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Abstract

Generative AI (Gen-AI) represents a new stage in digital transformation through its many applications. Unfortu-
nately, by accelerating the growth of digital technology, Gen-AI is contributing to the multiple environmental
damages caused by its sector. The question of the sustainability of IT must include this new technology and its
applications, by estimating its environmental impact. We propose various ways of improving the measurement of
Gen-AI’s environmental impact. Whether using life-cycle analysis methods or direct measurement experiments,
we illustrate our methods by studying Stable Diffusion a Gen-AI image generation available as a service. By
calculating the environmental costs of this Gen-AI service from end to end, we broaden our view of the impact
of these technologies. We show that Gen-AI, as a service, generates an impact through the use of numerous user
terminals and networks. We also show that decarbonizing the sources of electricity for these services will not be
enough to solve the problem of their sustainability, due to their consumption of energy and rare metals. This
consumption will inevitably raise the question of feasibility in a world of finite resources. We therefore propose
our methodology as a means of measuring the impact of Gen-AI in advance. Our approach differentiates the
embodied and operational impacts of Gen-AI in order to consider the sustainability of models and equipment.
Such solution will provide valuable data for discussing the sustainability or otherwise of Gen-AI solutions in a
more transparent and comprehensive way.

1 Introduction

The last few decades have been marked by the ever-
increasing presence of digital technology in our soci-
eties. This growth, presented as digital transforma-
tion, comes naturally with the increasing weight of
digital technology on our environment. We are now
facing a potential new phase of digital transforma-
tion [1], represented by the emergence of generative
AI (Gen-AI), a subfield of artificial intelligence where
the objective is to generate new content, for example,
human-like discussions and realistic images [2].

While we can hope that certain digital applica-
tions will help to meet sustainability challenges by
reducing the impact of human activities on the envi-
ronment, it remains difficult to measure the positive
or negative environmental impact of digital technol-
ogy [3, 4, 5]. The question of the sustainability of
computing can not be addressed scientifically with-
out means of evaluating the environmental damage.
Moreover, we need to evaluate the real applications
of computing and not just subparts. As it is, the
deployment of Gen-AI as a service, available online
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from any device, like Chat-GPT or Stable-Diffusion,
that are raising many questions, even beyond sus-
tainability. This is why we present a methodology
with its application, that makes an environmental
assessment of Stable Diffusion as an end-to-end ser-
vice. To better question the sustainability of Gen-AI,
we assess not only the carbon impact but also the
consumption of metals, in a life cycle assessment
(LCA) approach. Finally, we also question the current
methods used to estimate the electricity consumption
used for training Gen-AI models. We propose an
approach based on sampling through reproducible
experiments. Transparency and reproducibility are
necessary as best as possible, especially in the subject
of environmental sustainability. We present in this
article measurement tools and methods aiming at
being more reliable and holistic to allow us to rethink
sustainability challenges and improvements in the
use of Gen-AI services. We base our impact method-
ology on a previous work [6], extending the scope
to data storage, all training costs, and differentiat-
ing operational emissions, from the use phase of the
hardware life-cycle, and embodied emissions, from
the other phases.

We begin with a review of the current approach to
environmental impact in the field of AI and Gen-AI
(Section 2). Then, we present our tool to enhance the
current way to assess the environmental impact of
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Gen-AI (Section 3). Finally, we show how our contri-
bution are helping to frame new obstacles and sus-
tainability challenges around Gen-AI services (Sec-
tion 4).

2 Overview and limits of
environmental impact assessment

for AI

2.1 Rise of generative AI, quick review

If, as [2] points out, the term "Generative AI" was
highlighted in 2014 [7], it is since the end of 2022
that this term has been gaining notoriety and con-
sequently great interest, well beyond AI research.
However, the sudden and significant popularization
of the notion of generative AI should not conceal the
long research process these models are part of [8].

Developing Gen-AI models requires collecting data
and learning from the data, which includes (1) select-
ing the best model structure and learning algorithm
for the given task and (2) applying this algorithm to
the model and the collected data. The first step hides
an expensive development process, as Gen-AI models
are usually composed of several already-developed
models. The second step is called training. Once
a model has reached the targeted quality, it can be
used on new data, which is referred to as the in-
ference phase. Due to the ever-increasing size of
databases and models, training can require hundreds
of Graphic Processing Units (GPUs) running in paral-
lel. As an example, Stable Diffusion was trained with
258 GPUs and 64 Central Processing Units (CPUs) [9].
Data is grouped into batches so that each batch is
processed in parallel. Training the model on one
batch corresponds to a training step. Hundreds of
thousands of steps were needed to train Stable Diffu-
sion.

It is interesting to note that, while there were al-
ready powerful models in existence before 2022, it is
the online availability of these models as a service,
led by Chat-GPT, that is behind the popularity of
Gen-AI. The massive new use of such services and
the IT infrastructures that support them, with their
high demand for electricity [10] and critical equip-
ment [11], undoubtedly raises the question of sus-
tainability. What is the environmental impact of this
new digital usage, and in what order of magnitude?

2.2 Environmental impact of AI, an
uncompleted work

Included in global studies on the environmental im-
pact of digital technology, the growth in the size of

machine learning (ML) models [12] has brought AI
to the fore as a sustainability issue in its own right in
2019 [13, 14]. These initial studies focus on electricity
consumption during the ML training phase as well
as the greenhouse gas (GHG) emissions associated
with this consumption. Building on this momentum,
several other studies followed [15, 16, 17, 18], with-
out departing from the scope of the measurement
of electricity consumption for training ML models.
This choice can be partly explained by the fact that
ML models are seen as research projects rather than
mass-market consumer products.

Several methods have been developed to measure
or estimate the electricity consumption of the training
phase. The most popular one is based on a manufac-
turing constant called Thermal Design Power (TDP),
which is a good estimation of the maximal power of
a component. The training phase is usually highly
intensive, so it can be assumed that the computing
components are running at maximal power. There-
fore, a TDP-based estimation is the multiplication of
the TDP of the computing components by the total
training duration. This method is quite simple, as it
only requires knowledge of the TDP and the training
duration, but it has several limitations. First, the com-
puting components (which are typically GPUs) are
not the only components composing a server. CPUs,
memory buses, switches, and fans should also be
taken into account.

An alternative method is to measure the electricity
consumption during the execution. Power meters
placed outside of the computing node are the most
accurate and complete tools, but they also require
direct access to the hardware, which is, in most cases,
difficult if not impossible. Workloads can also be
monitored using software-based power meters (e.g.
RAPL or NVML), which report the electricity con-
sumption of a selection of components [19]. Many
tools were developed based on these reports. These
libraries are more accurate than a TDP-based estima-
tion but have the same limitation in the complete-
ness of the component taken into account. The main
drawback of power meters is the necessity to use
them during execution, with no possibility of esti-
mating beforehand or afterhand. The literature lacks
a methodology that is accessible, reproducible, reli-
able, and accurate for Gen-AI.

The popularization of Gen-AI has broadened the
scope of such methodologies, encompassing more
direct impacts. As a direct consequence of us-
age, the inferences made from models are stud-
ied [luccioni_power_2023, 20, 21, 10], even if, sim-
ilarly as for the training phase, this often remains
solely through the measurement of electricity con-
sumption. Studies beginning to include the full life
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cycle of equipment are still rare [22, 23], and are
limited to the carbon cost of training and inference.
This current perimeter does not fully address Gen-
AI sustainability issues. As the digital sector has
a large embodied footprint [24] including the full
life-cycle impact is essential. The digital sector also
has a strong environmental impact that goes beyond
GHG emissions [25], e.g. the extraction of rare met-
als. Finally, Gen-AI relies on and operates through
the existing digital ecosystem, on which it logically
exerts pressure. It requires terminals for its users, i.e.
smartphones and computers, as well as internet net-
works to be accessible from its data centers. All these
resources are essential to the deployment of Gen-AI
as it exists today, and are part of the AI sustainabil-
ity issue. It is therefore expected and necessary to
continue extending the scope of study on Gen-IA as
an accessible service with multiple environmental
impacts, to better discuss its sustainability.

2.3 LCA as an emerging tool for
sustainability of computing

LCA is a multi-criteria evaluation method based on
the ISO 14040[26] and 14044[27] standards and can
be based on complementary standards depending
on the sector studied, such as the ITU (International
Telecom Union) L1410 standard for ICT (Information
and Communication Technologies) goods, networks,
and services [28]. It aims to produce an evaluation of
the potential environmental impacts of a product or
activity, considering all its life-cycle phases: manufac-
turing, usage and end-of-life. As pictured in Figure 1,
an LCA is composed of four interdependent phases.
The goal is to, for a defined purpose and perimeter
(step 1), account for all the sub-products and elemen-
tary flows needed for the study’s subject (step 2),
and sum their environmental impacts given by life
cycle inventory (LCI) data [29](step 3). Step 4 ques-
tions the potential conclusions regarding the initial
goals of the study and the uncertainties regarding
the hypotheses taken during the previous phases.

Although LCA has only recently been applied in
the context of digital services [30, 31] compared to
other sectors [32, 33], it is widely recognized for its
specific qualities. It enables a more comprehensive
assessment by taking into account the complete life
cycle and the different impact categories, thus avoid-
ing focusing solely on the carbon emissions of the
use phase. Moreover, while its use of assumptions is
criticized, it nonetheless enables relevant estimates to
be made in a context such as that of digital technol-
ogy, where the industry’s lack of transparency [34,
35] could block the study of its damage to the en-
vironment. LCA therefore has the necessary quali-
ties to question the sustainability of IT products and

services, since it questions other sectors of activity
according to the same standard.

Figure 1: Four main stages of LCA

3 Enhanced tools for measuring
Gen-AI environmental impact

Even if we consider only the environmental aspect of
sustainability, the deployment of a service has many
consequences on different levels [36]. In the ICT
context, there are frameworks for assessing sustain-
ability [37, 38, 39]. Referring to these frameworks, we
propose contributions to better assess the direct en-
vironmental impacts of Gen-AI. As an example and
validation, we apply our methodology to assess the
environmental cost of Stable Diffusion [40], an open-
source text-to-image generative deep-learning model.
Stable Diffusion was developed by researchers from
the CompVis Group at Ludwig Maximilian Univer-
sity of Munich and Runway with a compute donation
by Stability AI and training data from non-profit or-
ganizations. We selected Stable Diffusion because it is
popular, its model is open-sourced, and its successive
versions can be downloaded on Hugging Face [41].

3.1 Generative AI as a service

To better assess the environmental impact of AI, we
propose to study not only the impact of developing
a model but also that of its deployment and use as a
service. Extending the model of a previous study[6],
Figure 2 shows what we consider the standard struc-
ture of a Gen-AI service. The arrows represent the
data flows between the various parts.

Gen-AI users access the service from a personal
terminal, sending a request that is transferred over
networks and managed by a web server. Specific com-
putation components are used to infer from a model.
The results of the inference process come back to the
users through networks. The model has been pre-
viously trained during a specific phase, with access
to training data in addition to its computational re-
sources. The environmental costs of producing these
training data are not taken into account in this work.
Although this is a critical issue in the creation of
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Figure 2: Structure of a considered Gen-AI service

Gen-AI services, the process is still too opaque to be
analyzed from an environmental perspective.

As an example, the Stable Diffusion model is freely
available as a service [42] since August 2022. On the
main web page, users fill out a prompt by describing
the wanted image.

The activity of a Gen-AI service and the resulting
environmental impact was developed so that it is
modular and can be adapted to more specific user
paths. For example, a service hosted and used on a
personal machine could remove the "Networks" and
"Web hosting" sections.

Following the recommendations of the industry
standard for ICT services [28], we seek to assess in
our study the environmental impact of running the
service for a full year.

3.2 Estimating the electricity consumption
of training through training step
replication

We propose a new approach to estimate the elec-
tricity consumption of the training phase. Existing
methodologies presented in Section 2.2 are either
unsatisfactory or require replication of the training,
which would be too expensive in the case of Gen-AI
model training. Our approach consists of replicat-
ing a fraction of the training while monitoring the
electricity consumption and doing an estimation of
the total training based on those observations. [43]
proved that the electricity consumption of epochs
is constant. We show that this characteristic can be
used to estimate the total training electricity cost by
replication, assuming sufficient information from the
original training.

In this section, we illustrate our approach to Sta-
ble Diffusion. Several versions of the model, created
by successive training phases from v1-0 to v1-5, ex-
ist. We executed experiments on nodes from the
Sirius cluster (Table 1) of the large-scale experimental
Grid’5000 platform [44]. This cluster was selected
because of its similarity with the resources used by

developers for the training and inference of the Stable
Diffusion model.

Cluster Sirius Gemini
System Nvidia DGX A100 Nvidia DGX-1
CPU
model

AMD EPYC
7742 (Zen 2, 64
cores/CPU)

Intel Xeon E5-2698
v4 (Broadwell, 64
cores/CPU)

# CPUs 2 2
GPU
model

Nvidia A100-
SXM4-40GB

Nvidia Tesla V100-
SXM2-32GB

# GPUs 8 8
Memory 1 TB 512 GiB

Table 1: Experimental setup

For all experiments, we used Ubuntu 20.04 and
we installed an Nvidia GPU driver with the default
power management configuration. The power con-
sumption of the Sirius cluster is monitored by an
Omegawatt [45] power meter, which has a precision
of 0.1 watts (W). We used it with a sampling fre-
quency of 1 Hz. Additionally, we used a software-
based power meter called ALUMET [46] that gathers
power metrics from Nvidia NVML and Intel RAPL at
a sampling frequency of 2 Hz. To ensure reproducibil-
ity, all results are averaged from seven experiments.
The code and data we used are publicly available [47].
We based our experiments on the Diffusers library
and the Accelerate optimizer framework.

We were able to train the v1-1 Stable Diffusion
model on Sirius with the same gradient accumula-
tion, batch size, and optimizer as originally. The
learning rate was kept constant. The original train-
ing was distributed across 32 nodes. Assuming that
the energy consumed by each node is equivalent, we
carried out the experiments on a single node. We
used the Pokemon BLIP captions dataset [48] which
contains 833 images with captions. A linear regres-
sion was trained on data points gathered from 61
training experiments with 7 to 3500 training steps,
and we tested it on 6 experiments with 5000 to 6500
training steps. Two resolutions of images were used
for the original training, 256x256 and 512x512, so we
conducted the experiments and built a regression
for each resolution (Equation 1 and 2, respectively).
Those regressions were validated with a score higher
than 99%.

Energy (kWh) = 5.26e−04 × N + 2.01e−02 (1)

Energy (kWh) = 1.78e−03 × N + 1.64e−02

Where N is the number of training steps.
(2)

Table 2 presents the estimated energy consumed
by the model versions that are pertinent for this work,
based on the number of steps provided by the devel-
opers of Stable Diffusion and our regression models.

4 Communications of the ACM - Preprint - Accepted for publication after peer review
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The estimated energy was multiplied by the number
of nodes originally used (32). The obtained values
are close to existing studies on similar models [49].
We discuss this methodology in Section 4.3.

Version Image # steps Estimated energy (kWh)
size 1 node 32

nodes

v1-1
256 2.37e+05

4.70e+02 1.50e+04
512 1.94e+03

v1-4 512 2.25e+05 4.01e+02 1.28e+04

v1-5 512 5.95e+05 1.06e+03 3.39e+04

Table 2: Estimated energy consumption of training Stable
Diffusion (number of steps provided by the developers)

3.3 LCA-based modeling

Metrics and methodology We use LCA to calculate
the environmental costs of the service. In this way,
we can obtain potential impacts for the entire life cy-
cle of the resources employed, and for several impact
categories. The choice of which environmental im-
pact categories to measure is often constrained by the
lack of data available on certain categories. However,
we recommend a minimum of 3 impact categories for
AI that are available in the different databases used
in this study. The first is Abiotic Depletion Poten-
tial (ADP) which represents a decrease of minerals
and metals resources [50]. The second, Global Warm-
ing Potential (GWP) [51], evaluates the contribution
to climate change. The third, Primary Energy (PE),
expresses the cumulative energy demand [52].

These 3 categories cover the most significant envi-
ronmental impacts of digital technologies [25]. Water
is an important issue in AI [53], but we don’t in-
clude a water consumption indicator as we currently
lack reliable data. Above all, water consumption
tends to be a contextual issue, with one liter of wa-
ter withdrawn having a different impact depending
on the region and time of year, "When and Where
matter" [53].

To evaluate the service according to these cate-
gories, we assess the cost of the average user journey
for each module described in Section 3.1, in terms
of electricity consumption and use of IT equipment.
To obtain the footprint of this equipment and its
electricity consumption, depending on the country
of use, we rely on life cycle inventory (LCI) data:
environmental databases from public agencies [54],
consortiums such as NegaOctet [55], and open-source
projects such as Boavizta [56]. The first [54] provides
full life-cycle impacts for the electricity mix, the sec-
ond [55] for networks and terminals parts, also in
full life-cycle, and the third [56] for the datacenters

parts but only for manufacturing and usage phases
of the life-cycle.

These databases enable us to translate the electric-
ity consumption and device usage, we measure or
estimate, into our 3 impact categories. For example,
the Equation 3 from [6] calculates the impact of the
inference part. Electricity consumption Ci,e, PUE [57]
and EGMg are giving us the operational impact for
the 3 impact categories. The same goes for embodied
impacts, where each use of a device costs a share
of the equipment’s total footprint Fe. This share is
determined by an allocation ae(t), proportional to the
duration during which the equipment is used over
the total time the equipment is used over its lifetime.
Other allocations can be used to share the embodied
footprint, e.g. the volume of data transferred as part
of a network device. The other parts of the service,
as described in Figure 2, are calculated respectively
by their own equation described in [6]. Notations are
summaries in Table 3.

IIn f erence = ∑
i

Ci,e × EGMg × PUE + ae(t)× Fe

(3)

IIn f erence : Inference Impact
i : Inference done on a GPU
e : Equipment used for inference
Ci,e : Consumption of electricity for i with e
EGMg : Electricity grid mix impact in a geographic area g
PUE : Power usage effectiveness of the site
ae(t) : Allocation for e’s time of use t for the entire

duration of its use (i.e. lifespan times percentage of use)
Fe : Footprint for e : manufacture, transport, and end of life

Table 3: Equation and notation for calculating the inference
impact

Computing the impacts Based on our previous
study [6], we have improved our model and, as an
example, assessed the environmental impact of Gen-
IA Stable Diffusion’s service [42]. The user journey
evaluated is that of a user visiting the site and sub-
mitting a request to the image generation service
with standard settings. During the site’s observation
period, from August 2022 to August 2023, the stan-
dard settings returned 4 images in 512x512 format
for a written request. For the one-year evaluation, we
estimated the number of users from the measured
request traffic [58, 59]. We assumed that half the
visits led to one request for image generation.

We used the national average of the US electric-
ity mix in our calculations for the "Inference" and
"Training" sections. For the "End User Terminals"
and "Network" sections, we calculated an average
electricity mix based on the countries most repre-
sented in the user population.

Communications of the ACM - Preprint - Accepted for publication after peer review 5
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Our assessment resulted in Figure 3 which shows,
for one year of service, the distribution of impacts
between the different parts for each impact. For more
readability, the "Web hosting" part is included in the
"Inference" part, and the "Data storage" part in the
"Training" part. These parts have negligible impacts
and are strongly correlated with the part in which
they were merged. To produce our results, we based
ourselves on the number of visits measured and the
characteristics of all the different training phases (or
versions) of the model, i.e. not only the last training.
We also reworked our data to be able to separate
operational impacts from embodied impacts, as can
be seen in Figure 4.
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Figure 3: Impact distribution for one year of Stable Diffusion as
a service with 75M visits and 150M pictures generated.
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Figure 4: Impact distribution between operational and embodied
footprint for one year of Stable Diffusion as a service.

Carrying out an LCA of this service enables having
a model that could be parameterized, both in terms
of volume and characteristics of the activity. In the
next section, we discuss the significant impact of the
service.

4 Rethink environmental
sustainability for Gen-AI

Measuring the environmental impact of Gen-AI is a
complex problem to which we have made the follow-
ing contributions: service level modelization, estima-
tion by regression, and LCA-based assessment. Once
these contributions have been integrated, how do
they modify our understanding of the sustainability
of Gen-AI and its measurement?

4.1 LCA of digital services

Through the use of the LCA of this service, beyond
the important impact, i.e. 463 tonnes of CO2 eq., we
can draw some information on the distribution of
the environmental impact for one year of a Gen-AI
service.

Firstly, Figure 3 shows that terminals and networks
represent a significant share in the operation impact
of a Gen-AI service: more than 85% of the ADP
impact, more than 30% of the energy footprint, and
45% of the carbon footprint. It validates the need
to take them into account, all the more so that the
footprint of networks and terminals grows with the
number of users, even if users do not use an online
service, i.e. ignoring the cost of the "network" part.

Secondly, the multi-impact vision provided by LCA
shows us that while decarbonizing the electricity con-
sumed by data centers reduces the impact on climate
change, embodied carbon emissions and those pro-
duced on the user side remain significant. The energy
footprint is also a concern to consider. Reducing it
would need important efficiency gains, but could
trigger a rebound effect [60]. Any progress on the
energy efficiency of Gen-AI could well lead to an in-
crease in its total usage, as it is common in the digital
sector [61].

Lastly, the issue of metal extraction poses a prob-
lem that is difficult to solve. Moreover, Gen-AI
services are boosting demand for GPUs, critical re-
sources whose footprint is still difficult to estimate.
In our study, we are using underestimated values for
the footprint of GPUs, based on a method dedicated
to CPUs detailed in [62].

There are various ways of reducing the footprint as-
sociated with the manufacture of equipment: the use
of low-carbon energy in the manufacturing process,
optimization of the manufacturing or transport pro-
cess, or the use of recycled materials tending towards
a form of circularity, etc. But these necessary trans-
formations of industry are levers that are difficult
for service users and designers to access. The next
section will therefore focus on the issue of lifespan.

6 Communications of the ACM - Preprint - Accepted for publication after peer review
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4.2 Obsolescence of hardware and
software

Ultimately, one of the most direct levers for reducing
both ADP’s footprint and embodied emissions re-
mains to extend the life of the equipment. Moreover,
if we also consider the general trend of the embod-
ied carbon emission in IT [24], Gen-AI, with its high
electricity consumption, as shown in Figure 4, could
indicate a reversal of tendencies. However, there
is nothing obvious about this conclusion and it de-
pends on how we consider the separation between
operational impacts and embodied impacts.

Figure 5, represents previously presented results
in new categories.

Taking Figure 4, we have represented the service’s
network and training impacts in new, separate cate-
gories. In our previous representation, the training
phase was mainly included as an operational impact
due to its high electricity consumption. However, in
the case of Gen-AI, it can be considered an embodied
impact. Training once expended a large quantity of
resources, similarly to the manufacture of equipment.
It is, therefore, logical to consider training as a device
that enables the Gen-AI service to function and as
part of its embodied footprint, like a development
cost [63]. We can then more naturally conclude that it
is important to include Gen-AI models in the action
of extending the life cycle of equipment. We need to
extend the life of equipment, hardware, and software.
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Figure 5: Impact distribution between operational, embodied,
networks and model training footprint for one year of stable
diffusion as an online service. The Embodied and Operational
categories cover the "Data-center - Inference" and "Web Host-
ing" service parts.

We can also question the characterization of the net-
work footprint. Admittedly, most of their footprint
comes from their electricity consumption. However,
as [64] explained, networks are a perpetually pow-

ered infrastructure where the transfer of data for a
service does not in itself directly generate additional
consumption. Especially for fixed networks, the in-
frastructure has a basic cost that provides for needs
as long as they remain within its capacity. Modifying
the volume of data transferred by the service may in
fact have little effect on electricity consumption [65],
unless it is on a scale that would require the infras-
tructure to be upscaled [64] or unless the majority of
the network is mobile.

These last two points are not intended to show
that a reduction strategy based on reducing data and
energy flows could be ineffective. However, it would
run the risk of being insufficient at best, or worse, of
contributing to a rebound effect. On the other hand,
an approach based on the parsimonious and efficient
use of existing resources and infrastructures could
lead to more sustainable gains. It is perhaps more
interesting to optimize existing resources than to seek
to create new, supposedly more efficient resources.

4.3 Balancing between accessibility and
reliability of the electricity consumption
estimation

In this section, we question the methodology we pro-
posed to estimate the electricity consumption of the
training phase and discuss the feasibility of deploy-
ing it at a large scale.
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Figure 6: Estimations of the electricity consumed by the v1-1
Stable Diffusion model training from various existing methods.
PM: Estimation based on power meter; TDP: TDP-based estima-
tion; Software PM: Estimation based on software-based power
meter.

We start by comparing our result based on power
meter (PM) observations with two other estimations.
First, a TDP-based estimation and secondly, an esti-
mation based on the results of software-based power
meters (software PM) (Figure 6). Both rely on a
linear regression too, but in cases where a power
meter is not available. Figure 6 shows the results
of those methods applied to the training phase of
the v1-1 version of Stable Diffusion. We see that a
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TDP-based estimation is almost 6% higher than a
PM-based estimation which is highly surprising con-
sidering the discussion made in Section 2.2, where
we assumed a TDP-based estimation underestimates
the consumption. To better understand the results,
figures 7 and 8 compare the power consumed as mea-
sured by the power meters and the Thermal Design
Power (TDP). Figure 7 shows the evolution of the

Figure 7: Evolution of the power consumed by each GPU and
CPU for 10 steps compared with the TDP of a GPU, on the
Sirius cluster.

Figure 8: Evolution of the server power according to different
power meters during training steps compared with the sum of
the GPU TDP values, on the Sirius cluster (left) and the Gemini
cluster (right).

power consumed during the execution of 10 steps
of training Stable Diffusion on the cluster Sirius by
every computing component (CPUs and GPUs) as
reported by software-based power meters, compared
with the TDP. It can be seen that the average power
is largely lower than the TDP, even though the GPU
average utilization is above 95% when the GPUs are
in their intense phase. A TDP-based estimation over-
estimates the electricity consumed by the GPUs in
this case. The left graph of Figure 8 shows the con-
sumption of the server, as reported by the power
meter, of the same training execution. We can notice
that the sum of the GPU TDP values is very close
to the power consumed by the server. We conclude
that the underestimation of a TDP-based approach
is compensated by the power consumed by the other
components of the server in this case. However, this
would not be the case in every workload or with
other equipment. We executed the same code for 150
training steps on the Gemini cluster, whose specifica-
tions can be found in table 1, and the power observed
can be seen in the right graph of Figure 8. This time

the power consumed by the server is higher than the
TDP, which lets us think that a TDP-based estimation
is unreliable and depends on the workload and the
server used. The conclusion would have been the
same if we had included other components (CPUs)
in the TDP-based estimation.

Figure 8 also shows that the difference between the
power measures power of the software PM and the
PM is quite significant (around 20%), which results
in a 25% difference when scaling to hundreds of
thousands of training steps in figure 6.

To conclude, the best solution to estimate the elec-
tricity consumption of the training phase of a Gen-AI
model is to be able to replicate the training step while
monitoring with an accurate power meter. With-
out access to a power meter, software-based power
meters give an accurate measure of the computing
components, but with a significant difference with
power meters which is exaggerated by the number
of training steps.

If it is not possible to replicate the training steps,
but information like the duration of the execution is
available, using the TDP can provide an estimation,
but without any guarantee of its accuracy.

4.4 Current limits

The first limitation of our evaluation work is the
distance we still have to cover to best represent the
operation of existing Gen-AI services. Without in-
ternal information on how the services operate, it is
difficult to model the impacts correctly. In our case,
the Stable Diffusion service was open-source, as was
its main dataset, and details on the training sessions,
such as the number of steps, were public. We still
had to make some assumptions, for example about
the sizing of the Webhosting part. Although we had
indicators of site traffic, we couldn’t find any model-
based way of sizing the server we needed. This is
one example of a possible improvement. These gaps
need to be filled, whether by better modeling of ser-
vices based on open-source information or by greater
transparency on the part of service providers.

The second limitation is that, even though we are
presenting one of the first multi-criteria approaches
to Gen-AI, it is still important to consider the en-
vironmental impact categories that we were unable
to cover. To avoid transferring impacts from mea-
sured categories to unmeasured categories, we need
to be exhaustive. For example, a predominantly nu-
clear electricity mix could transfer part of the "global
warming" impact to the "ionizing radiation" impact.
The transfer of impact is not essentially bad, but it
should remain transparent. Similarly, for water, a
data center powered by renewable energy could be
a major consumer of water in a water-stressed area.
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Increasing the number of environmental impact cat-
egories observed could lead to more informed and
legitimate choices but will depend on the availabil-
ity of more LCI data. Similarly, it is still difficult to
include completely the impact of the end of life of
equipment, as LCI data are still scarce [66].

The final limitation is the issue of allocating the
footprint of the training. We made our assumptions
based on the traffic to the site offering the service.
In our case, as the model is freely available online,
it can be used outside the site and further trained
on a specific dataset thus we cannot determine the
full scope of training and inference made thanks to it.
As the models have only been available as a service
on the site for a year, we remain confident that the
site has concentrated a major part of the use of these
models, even more so today when some might con-
sider them obsolete. The issue of footprint allocation
is non-trivial. If an organization hosted a Gen-AI
service using a model it had not trained, who would
be responsible for the model’s footprint? Some might
even think that the most prominent models would
have a negligible training cost compared to the count-
less inferences they enable across multiple services.
But it is not supported by existing studies [20, 67].

4.5 Future work

One of the Gen-AI service mechanisms that we have
not yet been able to integrate is fine-tuning. Common
to Gen-AI services [68, 8], fine-tuning corresponds
to any additional training of the model between its
main training phase and its use by the final client.
Fine-tuning can be carried out at the level of a com-
pany deciding to integrate a Gen-AI service, which
would then train the model on its own data. It can
also be carried out at end-user level, or even at the
level of an end-user usage session. These actions mo-
bilize resources similar to those used for training. It
will be important to integrate these costs into our ser-
vice evaluation model and find a way of measuring
or estimating the frequency and intensity of these ad-
ditional training sessions. These costs could change
the way we divide the Gen-AI footprint between in-
ference and training.

Another consequence of the growth of Gen-AI ser-
vices is the transformation they are bringing about in
data centers. Gen-AI services require massive use of
specific resources, i.e. GPUs. This new demand for
access to a large number of GPUs as a service gen-
erates numerous organizational challenges [69, 70,
71], due in part to the difficulty of pooling GPUs as
easily as CPUs. As a result, data centers are likely to
become less efficient at sharing resources. This drop
in efficiency will have an environmental cost, as it
will probably have to be compensated for by quantity

in order to meet demand. It would then be interest-
ing, in a consequentialist approach [72], to calculate
the cost of this growth burst largely attributable to
Gen-AI services.

We believe our methodology is not restricted to
Gen AI models and could be applied to any AI mod-
els deployed as a service. They are applications with
different characteristics as a model only deployed to
a restricted set of users or on the contrary a model in-
tegrated into a daily-used service, such as a webmail.
In those use cases, the repartition of impact between
service phases would be different than our use case
and could bring more insights.

5 Conclusion

Measuring the environmental impact of Gen-AI is
the basis for assessing sustainability. By adding ser-
vice scale assessment, full life cycle multi-category
cost, and enhanced energy estimation by sampling,
we significantly improved our knowledge of Gen-
AI environmental impact from the narrowness of
mono-category assessment and uncertainties of TDP
estimates. More than underlining the significant cost
of this technology, we have highlighted the different
sources and types of environmental impact. It is this
detailed knowledge of Gen-AI’s footprint that will
enable it to be reduced. Our method gives us the
means to better predict the potential impact of both
training of the model and use of the service. From a
sustainability perspective, this a priori assessment ca-
pability is an essential decision-making tool. To even
more enhance our knowledge of Gen-AI sustainabil-
ity, we invite the community to be more transparent,
not only in terms of accessible code and electricity
consumption reports. Serious evaluation of the im-
pact of a Gen-AI technology requires data about the
concrete means used to deploy and run this as a ser-
vice. An informed opinion on the sustainability of
Gen-AI in our society will require reliable knowledge
of the environmental impact of Gen-AI services.
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