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ABSTRACT
Entity Matching (EM) automates the discovery of identity links be-

tween entities within different Knowledge Graphs (KGs). Link keys

are crucial for EM, serving as rules allowing to identify identity

links across different KGs, possibly described using different ontolo-

gies. However, the approach for extracting link keys struggles to

scale on large KGs. While embedding-based EM methods efficiently

handle large KGs they lack explainability. This paper proposes a

novel hybrid EM approach to guarantee the scalability link key

extraction approach and improve the explainability of embedding-

based EM methods. First, embedding-based EM approaches are

used to sample the KGs based on the identity links they generate,

thereby reducing the search space to relevant sub-graphs for link

key extraction. Second, rules (in the form of link keys) are extracted

to explain the generation of identity links by the embedding-based

methods. Experimental results demonstrate that the proposed ap-

proach allows link key extraction to scale on large KGs, preserving

the quality of the extracted link keys. Additionally, it shows that

link keys can improve the explainability of the identity links gen-

erated by embedding-methods, allowing for the regeneration of

77% of the identity links produced for a specific EM task, thereby

providing an approximation of the reasons behind their generation.

CCS CONCEPTS
• Information systems→ Entity resolution.
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1 INTRODUCTION
Knowledge Graphs (KGs) offer an explicit representation of knowl-

edge and have emerged as powerful tools for a range of applications,

including recommendation systems, question answering, medical

applications and data federation [1]. The distributed nature of data

across multiple KGs rises different challenges, including addressing

the task of Entity Matching (EM). This task involves automatically

identifying the identity links between different KGs, which consist

of entities from different KGs and referring to the same real-world

object. For addressing the task of EM, key-based approaches involve
the explicit definition or extraction of keys [2], which uniquely

identify equivalent entities across multiple KGs. An example of a

key is as follows:

({creator, title} key Work),
indicating that when two entities of the classWork share values for
the properties creator and title then they denote the same entity.

To perform EM with keys, the KGs must be described using

the same ontology, or their ontologies must be aligned. In order

to overcome this limitation, keys have been generalised as link
keys [3]. An example of a link key is as follows:

({⟨author, auteur⟩, ⟨title, titre⟩} linkkey ⟨NonFiction, Essai⟩)
1
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stating that whenever an entity of the class NonFiction and an

entity of the class Essai, share values for roles author and auteur,
and for roles title and titre, respectively, then they denote the same

entity. The automatic extraction of link keys can be solely realised

using Linkex [3]. However, due to its exhaustive nature, Linkex

extracts all potential link key candidates generated from the entire

input KGs, making it difficult to scale on large KGs. Key-based

approaches, including link keys, encompass properties and classes

that can be reused within a given domain. They can be combined

with ontologies and ontology alignments to profit from logical

reasoning.

With the rise of deep learning, there has been an increased

adoption of embedding-based methods which automatically learn

and extract features from KGs [4, 5]. Embedding-based EM models

employ representation learning for EM across different KGs using

reference sets of identity links among these KGs. The embedding

module portrays each KG entity and relation as a vector in a lower-

dimensional space. Consequently, embedding-based EM methods

scale better on large and cross-lingual KGs, but lack explainability

for the produced results, i.e., the reasons behinds their generation.

To address this issue, our proposed approach, HMatch, combines

the strengths of both embedding-based methods and key-based

approaches, aiming to achieve both scalability and explainability

in EM. HMatch employs embedding-based methods such as BERT-

INT [6] to establish identity links between the given pair of KGs.

These identity links are used to sample the KGs, retaining only

the sub-graphs necessary for extracting link keys. After, Linkex is

deployed on these sub-graphs to extract link keys, which present

explainable rules and can be reused for other EM task, even if no

training data is available. For example, consider three large KGs

within the same domain: KG1, KG2, and KG3. While a reference set

of identity links exists between KG1 and KG2, no such set exists

between KG2 and KG3. Due to the scale of these KGs, Linkex cannot

be directly applied to KG1 and KG2. However, using HMatch, we

can first train embedding models like BERT-INT on the reference

set of identity links to extract identity links between KG1 and KG2.

These identity links can then be used to sample the KGs into sub-

graphs, making it feasible to apply Linkex on these sub-graphs and

extract link keys. Since KG1, KG2, and KG3 belong to the same

domain, the extracted link keys can be reused to construct identity

links between KG2 and KG3 without the need to re-launch Linkex,

even in the absence of a direct reference set of identity links, which

prevents the application of BERT-INT.

Our approach allows, as well, for the extraction of sets of link

keys explaining the generation of the identity links by the embedding-

based approaches. These sets of link keys can be reused to recon-

struct identity links by verifying which entities share values for the

property pairs specified in the link keys.

The main contributions of this paper are: (a) a novel approach

that combines embedding-based and key-based EM methods; (b)

the reduction of Linkex’s search space through the use of identity

links generated by embedding-based techniques, guaranteeing its

scalability; and (c) improved explainability of the identity links

produced by embedding-based techniques through the use of link

keys.

The paper is structured as follows. Section 2 introduces the

background, while Section 3 presents the proposed framework.

Section 4 details the space-reduction and explainability experiments.

Section 5 analyzes and discusses the results. Section 6 reviews

related work, and finally, Section 7 summarizes the contributions

and outlines directions for future research.

2 BACKGROUND DEFINITIONS
This section provides the formal definitions of KGs, EM and link

keys.

Definition 2.1. A knowledge graph (KG) comprises a set of

triples {(𝑠, 𝑝, 𝑜)}, where each triple (𝑠, 𝑝, 𝑜) is composed of a subject
𝑠 , which is an entity representing a real-world object, a property
𝑝 , which is a property or an attribute that describes the nature of

the connection between the subject and the object, and an object
𝑜 , which can either be an entity or an attribute value.

A KG can be accompanied by an ontology that defines the

classes of the entities, the attributes, and the properties represented

in the triples.

Definition 2.2. Let KG1 and KG2 be respectively a pair of source

and target KGs. The entity matching task involves finding a set

of identity links 𝐿 = {(𝑥𝑖 𝑜𝑤𝑙 :𝑠𝑎𝑚𝑒𝐴𝑠 𝑦 𝑗 )}, where 𝑥𝑖 ∈ KG1 and

𝑦 𝑗 ∈ KG2, such that 𝑥𝑖 and 𝑦 𝑗 refer to the same real-world entity.

Each identity link (𝑥𝑖 owl:sameAs 𝑦 𝑗 ) can be associated with a

score 𝑠𝑖 𝑗 indicating the confidence that 𝑥𝑖 and 𝑦 𝑗 are the same

entity. The identity links 𝐿 represent the matching pairs of entities

between the two KGs.

To address the task of EM, the concept of link keys has been

introduced.

Definition 2.3. A link key between a pair of KGs KG1 and KG2

is an expression of the form:

⟨{⟨P𝑖 , P′𝑖 ⟩}𝑖∈EQ , {⟨Q𝑗 ,Q′
𝑗 ⟩} 𝑗∈IN linkkey ⟨C,D⟩⟩, 1

where: ⟨C,D⟩ is a pair of classes of the entities belonging, respec-
tively, to KG1 and KG2, {⟨P𝑖 , P′𝑖 ⟩}𝑖∈EQ and {⟨Q𝑗 ,Q′

𝑗
⟩} 𝑗∈IN are sets

of property pairs such that P𝑖 ,Q𝑖 belongs to KG1 and P′
𝑖
,Q′

𝑖 be-

longs to KG2. The link key asserts that if two entities, belonging

respectively to classes C and D, share all values for the proper-

ties {⟨P𝑖 , P′𝑖 ⟩} and at least one value for each pair of properties

{⟨Q𝑗 ,Q′
𝑗
⟩}, then they are considered identical.

3 HMATCH: A HYBRID APPROACH FOR EM
This section introduces HMatch.

2
. The approach consists of two

components: (1) scaling component for link key extraction and

(2) explainability component for embedding-based EM. In that

way, HMatch acts in both ways on the interface between key and

embedding-based EM methods. We detail on each of the two com-

ponents below.

The first one, as depicted in Figure 2 in the appendix, aims to

ensure the scalability of Linkex by reducing its search-space. Given

a pair of a source and a target KGs, KG1 and KG2, along with a

reference set of identity links between them, an embedding-based

method (subject of choice) is applied to generate a set of identity

1
In this paper, we focus only on in-link keys, i.e., link keys with only the set of

properties {⟨Q𝑗 ,Q′
𝑗 ⟩}.

2
https://github.com/DACE-DL/HMatch/

2
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links. The identity links whose score exceeds the one specified by

the user are given to the sampling process, along with the original

KGs. Then for each graph, the sampling process selects only the

triples that refer to an entity occurring in a generated identity link.

More specifically, given an identity link x owl:sameAs y, the process
iterates over each triple in KG1 and KG2 to select triples whose

subject matches the value of x and y, respectively. The selected

triples form a new pair of KGs, KG
′
1
and KG

′
2
, which are sub-graphs

of KG1 and KG2, respectively. Next, Linkex is launched on the

sampled KGs, KG
′
1
and KG

′
2
to output a set of link keys.

Second, to improve the explainability of the identity links given

by embedding-basedmethods the approachworks as depicted in Fig-

ure 3 in the appendix. The identity links produced by the embedding-

based methods and whose score exceeds the one specified by the

user, along with the sampled KGs are provided to Linkex. Linkex in

turn outputs sets of link keys, allowing to regenerate the provided

identity links, thereby explaining their entailment.

We now introduce the tools and models used in the frame-

work. The embedding-based methods are TransEdge [7] and BERT-

INT [6]. These state-of-the-art embedding-based EM models, have

different foundations, and a notable performance compared to meth-

ods with similar frameworks on benchmark KGs [8, 7, 9]. We chose

these two methods because TransEdge is entirely based on the

graph structure and only uses the object properties, while BERT-

INT mostly uses attribute values and is one of a few methods that

use almost all literals and descriptions of the entities for EM. The

performance of both methods is significantly better than those of

their peers. To extract link keys we use Linkex, which is the sole

tool capable of performing link key extraction.

BERT-INT. BERT-based Interaction Model for KG alignment [6]

is an approach leveraging Bidirectional Encoder Representations

from Transformers (BERT) [10] to tackle cross-lingual understand-

ing and transfer learning tasks. This model uses a pre-trained multi-

lingual BERT-based model to comprehend and represent text across

different languages. Due to training on a large corpus of diverse

and unlabeled text data, a pre-trained BERT is a language model

specifically designed to acquire a deep understanding of language

semantics and syntax, capturing contextual information within

natural language. BERT-INT efficiently processes and comprehends

the multilingual content of KG entities. BERT-INT initially embeds

the attribute values of entities across the two KGs using BERT CLS

embedding into a multi-lingual embedding space. Then, consider-

ing similarity matrices, it computes the interactions between the

attributes and neighbors of each pair of entities. Finally, for the

task of EM, the model uses a Multi-Layer Perceptron [11] to mini-

mize the distance between the aligned entities in the embedding

space. BERT-INT has achieved the best results so far on the DBP15K

KGs [9] that are widely used for evaluating EM systems.

TransEdge. [7] embeds the KGs based on the translational KG

embedding technique TransE [12]. TransE is founded on the notion

that relationships between entities can be represented as transla-

tions in the embedding space, i.e. a relation predicate is a translation

vector between the head and tail entity. However, TransEdge is an

edge-centric model that distinguishes how a relation predicate is

represented based on different contexts of entities holding that re-

lation. Hence, using TransEdge KG embedding, relation predicates

would have different contextualized representations according to

a variety of contexts of their head-tail entity pairs. Furthermore,

to address the challenge of insufficient aligned entities across the

two KGs in each dataset, the approach employs a bootstrapping

strategy [13] to augment the input data. This involves generating

additional likely-aligned entity pairs by resampling from the exist-

ing data, thereby enhancing the representation of aligned entities

and improving the matching model’s performance.

Linkex. [14] uses a two-step process to extract link keys from

two KGs. First, it indexes triples from each KG in hash tables,

where keys represent objects and values represent pairs of subject-

properties. Then, it finds common keys in both indexes to create

a third index. This third index links each pair of subjects with its

maximal set of shared properties. These shared properties are used

to build a concept lattice, where each concept represents a can-

didate link key. The concept lattice materializes the partial order

(subsumption) relationship between link key candidates, thus fa-

cilitating their selection. To facilitate the explainability of a given

set of identity links, Linkex allows to extract subsets of link keys

which maximizes the coverage of the given set of identity links by

adopting the approach described in [15], specifically employing the

“expand-best strategy". This strategy operates as a best-first search,

systematically expanding the best combination of link keys based

on an evaluation measure. The evaluation methods implemented

are: (1) the minimum between precision and recall and (2) the f-

measure. The first measure forces the algorithm to optimize the

worst-case scenario between precision and recall, while the second

measure prioritizes a balanced compromise. Using the link key lat-

tice, the algorithm selectively considers anti-chains, the minimal

sets of link keys concerning the subsumption relation. Finally, can-

didate link keys can be filtered using quality estimation measures

from [3]. When the set of reference identity links is available, link

keys can be evaluated using precision and recall, which measure the

accuracy and completeness of the links generated by the candidate

link keys. Let 𝐿+ be a set of owl:sameAs links (positive examples)

and 𝐿𝑐 the links generated by a link key candidate 𝑐 . The precision

and recall of the link key candidate 𝑐 with respect to 𝐿+:

Precision =
|𝐿+ ∩ 𝐿𝑐 |

|𝐿𝑐 |
Recall =

|𝐿+ ∩ 𝐿𝑐 |
|𝐿+ |

In summary, HMatch combines embedding-based methods with

link key extraction to improve respectively their explainability and

efficiency. It ensures the scalability of Linkex by reducing the search

space using embedding-based identity links, while enhancing ex-

plainability by generating link keys that explain the derived identity

by embedding-based methods. This integrated approach uniquely

addresses the challenges of scalability and explainability for EM

tasks.

4 EXPERIMENTS
This section details the two types of experiments performed to test

the two components of our approach.

3
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Data sets. The approach has been evaluated on the DBP15K

KGs [16] and the Memory Alpha-Star Trek Expanded Universe
3

KGs (referred to as Memory-alphaSTE).

DBP15K KGs. The DBP15K KGs, extracted from DBpedia [17],

are widely used as benchmarks for EM tasks [16, 7, 6]. Available in

English (En.), French (Fr.), Japanese (Ja.), and Chinese (Zh.), each

dataset contains about 40K entities. Inheriting DBpedia’s ontology

structure, they include various types such as Person, Place, and

Organization, and properties describing attributes like names, dates,

and connections among entities (e.g., “president," “predecessor"). In

each experiment, the En. KG was the source KG, tested respectively

with Fr., Ja., and Zh. target KGs. Each KG pair has a reference set

of identity links compromising 30K entities (15K per KG), with 30%

used as the training set for each embedding-based EM model.

Memory-alphaSTE KGs. The Memory-alphaSTE KGs, part of

the well known OAEI campaign’s KG track, are derived from Mem-

ory Alpha, a collaborative Star Trek encyclopedia. The Star Trek

franchise encompasses multiple television series, films, novels,

games, and collectibles. The source KG, Memory Alpha, has around

250K entities and 180 relations, while the target Star Trek Expanded

KG has about 55K entities and 130 relations. The reference set of

identity links includes 3,560 entities, with 1,779 entities in each KG.

These KGs were selected to demonstrate the approach’s capability

to ensure the scalability of Linkex, which initially struggled to scale

on them.

Parameters. For each of the experiments performed, to ensure

high-quality identity links, we select identity links whose scores

surpass a specific threshold. Additionally, considering the size of

the KGs, the support threshold of properties used by Linkex varies

across experiments. These parameters used in the experiments are

indicated in Table 1.

Tools. The tools used in the experiments were installed from the

following links: HMatch: https://github.com/DACE-DL/HMatch/,

Linkex: https://gitlab.inria.fr/moex/linkex, BERT-INT: https://github.

com/kosugi11037/bert-int/tree/master/interaction_model, TransEdge:

https://github.com/nju-websoft/TransEdge/tree/master/code.

4.1 Space-Reduction Experiments
Experimental setting. For each of the KGs, three experiments

have been conducted:

(#1) Linkex on the original DBP15K/Memory-alphaSTE KGs

(baseline),

(#2) Linkex on DBP15K/Memory-alphaSTE KGs sampled using

BERT-INT,

(#3) Linkex on DBP15K/Memory-alphaSTE KGs sampled using

TransEdge.

The quality of the link keys obtained in each task and for each of the

experiments performed on the DBP15K KGs is shown in Table 2. We

calculated the precision, recall and f-measure of the extracted link

keys on original KGs using the reference sets of identity links. This

allows to compare the quality of the link keys extracted from the

sampled and original KGs. Table 2 displays the average precision,

3
https://oaei.webdatacommons.org/tdrs/testdata/persistent/knowledgegraph/v4/

knowledgegraph_v4.zip

recall, and f-measure for the top 10 link keys sorted by f-measure.

We have chosen the average of the first 10 link keys to demonstrate

the effect of over-sampling. However, for the En. & Fr. task, the first

3 link keys — whether from the original KGs or the KGs sampled

by BERT-INT or TransEdge — have an average f-measure of 0.58.

Table 4 presents the variation of runtime across each experiment.

4.1.1 Launching Linkex on DBP15K KGs.

Original KGs (Exp. #1). Due to the size of the original DBP15K
KGs, Linkex was not able to run on the original DBP15K KGs and a

support threshold has been set to 0.1 meaning that only properties

instantiated on at least 10% of instances are considered by Linkex.

As shown in Table 2, running Linkex on the original En. & Fr. KGs

revealed an average quality of link keys, indicated by f-measure

score of 0.48 with a recall of 0.33 but a high precision of 0.88. In

contrast, when Linkex was applied to the En. & Ja.\ Zh. tasks, it

produced link keys of notably poor quality. This issue arises from

Linkex’s inability to handle languages that use different alphabets,

resulting in infrequent agreement of property values in the En. and

the Ja.\Zh. KGs.
The embedding-based models BERT-INT and TransEdge are now

used to extract identity links for sampling the DBP15K KGs. For

each model, the size of the KGs was reduced as indicated in Figure 1.

Due to the relatively still large size of the KGs after the sampling

(especially when the identity links are produced by BERT-INT), we

run Linkex restricting its support threshold to 0.1.
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Figure 1: Reduction of KG sizes for different language pairs using
BERT-INT and TransEdge

Sampled KGs using BERT-INT (Exp. #2). As shown in Table 2,

running Linkex on the sampled En. & Fr. KGs preserves the quality

of the extracted link keys. For the En. & Ja.\ Zh. tasks, the quality
of the link keys was slightly improved. This improvement is due

to the sampling process, which removed information resulting in

generating link keys based on false-positive agreements between

the property values of non-equivalent individuals.

4
for this task we use the properties of discriminability higher than 0.01, as the sampling

process results in KGs with non-discriminant properties instantiated on more than

10% of the instances which makes Linkex fail to scale.

4

https://github.com/DACE-DL/HMatch/
https://gitlab.inria.fr/moex/linkex
https://github.com/kosugi11037/bert-int/tree/master/interaction_model
https://github.com/kosugi11037/bert-int/tree/master/interaction_model
https://github.com/nju-websoft/TransEdge/tree/master/code
https://oaei.webdatacommons.org/tdrs/testdata/persistent/knowledgegraph/v4/knowledgegraph_v4.zip
https://oaei.webdatacommons.org/tdrs/testdata/persistent/knowledgegraph/v4/knowledgegraph_v4.zip
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Experiment Type KGs Sampling Method Identity Links
Score

Support
Threshold

Space-Reduction

DBP15K

Original KGs -

0.1Sampled using BERT-INT

0.75 & 0.85

Sampled using TransEdge

MaSTE

Original KGs - 0.7

Sampled using BERT-INT

0.5 0

Sampled using TransEdge

Explainability DBP15K

Sampled using BERT-INT

0.75

0

Sampled using TransEdge

MaSTE

Sampled using BERT-INT

0.5

Sampled using TransEdge

Table 1: Experimental Parameters.

Experiment Task precision recall f-measure

#1 (Original KGs)

En. & Fr. 0.88 0.33 0.48
En. & Ja. 3x10

−4
2x10

−3
3x10

−4

En. & Zh. 0.17 9x10
−3

1x10
−2

#2 (KGs sampled with BERT-INT)

En. & Fr. 0.88 0.33 0.48
En. & Ja. 5x10

−2
5x10

−3
1x10

−3

En. & Zh. 0.54 1x10
−2

3x10
−2

#3 (KGs sampled with TransEdge)

En. & Fr. 0.71 0.35 0.45
En. & Ja.

4
0 0 0

En. & Zh. 0 0 0

Table 2: Comparison of the quality of link keys extracted from the
original and the sampled DBP15K KGs using identity links with a
score higher than 0.75.

Sampled KGs using TransEdge (Exp. #3). The number of iden-

tity links returned by TransEdge with a score higher than 0.75 is

very small compared to the ones returned by BERT-INT, resulting

in a huge reduction in the size of KGs. The quality of link keys have

slightly decreased for all tasks due to over-fitting caused by the

substantial reduction in the size of the KGs.

As shown in Table 3, the quality of the extracted link keys when

sampling is performed using identity links with a score higher than

0.85 is lower than that when sampling is performed using a score

higher than 0.75. This is because the large reduction in the search

space prevents Linkex from extracting high-quality link keys where

the over-fitting phenomenon is more evident.

However, when sampling is performed using BERT-INT the qual-

ity of link keys is slightly lower than that one of the link keys

extracted from the original KGs and the KGs sampled with a score

higher than 0.75. Since the number of identity links with a score

above 0.85 is slightly higher than the ones with a score 0.75, this

leads to a similar reduction in the search space. Based on Table 4,

employing BERT-INT or TransEdge for sampling KGs and using

them instead of the original ones for link keys extraction decreases

Linkex’s runtime. As expected, the higher sampling score used, the

smaller the sampled KGs are, and the lower Linkex’s runtime is.

4.1.2 Launching Linkex with Memory-alphaSTE KGs.
This experiment focuses on demonstrating how sampling enables

Linkex to scale on very large KGs.

Original KGs (Exp. #1). Due to the large size of the original

KGs, Linkex could not run without setting a high support threshold

(0.7). However, this resulted in no link key being produced.

Experiment Task precision recall f-measure

#1 (Original KGs)

En. & Fr. 0.88 0.33 0.48
En. & Ja. 3x10

−4
2x10

−3
3x10

−4

En. & Zh. 0.17 9x10
−3

1x10
−2

#2 (KGs sampled with BERT-INT)

En. & Fr. 0.76 0.35 0.46
En. & Ja. 1x10

−3
5x10

−3
1x10

−3

En. & Zh. 0.44 1x10
−2

2x10
−2

#3 (KGs sampled with TransEdge)

En. & Fr. 0.8 0.16 0.25
En. & Ja. 0 0 0

En. & Zh. 0 0 0

Table 3: Comparison of the quality of link keys extracted from the
original and the sampled DBP15K KGs using identity links with a
score higher than 0.85.

Score of the identity links: 0.75 Score of the identity links: 0.85
Sampling Method Original BERT-INT TransEdge BERT-INT TransEdge

Exp. #1 #2 #3 #2 #3

En. & Fr. 27.01 16.63 1.98 5.93 0.64

En. & Ja. 22.53 8.60 2 9.29 0.73

En. & Zh. 26.06 12.03 2.9 10.69 0.84

Table 4: Variation of runtime (in seconds) across the experiments
performed on the different task of the DBP15K KGs.

Experiment precision recall f-measure runtime

#1 (Original KGs) - - - 7.25

#2 (KGs sampled with BERT-INT) 0.55 0.83 0.66 4.99

#3 (KGs sampled with TransEdge) 0.58 0.8 0.67 3.55

Table 5: Comparison of the quality of link keys and Linkex runtime
(in seconds) using original and sampled memory-alphaSTE KGs

Sampled KGs using BERT-INT(Exp. #2) and TransEdge (Exp.
#3). To ensure a fair comparison between the following experi-

ments, we use for sampling a score of 0.5, which is the highest score

allowing to retrieve identity links between TransEdge and BERT-

INT models. The results showing the quality of the extract link keys

are shown in Table 5. Using BERT-INT, the size of memory-alpha

and STE KGs was respectively reduced to 3.36% and to 6.92% of

their original size. Using TransEdge, memory-alphaSTE KGs were

respectively reduced to 2.23% and to 4.23% of their original size.

Sampling with BERT-INT or TransEdge enables Linkex to scale

on large KGs, and results in extracting link keys with high recall.
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Sampling with the identity links produced by TransEdge, partic-

ularly, results in higher percentage of KGs reduction and conse-

quently lower runtime for Linkex. This, however, results in extract-

ing better quality link keys compared to those extracted from the

KGs sampled with BERT-INT.

4.2 Explainability Experiments
In these experiments, Linkex is used to extract the sets of links

keys which explains the identity links produced by BERT-INT and

TransEdge on DBP15K and Memory-alphaSTE KGs.

Experimental setting. For the DBP15K KGs, we only consider

the En. & Fr. task. Results for the En. & Ja. \Zh. tasks are omitted

due to the poor quality of the generated link keys, as discussed in

Section 4.1. The displayed sets of link keys in Tables 6 and 7 have the

best recall among those calculated optimizing the worst between

precision and recall. We use this strategy since the precision of the

extracted link keys is high on the considered KGs and we seek to

maximise the recall allowing to cover more identity links.

4.2.1 Identity Links generated on DBP15K KGs. We choose the

identity links with scores greater than 0.75. This allows to extract

link keys that explain the most accurate identity links excluding

those that result in the extraction of misleading link keys. The

results for BERT-INT and TransEdge are presented in Tables 6

and 7, respectively. The prefixes used in the following tables are:

• dbp: ⟨http://[en-fr].dbpedia.org/property/⟩,
• foaf: ⟨http://xmlns.com/foaf/0.1/⟩.

BERT-INT. The set of link keys presented in Table 6 has the

highest recall of 0.77 among all the other sets generated. This

indicates that it can regenerate 77% of the identity links produced

by BERT-INT for the En. and Fr. task. Additionally, this set has a

high precision of 0.77. To further investigate the ability of this set

of link keys to generate identity links missed by BERT-INT, we

examined which entities from the original KGs could be linked by

this set and were able to regenerate, among other identity links,

3,036 correct identity links (approximately 20% of the reference

set of identity links) that BERT-INT did not produce. Thus, this

set of link keys not only explains the identity links produced by

BERT-INT but also complements it by generating additional identity

links that BERT-INT misses, improving both the its coverage and

explainability.

TransEdge. The link key set displayed in Table 7 has a recall

of 0.6, allowing to cover 60% of the identity links produced by

TransEdge. It has a precision of 0.8. Additionally, this set of link
keys also allows for the regeneration of 3,650 correct identity links

(approximately 24% of the reference set), among other identity links,

which were not generated by TransEdge.

4.2.2 Identity Links generated on Memory-alphaSTE KGs. We re-

strict ourselves to the identity links with a score greater than 0.5 as

it is the highest common score between the identity links gener-

ated by BERT-INT and TransEdge on Memory-alphaSTE KGs. The

prefixes used in Tables 9 and 8 are:

• rdfs: ⟨http://www.w3.org/2000/01/rdf-schema#⟩,
• ma: ⟨http://dbkwik.webdatacommons.org/memory-alpha.

wikia.com/property/⟩,

Link Keys
{ (foaf:name, foaf:name) }
{ (dbp:birthDate, ns1:dateDeNaissance) }
{ (dbp:name, ns1:nom) }
{ (foaf:name, ns1:nom) }
{ (dbp:name, ns1:titre) }
{ (dbp:deathDate, ns1:dateDeDécès) }
{ (dbp:length, ns1:durée), (dbp:released, ns1:sorti) }
{ (dbp:name, foaf:name) }
{ (dbp:title, foaf:name), (dbp:title, ns1:nom) }
{ (foaf:name, ns1:titre), (dbp:title, ns1:titre) }
{ (dbp:released, ns1:sorti), (dbp:title, ns1:titre) }
{ (dbp:deathDate, ns1:jusqu

′
auFonction), (dbp:years,

ns1:àPartirDuFonction)}
{ (dbp:termEnd, ns1:jusqu

′
auFonction), (dbp:termStart, ns1:àPartirDu

Fonction), (dbp:years, ns1:nom) }
{ (dbp:title, ns1:nom), (dbp:title, ns1:titre) }
{ (dbp:termEnd, ns1:dateDéDécès), (dbp:termEnd, ns1:jusqu

′
auFonc,

tion), (dbp:termStart, ns1:àPartirDuFonction) }
{ (dbp:termEnd, ns1:jusqu

′
auFonction), (dbp:termStart, ns1:àPartirDu)

Fonction), (dbp:years, ns1:àPartirDuFonction) }
{ (dbp:length, ns1:durée), (dbp:title, foaf:name), (dbp:title, ns1:titre) }

Table 6: The best-recall set of link keys explaining the identity links
given by BERT-INT on the En. & Fr. task.

Link Keys
{ (foaf:name, foaf:name) }
{ (dbp:birthDate, dbp:dateDeNaissance) }
{ (dbp:name, dbp:nom) }
{ (dbp:name, dbp:titre) }
{ (dbp:founded, foaf:cration) }
{ (foaf:deathDate, ns1:dateDeDécès) }
{ (dbp:title, dbp:titre) }
{ (foaf:name, dbp:nom) }
{ (dbp:termStart, dbp:àPartirDuFonction) }
{ (dbp:titre, dbp:nom) }
{ (dbp:years, dbp:àPartirDuFonction) }

Table 7: The best-recall set of link keys explaining the identity link
of TransEdge on the En. & Fr. task.

• st: ⟨http://dbkwik.webdatacommons.org/stexpanded.wikia.

com/property/⟩,
• skos: ⟨http://www.w3.org/2004/02/skos/core#⟩,
• dcm: ⟨http://dbkwik.webdatacommons.org/ontology/⟩.

BERT-INT. According to Table 8, the produced set of link keys

shows an average precision of 0.58 and recall of 0.56, i.e., it allows
to regenerate 56% of the identity links produced by BERT-INT. Ad-

ditionally this set of link keys enable to cover other, among others,

500 correct identity links (approximately 28% of the reference set

of identity links) that BERT-INT misses.

TransEdge. According to Table 9, the set of link keys shows an

average level of precision of 0.5 and recall of 0.5. Additionally this

6
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Link Keys
{ (rdfs:label, rdfs:label) }
{ (skos:altLabel, skos:altLabel) }
{ (dcm:wikiPageWikiLinkText, st:className) }
{ (ma:imagecap, dcm:wikiPageWikiLinkText), (ma:imagecap, rdfs:label)
rdfs:label), (ma:imagecap, skos:altLabel), (dcm:wikiPageWikiLinkText,
dcm:wikiPageWikiLinkText), (rdfs:label, dcm:wikiPageWikiLinkText),
(skos:altLabel, dcm:wikiPageWikiLinkText) }
{ (ma:dt, dcm:wikiPageWikiLinkText), (ma:dt, st:name),
(ma:name, dcm:wikiPageWikiLinkText), (ma:name, st:name),
(dcm:wikiPageWikiLinkText, dcm:wikiPageWikiLinkText),
(dcm:wikiPageWikiLinkText, st:name), (dcm:wikiPageWikiLinkText,
rdfs:label), (dcm:wikiPageWikiLinkText, skos:altLabel) }

Table 8: The best-recall set of link keys explaining the identity link
of BERT-INT on memory-alphaSTE KGs.

Link Keys
{ (dcm:wikiPageWikiLinkText, rdfs:label), (dcm:wikiPageWikiLinkText

, skos:altLabel), (rdfs:label, rdfs:label), (rdfs:label, skos:altLabel),
(skos:altLabel, rdfs:label), (skos:altLabel, skos:altLabel) }
{ (ma:armament, st:weapons), (dcm:wikiPageWikiLinkText, st:className) }
{ (dcm:wikiPageWikiLinkText, dcm:wikiPageWikiLinkText), (rdfs:label,

dcm:wikiPageWikiLinkText) (skos:altLabel, dcm:wikiPageWikiLinkText) }
Table 9: The best-recall set of link keys explaining the identity link
of TransEdge on memory-alphaSTE KGs.

Model precision recall f-measure
BERT-INT 0.95 0.65 0.77

TransEdge 0.95 0.03 0.07

Table 10: The precision, recall and f-measure of the identity links
with a score higher than 0.5 produced by BERT-INT and TransEdge
models.

set of link keys enable to cover other, among others, 1280 identity

links (approximately 72% of the reference set of identity links) in

the reference set of identity links.

To further investigate why the recall of the link keys sets shown

in Tables 8 and 9 are not optimal, we calculated the precision and

recall of these identity links against the reference set of identity

links (Table 10). The inability of Linkex to produce link keys that

adequately cover the considered identity links is due to the average

recall of the identity links produced by BERT-INT and the extremely

low recall of those produced by TransEdge. This latter factor also

explains the ability of the set of link keys in Table 9 to generate

many identity links not covered by TransEdge.

The capacity of the generated sets of link keys to generate iden-

tity links, which are missed by embedding-based methods, can

be attributed to the fact that embedding-based approaches often

prioritize structural similarities over exact attribute matches.

5 DISCUSSION
Results: The experiments reveal promising results in the associa-

tion of embedding-based methods (such as BERT-INT or TransEdge)

and key-based methods (such as Linkex) for the task of EM. More

specifically, the proposed approach allows to reduce of the task of

link keys extraction from a pair of original KGs to a pair of sampled

KGs. This guarantees the scalability of Linkex on large KGs and

allows to significantly reduce its runtime. This reduction in runtime

does not compromise the quality of the extracted link keys, pro-

vided that over-fitting is avoided. Additionally, the explainability

of the identity links produced by BERT-INT can be approximated

by associating a set of rules, represented as link keys.

Limitations: The explainability of identity links is currently lim-

ited to cases where there is a syntactic overlap between direct

attribute values, making it difficult to provide clear interpretations

for matches without such an overlap. This explains the room for im-

provement of the recall of the sets of link keys produced in the the

explainability experiments. Enhancing recall could be achieved by

extracting more expressive link keys, such as those that include in-

verse and composed properties, leading to new agreement between

these properties. These link keys will allow to cover more identity

links and thus augmenting the recall. Also for sampling the original

KGs, the approach requires to have reference set of identity links to

train the embedding-based methods, which in turn will output the

identity links used in sampling. To sidestep this requirement in the

training phase, semi-supervised or unsupervised EM approaches

are preferred [18, 19, 20, 21, 22]. Besides, since the sampling process

depends on the identity links generated by embedding-based meth-

ods, the choice of the embedding-based method and of the score of

the identity links produced by embedding-based methods must be

adequate. As the quality and number of the identity links used in

the sampling affects the quality and the size of the sampled KGs.

This in turns affects the quality of the extracted link keys and the

runtime of Linkex. It is worth noting that even if Linkex initially

demonstrates strong performance, its overall effectiveness is tied to

the accuracy of the identity links used for sampling. For instance,

Linkex outperforms BERT-INT on Doremus KGs [23], where the

best link key achieves an f-measure of 0.804 compared to BERT-

INT’s 0.57. However, when sampling is performed using identity

links produced by BERT-INT, the quality of the extracted link keys

from the sampled KGs decreases due to the quality of the identity

links.

Implications: The reduction in runtime achieved by sampling

does not negatively impact the quality of the extracted link keys.

Additionally, since link keys can be reused for other EM tasks,

without necessitating training, this framework provides a balance

between efficiency and reusability, which is essential for matching

large KGs. Associating link keys for the identity links produced by

embedding-based methods helps approximate the reasons behind

the generation of the identity links, by providing the properties

pairs allowing the regeneration of these identity links and thus

providing more interpretability in the results, it allows as well to

generate other correct identity links missed by embedding-based

methods, which can prioritize structural similarities over attribute

similarity.
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6 RELATEDWORK
This section discusses key and embedding-based EMmethods, along

with approaches that provide explanations for these later.

Keys and link keys for EM. Different methods for key extrac-

tion have been proposed [2, 24, 25, 26]. In [2], an algorithm for

extracting keys from KGs without necessitating a complete scan of

the KGs is proposed. It identifies first maximal non-keys (i.e. prop-

erties combinations that share values for at least two entities). Then

it derives minimal keys based on the discovered set of non-keys.

However, [2] struggles to handle large KGs and necessitates data

with no errors or duplicates. A scalable method for discovering

almost keys, resilient against erroneous data, was developed in [24].

An almost key is a set of properties that is not a key due to a few

exceptions. This method uses heuristics to identify keys and effi-

ciently derive almost keys from non-keys, scaling effectively on

large KGs. Another algorithm for extracting keys and pseudo keys
has been proposed in [26]. Pseudo keys are keys that tolerate some

exceptions. However, approaches such as [24, 26] can not deal with

KGs described using different ontologies. Link keys overcome this

challenge. An approach based on pattern structure for discovering

link keys was presented in [14]. However, this approach still re-

quires considering the entire KGs for building the candidate link

keys. Our approach, on the other side, consists of sampling the KGs

to remove entities that are irrelevant for link keys extraction. Other

approaches such as [27] compare various blocking workflows and

nearest-neighbor methods, focusing on performance trade-offs in

EM. In contrast, our approach retains only the identical individuals,

eliminating the need for complex blocking workflows and nearest-

neighbor methods, and allows for the efficient production of link

keys.

Embeddings for EM. Embedding-based approaches have been

largely adopted in EM [28, 16, 29, 30]. They involve representing

entities, relations, or other structured data in a continuous vec-

tor space [31, 32]. With a focus on relations between the entities,

Translational KG embedding methods such as MTransE [33], IP-

TransE [34], and TransE [12] are well-known approaches that inter-

pret relations as translation vectors operating on entity embeddings.

Several entity alignment models such as [13] have been designed

by using translational KG embedding techniques. To investigate

the benefits of these relation-centric methods in link key extraction,

we use the TransEdge model which learns KG embeddings through

contextualized relation representations. More recently, pre-trained

language models, like BERT [10], have been increasingly utilized

for EM in KGs [35, 6]. Language models can learn embeddings that

encode the semantic information of entities. To investigate benefits

of using language models for EM, we used the BERT-INT model [6]

that has been efficiently applied on many benchmark KGs [30].

EAGER [36] integrates graph embeddings and attribute similarities

through machine learning to perform EM. While it achieves strong

performance, particularly on rich KGs, it falls short in explainabil-

ity due to the opaque nature of embeddings. Limited studies [37,

38] have explored the use of large language models (LLMs) in EM,

but further research is needed to enable LLMs to generate identity

links enriched with confidence scores, data types, and relational

properties for better supporting evidence.

Explainability of embedding-based EM models. Recently,
there has been a push to explain the mechanics and outputs of

embedding-based models [39, 40, 41, 42]. There are two main ap-

proaches: prediction explanations and model explanations [43]. As

an example, [43] creates model explanations for deep analysis of

KG embedding models by extracting propositional features from a

KG. In parallel, other studies have focused on explaining the pre-
dictions made by different embedding models [44, 45, 46, 47]. For

instance, [44] proposes KELPIE (Knowledge graph Embeddings

for Link Prediction: Interpretable Explanations) which explains a

prediction by computing the subset of training facts enabling the

model to return it, while [45] explains link prediction and triple

classification using entity co-occurrence data. [48] enhances the

explainability of link prediction methods in KGs by improving

KELPIE [44]. It reduces candidate explanations, and improves ex-

planation effectiveness using a semantic similarity measure. The

studies done in [49, 50] relate more closely to our research and delve

into explaining the model’s predictions on EM tasks. I-Align [49]

uses Transformer encoders to create an EMmodel that explains each

alignment prediction, and Xin et al. [50] introduces a Transformer-

based EMmodel with a comprehensive reasoning process to provide

evidence for EM. Unlike transformer-based explainability methods

for EM, our approach extracts rules in the form of link keys possi-

bly composed of data and relation properties, optimally covering

the generated identity links. Other methods, such as LightEA [51]

provides explanations based on relational properties only.

7 CONCLUSION AND PERSPECTIVES
This paper introduces a framework that combines embedding-based

methods with Linkex, both addressing the EM problem. For an EM

task involving a pair of KGs, the proposed framework utilizes the

identity links produced by BERT-INT or TransEdge on a pair of

source and target KGs to sample them before applying Linkex. This

results in a notable reduction in Linkex’s runtimewhile maintaining

the quality of the extracted link keys, as long as over-fitting is

avoided. Moreover, this approach enhances the scalability of Linkex

for extracting link keys from large KGs. Last but not least, the

framework enables the extraction of sets of link keys that cover the

identity links generated by embedding-based methods, providing

an approximation of the reasons behind their generation and thus

enhancing the explainability of these methods’ results.

Future work includes eliminating the need for the sampling

phase by providing the identity links directly to Linkex which in

turn restricts its search space to the entities contained in those

links. Additionally for improving the recall of the extracted link

keys we aim for extracting more expressive link keys, i.e., link keys

including complex property constructors. Another direction is to

compare our relational and data property link keys with those from

LightEA on benchmark datasets.
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