

where Pcharge(pd, t) is the charging power from the grid and CO2grid(pd, t) is the grid
carbon intensity for the sub-horizon pd (one day, in the case of the day strategy, and one
year for the annual strategy) at time step t. Moreover, to ensure that the battery state of
charge (SOC) stays within defined operational bounds,

SOCMin × Capbat ≤ Ebat(pd, t) ≤ SOCMax × Capbat (2)

where SOCMin ×Capbat and SOCMax ×Capbat refer to the minimum and maximum bounds
of battery energy, respectively, and Ebat(pd, t) is the electric charge in the battery.

The energy in the battery Ebat(pd, t) is thus also defined as follows:

Ebat(pd, t) = Ebat(pd, t − 1) +

[
Pcharge(pd, t)× ηcharge −

Pdischarge(pd, t)
ηdischarge

]
× ts (3)

Pdischarge(pd, t) is the discharge power of the battery for the sub-horizon pd at time
t, ηcharge and ηdischarge are the battery charge and discharge efficiencies, respectively, and ts is
the timestep coefficient (defined as the ratio of the time step in minutes to 60 min). In
addition, to ensure charging and discharging respect the technical constraints of the battery
and the vehicle movement,

Pcharge(pd, t) ≤ Pmax−charge × availability(pd, t) (4)

Pdischarge(pd, t) ≤ Pmax−discharge × availability(pd, t) (5)

where Pmax−charge and Pmax−discharge are the maximum charging and discharging power
of the EV’s battery and availability(pd, t) is a binary value which is determined by the
discharge power of the EV (i.e., it has a value of one when the vehicle is not being discharged
and zero when the vehicle is in motion). To ensure an energy balance in the system,

Pgrid(pd, t)− Pcharge(pd, t) + Pdischarge(pd, t)− Pdemand(pd, t) = 0 (6)

where Pgrid(pd, t) and Pdemand(pd, t) are the power imported from the grid and consumed
by the EV, respectively. Lastly, to ensure continuity in the battery’s state of charge (SOC),
particularly in the day strategy, an additional constraint was added to ensure that the
battery SOC stayed within the defined operating bounds.

Ebat(pd + 1, 0) = Ebat(pd, T + 1) +

[
Pcharge(pd, T)× ηcharge −

Pdischarge(pd, T)
ηdischarge

]
× ts (7)

where T is the last time step in the set defined by the sub-horizon given by {0, 1, 2 . . . T},
and the final battery energy is constrained as defined in Equation (2). Thus, the starting
battery energy for the various periods was defined as follows:

Ebat(pd, t) =
{

Ebat(pd, T) ≤ Capbat, i f pd = 0 and t = 0
Ebat(pd − 1, T + 1), i f pd > 0 and t = 0

(8)
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In order to carry out the optimization, the following technical parameters outlined in
Table 3 were considered. Both day and annual strategies were modeled as PYOMO [50]
concrete models and were solved using the Gurobi solver (version 9.1.2) [51].

Table 3. Technical parameters and assumptions considered for the optimization.

Parameter Unit Value

Max charging power kW 20.0

Max discharging power kW 40.0

Charging efficiency % 85.0

Discharging efficiency % 100.0

Sub-horizon (day strategy) days 1

Sub-horizon (annual
strategy) days 365

Horizon days 365

The optimization assumes a constant charging efficiency; however, in reality, different
parameters would affect the efficiency value (charging power, single or three phase).
However, because this error is carried over into all optimizations, it should not impact the
results and conclusions of this study.

6. Results
6.1. Carbon Footprint of the EV

To assess the indirect emissions of the EV, we first compute the aggregated monthly
carbon footprint of the EV (Figure 8). Essentially, Figure 8 depicts the product of the
hourly charging energy and the hourly average CI (depicted here in gCO2e), and is given
mathematically as follows:

EmissionsEV =
tmax

∑
t=0

Pcharge(t)× Emissionsgrid (t) (9)
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6.2. Estimated Indirect Emissions Based on Grid Energy Mix

Based on the estimated monthly carbon footprint shown in Section 6.1, the monthly
WTW emissions were estimated by considering the monthly distance traveled (see Figure 9).
Thus, the average monthly WTW emissions can be represented as follows:

Emissionsindirect =
EmissionsEV

∑ distance(t)
(10)
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The average well-to-wheel emissions of a similarly sized (and comparable vehicle
class) 2019 Renault Clio dCi 85 with a 1.5 L diesel engine (detailed specification of the
vehicle can be found here: https://www.ultimatespecs.com/ accessed on 20 June 2024)
and having a worldwide harmonized light vehicle test procedure (WLTP, i.e., the tank-to-
wheel) emissions of 110 gCO2/km [52] was used as a reference ICE vehicle for comparison.
Considering that the WLTP emissions values are tank-to-wheel emissions, and cannot
be fairly compared to well-to-wheel values (as have been calculated), we estimated the
well-to-tank values as follows:

EmissionWTW = EmissionTTW + EmissionWTT (11)

where EmissionWTW , EmissionTTW and EmissionWTT represent well-to-wheel, tank-to-
wheel, and well-to-tank emissions, respectively. From the literature, the well-to-tank
emissions for diesel typically range from 15 to 20 gCO2e/MJ; we consider an average
of 18 gCO2e/MJ [53]. Thus, considering the energy density of diesel, 137 MJ/l, and the
average fuel consumption of the reference ICE (4.2l/100 km3), we estimated an average
well-to-tank emission as follows:

EmissionTTW =
18 gCO2eq /MJ × 137 MJ/l

23.8 km/l
= 103.572 gCO2e/km (12)

Thus, EmissionWTW for the reference ICE vehicle was estimated to be 213.572 gCO2e/km.
Additionally, Figure 10 compares the cumulative equivalent carbon emissions of

the EV and the reference ICE. We considered the embodied carbon from [28] which are
not for the vehicle under consideration (i.e., the Renault Clio or ZOE), but are however,
representative of the embodied carbon emissions of a similar-sized EV and ICE at the
manufacturing phase. The results below assumed the same charging behavior and grid
conditions for 15 years (approximately 150,000 km).

https://www.ultimatespecs.com/
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6.3. Optimal Charging Schedule

Based on the optimization strategies described in Section 5, two new charging sched-
ules were obtained. Figure 11 shows a comparison of the original charging schedule (i.e.,
the reference case) and the proposed optimal charging schedules (based on the day and
annual strategies) for Poland, the Netherlands, and India (Maharashtra); the countries with
the worst indirect equivalent emissions as seen in Section 6.1.
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To further highlight the gains of the optimal charging schedules, the monthly WTW
emissions were calculated as described in Section 6.1 for the proposed optimal schedules of
Poland, the Netherlands, and India (Maharashtra).

Figure 12 shows a comparison of the reference monthly WTW emissions against those
of the optimal strategies. As was the case with Figure 8, the average emissions of the
reference ICE vehicle (Renault Clio) were used as a benchmark to evaluate the emissions
performance. Additionally, a summary of the results obtained after optimization is detailed
in Table 4 below.
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Table 4. Comparison of optimal strategies with the reference case.

Carbon Intensity [g CO2e/kWh] Gain over Reference Case [%]

Country Reference Case Day Strategy Annual Strategy Day Strategy Annual Strategy

BR-N 416,255.51 378,926.18 354,428.97 8.97 14.85

DE 717,362.63 603,858.34 488,884.49 15.82 31.85

FR 128,335.11 105,583.74 88,872.43 17.73 30.75

PL 140,9601.38 1,315,595.33 1,217,051.62 6.67 13.66

NL 792,456.38 652,101.03 507,538.03 17.71 35.95

IN-MH 1,643,089.02 159,8821.02 1,566,472.61 2.69 4.66

US-CAL-CISO 541,795.62 427,855.90 377,041.72 21.03 30.41

7. Discussion

From Figure 8, which shows the total monthly WTW emissions of the EV in the various
grids, France’s low carbon energy mix plays to the country’s advantage, allowing for the
EV to have the lowest carbon impact compared to the other countries studied. California
and Germany presented particular interests for the optimization due to the high variability
in their grids’ carbon impacts. The Indian (Maharashtra) grid, on the other hand, accounted
for the highest carbon footprint, this can be attributed largely to the low levels of variations
coupled with the high carbon intensity of the energy mix.

The question then arises, “Does an EV hold any real value in terms of carbon emission?”
Given the results in Section 7, the influence of the energy mix is a major determining factor
that should drive the decision to pursue e-mobility. Whilst the average annual grid CI
provides some indication of the potential carbon reduction in e-mobility, it is not sufficient
to determine if an EV would be less carbon-intensive compared to an efficient ICE. To
illustrate this point, Germany and the Netherlands had average carbon intensities of 330
and 360 g CO2e/kWh for the evaluation period, respectively. However, given Germany’s
high Solar PV penetration and consequently the high variance in the CI, the German grid
yielded significantly lower WTW emissions compared to those of the Dutch grid (see
Figure 9b,c), particularly in the summer months. For the Polish and Indian grids, Figure 9c
shows that the Renault Clio would have been the better choice considering “tailpipe”
emissions. Consequently, a higher EV penetration could potentially lead to grids with
higher carbon intensities (i.e., burden shift); however, the potential carbon reduction related
to the reduced production of fuels (petrol and diesel) is anticipated to be significantly
higher in comparison [54].

To study the balance between embodied and operational emissions, Figure 10 shows
the cumulative emission of greenhouse gasses (in CO2 equivalent) throughout the vehicle’s
life cycle. The markings in red highlight the intersection between the cumulative WTW
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emissions of the Renault ZOE in different grids and that of the reference ICE vehicle (i.e.,
the Renault Clio). Thus, these intersections represent the point at which the EV’s life cycle
emissions equalize those of the ICE’s, or how many kilometers the studied EV would need
to travel given the grid’s carbon intensity to pay back its extra 50–100% embodied carbon
emissions.

To provide context, the EV would have to be driven 40,900 km in the French grid to
offset the extra embodied CO2 for the TTW scenario and approximately 19,600 km in the
WTW scenario.

However, as mentioned in the introduction of this work, life cycle assessments of
electric vehicles highlight the importance of the fabrication and assembly processes, notably
of the storage systems. Indeed, [28] calculated around 4.8 tCO2e compared to 8.8 tCO2e of
embodied emissions from an internal combustion engine and an electric vehicle, respec-
tively (values considered for the embodied CO2 in Figure 10). Also depicted in Figure 10
are the cumulative TTW emissions of the reference vehicle, which when compared to the
WTW values show a gross underestimation when only TTW values are considered. For
low-carbon-intense grids, such as that of France, it was observed that the ZOE would have
paid back the extra embodied carbon at approximately 40,900 km for the TTW-only case
and 19,600 km for the WTW case. Similarly, for high-emission grids such as that of India,
the ICE curve does not intersect with the EV curve (in fact, the gap widens with increasing
distance) for the TTW case, but a payback distance of 41,480 km was achieved for the WTW
case. Figure 10, thus, further illustrates the significance of low-carbon-intensity electric
grids for the transition to e-mobility.

As highlighted in Section 5, two optimization strategies, the day and annual strategies,
were considered. Given that the day strategy constrained the optimization to respect the
daily charging requirements from the reference case (i.e., charge as much as was originally
charged for each day), it was expected that the results would be less optimal relative to the
annual strategy. Figure 11 illustrates how the added flexibility of being able to determine a
more optimal charging schedule affected the charging schedule. Also, of equal importance
is the reduction in the charging frequency and the increase in the charging power. This
phenomenon indicates that the EV was originally charged too frequently and possibly with
a low-power charger (3–7 kW rated power).

For India and Poland, an optimal charging schedule did not change the initial results.
However, for Poland, there was a noticeable improvement in the WTW emissions, owing to
the medium–high variance in the grid’s CI. For India on the other hand, the improvements
were very minimal and are indicative of the low levels of variation in India’s CI data.
The Netherlands, on the other hand, showed significant gains, especially considering the
annual strategy (17.71% for the day strategy and 35.95% for the annual strategy). For each
month, the WTW emissions of the annual optimal strategy proved to be lower than the
TTW emissions of the reference ICE vehicle (Renault Clio—110 g CO2e/km 3). This gain
can be attributed in part to the high variance in the Dutch grid. In effect, the variance
in a grid’s CI is consequently a major parameter that determines how low-carbon an EV
would be. Additionally, from Table 4, Germany (16–32%), France (18–31%), and California
(20–30%) also showed good prospects for decreasing the carbon footprint of the EV. For
France, which was found to have the lowest WTW emissions, this gain implied a reduction
in WTW emissions from 15.19 g CO2e/km to 12.50 g CO2e/km for the daily strategy and
10.52 g CO2e/km in the case of the annual strategy.

8. Conclusions

The transportation sector is a key carbon-intense sector in achieving our energy
transition goal and, more importantly, achieving a sustainable and eco-friendly future.
Electric vehicles are one of many (possibly the most popular) low-carbon solutions being
developed as a more sustainable alternative to ICE vehicles. Whilst this effort is laudable,
this article shows that EVs are not zero-emission options but are a low-carbon alternative
to conventional ICE vehicles.
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Further, even though studies show that EVs require up to 500% more raw materials
(and as such contribute more to abiotic resource depletion) and have higher embodied CO2
(approximately 1.5–2 times) compared to an ICE of similar characteristics, EVs still are the
better ecological choice, especially when one considers well-to-wheel emissions.

The energy mix and consequently the carbon impact of a grid is essential in deter-
mining if e-mobility is the way to go; however, the assessment needs to be made on WTW
emissions and not TTW emissions. As demonstrated with the Indian grid (which had a
high CI with low levels of variation), an ICE with higher efficiency would seem a reasonable
choice, especially for the immediate future, if one only considers TTW emissions.

Despite our findings showing that EVs are the obvious choice even in the most
carbon-intense grids (such as Poland and India (Maharashtra)), the advocacy for EVs must
consider the resilience and capacity of the grid to handle the impending increase in demand
associated with high EV adoption. For such economies, PHEVs and HEVs would seem
to be a better choice as they reduce emissions, are cheaper than EVs, and facilitate the
transition towards fully electrified mobility in such countries.

Given the potential uptake of EVs in the near future, measures have to be taken in
countries to encourage the optimal charging of EVs. As the carbon intensity varies not only
on a daily but also on a seasonal scale, considerations to these measures need to be made for
the behaviors to be encouraged on a country-by-country basis. Encouraging optimization
on a seasonal scale might reduce the overall impact of emissions and consequently result in
a higher level of grid fortifications based on requirements in the summer months.

The research presented in this article is, however, limited to the evaluation of the WTW
emissions of EVs given different energy mixes. We do not consider PHEVs and HEVs;
however, such a study is envisaged as a future work.

Further, work is needed to develop a robust indicator that considers parameters such
as the variation in a grid’s carbon intensity and provides an estimate of how low-carbon an
EV would be in such a grid. Further, the analyses presented here are based on a seemingly
representative personal EV user’s behavior. Further work can be carried out to include
different use patterns including public transport operations, taxi services, commercial
activities, and goods logistics services. Regional variabilities in usage patterns can also be
included in future analyses. Finally, modern vehicles provide comprehensive amounts of
data, which could provide more insights and inform decision-making at individual and
policy levels. It is therefore imperative that more effort is put in place to collect such data
and make them available.
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