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Abstract

Maximum Likelihood (ML) Direction-of-Arrival (DoA) on the vectorized

covariance matrix model (VCMM), relying on a Virtual Array (VA) of antennas,

exhibits enhanced ability to separate closely spaced sources. Due to the finite

number of snapshots, the VCMM observation is corrupted by a non-white and

non-circular Gaussian noise resulting in an intricate ML criterion. To address

this issue, this paper introduces a novel two-stage transform that turns the initial

non-white and non-circular Gaussian noise into a real and white Gaussian noise.

Following this, the ML estimator is formulated for the transformed model and

the corresponding Cramér-Rao Lower Bound (CRLB) is derived.

Unfortunately, the ML implementation involves intractable multi-dimensional

and highly non-linear non-convex optimization.

This paper introduces a novel sparse DoA estimator that implements the ML

using the proposed two-stage transform. This transform is shown to significantly

simplify the sparse estimator implementation. To quantify the transform effects,

the problem conditioning is derived and shown to be consequently improved after

the transform. Numerical simulations showcase performance improvements of

the sparse DoA estimator after the two-stage transform in severe scenarios with

2 and 3 closely spaced sources using a 4-elements array.
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1. Introduction1

Direction-of-Arrival (DoA) estimation is typical signal processing problem2

arising in numerous applications such as radar, sonar or telecommunications.3

Throughout last decades, a myriad of estimation techniques has been proposed4

[1, 2]. Among these, Capon’s beamformer [3], subspace identification based5

methods like MUSIC [4, 5] or ESPRIT [6] and the Maximum Likelihood (ML)6

estimator [7, 8, 9] emerge as the most popular estimators. Despite their popu-7

larity, above-mentioned methods suffer from serious limitations. For instance,8

MUSIC fails in severe scenarios with highly correlated sources or few time snap-9

shots. The ML estimator, while capable of handling correlated sources and10

being statistically efficient at high Signal-to-Noise Ratio (SNR) under white11

Gaussian noise [10], is seldom used in practice. This is primarily because ML12

estimation requires solving an intractable, multi-dimensional, highly non-convex13

optimization problem with numerous local minima [9]. Moreover, all aforemen-14

tioned methods share a common limitation: the maximal number of identifiable15

sources is limited to N − 1 using an N -element array.16

To tackle some of the previously mentioned issues, one can leverage a VA,17

with space diversity only, of at most N2 − N non-redundant antennas. This18

approach offers increased number of identifiable sources and enhanced ability to19

separate closely spaced sources [11]. The VA can be accessed through extensions20

of MUSIC to higher order statistics [12, 13] assuming non-Gaussian emitters.21

Alternatively, the VCMM can be employed to access the VA [14]. This novel22

model only necessitates second order statistics, which exhibits better conver-23

gence than higher order statistics, of the observation without any assumptions24

on the sources signals statistics.25

Recently, the signal processing community extensively investigated the topic26

of sparse signal representation to address the shortcomings classical methods27

limitations [15, 2]. Several authors experimentally demonstrated the superiority28

of sparse-based DoA estimators in challenging scenarios [16, 14, 17, 18] compared29

to traditional techniques such as MUSIC. Specifically, these estimators [14, 17,30
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18] rely on a sparse representation of the vectorized covariance matrix thus31

levering the VA and thereby enhancing performance.32

Using this sparse representation, the DoAs are retrieved through the mini-33

mization of a `0-regularized sparse criterion parametrized by λ the regularization34

parameter [18]. Despite the VA advantages, the processing of poorly separated35

sources remains challenging for a sparse estimator due the spatial correlation36

between directions, which complicates the criterion optimization [19]. In [20], a37

novel θ-invariant regularization parameter choice is introduced to ensure equiv-38

alence between sparse and ML DoA estimators under white Gaussian noise. As39

a side effect, this approach enables the theoretical characterization of the sparse40

estimator by the way of ML performance. This equivalence relies on a two-stage41

transform that handles both the noise correlation and non-circularity. As out-42

lined in [20], the VCMM is corrupted by a coloured noise vector due to the finite43

number of samples. The presence of coloured noise can significantly deteriorate44

performance [21, 22]. To address this, several authors have proposed modified45

estimators [23, 24, 25]. When sufficient data is available, a pre-whitening noise46

transform is applied transforming the initially coloured noise into white noise47

[9]. Such procedure is performed on the VCMM in [20] resulting in a real white48

Gaussian noise thus enabling equivalence with the ML under white Gaussian49

noise. Additionally, this transform modifies the dictionary matrix involved in50

the sparse criterion by decorrelating vectors associated to sources directions,51

thereby improving the resolvability of closely spaced sources [19].52

This paper seeks to extend the findings of [19] and is three-fold. First,53

it introduces a two-stage transform of the VCMM that converts the initially54

complex non-circular and non-white Gaussian noise into a novel real standard55

white Gaussian noise. This transformation not only addresses noise correlation56

and non-circularity but also yields a simple deterministic ML criterion compared57

to the multi-term intricate criterion obtained under coloured noise. Using the58

transformed model, the Cramér-Rao Lower Bound is derived to characterize the59

asymptotic estimator performance.60

In addition, the aforementioned two-stage transform also affects the sparse61
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criterion. The impacts of this transform on sparse criterion are discussed in62

[19]. Specifically, the problem conditioning is shown to be significantly improved63

after the transform, leading to substantial enhancements in the sparse criterion64

optimization. While [19] analyzed the spatial correlation coefficient, its formal65

relationship to the problem conditioning was reserved for future investigation.66

The present work establishes a formal connection between spatial correlation67

and problem conditioning.68

Finally, the two-stage transform effects on the Continuous Exact `0 (CEL0)69

loss surface [26] are examined. As demonstrated in [27], while this penalty70

simplifies the criterion optimization by reducing the number of local minima71

induced by the `0 penalization, the CEL0 criterion exhibits flat minimums in72

the case of closely separated sources, thereby complicating their estimation.73

Through numerical simulations, the transform is shown to reduce the sparse74

criterion corridors hence enhancing the estimation of closely spaced sources.75

This paper is organized as follows: section 2 introduces the VCMM and the76

proposed two-stage transform, resulting in a transformed model corrupted by a77

standard white Gaussian noise. Then, the ML estimator and the CRLB deriva-78

tion are presented in section 3 for the transformed model under white Gaussian79

noise. Section 4 is devoted to the sparse estimator and its equivalence with the80

ML. In section 5, a theoretical investigation on the two-stage transform effects81

on the sparse criterion is conducted. The transformed dictionary is proven to82

have reduced correlation between sources directions thus enhancing the criterion83

optimization. Numerical illustrations of the criterion are provided to support84

our claims. Finally, in section 6, numerical simulations for scenarios with 2 and85

3 sources are conducted to assess the performance enhancement of the proposed86

sparse DoA estimator.87

Notations. Upper-case and lower-case boldface Latin letters respectively denote88

matrices and vectors. (·)? denotes the complex conjugate, (·)T the transpose89

and (·)H the conjugate transpose of a vector or matrix. ⊗ and (·)# refer to the90

Kronecker product and the Moore-Penrose pseudo-inverse of a matrix. Lastly,91
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E [·] denotes the temporal mean operator, (̂·) the estimate of a parameter and92

IN the identity matrix of size N .93

2. Signal modelling, hypothesis and problem formulation94

2.1. The vectorized covariance matrix model95

Let M independent narrowband plane waves of directions θ = {θ1, . . . , θM}96

impinge on an array of N antennas. The array output is then:97

x(t) =
M∑

m=1

a(θm)sm(t) + n(t) = A(θ)sθ (t) + n(t) (1)

where A(θ) = [a(θ1), . . . ,a(θM ))] is the steering matrix formed by the steering98

vectors a(θm), 1 ≤ m ≤ M , sθ (t) = [s1(t), . . . , sM (t)]
T the complex envelopes99

of the emitted signals which are considered unknown but deterministic and100

n(t) a complex circular Gaussian noise vector [28], independent of sθ (t), with101

covariance matrix E
[
n(t)nH(t)

]
= σ2IN .102

The covariance matrix of (1) is thus:103

Rx = E
[
x(t)xH(t)

]
= A(θ)RsA

H(θ) + σ2IN (2)

where Rs = E
[
sθ(t)sHθ (t)

]
refers to the sources covariance matrix. Throughout104

this paper, sources are assumed to be temporally uncorrelated leading to a diago-105

nal sources covariance matrix satisfying Rs = diag (γθ) with γθ = [γ1, . . . , γM ]
T

106

the sources powers vectors and diag(x) the diagonal matrix whose diagonal is107

x.108

The use of (1) and (2) restricts the performance in severe scenarios (few array109

snapshots, low SNR or closely spaced sources). To improve theses limitations,110

the VCMM is employed. This model relies on an observation r of size N2
111

associated to the output of a VA with N2 sensors among which at most N2−N112

are non-redundant. The VA has fewer sidelobes and a thinner mainlobe leading113

to an enhanced ability to resolve closely spaced sources [11].114
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Under the assumption of temporally uncorrelated emitters, the VCMM ob-115

servation is [14]:116

r = vec
(
Rx − σ2IN

)
=

M∑

m=1

b(θm)γm = B(θ)γθ (3)

with vec(·) the column-wise vectorisation operator, B(θ) the VA steering matrix117

formed by the vectors b(θm) = a?(θm)⊗ a(θm) and γθ defined above.118

In practice, the true covariance matrix Rx is not accessible and is thus119

replaced by its corresponding ML estimate R̂x obtained using K identically120

and independently distributed array snapshots x(tk), 1 ≤ k ≤ K. Assuming121

temporally white noise on x(t) (E
[
nH(ti)n(tj)

]
= 0 for i 6= j), R̂x can be122

decomposed as:123

R̂x =
1

K

K∑

k=1

x(tk)xH(tk) = Rx + ∆Rx (4)

where ∆Rx is a random matrix following a complex Wishart distribution [29].124

Consequently, model (3) is corrupted by the covariance matrix estimation error125

δ = vec (∆Rx) leading to:126

r = vec
(
R̂x − σ2IN

)
= B(θ)γθ + δ (5)

where δ refers to the noise on the observation r.127

By the way of the central limit theorem and [30], the complex Wishart dis-128

tribution of the covariance matrix estimation error ∆Rx is asymptotically (with129

respect to K) a complex Gaussian distribution. The vectorization of (4) then130

yields a corresponding complex Gaussian noise vector (5) of law CN (0N2×1,Γ,C)131

[28] with the following moments [31]:132

Γ = E
[
δδH

]
=

1

K

(
RT
x ⊗Rx

)
C = E

[
δδT

]
= ΓK (6)

where Γ and C respectively denote the covariance matrix and the pseudo-133

covariance matrix of the covariance matrix estimation vectorized error δ and134

K is the permutation matrix such that vec(MT ) = Kvec(M) for any square135

matrix M ∈ CN2×N2

[32].136
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2.2. Two-stage transform of the observation r137

As outlined in section 2, the VCMM observation (5) is corrupted by a com-138

plex non-white and non-circular Gaussian noise vector δ (6). This yields an139

intricate multi-term log-likelihood function which could be simplified in the140

case of white Gaussian noise.141

To this end, this section introduces a novel two-stage transform exploiting142

only the noise second order statistics. The transform purpose is to turn the143

initially non-white and non-circular complex Gaussian noise into a real white144

Gaussian noise.145

First, the noise is whitened as described in 2.2.1 through the whitening146

matrix W such that y = Wr where y it the resulting observation. After the147

whitening, the noise on y is white but remains non-circular.148

Then, the non-circularity is handled in 2.2.2 through a decomposition of the149

real and imaginary parts of the observation. The corresponding observation150

noise is non-white since its covariance matrix differs from the identity. Thus, a151

final whitening step is performed. These steps are synthesised by the matrix T152

The resulting real observation after the two-stage transform is denoted z =153

Ty = TWr and is corrupted by a real white Gaussian noise.154

2.2.1. Noise whitening155

From eq. (6), it follows that δ is non-white. To transform its covariance156

matrix Γ into IN2 , eq. (5) is pre-multiplied by W the N2 × N2 whitening157

matrix as done in [20, 19]:158

y = Wr = WB(θ)γθ + Wδ = Bw(θ)γθ + δw (7)

where W = Γ−1/2 =
√
K
(
R
−T/2
x ⊗R

−1/2
x

)
, Bw(θ) = WB(θ) denotes the159

dictionary obtained after the whitening and δw = Wδ the whitened noise.160

After whitening, the noise δw is thus white but yet non-circular, such that:161

Γw = E
[
δwδ

H
w

]
= IN2 Cw = E

[
δwδ

T
w

]
= WΓKWT (8)
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where the matrix Cw can be further simplified using both permutation matrix162

[32] and Kronecker product [33] properties:163

Cw =
(
R−T/2x ⊗R−1/2x

) (
RT
x ⊗RT

x

)
K
(
R−T/2x ⊗R−1/2x

)T

=
(
RT/2
x ⊗R1/2

x

)
K
(
R−1/2x ⊗R−T/2x

)

=
(
RT/2
x ⊗R1/2

x

)(
R−T/2x ⊗R−1/2x

)
K

= K

(9)

since:164

K (A⊗B) = (B ⊗A) K (A⊗B)
T

= AT ⊗BT (A⊗B)
−1

= A−1 ⊗B−1

(10)

for any conformable matrices A and B.165

Remark 1. In practice, the whitening matrix is replaced by its corresponding166

estimate Ŵ =
√
K
(
R̂
−T/2
x ⊗ R̂

−1/2
x

)
.167

Remark 2. Using the vectorization property of the Kronecker product (10), the168

whitened observation (7) can be rewritten as:169

y =
√
Kvec

(
IN − σ2R̂−1x

)
(11)

showing that the pre-whitening noise transform preserves (7) the DoA informa-170

tion as it is contained within R̂−1x .171

2.2.2. Transformation of the complex non-circular noise into a real white noise172

The purpose of this paragraph is to take into account the non-circularity and173

to transform the non-circular noise δ into a real white noise ñ. The following174

transforms yield a novel observation z = Ty. Indeed, eq. (8) and (9) show that175

although the noise δw is white after the whitening transform (7), it remains176

non-circular as Cw 6= 0N2 .177

Non-circularity. The conventional approach to handle the noise non-circularity178

is to concatenate both real and imaginary parts of y (respectively <{y} and179
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={y}) to form a novel real augmented observation ỹ of size 2N2 × 1:180

ỹ =


<{y}
= {y}


 = H


 y

y?


 (12)

where:181

H = Q⊗ IN2 and Q =
1

2


 1 1

−j j


 (13)

and y = Wr. Using both properties of the permutation matrix (10) and the182

Hermitian symmetry of R̂x − σ2IN , we have y? = Ky leading to:183

ỹ = H


IN2

K


y = HUy = HUBw(θ)γθ + HUδw (14)

The noise in (14) is now a real random vector of law N (02N2×1,Σ) with covari-184

ance matrix:185

Σ = E
[
(HUδw) (HUδw)

H
]

= HUUHHH (15)

since E
[
δwδ

H
w

]
= IN2 (8). Using K2 = I [32], we have:186

HU = (Q⊗ IN2)


IN2

K


 =

1

2


 I2N + K

j(K− IN2)


 (16)

and inserting (16) in (15) leads to:187

Σ =
1

2


IN2 + K 0N2

0N2 IN2 −K


 (17)

Final whitening step. After handling the non-circularity, the obtained real noise188

is non-white as Σ 6= IN2 (17) leading us to apply one final whitening step to189

obtain the observation z corrupted by a real white Gaussian noise.190

The 2N2 × 2N2 covariance matrix Σ (17) is an orthogonal projection [34]191

since it is symmetric (ΣT = Σ) and idempotent (Σ2 = Σ). Σ can rewritten192

through an eigenvalue decomposition Σ = EΛET where Λ is a diagonal matrix193

containing the eigenvalues and E the matrix formed by the corresponding eigen-194

vectors. Since Σ is an orthogonal projection, its first N2 eigenvalues are equal195
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to 1 and the last N2 to 0. Thus, the EVD can be simplified as Σ = EsE
T
s with196

Es the restriction of E to the eigenvectors associated to non-null eigenvalues all197

equal to one.198

Es is clearly a square root of Σ. Thus, the noise HUδw of (14) is whitened199

by multiplying it with ET
s . This yields a novel observation z of size N2 × 1200

(since ET
s has size 2N2 ×N2) obtained from the whitened observation y (7):201

z = ET
s ỹ = ET

s HUy = ET
s HUBw(θ)γθ + ET

s HUδw = Bt(θ)γθ + ñ (18)

where the matrix Bt(θ) = TBw(θ) is the transformed dictionary obtained using202

the transformation matrix T = EsHU which summarizes all previous steps203

(decomposition of the real and imaginary parts eq. (14) and second whitening204

eq. (18)).205

The transformed observation z (18) is now corrupted by the transformed206

noise, denoted ñ = Tδw, which is a real white Gaussian noise as desired since :207

208

E
[
ññT

]
= ET

s HU
(
ET
s HU

)T
= ET

s ΣEs = ET
s EsE

T
s EsI

2
N (19)

as ET
s Es = IN2 . This concludes the two-stage transformation.209

The transformed VCMM (18) is now contaminated by a real white Gaussian210

noise for which the ML estimator can now be easily formulated.211

3. ML-DoA estimation on the transformed vectorized covariance ma-212

trix model z213

3.1. Conditional Maximum Likelihood for white Gaussian noise214

For the white Gaussian noise model (18), the conditional ML [7, 8, 9] esti-215

mates of the true DoAs θ are obtained using the following estimator:216

JML(ϕ) = tr
(
Π⊥(ϕ)zzT

)
= zTΠ⊥(ϕ)z

θ̂ = arg min
ϕ∈RM

JML(ϕ)
(20)

where Π⊥(ϕ) = IN2 −Bt(ϕ)B#
t (ϕ) is the noise projector computed for candi-217

date directions ϕ and tr(·) the trace operator.218
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Although its statistical efficiency as it achieves the Cramér-Rao Lower Bound219

at high SNR [10], the ML requires computationally intractable optimization220

since JML is an M -dimensional non-linear and non-convex criterion with nu-221

merous local minima [9]. As the number of local minima increases with the222

number of sources, the ML is confined to small number of sources.223

3.2. Derivation of the Conditional Cramér-Rao Lower Bound based on the trans-224

formed model z225

The CRLB is a lower bound on the variance of all unbiased estimators of a226

parameters vector α such that:227

CRLB(αi) ≤ Var(αi) =
[
I−1(α)

]
ii

=
[
E
[
(α̂−α) (α̂−α)

T
]]
ii

(21)

with I(α) the Fisher information matrix. For the special case of the multivariate228

real Gaussian distribution N (µ(α),Σ(α)), there exists a closed-form formula229

form the (i, j) entry of Fisher information matrix referred as the Slepian-Bangs230

formula [35, 36]:231

[I(α)]ij =
∂µT (α)

∂αi
Σ−1(α)

∂µ(α)

∂αj
+

1

2
tr

(
Σ−1(α)

∂Σ(α)

∂αi
Σ−1(α)

∂Σ(α)

∂αj

)

(22)

Applying (22) to the deterministic model (18) with:232

αT =
[
θT γTθ

]T
=
[
θ1 . . . θM γ1 . . . γM

]T

µ(α) = Bt(θ)γθ

Σ(α) = IN

(23)

yields:233

[I(α)]ij =
∂µT (α)

∂αi

∂µ(α)

∂αj
and I(α) = ∇µ(α)∇Tµ(α) (24)

where straightforward derivations leads to ∇µ(α) =
[
∂Bt(θ)
∂θ � γTθ Bt(θ)

]T
234

with � the Hadamard product. Then, in the numerical simulations of section235

6, the CRLB is numerically evaluated using eq. (21) and (24).236
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4. Sparse ML-DoA estimation on the vectorized covariance matrix237

model238

To overcome the ML implementation pitfalls detailed in section 1, a sparse239

estimator based on (18) is employed. Equivalence under white Gaussian noise240

between this sparse estimator and the ML (20) has recently been established241

for proper hyperparameter selection [20].242

4.1. Sparse modelling243

Let us discretize the angular space using a grid of G pre-defined directions244

ϕ = {ϕ1, . . . , ϕG}. Under the assumption that the sources directions θ lie within245

ϕ, eq. (18) can be rewritten using the sparse framework:246

z = Bt(ϕ)γ0 + ñ (25)

where Bt(ϕ) = TBw(ϕ) with Bw(ϕ) = W[b(ϕ1), . . . ,b(ϕG)] is an overcom-247

plete dictionary of size N2 × G,G � N2 and γ0 is an M -sparse vector having248

M non-zero components at directions satisfying ϕg = θm. Finally, ñ is a real249

white Gaussian noise vector satisfying E
[
ññT

]
= IN2 .250

4.2. Sparse estimation251

The DoAs can be estimated from the sparse model (25) using the grid di-252

rections ϕg which are associated to non-null entries of the sparse vector γ0.253

Consequently, an estimate of γ0 is needed to estimate θ. Given that the G254

unknown coefficients of γ0 are estimated from an observation of length N2, the255

problem is ill-posed and thus can not be resolved through the least squares min-256

imization. The estimation (25) is addressed by leveraging the sparsity prior to257

ensure the uniqueness of the solution. The sparsity is thus enforced through258

the addition of a `0-regularizer leading to the following `0-regularized objective259

[18, 20]:260

min
γ∈CG

{
J`0(λ,γ) =

1

2
‖z−Bt(ϕ)γ‖22 + λ‖γ‖0

}
(26)

where λ > 0 refers to the regularization parameter which balances the solution261

sparsity towards data fidelity.262
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Remark 3. The dictionary vectors bt(ϕg) contained in Bt(ϕ) are normalized263

such that ‖bt(ϕg)‖2 = 1 to ensure that all directions have equal energy.264

4.3. Selection of the regularization parameter265

In [20], authors applied the work of [37, 18] to the transformed model (18).266

After exploiting the statistics of the minimum of the ML criterion (20) for K267

sufficiently large, they proposed to pick λ as:268

λ =
1

2
Fχ2(N2−M)(η) (27)

where Fχ2(N2−M) is the χ2(N2 − M) distribution with N2 − M degrees of269

freedom cumulative distribution function and η a probability (typically set to270

5× 10−2 [20]). Furthermore, it was shown that this choice ensures equivalence271

between sparse and ML estimator after the transformation of subsection 2.2 ie.272

both criteria have the same global minimizer.273

5. Whitening effects for sparse ML-DOA estimation on the trans-274

formed observation z275

In this section, the consequences of the two-stage transform on the dictionary276

matrix are investigated with M = 2 impinging sources.277

5.1. Enhancement of the problem conditioning through whitening278

The transform affects the sparse criterion (18) by transforming the dictionary279

which controls the criterion shape. To measure the transform effects on the280

dictionary vectors, let us introduce the spatial correlation function:281

rE(ϕi, ϕj) =
|eH(ϕi)e(ϕj)|
‖e(ϕi)‖2‖e(ϕj)‖2

(28)

which measures the spatial correlation between directions ϕi and ϕj of a given282

dictionary E = [e(ϕ1), . . . , e(ϕG)]. In the following, rA, rB, rBt
respectively283

denote the spatial correlation coefficients obtained for the classical array, the284

VA prior the transform and the VA after the transform. Let’s note that rBt
285

depends on the source scenario {θ1, θ2} through the transform.286
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Throughout this paper, a circular array with N = 4 antennas among which 3287

are uniformly distributed around a circle of radius 0.5λ0 with λ0 the wavelength288

and one central antenna is considered. Figure 1 depicts the squared spatial289

correlation coefficients obtained for a scenario with M = 2 sources of directions290

θ1 = 180◦ and θ2 = 195◦ (leading to |rA(θ1, θ2)|2 = 0.8) with the same SNR =291

10 log10

(
γm
σ2

)
of 10 dB and K = 200 array snapshots. Note that K is sufficiently292

large so that Ŵ ≈W where W is the true whitening matrix defined from (6).

0 100 200 300
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∣ ∣ r
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Figure 1: Squared spatial correlation as a function of the steering vector direction ϕ. The

sources positions {θ1 = 180◦, θ2 = 195◦} are represented by dashed lines.

293

As observed on Figure 1, the use of the VA reduces both the mainlobe width294

(25◦ for the classical array and 17◦ on the VA) and the sidelobes ie. rank-1295

ambiguities since rB = r2A [11]. The two-stage transform further enhances the296

array resolving power by introducing a thinner mainlobe of 8◦ and null spatial297

correlation between sources directions {θ1, θ2} as illustrated by the magnifica-298

tion of Figure 1. Moreover, the spatial correlation between θ1 and many other299

directions is null.300

The observed spatial decorrelation on Figure 1 directly modifies the eigen-301

values of Ht = BH
t (θ)Bt(θ), the criterion projection onto directions Hessian302

matrix [19] after the two-stage transform. To quantify the eigenvalues influence303

on the criterion, let us consider the conditioning of the problem projection onto304
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directions {θ1, θ2} defined as follows:305

ηt =
λmax(Ht)

λmin(Ht)
(29)

where λmax(Ht) and λmin(Ht) respectively denote the largest and smallest306

eigenvalues of Ht.307

Prior the transform, the problem is badly conditioned as illustrated by the308

elliptical contour lines of Figure 2 obtained using the observation r 5. The309

use of the transformed observation z significantly improves the conditioning by310

reducing it of a factor 6 (η = 1.1 vs. η = 6.1) thereby leading to the almost311

circular contour lines shown on Figure 2.312
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Figure 2: Projections of the sparse criterion J`0 onto the sources directions

{θ1 = 180◦, θ2 = 195◦} before (left) and after (right) the transform for a single noise real-

ization. Red circles and dashed lines represent the global minimum γ̂ = [γ̂1, γ̂2]T coordinates.

Both criteria are represented using the Bartlow colormap [38]. Number of array snapshots

and SNR are identical to those defined in subsection 5.1 ie. K = 200 and SNR = 10 dB.

In [19], the spatial correlation coefficient expression was derived and shown to313

depend on the initial spatial correlation between sources rA(θ1, θ2) and the SNR.314

Nevertheless, its formal connection to the problem conditioning was beyond the315

scope of [19]. In the following, the connection between η and rBy is established316

in the case of M = 2 sources.317

For M = 2, the Hessian matrix after the transform is a 2 × 2 matrix with318

the following eigenvalues:319

λmax/min(Ht) =
1

2

(
tr(Ht)±

√
tr(Ht)2 − 4det(Ht)

)
(30)
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with the det(·) the determinant. Since the transformed steering matrix Bt has320

normalized columns, Ht can be further simplified using eq. (28):321

Ht =


bHt (θ1)bt(θ1) bHt (θ1)bt(θ2)

bHt (θ2)bt(θ1) bHt (θ2)bt(θ2)


 =


 1 rBt

(θ1, θ2)

rBt
(θ1, θ2) 1


 (31)

which immediately yields:322

tr(Ht) = 2 det(Ht) = 1− r2Bt
(θ1, θ2) (32)

Finally, substituting (32) into (30) and using the conditioning definition (29)323

gives:324

ηt =
1 + rBt

(θ1, θ2)

1− rBt(θ1, θ2)
(33)

which explicitly depends on the spatial correlation after the two-stage trans-325

form, shown to depend on both the initial spatial correlation between sources326

and the SNR [19]. Consequently, the problem conditioning is represented as a327

function of the two aforementioned quantities on Figure 3 in dB scale. Thus,328

the conditioning is better as 10 log10 (η) is close to 0 dB.

151
0

1
5

2
0

10 20 30
−20

−10

0

10

20

∆θ = |θ1 − θ2| [◦]

SN
R

[d
B
]

Observation r
0.0001

0.001

0.01

0.1

1

1

5

1
0

1
52
0

10 20 30

∆θ = |θ1 − θ2| (◦)

Observation z

0

10

20

30

C
on

di
tio

nn
in

g
η
[d
B
]

Figure 3: Problem conditioning prior (left) and after (right) the transform as a function of

the initial correlation between sources and the SNR with K = 200 array snapshots. The red

circles represent scenario parameters used in Figure 4.
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Figure 3 confirms the conditioning enhancement after the transform since330

conditioning in significantly reduced in severe scenarios with closely spaced331

sources. Furthermore, for sufficient SNR, the transform leads to unitary con-332

ditioning for any angular spacing. Hence, there exists a minimal SNR that333

orthogonalizes the sources directions (rBt(θ1, θ2) = 0) for a given scenario lead-334

ing to η = 1.335

Using the previously performed analysis on the problem conditioning, the336

corresponding criteria are represented for several angular spacings with fixed337

SNR of 10 dB on Figure 4. The improvement in conditioning leads to almost338

circular contour lines even if the sources are closed thus facilitating their sepa-339

ration and so the sparse estimator implementation.
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Figure 4: Influence of the angular spacing ∆θ = |θ1− θ2| on the sparse `0-criterion projection

onto the sources directions before (top) and after (bottom) the transform. K = 200 array

snapshots are considered together with SNR = 10 dB.
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5.2. Two-stage transform effects on the minimizers of JCEL0 loss surface341

The `0 penalty term in (26) enforces the solution sparsity. However, the `0-342

norm is a non-continuous and non-convex function that exhibits numerous local343

minima [39] thus grandly complexifying the optimization of the corresponding344

objective function. `1 convex relaxation of (26) has led to a profusion of litera-345

ture since `1 and `0-formulations are equivalent under the Restricted Isometry346

Property (RIP) [40]. Despite its interesting theoretical guarantees, `1 relaxation347

is not suited to the considered application. Indeed, the RIP condition requires348

low correlation between pairs of dictionary vectors which is not the case with a349

thin grid. Furthermore, the use of `1-norm makes the penalty term sensitive to350

the absolute values of the sparse vector γ components ie. to the sources powers.351

Recently, a continuous relaxation of (26) has been proposed through the use of352

the CEL0 penalty [26]. The CEL0 penalty has been proved to suppress some lo-353

cal minima induced by the `0-norm while preserving the same global minimizer.354

This relaxation has been successfully applied to DoA estimation [41, 42, 18, 27].355

Although JCEL0, the relaxed criterion, generally outperforms the `0-criterion,356

Delmer [27] experimentally demonstrated that the use of CEL0 leads to massive357

flat minimums where the loss surface is approximately identical in the case of358

closely spaced sources. These flat minimums drastically degrade the quality of359

the DoA estimates and cause a lack of resolution. This section investigates the360

effects of the transform on the minimizers of JCEL0 loss surface.361

To this end, the minimum value JCEL0 is computed for all pairs of direc-362

tions {ϕ1, ϕ2} assuming that the sparse vector support only contains directions363

{ϕ1, ϕ2}. The corresponding surface is represented prior and after the trans-364

form on Figure 5 following the approach of [27]. M = 2 sources of directions365

{θ1 = 180◦, θ2 = 195◦} with common SNR of 10 dB and K = 200 samples are366

considered for this experiment.367

As observed on Figure 5, the transform suppresses the flat minimums and368

transforms these into sharp peaks thus improving the estimates quality.369

In addition to the flat minimums suppression, the transform partially or-370

thogonalizes the dictionary. According to Figure 1, pairs of directions {θm, ϕ}371
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Figure 5: Loss surfaces of the CEL0 criterion prior (left) and after (right) the transform

projection onto directions {ϕ1, ϕ2}. Red circles denote the positions of the estimated global

minimums. The sources directions are {θ1 = 180◦, θ2 = 195◦}. Number of array snapshots

and SNR are identical to those defined in subsection 5.1 ie. K = 200 and SNR = 10 dB.

where θm is a source direction and ϕ is a candidate direction have low correla-372

tion. This leads to the same consequence on the sparse criterion projection onto373

directions {θm, ϕ} as observed on Figure 1. It is noteworthy to mention that374

the CEL0 penalty was initially developed assuming an orthogonal dictionary.375

In this particular case, the CEL0 penalty leads to a convex criterion [26]. Al-376

though, the transformed dictionary is not orthogonal, it posses many directions377

pairs which are orthogonal thus making it closer to the convex optimal of [26].378

6. Numerical experiments379

6.1. Experimental setup380

To assess the performance of the proposed sparse estimator prior and af-381

ter the proposed two-stage transform, both detection probability P(θm) and382

Root Mean Square Error RMSE(θm) are measured as a function of the angular383

separation using 1 × 104 Monte-Carlo runs. The m-th sources is detected if384

the corresponding peak exists and
∣∣∣θ̂m − θm

∣∣∣ < 30◦ where 30◦ is the array half385

beamwidth. For the standard observation r (5), λ is selected using [18] whereas386

the results of [20] are employed for the transformed observation z (18). Array387

and all scenario parameters are identical to those defined earlier in section 5 ie.388

K = 200 array snapshots are considered with SNR = 10 dB for both sources.389
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The sparse criterion (25) is minimized using the Forward-Backward Splitting390

algorithm [43] applied to the CEL0 penalty. Finally, a regularly spaced grid of391

stepsize 1◦ combined an off-grid post-processing layer is employed. Specifically,392

this post-processing relies on the estimation of the grid-error using a first-order393

Taylor series expansion of the model. Further details can be found in [44].394

6.2. Case M = 2 sources395

Figure 6 summarizes the obtained performance forM = 2 impinging sources396

with respect to the angular spacing ∆θ = |θ1 − θ2|. The proposed transformed397

sparse estimator outperforms the classical one. After the transform, an angular398

spacing of only 13◦ is required to resolve both sources with a probability of 1.399

Prior the transform, this limit is increased to 20◦. For this scenario, SNR =400

10 dB is sufficient thus the ML on the transformed observation z (18) achieves401

the CRLB. After transform, the sparse estimator is equivalent to the ML and402

so achieves the CRLB as the ML does. On the contrary, the non-transformed403

estimator has higher RMSE than both MUSIC and the transformed estimator.404

This difference can be explained by the wide corridors observed on figure 5 which405

generate variance for the estimates.406

6.3. Case M = 3 sources407

For the case of M = 3 impinging sources, the directions {θ1, θ2, θ3} are408

obtained as follows: θ1 = 180◦, θ2 = θ1 − ∆θ and θ3 = θ1 + ∆θ. All other409

parameters are equal to those defined in subsection 6.1. Results are represented410

as a function of the angular spacing ∆θ on figure Figure 7. Note that the411

performances of MUSIC is not represented as it suffers from many ambiguities412

in the case of M = 3 sources with a 4-element array.413

Without the two-stage transform, the estimator based on r (5) requires at414

least an angular spacing of 40◦ to achieve a probability of detection of 1. Further-415

more, the estimator is unable to reach the CRLB. Using the proposed two-stage416

transform, the estimator obtained from z (18) achieves P(θm) = 1 for angular417

spacing greater than 30◦ thus yielding a 10◦ compared to the non-transformed418
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Figure 6: Probability of detection (left) and RMSE (right) for directions θ1 (top) and θ2

(bottom) as a function of the angular spacing. RMSE are represented for angular spacings

leading to P(θm) ≥ 0.8. K = 200 array snapshots are considered together with a common

SNR of 10 dB for both sources.

estimator. The corresponding RMSE is equal to the CRLB for ∆θ ≥ 25◦ as the419

SNR is sufficient.420

7. Conclusion421

This paper introduces a sparse DoA estimator that implements the ML on422

the VCMM. Using a novel two-stage transform, equivalence with the ML is423

obtained. Specifically, this transform performed on the vectorized covariance424

matrix model converts the initially non-white and non-circular complex Gaus-425

sian noise into a real standard Gaussian noise. Thus efficient ML implementa-426

tion is obtained trough sparse estimators. Additionally, the CRLB is derived to427

characterize the estimator asymptotic performance.428

Then, the proposed transform effects on the sparse representation of the429

observation are analysed. The transform simplifies the sparse optimization by430

orthogonalizing the sources directions which drastically improves the problem431

conditioning. Furthermore, the transform is shown to suppress some of the432
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Figure 7: Probability of detection (left) and RMSE (right) for directions θ1 (top), θ2 (middle)

and θ3 (bottom) as a function of the angular spacing. RMSE are represented for angular

spacings leading to P(θm) ≥ 0.8. K = 200 array snapshots are considered together with a

common SNR of 10 dB for both sources.

issues of the CEL0 penalty in the case of closely spaced sources. These two433

effects lead to consequent improvements of the sparse estimator performance434

in the case of closely spaced sources as confirmed by the conducted numerical435

simulations in the case of 2 and 3 impinging sources.436

Nevertheless, a more in depth studied of the whitening transform conse-437

quences on the array’s ambiguities is required as it may allow to slacken some438

constraints about the array geometry. Furthermore, extensions of the two-stage439

transform to potentially time-correlated emitters received on arrays with space440

and polarization diversity shall be analysed.441
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