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Abstract 11 

This study addresses the critical need for accurate reference evapotranspiration (ET0) 12 

estimation in data-scarce environments such as West Africa, where rapid population growth 13 

and climate change intensify water resource challenges. Traditionally, computing ET0 with the 14 

FAO-56 Penman-Monteith method requires multiple meteorological inputs—such as solar 15 

radiation, humidity, and wind speed—collected from costly, fully instrumented weather 16 

stations. However, the availability and maintenance of such equipment can be prohibitive in 17 

remote regions. To overcome these constraints, we explore the potential of machine learning 18 

(ML), specifically XGBoost (XGB) models, trained on NASA Power climate reanalysis 19 

datasets. Our approach relies on a limited subset of easily measured in situ variables—daily 20 

minimum and maximum temperatures and rainfall—to estimate ET0. Departing from standard 21 

ML practices that depend on short-term, site-specific data, we leverage the extensive historical 22 
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depth and broad spatial coverage of reanalysis products. We trained and validated twenty 23 

locally adapted XGB models using measurements from twenty diverse West African weather 24 

stations. Our results show that certain XGB model configurations, notably those incorporating 25 

temperature and rainfall data, can approximate ET0 estimates from the FAO-56 Penman-26 

Monteith equation with median RMSE values frequently below 1 mm/day—levels comparable 27 

to commonly employed empirical formulas. This finding demonstrates that minimal on-site 28 

instrumentation, combined with ML and reanalysis data, can effectively support irrigation 29 

scheduling and enhance water-use efficiency under varying agro-ecological conditions. To 30 

foster broader implementation, we have released our XGB-ET0 code under the GPLv3 licence 31 

(https://github.com/SARRA-cropmodels/RF-ET0), enabling researchers and practitioners to 32 

locally train and deploy these models, thereby improving ET0 estimation and sustainable 33 

agricultural water management in resource-limited settings. 34 

Keywords 35 

• Evapotranspiration estimation 36 
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• Precision irrigation 38 
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• Reanalysis datasets 40 
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1. Introduction 43 

Accurately estimating actual evapotranspiration (ETa) is critical for optimizing irrigation 44 

practices and promoting sustainable agricultural water management. This need is particularly 45 

acute in West Africa, where growing population pressures and increasing variability in water 46 
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availability caused by climate change (Arnell and Lloyd-Hughes, 2014; Ayers et al., 2023; Brouillet 47 

and Sultan, 2023; Satgé et al., 2020)  have intensified demands on limited water resources. 48 

Precision irrigation (PI), which tailors water inputs to compensate for ETa, offers a promising 49 

solution to reduce excessive irrigation, even in humid environments (Adeyemi et al., 2017; 50 

González Perea et al., 2018). Beyond irrigation scheduling, reliable ETa estimates play a 51 

pivotal role in understanding the water cycle, modeling water availability, and predicting 52 

changes in hydrological conditions. ETa is also a key input in process-based crop models, 53 

helping farmers anticipate the impact of different irrigation strategies on yields and overall 54 

water usage (Gu et al., 2020; Lopez-Jimenez et al., 2022; Pereira et al., 2020). Consequently, 55 

improving ETa estimation methods under data-scarce conditions is essential for both 56 

advancing scientific understanding and informing practical water management decisions in the 57 

region. 58 

However, direct experimental methods for estimating ETa often require complex 59 

instrumentation, careful handling, and trained personnel, making them difficult to deploy and 60 

maintain (Li et al., 2009; Valayamkunnath et al., 2018). As a result, indirect ETa estimation 61 

methods have been developed, including several mathematical formulations based on 62 

meteorological variables (compiled in (McMahon et al., 2013)). Some of these methods rely 63 

on the concept of reference crop evapotranspiration (ET0), which represents the amount of 64 

water lost to the atmosphere by a reference healthy, well-watered grass or alfalfa cover; this 65 

ET0 is further modulated by a crop and growth stage-specific coefficient (crop coefficient, 66 

symbolised as Kc), to provide an estimate of actual evapotranspiration (noted ET0). This ET0, 67 

which represents the climate forcing component and is a widely used variable in crop water 68 

modelling and management, can be computed based on air temperature, solar radiation, 69 

relative humidity, and wind speed using the FAO-56 standardized Penman-Monteith equation 70 

(FAO-56-PM) (Richard G. Allen et al., 1998), the most widely-used procedure for estimating 71 

the ET0 value. 72 

However, obtaining all the meteorological variables required by the FAO-56-PM 73 

equation can be challenging. The cost, maintenance, and limited availability of fully 74 
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instrumented weather stations restrict the widespread calculation of ET0, especially in 75 

developing countries (Djaman et al., 2016, 2015; Fisher and Pringle Iii, 2013; Valipour, 2015).  76 

To circumvent these constraints, a range of empirical ET0 estimation models requiring fewer 77 

input variables has emerged (McMahon et al., 2013). While these simplified approaches can 78 

reduce the need for complex instrumentation, their accuracy varies markedly depending on 79 

local agroclimatic conditions (Djaman et al., 2015; Tabari and Talaee, 2011; Xystrakis and 80 

Matzarakis, 2011). Consequently, selecting and calibrating an appropriate empirical model for 81 

a given site remains a non-trivial, expert-dependent process that complicates routine ET0 82 

estimation and its integration into decision support services. 83 

This study explores whether leveraging climate reanalysis datasets can help overcome 84 

these challenges. We hypothesize that machine learning (ML) models trained exclusively on 85 

local and extensive historical coverage of reanalysis data, and used to predict ET0 from a 86 

limited set of weather variables (from only a few meteorological instruments) can achieve ET0 87 

estimation accuracy comparable to established empirical formulas. If confirmed, this approach 88 

could significantly simplify ET0 estimation by reducing instrumentation requirements and 89 

expanding applicability in data-scarce contexts. 90 

Recent ML advancements have shown promise for deriving agroclimatic indicators, 91 

including ET0, from limited meteorological inputs. Such estimations have been performed 92 

using methods like support vector machines (SVM), random forests (RF), Gaussian process 93 

regression (GPR), and artificial neural networks (ANN) (Chia et al., 2020; Hebbalaguppae 94 

Krishnashetty et al., 2021). Yet, most existing ML-based ET0 models rely on short-term, site-95 

specific datasets, limiting their generalizability (see Supplementary Table 1). To our 96 

knowledge, no previous work has utilized global climate reanalysis products—datasets 97 

generated by assimilating historical weather station data into global circulation models—for 98 

training ET0 estimation models. Such reanalysis datasets provide near-global coverage of past 99 

weather conditions at various resolutions (often down to 0.5 degrees), sub-daily time steps, 100 

and spanning multiple decades. 101 
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In this paper, we explicitly test the hypothesis that ML models, trained from reanalysis 102 

data using only a few simple on-site measurements (e.g., daily minimum and maximum 103 

temperatures and rainfall), can achieve ET0 estimation accuracies on par with widely used 104 

empirical methods. By tapping into the historical depth and spatial consistency of the NASA 105 

Power reanalysis dataset, we aim to develop locally adapted models capable of capturing the 106 

long-term statistical relationships underlying ET0-PM. Confirming this hypothesis would greatly 107 

simplify the ET0 estimation process, providing a practical and precise tool for routine 108 

agricultural management and crop modelling in regions with sparse meteorological 109 

infrastructure. 110 

Unlike previous approaches limited by geographically sparse or short-term training 111 

datasets, our method exploits the rich spatiotemporal coverage of reanalysis data to train and 112 

evaluate locally adapted ML models systematically. Furthermore, we examine the sensitivity 113 

of model performance to different subsets of input variables—a dimension rarely explored in 114 

the literature. To evaluate our methodology, we train local extreme gradient boosting (XGB) 115 

models (chosen for their robustness in regression tasks, e.g., as shown in hydrological studies 116 

such as (Niazkar et al., 2024)) using NASA Power data. We then compare the ET0 estimates 117 

generated by these models—under various combinations of meteorological inputs—with ET0 118 

values derived from the FAO-56-PM approach using ground measurements from twenty 119 

weather stations spread across West Africa. We assess model performance both statistically 120 

and qualitatively and discuss the implications of our findings for local calibration. Finally, we 121 

present a Python software module called RF-ET0, allowing researchers and practitioners to 122 

easily train and apply these XGB models anywhere in the world. 123 
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2. Materials and methods 124 

2.1. General workflow 125 

The workflow for training, evaluating, and testing XGB models to estimate reference 126 

evapotranspiration (ET0) involved several key steps. First, ground truth ET0 values (ET0-PM-127 

GT) were computed using the FAO-56 Penman-Monteith equation and daily meteorological 128 

data collected from weather stations. These included air temperature (TMIN, TMAX), wind 129 

speed, rainfall, relative humidity (HR), and solar radiation (IRRAD). 130 

To complement these observations, daily time series data for each site were retrieved 131 

from the NASA Power reanalysis dataset, spanning 1979–2020. Using the same FAO-56 132 

Penman-Monteith equation, ET0 values (ET0-PM-RM) were computed from the reanalysis 133 

data to serve as the target for model training. The reanalysis dataset was split into a training 134 

subset (historical data up to one year before station observations) and a validation subset (the 135 

period immediately preceding the observations). 136 

XGBoost (XGB) models were trained locally for each site using combinations of 137 

meteorological variables derived from reanalysis data as input features (e.g., TMIN, TMAX, 138 

WIND, IRRAD), forming distinct model classes. Each model class represented the variable 139 

configurations measurable by different types of weather stations. Model training used default 140 

hyperparameters with 1000 boosting rounds for robust regression. 141 

Model performance was evaluated on the validation dataset by comparing predicted 142 

ET0 values against ET0-PM-RM, using root mean square error (RMSE) and the coefficient of 143 

determination (R²) as metrics. Finally, the trained models were tested against ground truth 144 

ET0 values (ET0-PM-GT) derived from station observations. Performance was assessed 145 

across agro-ecological zones to analyze variability and identify the most reliable variable 146 

combinations for different climatic conditions. 147 
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2.2. In situ meteorological datasets 148 

For this study, we used the data from the archive of the AfricaRice weather station 149 

network (https://dataverse.harvard.edu/dataverse/Weather), providing a representative set of 150 

meteorological observations for West Africa, as the data provided from their 151 

agrometeorological stations is openly available, homogeneous, and quality controlled. We 152 

selected sites for which original metadata (coordinates and elevation) were provided, and 153 

containing all the necessary variables to compute ET0 using the FAO-56 standardized 154 

Penman-Monteith equation: air temperature, rainfall, wind speed, vapour pressure, and global 155 

radiation. A total of twenty sites were retained for the study, (Figure 1, Table 1). spanning 156 

from 17°N, 18°W to 4°N, 18°E covering seven distinct agro-ecological zones as classified by 157 

the FAO Global Agro-ecological Zones V4, simplified (FAO and IIASA, 2021). Of these, 158 

seventeen sites fall within the "lowland tropics", further categorised into nine "humid", five 159 

"sub-humid", and three "semi-arid" zones; the remaining sites are distributed among 160 

"desert/arid climate", "land with severe soil/terrain constraints", and "land with ample irrigated 161 

soils" (Figure 2), ensuring a representative sample of the agro-ecological variability within 162 

West Africa, albeit with some underrepresentation of arid zones. 163 

The duration of these records varies depending on the station, and spans from March 164 

19, 2012, to December 31, 2020. Table 2 describes dataset durations and periods considered 165 

for the analysis on each station. To establish a ground truth for reference evapotranspiration 166 

(ET0-PM-GT), we utilised the FAO-56 standardized Penman-Monteith equation, implemented 167 

through the reference_ET function in the Python Crop Simulation Environment (PCSE) 168 

package v.5.4.0 (de Wit, 2023). 169 

2.3. Climate reanalysis datasets 170 

To complement our in-situ data, we sourced daily weather data from the NASA Power 171 

API, which offers a comprehensive depiction of long-term meteorological conditions at a 172 

https://dataverse.harvard.edu/dataverse/Weather
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regional scale. The data for our measurement sites was retrieved using the 173 

NASAPowerWeatherDataProvider function of PCSE v.5.4.0. NASA Power provides a detailed 174 

dataset including solar parameters from the GEWEX/SRB 3.0 and the CERES FlashFlux 175 

versions 2 and 3 models, as well as meteorological parameters from the GMAO MERRA-2 176 

and GEOS 5.12.4 FP-IT models on a granular 0.5° x 0.5° latitude/longitude grid. such as the 177 

NASA Prediction of Worldwide Energy Resources (NASA Power) (Sparks, 2018; Zhang et al., 178 

2008). 179 

For our study, the dataset spanned from January 1st, 1984, to June 1st, 2022. It 180 

included a range of daily meteorological variables crucial for our analysis: minimal temperature 181 

(TMIN), maximal temperature (TMAX), average temperature (TEMP), rainfall (RAIN), average 182 

wind speed (WIND), average vapour pressure (VAP), and global radiation (IRRAD). We 183 

computed daily reference evapotranspiration values from reanalysis model (ET0-PM-RM) from 184 

these reanalysis model variables. This computation was done using the reference_ET function 185 

from PCSE v.5.4.0, integrating station-specific elevation data from the AfricaRice dataset 186 

metadata, instead of the broader 0.5° x 0.5° elevation averages typically provided by NASA 187 

Power. 188 

2.4. XGB model training and validation 189 

In this study, XGBoost (XGB) models were trained and validated using daily weather 190 

data from NASA Power for each of the twenty sites. We chose to work only with this family of 191 

models as there are recognized as robust and adapted to a variety of tasks. Furthermore, we 192 

wanted to focus on the comparison in the performance of models of the same nature, but 193 

including an increasing number of predictor variables, rather than comparing different model 194 

formalisms. To evaluate the feasibility and performance of this approach, in this work we will 195 

train twenty local XGB models using data from NASA Power, as its API and companion tools 196 

allow for very efficient requests. For each site, a data partitioning was done to split the data 197 

into training and validation subsets. Specifically, the training dataset included NASA Power 198 
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records until a year prior to the first on-site observations, while the days leading up to these 199 

first observations formed the validation dataset. The in-situ observations themselves served 200 

as the test set. The periods used for each site are detailed in Table 2. 201 

Our approach utilised eleven distinct combinations of daily variables from the NASA 202 

Power reanalysis model, forming the basis for 11 XGB model classes (Table 3). The target 203 

output for these models was the ET0-PM-RM value. Model training was conducted using 204 

XGBoost v1.6.2 (Chen and Guestrin, 2016) within a Python v3.9.6 environment. To optimise 205 

performance, we increased the number of boost rounds to 1000 while keeping other 206 

hyperparameters at their default settings. 207 

  The performance of each XGB model was assessed through two key metrics: root 208 

mean squared error (RMSE) and coefficient of determination (R²). This evaluation involved 209 

comparing the XGB-estimated ET0 values with the ET0-PM-RM values from the validation set, 210 

allowing for a robust analysis of model precision and accuracy over the 20 locations. 211 

2.5. Comparison of the locally-trained neural network estimation 212 

models with other ET0 estimation methods 213 

In this study, we benchmarked the performance of our locally-trained XGB models for 214 

estimating ET0 against traditional empirical methods described in Table 4. This comparison 215 

was based on ET0 calculations on test sets from in situ datasets (Table 2). We employed two 216 

primary performance metrics for this analysis: the correlation coefficient and root mean square 217 

error (RMSE). These metrics were applied to evaluate both our neural network approach and 218 

the selected empirical formulas, with a focus on their accuracy in estimating ET0-PM-GT 219 

across the twenty study sites. 220 

To facilitate a comprehensive understanding of the results, we visualised the 221 

performance comparisons using Taylor diagrams. This graphical representation allowed us to 222 

simultaneously assess the correlation, standard deviation, and RMSE of the different methods. 223 
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Additionally, we conducted a qualitative analysis to provide deeper insights into the strengths 224 

and limitations of each approach in various agro-climatic conditions. 225 

3. Results 226 

3.1. Training and validation of the XGB models 227 

In our study, an average of 10,000 records from NASA Power were utilised for each 228 

site to train the different XGB model classes presented in Table 3. Analysing the performance 229 

metrics against the validation sets (left-out training data from NASA Power), as detailed in 230 

Table 5, revealed distinct patterns in model efficacy. Notably, model class M11 emerged as 231 

the top performer, achieving a mean R² of 0.99 and a mean RMSE of just 0.09 mm. This 232 

superior performance aligns with our expectations, considering that M11's set of training 233 

variables - or features - closely mimics the variables used by the FAO56-PM- ET0 formula. 234 

This suggests a high capability of XGB models to approximate the FAO56-PM- ET0 method 235 

accurately. 236 

Model classes M9 and M10 also demonstrated strong results, with R² values around 237 

0.95, but their RMSEs were higher, approximately 0.15 mm. Model class M7, while showing 238 

promising results with a mean R² of 0.87, exhibited variability across different sites. In contrast, 239 

the least effective models (M1-M4) recorded R² values around 0.62 and an RMSE of 0.68 mm, 240 

indicating a lower level of performance. 241 

These findings imply that the performance of ET0-PM-RM estimation might vary with 242 

agro-ecological zones (AEZs) as the main driving factors of evapotranspiration are not 243 

identical in all environments. A notable observation was the underperformance of model class 244 

M7 in north-western sites, suggesting that adding more features could potentially enhance 245 

accuracy. Specifically, including the irradiance (IRRAD) feature in the models significantly 246 

improved ET0 estimations by incorporating the radiative component, as evidenced by the 247 

improved validation metrics. 248 
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3.2. Comparison of the trained XGB performance against 249 

empirical ET0 estimation formulas from ground data 250 

Then, from the in-situ values of the test set, we calculated ET0 using established 251 

empirical formulas (presented in Table 4), estimated ET0 using our different XGB model 252 

classes, and compared these calculations with the ET0 value computed using in situ weather 253 

measurements (ET0-PM-GT) across the twenty sites (Table 6). The performance of each 254 

method was quantified using the root mean square error (RMSE) and correlation coefficient, 255 

with the results further illustrated in Taylor diagrams (representing correlation coefficient, 256 

RMSE and reference value in one plot) for a visual comparison (Figure S1). 257 

A qualitative analysis was performed from these Taylor diagrams, in which we consider 258 

as a suitable model a model in which the RMSE was below 1 mm, and that is inside the highest 259 

available and the least high available correlation coefficient quadrant. The models were then 260 

scored and ranked based on their adherence to these criteria at each site (Table 7). According 261 

to the data, XGB model class 11 was distinguished as the most accurate, followed by the 262 

Irmak-a model. Subsequent ranks were shared by Hargreaves, Irmak-c, Valiantzas-a, and 263 

XGB-M8 models, which displayed comparable performance. 264 

Notably, the Irmak-a model showed significant variability in RMSE across the sites, 265 

with a mean variability of 0.75, as opposed to 0.71 for M8 and 0.48 for M9. This variability is 266 

crucial as it affects the reliability and consistency of the model's performance in diverse 267 

climatic contexts, as represented by the various sites in West Africa. 268 

 269 

4. Discussion 270 

Our study contributes to the active research on machine learning (ML) methodologies 271 

for estimating ET0 from a limited dataset of meteorological variables. In a field inclined towards 272 

the application of various ML approaches, we've selected XGB, and specifically extreme 273 



12 

gradient boosting (XGBoost) due to its proven robustness and established track record 274 

(Nielsen, 2016). Central to our discourse is the challenge of training data acquisition—a facet 275 

that, in our view, has not received due attention. The prevalent practice in the literature utilises 276 

weather data from a small number of locations over short time series to train models (see 277 

Supplementary Table 1 for a curated selection of studies on the topic). These models are 278 

then expected to extrapolate ET0 estimations to larger, often regional scales, which risks 279 

significant extrapolation errors during application. 280 

We propose a methodological pivot, employing a transversal ML approach that utilises 281 

local meteorological data from assimilation databases. This strategy has the distinct 282 

advantage of being deployable in areas devoid of ground weather data, offering uniform 283 

datasets that boast extensive historical records and spatial representativity—crucial for 284 

models that need to operate across varied geographic expanses. We harnessed the breadth 285 

of NASA Power's data, spanning a grid resolution of 0.5° x 0.5°, effectively training a model 286 

for every ~3000km² under West Africa's latitudes. However, we acknowledge that such a 287 

resolution may not fully encapsulate the microclimatic diversity within these regions, especially 288 

in areas with complex terrain. One solution to this limitation could involve debiasing reanalysis 289 

data using historical ground measurements, potentially through methods such as linear 290 

regression, prior to training the ML models (Chandler, William S., 2011). 291 

Moreover, our approach stands to be further refined by incorporating data from sources 292 

with finer resolutions, such as the fifth generation of European ReAnalysis climate products 293 

(Copernicus ERA5) (Hersbach et al., 2020; Muñoz-Sabater et al., 2021). This would offer a 294 

more detailed 0.1° x 0.1° resolution and an extensive historical reach back to 1950—allowing 295 

the inclusion of rarer climatic events in our training set, however at a price of lengthier API 296 

calls thus overall computation time. Such granularity is anticipated to enhance the 297 

representativeness of training data and, consequently, the performance of ML models, 298 

although this hypothesis warrants additional research to quantify the influence of training data 299 

volume on model performance. 300 



13 

For example, the Hargreaves-Samani model (George H. Hargreaves and Zohrab A. 301 

Samani, 1985), the Schendel model (Schendel, U., 1967), and the Priestley-Taylor model 302 

(Priestley and Taylor, 1972) are based only on solar radiation and air temperature values ; the 303 

Turc radiation-based model (Turc, L, 1961) uses temperature and relative humidity ; the 304 

Makkink-based models (Allen, Richard, 2003; Hansen, 1984; Makkink, G.F., 1957) use 305 

radiation-related parameters. A thorough review of these methods can be found in (McMahon 306 

et al., 2013). 307 

Aiming to serve practitioners with scant meteorological infrastructure, our study sought 308 

to validate the accuracy and precision of XGB-based ET0 estimation models against the FAO-309 

56 standardized PM equation. Our experiments scrutinised the impact of a limited set of 310 

input variables on ET0 output quality. We also compared the ML-derived ET0 estimates with 311 

those calculated from ground truth data across diverse West African climates, ensuring our 312 

models' efficacy relative to conventional methods. 313 

The practicality of our approach is underscored by its minimal data requirements: a 314 

farm manager equipped with only a min/max thermometer and a rain funnel shall be able to 315 

use a locally trained model to estimate ET0 with a level of precision and accuracy usually 316 

attainable by also having anemometer or hygrometer readings. Existing literature suggests 317 

different combinations of variables for efficient ET0 estimation by models : (Granata, 2019) 318 

suggests mean temperature, mean relative humidity, and net solar radiation; wind and sunny 319 

hours as the strict minimum information for most locations according to (Shabani et al., 2020), 320 

and most empirical formulas need at least information about wind speed plus deficit pressure 321 

or solar radiation with air temperature. Meanwhile, our approach showed that it can yield 322 

models that perform relatively well, starting with only information about minimum, maximum, 323 

and average daily air temperature. With a dependency on a high number of devices to 324 

measure each variable needed, there is a greater risk in data gaps leading to impossibility to 325 

calculate ET0; this issue of missing or incomplete meteorological data has been discussed in 326 

(Koudahe et al., 2018). Our finding suggests that practitioners may only need a quality 327 
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thermometer for reliable ET0 estimation, simplifying an on-farm weather data acquisition 328 

process that is already challenging in the region (Dinku, 2019). Stacking up variables will make 329 

the estimations more reliable. Compared to other models that overestimate ET0, our models 330 

demonstrated better stability and less bias across various climates, although this observation 331 

necessitates further validation with a broader dataset. The use of twenty weather stations 332 

provides a solid foundation for our performance analysis, but a more expansive dataset would 333 

enable a more comprehensive understanding of the models' applicability and robustness. 334 

Most of these empiric models have been initially defined in a given climatic 335 

environment and are less reliable or at least need recalibration when used in different climates. 336 

In the context of climate change, with anticipated shifts in climatic zones (Cui et al., 2021), our 337 

universally applicable method, supported by global assimilation data, could significantly aid in 338 

ET0 estimation efforts. Our XGB- ET0 models, though in need of further validation, show 339 

potential for at least equivalent performance compared to traditional empirical models, with 340 

the added benefit of being more robust across different AEZs. This robustness is particularly 341 

important in reducing bias risks, a common issue with empirical formulas lacking quality 342 

assessment avenues. 343 

To enable wider application and continued research, we have made our XGB- ET0 344 

code publicly available under the GPLv3 licence (doi: 10.5281/zenodo.10463369, repository 345 

URL: https://github.com/SARRA-cropmodels/RF-ET0). This initiative allows researchers and 346 

practitioners to conduct their own localised model training and ET0 estimations, utilising the 347 

model classes we've explored in this work. 348 

Conclusion 349 

This research represents a significant stride in the application of machine learning for 350 

agricultural water management, particularly within the challenging context of West Africa. The 351 

study has successfully demonstrated the efficacy of XGB models in estimating 352 

evapotranspiration (ET) using limited meteorological data. Our approach, which utilizes 353 

https://zenodo.org/doi/10.5281/zenodo.10463369
https://github.com/SARRA-cropmodels/RF-ET0
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extensive historical and spatial data from NASA Power's climate reanalysis datasets, marks a 354 

departure from traditional methods reliant on short-term, location-specific weather data. The 355 

ability of these models to accurately approximate ET estimations, as validated against ground 356 

measurements from diverse West African agro-ecological zones, underscores their potential 357 

in areas with limited meteorological infrastructure. This methodology not only simplifies the 358 

data requirements for ET estimation but also proves to be robust across various climatic 359 

conditions, enhancing its applicability for sustainable water management practices. The 360 

outcomes of this research contribute to the broader body of knowledge by showcasing the 361 

practicality of machine learning in agricultural contexts and underscore the importance of 362 

adopting innovative technologies in the face of climate change and resource constraints. The 363 

findings of this study hold significant implications for precision irrigation and water resource 364 

management, providing a sustainable and accessible solution to a region facing acute water-365 

related challenges. 366 

Data Statement 367 

All data, models, or code generated or used during the study are available in a 368 

repository or online in accordance with funder data retention policies. Data used for validation 369 

is available at the DOIs indicated in Table 2. Additionally, the climate reanalysis datasets 370 

utilized in this study, provided by NASA Power, are publicly accessible and can be retrieved 371 

for extended time series and various spatial resolutions through their API and data services. 372 

The XGB- ET0 code developed for this study is publicly available under the GPLv3 licence, 373 

ensuring open access and facilitating further research and practical applications. The code 374 

can be accessed at the following repository URL: https://github.com/SARRA-cropmodels/RF-375 

ET0 (doi:10.5281/zenodo.10463369).  376 

https://github.com/SARRA-cropmodels/RF-ET0
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Figures 555 

Figure 1 556 

Map of Weather Measurement Sites and Agro-Ecological Zones 557 

This color map of West Africa displays the geographic locations of the twenty weather 558 

measurement sites used in the study, overlaid on a representation of global agro-ecological 559 

zones as defined by the FAO and IIASA. Each site is indicated by a dot symbol. The color 560 

legend for the agro-ecological zones (AEZ) is provided to differentiate between the zones. 561 

 562 

Figure 2 563 

Surface Occupancy Histogram of AEZ 564 

This histogram illustrates the distribution of surface occupancy percentages for the various 565 

Agro-Ecological Zones (AEZ) within the study's geographic extent. Each bar represents the 566 

proportion of an AEZ relative to the total area considered. 567 
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Tables 570 

Table 1 571 

In Situ Daily Data Collection Sites 572 

This table enumerates the weather stations selected for the collection of daily in situ 573 

meteorological data. Detailed within are the geographical coordinates (latitude and longitude), 574 

altitude, country of location, data collection period, DOI for dataset reference, and the agro-575 

ecological zones represented by each station. 576 

Station 

name 

Station 

code 

Latitude Longitud

e 

Altitude 

(m) 

Country Measure

ment 

start 

Measure

ment 

end 

Dataset 

DOI 

Agro-

ecologic

al zone 

Glazoue BEN3001 7.8800 2.2100 199 Benin 2012-07-

05 

2016-09-

22 

doi:10.79

10/DVN/

GVQYG

G 

Tropics, 

lowland; 

sub-

humid 

AfricaRic

e_Calavi 

BEN4001 6.4200 2.3300 41 Benin 2012-03-

19 

2018-01-

08 

doi:10.79

10/DVN/

WTIMYZ 

Tropics, 

lowland; 

humid 

Farakoba BFA3001 10.5400 -4.7600 319 Burkina 

Faso 

2013-06-

21 

2018-03-

08 

doi:10.79

10/DVN/T

QX3L9 

Tropics, 

lowland; 

sub-

humid 

Gagnoa_

HUB 

CIV3001 6.1300 -5.9000 248 Ivory 

Coast 

2015-07-

25 

2018-06-

13 

doi:10.79

10/DVN/

A6SGP3 

Tropics, 

lowland; 

humid 

Man CIV3002 7.2800 -7.7000 376 Ivory 

Coast 

2012-07-

21 

2019-05-

31 

doi:10.79

10/DVN/

DQXCJC 

Tropics, 

lowland; 

humid 

Mbe_Low CIV4001 7.8744 -5.1138 273 Ivory 2014-10- 2020-12- doi:10.79 Tropics, 
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land Coast 03 31 10/DVN/

HVKBPL 

lowland; 

humid 

Mbe_Upl

and 

CIV4002 7.8856 -5.1123 303 Ivory 

Coast 

2014-10-

10 

2018-08-

05 

doi:10.79

10/DVN/2

C7XKY 

Tropics, 

lowland; 

humid 

Ndop CMR300

1 

5.9500 10.4400 1185 Cameroo

n 

2012-08-

03 

2015-06-

24 

doi:10.79

10/DVN/Z

SP7NQ 

Land with 

severe 

soil/terrai

n 

limitation

s 

Gimbi COD300

1 

-5.2200 13.2700 364 Democrat

ic Rep. 

Congo 

2013-08-

03 

2014-02-

01 

doi:10.79

10/DVN/I

XPDM3 

Tropics, 

highland; 

sub-

humid 

Kumasi GHA3001 6.6700 -1.8100 236 Ghana 2012-06-

23 

2016-04-

20 

doi:10.79

10/DVN/

EUPQPZ 

Tropics, 

lowland; 

humid 

Navrongo GHA3002 10.8400 -1.0900 173 Ghana 2013-05-

14 

2014-05-

17 

doi:10.79

10/DVN/

H5MX3J 

Tropics, 

lowland; 

semi-arid 

Kankan GIN3001 10.5300 -9.3200 432 Guinea 2013-11-

09 

2016-03-

16 

doi:10.79

10/DVN/6

PHUPC 

Tropics, 

lowland; 

sub-

humid 

Central_

River 

GMB300

1 

13.5600 -14.8700 41 Gambia 2013-03-

07 

2020-03-

02 

10.7910/

DVN/ZLH

PFP 

Tropics, 

lowland; 

semi-arid 

Cari LBR3001 7.1000 -9.6500 273 Liberia 2015-10-

08 

2018-02-

21 

doi:10.79

10/DVN/

MJQVZO 

Tropics, 

lowland; 

humid 
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Tillabery_

HUB 

NER3001 14.3800 1.2200 234 Niger 2012-07-

29 

2015-07-

03 

doi:10.79

10/DVN/

Q6ZDBV 

Tropics, 

lowland; 

semi-arid 

Lafia NGA3001 8.5600 8.5400 150 Nigeria 2012-08-

09 

2018-02-

25 

doi:10.79

10/DVN/8

ERRWL 

Tropics, 

lowland; 

sub-

humid 

Fanaye SEN3001 16.5300 -14.8000 11 Senegal 2013-02-

06 

2020-12-

31 

doi:10.79

10/DVN/9

HVYWP 

Desert/Ar

id climate 

Ndiaye SEN4001 16.2200 -16.2900 13 Senegal 2013-02-

01 

2019-12-

14 

doi:10.79

10/DVN/

HTLG35 

Land with 

ample 

irrigated 

soils 

Tormabu

m 

SLE3002 7.3900 -12.0100 9 Sierra 

Leone 

2014-05-

28 

2016-05-

01 

doi:10.79

10/DVN/

VWGJHE 

Tropics, 

lowland; 

sub-

humid 

Tandjile_

East 

TCD3001 9.6600 16.7200 345 Chad 2013-06-

07 

2013-07-

03 

doi:10.79

10/DVN/

WKP6HR 

Tropics, 

lowland; 

humid 

Adeta TGO3001 7.1700 0.7700 295 Togo 2013-04-

04 

2015-12-

05 

doi:10.79

10/DVN/0

SQFGQ 

Tropics, 

lowland; 

humid 
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Table 2 578 

Dataset Durations for Model Development 579 

Summary of dataset lengths for ground weather observations, detailing the periods utilised for 580 

the training, validation, and testing of XGB models. 581 

  582 
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Table 3 583 

Training Features for XGB Model Classes 584 

This table specifies the combinations of meteorological variables used to train the eleven 585 

distinct XGB model classes, with each variable corresponding to data typically collected by 586 

standard meteorological instruments. X indicates the correspondence between the set of 587 

variables and the minimum set of sensors needed to measure these variables on site 588 

model alias Features used for training 

maximum–

minimum 

thermometer 

temperature 

data logger 
rain gauge 

anemome

ter 

hygrom

eter 

pyrano

meter 

M1 TMIN, TMAX x      

M2 TEMP, TMIN, TMAX  x     

M3 TMIN, TMAX, RAIN x  x    

M4 TEMP, TMIN, TMAX, RAIN  x x    

M5 TEMP, TMIN, TMAX, RAIN, WIND  x x x   

M6 TEMP, TMIN, TMAX, RAIN, VAP  x x  x  

M7 TEMP, TMIN, TMAX, RAIN, IRRAD  x x   x 

M8 
TEMP, TMIN, TMAX, RAIN, WIND, 

VAP 
 x x x x  

M9 
TEMP, TMIN, TMAX, RAIN, WIND, 

IRRAD 
 x x x  x 

M10 
TEMP, TMIN, TMAX, RAIN, VAP, 

IRRAD 
 x x  x x 

M11 
TEMP, TMIN, TMAX, RAIN, WIND, 

VAP, IRRAD 
 x x x x x 
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Table 4 590 

Empirical methods used for ET0 estimations.  591 

ET0 reference evapotranspiration (mm); u2 represents the wind speed measured at 2 m from 592 

the ground (ms−1); (es—ea) vapour saturation deficit (kPa); Ta is the average air temperature 593 

(°C); Tmax—maximum temperature (°C); Tmin—minimum temperature (°C); Rs is the short 594 

wavelength solar radiation (MJ m−2d−1); φ represents the latitude of the station in radian 595 

degree, and λ is the latent heat of vaporisation (MJ.m−2d−1). 596 

Category Reference Formula 

Aerodynamic Dalton (Dalton, J, 1802) 𝐸𝑇0 = (0.3648 + 0.07223𝑢2)(𝑒𝑠 − 𝑒𝑎) 

Trabert  (Trabert, W, 1896) 𝐸𝑇0 = 0.3075√𝑢2(𝑒𝑠 − 𝑒𝑎)    

Penman (Penman, H. L., 1963) 𝐸𝑇0 = 0.35(1 + 0.24𝑢2)(𝑒𝑠 − 𝑒𝑎) 

Rohwer (Rohwer, Carl, 1931) 𝐸𝑇0 = 0.44(1 + 0.27𝑢2)(𝑒𝑠 − 𝑒𝑎) 

Mahringer (Mahringer, 1970) 𝐸𝑇0 = 0.15072√3.6𝑢2(𝑒𝑠 − 𝑒𝑎) 

Temperature Hargreaves (George H. Hargreaves and 

Zohrab A. Samani, 1985) 

𝐸𝑇0 = 0.0135 × 0.408𝑅𝑠(𝑇𝑎 + 17.8) 

Radiation Jensen & Haise (Jensen and Haise, 

1963) 

𝐸𝑇0 = 0.025(𝑇𝑎 − 3)𝑅𝑠 

Abtew (Abtew, 1996) 
𝐸𝑇0 = 0.53

𝑅𝑠

𝜆
 

Oudin (Oudin, Ludovic, 2004) 
𝐸𝑇0 = 𝑅𝑠 ×

𝑇𝑎 + 5

100
 

Irmak (a)  

(Irmak et al., 2003a, 2003b) 

𝐸𝑇0 = 0.149𝑅𝑠 + 0.079𝑇𝑎 − 0.611 

Irmak (b) (Irmak et al., 2003a, 2003b) 𝐸𝑇0 = 0.174𝑅𝑠 + 0.353𝑇𝑎 − 0.642 

Irmak (c)  (Irmak et al., 2003a, 2003b) 𝐸𝑇0 = 0.156𝑅𝑠 − 0.0112𝑇𝑚𝑎𝑥 + 0.0733𝑇𝑚𝑖𝑛 − 0.478 

https://www.zotero.org/google-docs/?7X3W0i
https://www.zotero.org/google-docs/?LZpmzx
https://www.zotero.org/google-docs/?rhCsnI
https://www.zotero.org/google-docs/?hVmmd4
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Combinatory Valiantzas (a) (Valiantzas, 2013) 𝐸𝑇0 = (0.0393𝑅𝑠 × √𝑇𝑎 + 9.5) − 0.19𝑅𝑠0.6𝜑0.15 + 0.048(𝑇𝑎

+ 20)(1 −
𝐻𝑟

100
)𝑢20.7 

Valiantzas (b)  (Valiantzas, 2013)  𝐸𝑇0 = (0.0393𝑅𝑠 × √𝑇𝑎 + 9.5) − 0.19𝑅𝑠0.6𝜑0.15 + 0.078(𝑇𝑎

+ 20)(1 −
𝐻𝑟

100
) 

Valiantzas (c)  (Valiantzas, 2013) 𝐸𝑇0 = (0.0393𝑅𝑠 × √𝑇𝑎 + 9.5) − 0.19𝑅𝑠0.6𝜑0.15 + 0.0061(𝑇𝑎

+ 20)(1.12𝑇𝑎 − 𝑇𝑚𝑖𝑛 − 2)0.7 

 597 

  598 

https://www.zotero.org/google-docs/?gcrWPZ
https://www.zotero.org/google-docs/?Lr59F4
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Table 5 599 

Validation Metrics for XGB Models 600 

This table provides the root mean square error (RMSE) and coefficient of determination (R2) 601 

obtained from the validation sets used in the training of the eleven XGB model classes. 602 
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Table 6 605 

Performance Comparison of XGB and Empirical ET0 Formulas 606 

This table presents the average metrics from the comparison between XGB model estimations 607 

and those calculated using empirical ET0 formulas against the standard ET0-PM-GT values. 608 

Metrics include RMSE and R2 values for each model and formula. 609 
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Table 7 611 

Taylor Diagram Analysis 612 

Summary of the qualitative analysis based on Taylor diagrams for model performance across 613 

the 20 study sites. 614 

  615 
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Supplementary figures 

Figure S1 

Taylor diagrams for comparison of our approach versus empirical methods  

S1(a) Taylor diagram for station BEN3001 
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S1(b) Taylor diagram for station BEN4001 

 

S1(c) Taylor diagram for station BFA3001 
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S1(d) Taylor diagram for station CIV3001 

 

S1(e) Taylor diagram for station CIV3002 
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S1(f) Taylor diagram for station CIV4001 

 

S1(g) Taylor diagram for station CIV4002 
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S1(h) Taylor diagram for station CMR3001 

 

S1(i) Taylor diagram for station COD3001 
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S1(j) Taylor diagram for station GHA3001 

 

S1(k) Taylor diagram for station GHA3002 
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S1(l) Taylor diagram for station GIN3001 

 

S1(m) Taylor diagram for station GMB3001 
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S1(n) Taylor diagram for station LBR3001 

 

S1(o) Taylor diagram for station NER3001 
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S1(p) Taylor diagram for station NGA3001 

 

S1(q) Taylor diagram for station SEN3001 

 



s10 
 

S1(r) Taylor diagram for station SEN4001 

 

S1(s) Taylor diagram for station SLE3002 
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S1(t) Taylor diagram for station TCD3001 

 

S1(u) Taylor diagram for station TGO3001 
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S1(v) Symbol legend for plotted models 
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Supplementary Tables 

Supplementary Table 1 

Summary of Selected Literature on Machine Learning Applications for ET0 Estimation 

This table presents a curated selection of recent studies that compare and utilise machine 

learning methods to estimate reference evapotranspiration (ET0). The literature compilation 

was achieved through a search for "machine learning ET0 estimation" in Google Scholar for 

the years 2016-2021. The table collates the most pertinent studies identified in the initial pages 

of search results, with additional relevant papers supplemented by the authors' further reading. 

 

Reference Compared machine learning 

models 

Origin and type of 

data 

Climate Location 

(Feng et al., 

2016) 

extreme learning machine (ELM), 

neural networks optimized by 

genetic algorithm (GANN), 

wavelet neural networks (WNN) 

13 weather stations, 

1994-2013 period, 

daily data 

warm humid Central Sichuan, 

China 

(Gocic et al., 

2016) 

ELM 2 weather stations, 

1980-2010 period, 

daily data 

ND Serbia 

(Kisi, 2016) least square support vector 

regression (LSSVR), multivariate 

adaptive regression splines 

(MARS), M5Tree 

2 weather stations, 

1982-2006 period, 

monthly data 

mediterranea

n 

Western Turkey 

(Patil and 

Deka, 2016) 

ELM, artificial neural networks 

(ANN), least square support 

vector machine (LSSVM) 

2 weather stations, 

1970-2010 period, 

weekly data 

arid Rajastan, India 
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(Yassin et al., 

2016) 

ANN, gene expression 

programming (GEP) 

19 weather stations, 

1980-2010 period, 

daily data 

arid Saudi Arabia 

(Yin et al., 

2017) 

 

Genetic algorithm support vector 

machine (GA-SVM), ANN 

1 weather station, 

2009-2010 period, 

daily data 

temperate Qilian 

Mountains, NW 

China 

(Antonopoulo

s and 

Antonopoulos, 

2017) 

ANN 1 weather station, 

2009-2013 period, 

daily data 

mediterranea

n 

Greece 

(Feng et al., 

2017a) 

random forest (RF), generalized 

regression neural network 

(GRNN) 

2 weather stations, 

2009-2014 period, 

daily data 

warm humid Sichuan, SW 

China 

(Feng et al., 

2017b) 

ELM, GRNN 6 weather stations, 

1961-2014 period, 

daily data 

warm humid Sichuan, SW 

China 

(Karimi et al., 

2017) 

GEP, support vector machine 

(SVM) 

8 weather stations, 

1997-2006 period, 

daily data 

humid South Korea 

(Mehdizadeh 

et al., 2017) 

GEP, polynomial SVM, radial 

basis function SVM, MARS 

44 weather stations, 

1951-2010 period, 

monthly data 

arid Iran 

(Pandey et 

al., 2017) 

evolutionary regression (ER), 

ANN, multi-nonlinear regression 

(MNLR), SVM 

2 weather stations, 

2008-2012 period, 

daily data 

ND Arunacha 

Pradesh, India 

(Fan et al., 

2018) 

RF, M5Tree, gradient boosting 

decision tree (GBDT), extreme 

gradient boosting/XGBoost 

8 weather stations, 

1961-2010 period, 

daily data 

various China 
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(XGB), SVM, ELM 

(Keshtegar et 

al., 2018) 

adaptive neuro-fuzzy inference 

system (ANFIS), M5Tree, ANN 

3 weather stations, 

20 year data (period 

unknown), 

daily data 

cold arid Central Anatolia, 

Turkey 

(Kisi and 

Alizamir, 

2018) 

wavelet extreme  learning 

machine (WELM), WNN, ANN, 

online sequential ELM (OS-ELM) 

2 weather stations, 

1985-2005 period,  

daily data 

semi arid Central Anatolia, 

Iran 

(Mehdizadeh, 

2018) 

MARS, GEP with lagged ET0 6 weather stations, 

2000-2014 period, 

daily data 

semi arid, 

arid, 

hyper arid 

Iran 

(Zhang et al., 

2018) 

SVM, ANN, ANFIS 9 weather stations, 

MODIS remote 

sensing data, 

2010-2013 period, 

daily data 

ND Hexi corridor,  

NW China 

 (Ehteram et 

al., 2019) 

SVM with cuckoo algorithm (SVM-

CA), gaussian process regression 

(GPR), M5Tree, ANFIS 

1 weather station, 

1990-2016 period, 

daily data 

humid Himalaya, India 

(Ferreira et 

al., 2019) 

ANN, SVM 203 weather 

stations, 

2001-2015 period, 

daily data 

various Brazil 

(Granata, 

2019) 

M5Tree, bagging, RF, support 

vector regression (SVR) 

1 weather station, 

2000-2004 period, 

daily data 

subtropical 

humid 

Florida, USA 

(Huang et al., 

2019) 

gradient boosting with categorical 

features support/CatBoost (CAT), 

5 weather stations, 

2001-2015 period, 

humid southern China 
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RF, SVM daily data 

(Mosavi and 

Edalatifar, 

2019) 

ANFIS, particle swarm 

optimization (PSO), principal 

component analysis (PCA) 

2 weather stations, 

1981-2011 period, 

monthly data 

arid Iran 

(Nourani et 

al., 2019) 

feed forward ANN, ANFIS, SVR 14 weather stations, 

1987-2018 period, 

monthly data 

various Turkey, Cyprus, 

Iran, Iraq, Lybia 

(Reis et al., 

2019) 

ANN, ELM, multiple linear 

regression (MLR) 

5 weather stations, 

1996-2016 period, 

daily data 

warm 

tropical, dry 

winter 

Verde Grande 

Basin, Brazil 

(Wu and Fan 

2019)  

multi-layer perceptron (MLP), 

GRNN, ANFIS, SVM, kernel-

based nonlinear extension of Arps 

decline (KNEA), M5Tree, XGB, 

MARS 

14 weather stations, 

2001-2015 period, 

daily data 

various China 

(Wu et al., 

2019) 

ANN, RF,  GBDT, XGB, MARS, 

SVM, ELM, KNEA 

11 weather stations, 

2011-2015 period, 

daily data 

subtropical 

humid  

Jiangxi province, 

China 

(Zhang et al. 

2019)  

SVM 5 weather stations, 

1990-2014 period, 

daily data 

ND Shaangxi, China 

(Ashrafzadeh 

et al., 2020) 

seasonal autoregressive 

integrated moving average 

(SARIMA), SVM 

4 weather stations, 

1993-2014 period, 

daily data 

ND Northern Iran 

(Chia et al., 

2020) 

SVM 4 weather stations 

2014-2018 period, 

daily data 

tropical west coast 

Malaysia 

(Dos Santos cubist regression, ANN, SVM, 23 weather stations, various MATOPIBA, 

https://www.zotero.org/google-docs/?JFnqtP
https://www.zotero.org/google-docs/?JFnqtP
https://www.zotero.org/google-docs/?SE7rYp
https://www.zotero.org/google-docs/?SE7rYp
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Farias et al., 

2020) 

MLR 2000-2016 period, 

daily data 

Brasil 

(Hossein 

Kazemi et al., 

2020) 

GEP 7 weather stations, 

2008-2017 period, 

daily data 

arid Iran 

(Kim et al., 

2020) 

RF 9 weather stations + 

MODIS remote 

sensing data + 

numerical weather 

prediction data, 

2013-2019 period, 

daily data 

ND South Korea 

(Mohammadi 

and 

Mehdizadeh, 

2020) 

SVR with whale optimization 

algorithm (WOA) 

3 weather stations, 

2000-2014 period, 

daily data 

semi arid, 

arid, hyper 

arid 

Iran 

(Wu et al., 

2020) 

Adaptive boosting (ADA), GBDT, 

XGB, light gradient boosting 

decision machine (LGB), CAT 

10 weather stations, 

1997-2016 period, 

daily data 

temperate, 

subtropical 

and tropical 

eastern 

monsoon zone, 

China 

(Yu et al., 

2020) 

ANN, SVR, ELM  1 weather station, 

2005-2017 period, 

daily data 

semiarid, arid Xinjiang Uygur, 

China 

(Zhang et al., 

2020) 

CAT, GRNN, RF 15 weather stations, 

1996-2015 period, 

daily data 

arid, semi-

arid 

northern China 

(Adnan et al., 

2020) 

ANN, MARS, M5Tree 2 weather stations, 

1968-2015 period, 

daily data 

mediterranea

n 

southern Turkey 
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(Ayaz et al., 

2021) 

LSTM, GBDT, RF, SVR 2 weather stations, 

1965-2015 period, 

daily data 

hot semi arid, 

west coast 

marine 

climate 

Hyderabad, 

India, Waipara, 

New Zealand 

(Bellido-

Jiménez et 

al., 2021) 

MLP, ELM, GRNN, SVM, RF, 

XGB 

5 weather stations, 

2000-2018 period, 

daily data 

semi arid  Andalusia, Spain 

(Chia et al., 

2021a) 

MLP, SVM, ANFIS, bootstrap 

aggregating, Bayesian model 

averaging (BMA), ELM 

4 weather stations, 

undetermined 

period, 

daily data 

ND peninsular 

Malaysia 

(Chia et al., 

2021b) 

ELM-PSO hybrid, ELM-moth-

flame optimization (MFO) hybrid,  

ELM-WOA hybrid 

3 weather stations, 

2014-2018 period, 

daily data 

tropical Eastern 

Malaysia 

(Rashid 

Niaghi et al., 

2021) 

GEP, SVM, MLR, RF 6 weather stations, 

2003-2016 period, 

daily data 

continental North Dakota 

and Minnesota, 

USA 

  

(Sattari et al., 

2021) 

GPR, SVR, Broyden Fletcher 

Goldfarb Shanno ANN, LSTM 

1993-2018 period, 

monthly regional  

measurements 

arid, semi-

arid 

Turkey 

(Wu et al., 

2021) 

ELM coupled with K-means 

clustering and firefly algorithms, 

ANFIS, RF, M5Tree 

26 weather stations, 

1966-2015 period, 

monthly data 

ND Poyang Lake 

basin, Southern 

China 

(Yan et al., 

2021) 

XGB-WOA 8 weather stations, 

1966-2015 period, 

daily data 

arid, humid China 
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