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Abstract. Weighted Timed Games (WTG for short) are the most widely used model to
describe controller synthesis problems involving real-time issues. Unfortunately, they are
notoriously difficult, and undecidable in general. As a consequence, one-clock WTGs have
attracted a lot of attention, especially because they are known to be decidable when only
non-negative weights are allowed. However, when arbitrary weights are considered, despite
several recent works, their decidability status was still unknown. In this paper, we solve
this problem positively and show that the value function can be computed in exponential
time (if weights are encoded in unary).

1. Introduction

The task of designing programs is becoming more and more involved. Developing formal
methods to ensure their correctness is thus an important challenge. Programs sensitive to
real-time allow one to measure time elapsing in order to take decisions. The design of such
programs is a notoriously difficult problem because timing issues may be intricate, and a
posteriori debugging such issues is hard. The model of timed automata [AD94] has been
widely adopted as a natural and convenient setting to describe real-time systems. This model
extends finite-state automata with finitely many real-valued variables, called clocks, and
transitions can check clocks against lower/upper bounds and reset some clocks.

Model-checking aims at verifying whether a real-time system modelled as a timed
automaton satisfies some desirable property. Instead of verifying a system, one can try to
synthesise one automatically. A successful approach, widely studied during the last decade,
is one of the two-player games. In this context, a player represents the controller, and an
antagonistic player represents the environment. Being able to identify a winning strategy
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of the controller, i.e. a recipe on how to react to uncontrollable actions of the environment,
consists in the synthesis of a system that is guaranteed to be correct by construction.

In the realm of real-time systems, timed automata have been extended to timed
games [AM99] by partitioning locations between the two players. In a turn-based fash-
ion, the player that must play proposes a delay and a transition. The controller aims at
satisfying some ω-regular objective however the environment player behaves. Deciding the
winner in such turn-based timed games has been shown to be EXPTIME-complete [JT07],
and a symbolic algorithm allowing tool development has been proposed [BCD+07].

In numerous application domains, in addition to real-time, other quantitative aspects
have to be taken into account. For instance, one could aim at minimising the energy used by
the system. To address this quantitative generalisation, weighted (aka priced) timed games
(WTG for short) have been introduced [BCFL04, BFH+01]. Locations and transitions are
equipped with integer weights, allowing one to define the accumulated weight associated
with a play. In this context, one focuses on a simple, yet natural, reachability objective:
given some target location, the controller, that we now call Min, aims at ensuring that it will
be reached while minimising the accumulated weight. The environment, that we now call
Max, has the opposite objective: avoid the target location or, if not possible, maximise the
accumulated weight. This allows one to define the value of the game as the minimal weight
Min can guarantee. The associated decision problem asks whether this value is less than or
equal to some given threshold.

In the earliest studies of this problem, some semi-decision procedures have been proposed
to approximate this value for WTGs with non-negative weights [ABM04, BCFL04]. In
addition, a subclass of strictly non-Zeno cost WTGs for which their algorithm terminates
has been identified in [BCFL04]. This approximation is motivated by the undecidability of
the problem, first shown in [BBR05]. This restriction has recently been lifted to WTGs with
arbitrary weights in [BMR17].

An orthogonal research direction to recover decidability is to reduce the number of
clocks and more precisely to focus on one-clock WTGs. Though restricted, a single clock
is often sufficient for modelling purposes. When only non-negative weights are considered,
decidability has been proven in [BLMR06] and later improved in [Rut11, HIM13] to obtain
exponential time algorithms. Despite several recent works, the decidability status of one-clock
WTGs with arbitrary weights is still open. In the present paper, we show the decidability of
the value problem for this class. More precisely, we prove that the value function can be
computed in exponential time (if weights are encoded in unary and not in binary).

Before exposing our approach, let us briefly recap the existing results. Positive results
obtained for one-clock WTGs with non-negative weights are based on a reduction to so-called
simple WTG, where the underlying timed automata contain no guard, no reset, and the clock
value along with the execution exactly spans the [0, 1] interval. In simple WTG, it is possible
to compute with various techniques inspired by the paradigm of value iteration, adapted
by a computation of the whole value function starting at time 1 and going back in time
until 0 [BLMR06, Rut11, HIM13], leading to an exponential-time algorithm. A PSPACE
lower-bound is also known for related decision problems [FIJS20].

Recent works extend the positive results of simple WTGs to arbitrary weights [BGH+15,
BGH+22], yielding decidability of reset-acyclic one-clock WTGs with arbitrary weights, with
a pseudo-polynomial time complexity (that is polynomial if weights are encoded in unary).
It is also explained how to extend the result to all WTGs where no cyclic play containing a
reset may have a negative weight arbitrarily close to 0. Moreover, it is shown that Min needs
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memory to play (almost-)optimally, in a very structured way: Min uses switching strategies,
that are composed of two memoryless strategies, the second one being triggered after a given
(pseudo-polynomial) number κ of steps.

The crucial ingredient to obtain decidability for non-negative weights or reset-acyclic
weighted timed games is to limit the number of reset transitions taken along a play. This is
no longer possible in presence of cycles of negative weights containing a reset. There, Min
may need to iterate cycles for a number κ of times that depends on the desired precision ε
on the value (to play ε-optimally, Min needs to cycle O(1/ε) times, see Example 2.3). To
rule out these annoying behaviours, we rely on three main ingredients:
• As there is a single clock, a cyclic path ending with a reset corresponds to a cycle of

configurations. We define the value of such a cycle, that allows us to identify which player
may benefit from iterating it.

• Using the classical region graph construction, we prove stronger properties on the value
function (it is continuous on the closure of region intervals). This allows us to prove
that Max has an optimal memoryless strategy that avoids cycles whose value is negative
(Section 3).

• We introduce in Section 4 a partial unfolding of the game, so as to obtain an acyclic WTG,
for which decidability is known. To do so, we rely on the existence of (almost-)optimal
switching strategies for Min, allowing us to limit the depth of exploration. Also we keep
track of cycles encountered and handle them according to their value. We transport the
previous result on the existence of a "smart" optimal strategy for Max in the context of
this unfolding in Section 5. This allows us to show that the unfolding has the same value
as the original WTG in Section 6.

We finally wrap up the proof in Section 7. Along the way, we crucially need that the
value function is obtained as a fixed point (indeed the greatest one) of an operator that was
already used in many contributions before [ABM04, BCFL04, BMR17]. We formally show
this statement in Section 8.

This article is an extended version of the conference article [MPR22], with respect to
which we have incorporated the full proofs of the result (in particular Section 8 is entirely
new), in a clarified way.

2. Weighted timed games

2.1. Definitions. We only consider weighted timed games with a single clock, denoted by x.
The valuation ν of this clock is a non-negative real number, i.e. ν ∈ R≥0. On such a clock,
transitions of the timed games will be able to check some interval constraints, called guards,
on the clock, i.e. intervals I of real values with closed or open bounds that are natural
numbers (or +∞). For every interval I having finite bounds a and b, we denote its closure
by Ī = [a, b].

Definition 2.1. A weighted timed game (WTG for short) is a tuple G = ⟨QMin, QMax, Qt, Qu,
∆,wt,wtt⟩ with
• Q = QMin ⊎QMax ⊎Qt a finite set of locations split between players Min and Max, and a

set of target locations;
• Qu ⊆ QMin ⊎QMax a set of urgent locations where time cannot be delayed;
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• ∆ a finite set of transitions each of the form (q, I, R,w, q′), with q and q′ two locations
(with q /∈ Qt), I an interval, w ∈ Z the weight of the transition, and R being either {x}
when the clock must be reset, or ∅ when it does not;

• wt : Q → Z a weight function associating an integer weight with each location: for
uniformisation of the notations, we extend this weight function to also associate with each
transition the weight it contains, i.e. wt

(
(q, I, R,w, q′)

)
= w;

• and wtt : Qt × R≥0 → R a function mapping each target configuration to a final weight,
where R = R ∪ {−∞,+∞}.

We note that our definition is not usual. Indeed, the addition of final weights in WTGs
is not standard, but we use it in the process of solving those games: in any case, it is possible
to simply map a given target location to the weight 0, allowing us to recover the standard
definitions of the literature. The presence of urgent locations is also unusual: in a timed
automaton with several clocks, urgency can be modelled with an additional clock u that
is reset just before entering the urgent location and with constraints u ∈ [0, 0] on outgoing
transitions. However, when limiting the number of clocks to one, we regain modelling
capabilities by allowing for such urgent locations. The weight of an urgent location is never
used and will thus not be given in drawings: instead, urgent locations will be displayed with
u inside.

Given a WTG G, its semantics, denoted by JGK, is defined in terms of a game on an infinite
transition system whose vertices are configurations of G, i.e. the set of pairs (q, ν) ∈ Q×R≥0.
Configurations are split into players according to the location q, and a configuration (q, ν) is
a target if q ∈ Qt. To encode the delay spent in the current location before firing a certain
transition, edges linking vertices will be labelled by elements of R≥0 ×∆. Formally, for every
delay t ∈ R≥0, transition δ = (q, I, R,w, q′) ∈ ∆ and valuation ν, we add a labelled edge

(q, ν)
t,δ−→ (q′, ν ′) if

• ν + t ∈ I;
• ν ′ = 0 if R = {x}, and ν ′ = ν + t otherwise;
• and t = 0 if q ∈ Qu.
This edge is given a weight t×wt(q)+wt(δ) taking into account discrete and continuous weights.
Without loss of generality by applying classical techniques [BPDG98, Lemma 5], we suppose
the absence of deadlocks except on target locations, i.e. for each location q ∈ Q\Qt and
valuation ν, there exist t ∈ R≥0 and δ = (q, I, R,w, q′) ∈ ∆ such that (q, ν)

t,δ−→ (q′, ν ′) and
no transitions start from Qt.

Paths and plays. We call path a finite or infinite sequence of consecutive transitions
q0

δ0−→ q1
δ1−→ · · · where δ0, δ1, . . . ∈ ∆ and q0, q1, . . . ∈ Q. We sometimes denote π1 · π2

the concatenation of a finite path π1 ending in location q and another path π2 starting
in location q. We call play a finite or infinite sequence of edges in the semantics of the
game (q0, ν0)

t0,δ0−−−→ (q1, ν1)
t1,δ1−−−→ (q2, ν2) · · · . A play is said to follow a path if both use

the same sequence of transitions. We let FPaths (resp. FPlays) be the set of all finite paths
(resp. plays).

Given a finite path π or a finite play ρ, we let |π| or |ρ| its length which is its number
of transitions (or edges), and |π|δ or |ρ|δ the number of occurrences of a given transition
δ in π (or ρ). More generally, for a play ρ and a set A of transitions, we let |ρ|A be the
number of occurrences of all transitions from A in ρ, i.e. |ρ|A =

∑
δ∈A |ρ|δ. We also let last(π)
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Figure 1: On the left, a WTG with a cyclic path of weight [−1, 1] containing a reset. Its
weights are depicted in bold font, and the missing ones are 0. Locations belonging
to Min (resp. Max) are depicted by circles (resp. squares). Transitions that contain
the reset of x are labelled with x := 0. The intervals of guards are described,
as classically done in timed automata, via equality or inequality constraints on
the unique clock x. The target location is ,, whose final weight function is zero.
Location q3 is urgent. On the right, the restriction of its closure to locations
q0, q1, q2 and ,.

and last(ρ) be the last location or configuration. Finally, FPathsMax (resp. FPathsMin) and
FPlaysMax (resp. FPlaysMin) denote the subset of finite paths or plays whose last element
belong to player Max (resp. Min).

A finite play ρ = (q0, ν0)
t0,δ0−−−→ (q1, ν1) · · · (qk, νk) can be associated with the cumulated

weight of the edges it traverses:

wtΣ(ρ) =
k−1∑
i=0

(
wt(ℓi)× ti + wt(δi)

)
.

A maximal play ρ (either infinite or trapped in a deadlock that is necessarily a target
configuration) is associated with a payoff P(ρ) as follows: the payoff of an infinite play
(meaning that it never visits a target location) is +∞, while the payoff of a finite play, thus
ending in a target configuration (q, ν), is wtΣ(ρ)+wtt(q, ν). By [BFH+01], the set of weights
of plays following a given path is known to be an interval of values. Moreover, when all the
guards along the path are closed intervals, this interval has closed bounds.

A cyclic path is a finite path that starts and ends in the same location. A cyclic play is
a finite play that starts and ends in the same configuration: it necessarily follows a cyclic
path, but the reverse might not be true since some non-cyclic plays can follow a cyclic path
(if they do not end in the same valuation as the one in which they start).

Example 2.2. Plays that follow the cyclic path π = q0
δ1−→ q1

δ2−→ q0 of the WTG depicted
on the left in Figure 1 have weight between −1 (with the play (q0, 0)

0,δ1−−→ (q1, 0)
1,δ2−−→ (q0, 0))

and 1 (with the play (q0, 0)
1,δ1−−→ (q1, 1)

0,δ2−−→ (q0, 0)), so wtΣ(π) = [−1, 1]. Another cyclic
path is π′ = q0

δ6−→ q3
δ7−→ q0 which goes via an urgent location. In particular, all plays that
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follow this one are of the form (q0, ν)
t,δ6−−→ (q3, ν + t)

0,δ7−−→ (q0, ν + t) with ν and ν + t less
than 1: they all have weight 1.

Strategies and value. A strategy gives a set of choices to one of the players. A strategy of
Min is a function σ : FPlaysMin → R≥0×∆ mapping each finite play ρ whose last configuration
belongs to Min to a pair (t, δ) of delay and transition, such that the play ρ can be extended
by an edge labelled with (t, δ). A play ρ is said to be conforming to a strategy σ if the choice
made in ρ at each location of Min is the one prescribed by σ. Moreover, a finite path π is said
to be conforming to a strategy σ if there exists a finite play following π that is conforming
to σ. Similar definitions hold for strategies τ of Max. We let StratMin,G (resp., StratMax,G) be
the set of strategies of Min (resp., Max) in the game G, or simply StratMin and StratMax if
the game is clear from the context: we will always use letters σ and τ to differentiate from
strategies of Min and Max.

A strategy is said to be memoryless if it only depends on the last configuration of the
plays. More formally, Max’s strategy τ is memoryless if for all plays ρ and ρ′ such that
last(ρ) = last(ρ′), we have τ(ρ) = τ(ρ′).

After both players have chosen their strategies σ and τ , each initial configuration (q, ν)
gives rise to a unique maximal play that we denote by Play((q, ν), σ, τ). The value of the
configuration (q, ν) is then obtained by letting players choose their strategies as they want,
first Min and then Max, or vice versa since WTGs are known to be determined [BGH+22]:

ValG(q, ν) = sup
τ

inf
σ

P(Play((q, ν), σ, τ)) = inf
σ

sup
τ

P(Play((q, ν), σ, τ)) .

The value of a strategy σ of Min (symmetric definitions can be given for strategies τ of
Max) is defined as:

ValσG(q, ν) = sup
τ

P(Play((q, ν), σ, τ)) .

Then, a strategy σ∗ of Min is optimal if, for all initial configurations (q, ν),

Valσ
∗

G (q, ν) ≤ ValG(q, ν) .

Because of the infinite nature of the timed games, optimal strategies may not exist: for
example, a player may want to let time elapse as much as possible, but with a delay
t < 1 because of a strict guard, preventing them to obtain the optimal value. We will see
in Example 3.1 that this situation can even happen when all guards contain only closed
comparisons. We naturally extend the definition to almost-optimal strategies, taking into
account small possible errors: we say that a strategy σ∗ of Min is ε-optimal if, for all initial
configurations (q, ν),

Valσ
∗

G (q, ν) ≤ ValG(q, ν) + ε .

Example 2.3. We have seen, in Example 2.2, that in q0 (on the left in Figure 1), Min has
no interest in following the cycle q0

δ6−→ q3
δ7−→ q0 since all plays following it have weight 1.

Jumping directly to the target location via δ3 leads to a weight of 1. But Min can do better:
from valuation 0, by jumping to q1 after a delay of t ≤ 1, it leaves a choice to Max to either
jump to q2 and the target leading to a total weight of 1− t, or to loop back in q0 thus closing
a cyclic play of weight −2(1− t) + 1 = 2t− 1. If t is chosen too close to 1, the value of the
cycle is greater than 1, and Max will benefit from it by increasing the total weight. If t is
chosen smaller than 1/2, the weight of the cycle is negative, and Max will prefer to go to
the target to obtain a weight 1− t close to 1, not very beneficial to Min. Thus, Min prefers
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to play just above 1/2, for example at 1/2 + ε. In this case, Max will choose to go to the
target with a total weight of 1/2 + ε. The value of the game, in configuration (q0, 0), is thus
ValG(q0, 0) = 1/2. Not only Min does not have an optimal strategy (but only ε-optimal ones,
for every ε > 0), but needs memory to play ε-optimally, since Min cannot play ad libitum
transition δ2 with a delay 1/2− ε: in this case, Max would prefer staying in the cycle, thus
avoiding the target. Thus, Min will play the transition δ1 at least 1/4ε times so that the
cumulated weight of all the cycles is below −1/2, in which case Min can safely use transition
δ1 still earning 1/2 in total.

Clock bounding. Seminal works in WTGs [ABM04, BCFL04] have assumed that clocks
are bounded. This is known to be without loss of generality for (weighted) timed au-
tomata [BFH+01, Theorem 2]: it suffices to replace transitions with unbounded delays with
self-loop transitions periodically resetting the clock. We do not know if it is the case for the
WTGs defined above since this technique cannot be directly applied. This would give too
much power to player Max that would then be allowed to loop in a location (and thus avoid
the target) where an unbounded delay could originally be taken before going to the target.
In [BCFL04], since the WTGs are concurrent, this new power of Max is compensated by
always giving Min a chance to move outside of such a situation. Trying to detect and avoid
such situations in our turn-based case seems difficult in the presence of negative weights since
the opportunities of Max crucially depend on the configurations of value −∞ that Min could
control afterwards: the problem of detecting such configurations (for all classes of WTGs)
is undecidable [Bus19, Prop. 9.2], which is additional evidence to motivate the decision to
focus only on bounded WTGs. We thus suppose from now on that the clock is bounded by a
constant M ∈ N, i.e. every transition of the WTG is equipped with the interval [0,M ].

Regions. In the following, we rely on the crucial notion of regions introduced in the seminal
work on timed automata [AD94] to obtain a partition of the set of valuations [0,M ]. To
reduce the number of regions concerning the more usual one of [AD94] in the case of a
single clock, we define regions by a construction inspired by Laroussinie, Markey, and
Schnoebelen [LMS04]. Formally, we call regions of G the set

RegG = {(Mi,Mi+1) | 0 ≤ i ≤ k − 1} ∪ {{Mi} | 0 ≤ i ≤ k}
where M0 = 0 < M1 < · · · < Mk are all the endpoints of the intervals appearing in the
guards of G (to which we add 0 if needed). As usual, if I is a region, then the time successor
of valuations in I forms a finite union of regions, and the reset I[x := 0] = {0} is also a
region. A region I ′ is said to be a time successor of the region I if there exists ν ∈ I, ν ′ ∈ I ′,
and t > 0 such that ν ′ = ν + t.

Final weights. We also assume that the final weight functions satisfy a sufficient property
ensuring that they can be encoded in finite space: we require final weight functions to be
piecewise affine with a finite number of pieces and continuous on each region. More precisely,
we assume that cutpoints (the value of the clock in-between two affine pieces) and coefficients
are rational and given in binary.

We let Wloc, Wtr and Wfin be the maximum absolute value of weights of locations,
transitions and final functions, i.e.

Wloc = max
q∈Q

|wt(q)| Wtr = max
δ∈∆

|wt(δ)| Wfin = sup
q∈Qt

wtt(q,·)/∈{+∞,−∞}

sup
ν

|wtt(q, ν)|
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We also let W be the maximum of Wloc, Wtr, and Wfin.

2.2. Fixpoint characterisation of the value. The value function ValG : Q× R≥0 → R of
WTGs can sometimes be characterised as a fixpoint (and even the greatest fixpoint) of some
operator F defined as follows: for all configurations (q, ν) and all mappings X : Q×R≥0 → R,
we let:

F(X)(q, ν) =


wtt(q, ν) if q ∈ Qt

inf
(q,ν)

t,δ−→(q′,ν′)

(
wt(δ) + twt(q) +X(q′, ν ′)

)
if q ∈ QMin

sup
(q,ν)

t,δ−→(q′,ν′)

(
wt(δ) + twt(q) +X(q′, ν ′)

)
if q ∈ QMax

This operator is the basis of the decidability result for (many-clocks) WTGs with non-
negative weights with some divergence conditions on the weight of cycles [BCFL04], since
the value iteration algorithm that iterates the operator over an initial well-chosen function is
supposed to converge (in finite time) towards the desired value. However the proof given in
[BCFL04, Bou16] of the claim that ValG is indeed the greatest fixpoint of F contains flaws
since they suppose that the limit of the iterates of F is a continuous function of R≥0 to prove
that this limit is the value function. Since the limit of a sequence of continuous functions
may not be continuous, this fact needs to be proven.

Fortunately, the necessary claim can be recovered in the case of such divergent WTGs
(at least in the turn-based case that we consider in this article, and not necessarily in the
concurrent case studied in [BCFL04]) even in presence of both negative and non-negative
weights, as can be recovered from [BMR18].

Moreover, in the non-divergent case, with negative weights in WTGs, the continuity
of the value function is indeed not guaranteed [BGH+22, Remark 3.3]. In particular, this
implies that the proof (even if we somehow obtain the continuity of the limit) can not a
priori be adapted to all WTGs with negative weights.

In our specific one-clock case, we are able to correct the proof of [BCFL04, Bou16].
As the proof is long and technical, and orthogonal to the rest of the paper, we defer it to
Section 8. We obtain there the following result:

Theorem 2.4 . The value function of all (one-clock) WTGs is the greatest fixpoint of the
operator F .

2.3. Closure. A game G can be populated with the region information without loss of
generality, building what is called the region game in [BMR17], the addition of the classical
region automaton with information on the owner of locations inherited from G. To solve
one-clock WTGs without reset transitions in [BGH+22], authors do not use the usual region
game. Indeed, their method is based on a construction that consists in not only enhancing
the locations with regions (as the region game) but also closing all guards while preserving
the value of the original game.

Definition 2.5. The closure of a WTG G is the WTG G = ⟨LMin, LMax, Lt, Lu,∆,wt,wtt⟩
where:
• L = LMin ⊎ LMax ⊎ Lt with LMin = QMin × RegG , LMax = QMax × RegG , Lt = Qt × RegG ,

and Lu = Qu × RegG ;
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• for all (q, I) ∈ L,
(
(q, I), Ig ∩ I ′′, R,w, (q′, I ′)

)
∈ ∆ if and only if there exist a transition

(q, Ig, R,w, q′) ∈ ∆, and a region I ′′ such that Ig ∩ I ′′ ≠ ∅, the lower bound of I ′′ is a time
successor of I, and I ′ is equal to I ′′ if R = ∅ and to {0} otherwise: Ig ∩ I ′′ stands for the
topological closure of the non-empty interval Ig ∩ I ′′;

• for all (q, I), we have wt(q, I) = wt(q);
• for all (q, I) ∈ Lt, for ν ∈ I, wtt((q, I), ν) = wtt(q, ν) and extend ν 7→ wtt((q, I), ν) by

continuity on Ī, the closure of the interval I. We may also let wtt((q, I), ν) = +∞ for all
ν /∈ I, even though we will never use this in the following.

An example of closure is given in Figure 1, which depicts the closure (right) of the WTG
(left) restricted to locations q0, q1, q2, and , (we have seen that q3 is anyway useless).

The semantic of the closure is obtained by concentrating on the following set of configu-
rations which is an invariant of the closure (i.e. starting from such configuration fulfilling the
invariant, we can only reach configurations fulfilling the invariant):
• configurations ((q, {Mk}),Mk);
• and configurations ((q, (Mk,Mk+1)), ν) with ν ∈ [Mk,Mk+1] (and not only in (Mk,Mk+1)

as one might expect in the region game).
The closure of the guards allows players to mimic a move in G “arbitrarily close” to

Mk (or Mk+1) in (Mk,Mk+1) to be simulated by jumping on Mk (or Mk+1) still staying in
the region (Mk,Mk+1). In particular, it is shown in [BGH+22] that we can transform an
ε-optimal strategy of G into an ε′-optimal strategy of G with ε′ < 2ε and vice-versa. Thus,
the closure of a WTG preserves its value.

Lemma 2.6 [BGH+22]. For all WTGs G, (q, I) ∈ Q× RegG and ν ∈ I,

ValG(q, ν) = ValG((q, I), ν) .

Moreover, the closure construction also makes the value function more manageable for
our purpose. Indeed, as shown in [BGH+22], the mapping ν 7→ ValG(ℓ, ν) is continuous over
all regions, but there might be discontinuities at the borders of the regions. The closure
construction clears this issue by softening the borders of each region independently: we show
the continuity of the value function on each closed region (and not only on the regions) in
the closure game by following a very similar sketch as the one of [BGH+22, Theorem 3.2].
The completed proof is given in Appendix A.

Lemma 2.7. For all WTGs G and (q, I) ∈ Q × RegG, the mapping ν 7→ ValG((q, I), ν) is
continuous over I.

In [BGH+22], it is also shown that the mapping ν 7→ ValG(ℓ, ν) is piecewise affine on
each region where it is not infinite, that the total number of pieces (and thus of cutpoints
in-between two such affine pieces) is pseudo-polynomial (i.e. polynomial in the number of
locations and the biggest weight W ), and that all cutpoints and the value associated to such
a cutpoint are rational numbers. We will only use this result on reset-acyclic WTGs, i.e. that
do not contain cyclic paths with a transition with a reset, which we formally cite here:

Theorem 2.8 [BGH+22]. If G is a reset-acyclic WTG, then for all locations q, the piecewise
affine mapping ν 7→ ValG(q, ν) is computable in time polynomial in |Q| and W .

In [BGH+22], this result is extended to take into allow for cyclic paths containing reset
transitions when the weight of all the plays following them is not arbitrarily close to 0 and
negative.
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Example 2.9. Notice that the game on the left in Figure 1 does not fulfil this hypothesis:

indeed, the play (q0, 0)
1/2−ε,δ1−−−−−→ (q1, 1/2− ε)

1/2+ε,δ2−−−−−→ (q0, 0) is a cyclic play that contains a
transition with a reset, and of weight −2ε negative and arbitrarily close to 0.

2.4. Contribution. In this work, we use a different technique of [BGH+22] to push the
decidability frontier and prove that the value function is computable for all WTGs (in
particular the one of Figure 1):

Theorem 2.10. For all WTGs G and all locations qi, the mapping ν 7→ ValG(qi, ν) is
computable in time exponential in |Q| and W .

Remark 2.11. The complexities of Theorems 2.8 and 2.10 would be more traditionally
considered as exponential and doubly-exponential if weights of the WTG were encoded in
binary as usual. In this work, we thus count the complexities as if all weights were encoded
in unary and thus consider W to be the bound of interest. For Theorem 2.8, the obtained
bound is classically called pseudo-polynomial in the literature.

The rest of this article gives the proof of Theorem 2.10. We fix a WTG G and an initial
location qi. We let G = ⟨LMin, LMax, Lt, Lu,∆,wt,wtt⟩ be its closure. We first use Lemma 2.6,
which allows us to deduce the result by computing the value functions ν 7→ ValG((qi, I), ν)
for all regions I. Regions I over which ν 7→ ValG((qi, I), ν) is constantly equal to +∞ or −∞
are computable in polynomial time, as explained in [BGH+22]. We therefore remove them
from G from now on. We now fix an initial region Ii and let ℓi = (qi, Ii), and explain how to
compute ν 7→ ValG((qi, Ii), ν) on the interval Ii.

As in the non-negative case [BLMR06], the objective is to limit the number of transitions
with a reset taken into the plays while not modifying the value of the game. When all weights
are non-negative, this is fairly easy to achieve since, intuitively speaking, Min has no interest
in using any cycles containing such a transition (since it has non-negative weight and is thus
non-beneficial for Min). The game can thus be transformed so that each transition with a
reset is taken at most once. To obtain a smaller game, it is even possible to simply count
the number of transitions with a reset taken so far in the play and stop the game (with a
final weight +∞) in case the counter goes above the number of such transitions in the game.
The transformed game has a polynomial number of locations with respect to the original
game and is reset-acyclic, which allows one to solve it by using Theorem 2.8, with a time
complexity polynomial in |Q| and W (instead of the exponential time complexity originally
achieved in [BLMR06, Rut11] with respect to |Q|).

The situation is much more intricate in the presence of negative weights since negative
cycles containing a transition with a reset can be beneficial for Min, as we have seen in
Example 2.3. Notice that this is still true in the closure of the game, as can be checked on
the right in Figure 1. Moreover, some cyclic paths may have both plays following it with a
positive weight and plays following it with a negative weight, making it difficult to determine
whether it is beneficial to Min (or not). To overcome this situation, we will consider the point
of view of Max, benefiting from the determinacy of the WTG. We will show that, in the
closure G, Max can play optimally with memoryless strategies while avoiding negative cyclic
plays. This will simplify our further study since, by following this strategy, Max ensures that
only non-negative cyclic plays will be encountered, which is not beneficial to Min. Therefore,
as in [BLMR06], we will limit the firing of transitions with a reset to at most once. However,
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Figure 2: On the left, a WTG where Max needs memory to play ε-optimally. On the right,
its closure where we merged several transitions by removing unnecessary guards.

we are not able to do it without blowing up exponentially the number of locations of the
games. Instead, along the unfolding of the game, we need to record enough information in
order to know, in case a cyclic path ending with a reset is closed, whether this cyclic path
has a potential negative weight (in which case Max will indeed not follow it) or non-negative
weight (in which case it is not beneficial for Min to close the cycle). Determining in which
case we are will be made possible by introducing the notion of value of a cyclic path in
Section 3. Then, Max has even an optimal strategy to avoid closing cyclic paths with a
negative value (which is stronger than only avoiding creating negative cyclic plays). The
unfolding, denoted U , will be defined in Section 4. Section 5 shows that Max keeps its ability
to play without falling in negative "cycles" in the unfolding. This allows us to show in
Section 6 that the unfolding game has a value equal to the closure game. This allows us to
wrap up the proof of Theorem 2.10 in Section 7.

3. How Max can control negative cycles

One of the main arguments of our proof is that, in the closure of a WTG G, Max can play
optimally with memoryless strategies while avoiding negative cyclic plays. As already noticed
in [BGH+22], this is not always true in all WTGs: Max may need memory to play ε-optimally
without the possibility of avoiding some negative cyclic plays.

Example 3.1. In the WTG depicted on the left in Figure 2, we can see that Val(q1, 0) = 0,
but Max does not have an optimal strategy, needs memory to play ε-optimally, and cannot
avoid negative cyclic plays. Indeed, an optimal strategy for Max always chooses a delay
greater than 1: if at some point, a strategy of Max chooses a delay less than or equal to 1,
then Min can always choose δ4, and the value of this strategy is −10. However, Max must
choose a delay closer and closer to 1. Otherwise, we suppose that there exists β > 0 such that
all delays chosen by the strategy are greater than 1 + β, and Min has a family of strategies
that stay longer and longer in the cycle with a weight at most −β. Thus, the value of this
strategy will tend to −∞. In particular, Max does not have an optimal strategy, and the
ε-optimal strategy requires infinite memory to play with delays closer and closer to 1 (for
instance, after the n-th round in the cycle, Max delays ε/2n time units, to sum up, all weights
to a value at most −ε).
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Such convergence phenomena needed by Max do not exist in G since all guards are closed
(this is not sufficient alone though) and by the regularity of Val given by Lemma 2.7.

Example 3.2. We consider the closure of the WTG depicted in Figure 2. The ε-optimal
strategy (with memory) of Max in G translates into an optimal memoryless strategy in G:
in (q1, {0}), Max can delay 1 time unit and jump into the location (q0, (1, 2)). Then, cyclic
plays that Min can create have a zero weight and are thus not profitable for either player.

To generalise this explanation, we start by defining the value of cyclic paths ending with
a reset in a given WTG. Intuitively, the value of this cyclic path is the weight that Min (or
Max) can guarantee regardless of the delays chosen by Max (or Min) during this one.

Definition 3.3. Let G be a WTG. We define by induction the value ValνG(π) of a finite path
π in G from an initial valuation ν of the clock: if π has length 0 (i.e. if π ∈ Q), we let:

ValνG(π) = 0 .

Otherwise, π can be written q0
δ0−→ π′ (with π′ starting in location q1), and we let:

ValνG(π) =

inf
(q0,ν)

t0,δ0−−−→(q1,ν′) edge of JGK

(
t0 wt(q0) + wt(δ0) + Valν

′
G (π′)

)
if q0 ∈ LMin

sup
(q0,ν)

t0,δ0−−−→(q1,ν′) edge of JGK

(
t0 wt(q0) + wt(δ0) + Valν

′
G (π′)

)
if q0 ∈ LMax

Then, for a cyclic path π of G ending by a transition with a reset, we let ValG(π) = Val0G(π).

Example 3.4. Let π = q0
δ1−→ q1

δ2−→ q0 be the cyclic path of the WTG G depicted on the
left in Figure 1. To evaluate the value of π, Min only needs to choose a delay t1 ∈ [0, 1] when
firing δ1, while Max has no choice but to play a delay 1 − t1 when firing δ2, generating a
finite play ρ of weight wtΣ(ρ) = 2t1 − 1. We deduce that ValG(π) = inft1∈[0,1](2 t1 − 1) = −1
(when Min chooses t1 = 0).

A cyclic path with a negative value ensures that Min can always guarantee to obtain
a cyclic play that follows it with a negative weight, even when there are other cyclic plays
(that follow it) with a non-negative weight. It is exactly those cycles that are problematic
for Max since Min can benefit from them. We now show our key lemma: in the closure of a
WTG, Max can play optimally and avoid cyclic paths of negative value.

Lemma 3.5. In a closure WTG G, Max has a memoryless optimal strategy τ such that
(1) all cyclic plays conforming to τ have a non-negative weight;
(2) all cyclic paths ending by a reset conforming to τ have a non-negative value.

Proof. We use Theorem 2.4 to define the memoryless strategy τ . Indeed, the identity
ValG = F(ValG), applied over configurations belonging to Max, suggests a choice of transition
and delay to play almost optimally. As F computes a supremum on the set of possible
(transitions and) delays, this does not directly lead to a specific choice: in general, this
would give rise to ε-optimal strategies and not an optimal one. This is where we rely on the
continuity of ValG (Lemma 2.7) on each closure of region to deduce that this supremum is
indeed a maximum. More precisely, for ℓ ∈ LMax, we can write F(ValG)(ℓ, ν) as:

max
δ∈∆

sup

t s.t. (ℓ,ν)
t,δ−→(ℓ′,ν′)

(
wt(δ) + twt(ℓ) + ValG(ℓ

′, ν ′)
)
.
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The guard of transition δ is the closure I of a region I ∈ RegG , therefore, t is in a closed
interval J of values such that ν + t falls in I. Notice that ν ′ is either 0 if δ contains a reset or
is ν + t: in both cases, this is a continuous function of t. Relying on the continuity of ValG ,
the mapping t ∈ J 7→ wt(δ) + twt(ℓ) + ValG(ℓ

′, ν ′) is thus continuous over a compact set so
that its supremum is indeed a maximum.

We thus let the memoryless strategy τ be such that, for all configurations (ℓ, ν), τ(ℓ, ν)
is chosen arbitrarily in:

argmax
δ∈∆

argmax

t s.t. ℓ,ν
t,δ−→ℓ′,ν′

(
wt(δ) + twt(ℓ) + ValG(ℓ

′, ν ′)
)

(3.1)

This mapping τ is then extended into a memoryless strategy, defining it over finite plays by
only considering the last configuration of the play. To conclude the proof, we show that τ is
an optimal strategy that satisfies the two properties of the lemma.

We first show that τ is an optimal strategy by proving that ValτG(ℓ, ν) ≥ ValG(ℓ, ν) for all
configurations (ℓ, ν). In particular, we show that for all plays ρ from (ℓ, ν) conforming to τ ,
we have P(ρ) ≥ ValG(ℓ, ν). We remark that if ρ does not reach Lt, then P(ρ) = +∞, and the
inequality is satisfied. Now, we suppose that ρ reaches Lt, and we reason by induction on
the length of ρ to show that P(ρ) ≥ ValG(ℓ, ν) for all plays ρ starting in a configuration (ℓ, ν)

reaching Lt. If ρ has length 0, it starts directly in ℓ ∈ Lt, and P(ρ) = wtt(ℓ, ν) = ValG(ℓ, ν).

Otherwise, ρ = (ℓ, ν)
t,δ−→ ρ′, with ρ′ starting in a configuration (ℓ′, ν ′). In particular, by

inductive hypothesis, we have:

P(ρ) = wt(δ) + twt(ℓ) + P(ρ′) ≥ wt(δ) + twt(ℓ) + ValG(ℓ
′, ν ′) .

Now, if ℓ ∈ LMin, then we conclude by using that ValG is a fixed point of F , i.e.

P(ρ) ≥ inf
(ℓ,ν)

t,δ−→(ℓ′,ν′)

(
wt(δ) + twt(ℓ) + ValG(ℓ

′, ν ′)
)
= ValG(ℓ, ν) .

Otherwise, we suppose that ℓ ∈ LMax and (t, δ) is defined by τ . Thus, by (3.1) and using
again that ValG is a fixed point of F , we obtain that

P(ρ) ≥ sup

(ℓ,ν)
t,δ−→(ℓ′,ν′)

(
wt(δ) + twt(ℓ, I) + ValG(ℓ

′, ν ′)
)
= ValG(ℓ, ν) .

Finally, we conclude the proof by showing that τ satisfies the two properties of the lemma.

(1) Let ρ = (ℓ1, ν1)
t1,δ1−−−→ · · · (ℓk, νk)

tk,δk−−−→ (ℓk+1, νk+1) = (ℓ1, ν1) be a cyclic play conforming
to τ . We show that wtΣ(ρ) ≥ 0 by claiming that for all i ∈ {1, . . . , k},

ValG(ℓi, νi) ≤ wt(δi) + ti wt(ℓi) + ValG(ℓi+1, νi+1) (3.2)

Indeed by summing this inequality along ρ, we obtain:
k∑

i=1

ValG(ℓi, νi) ≤
k∑

i=1

(
wt(δi) + ti wt(ℓi) + ValG(ℓi+1, νi+1)

)
i.e., since ρ is a cyclic play,

wtΣ(ρ) =
k∑

i=1

(
wt(δi) + ti wt(ℓi)

)
≥ 0 .
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To conclude this point, we show (3.2). For i ∈ {1, . . . , k}, we distinguish two cases. First,
we suppose that ℓi ∈ LMin and we conclude as ValG is a fixed point of F :

ValG(ℓi, νi) = inf
(ℓi,νi)

t,δ−→(ℓ′,ν′)

(
wt(δ) + twt(ℓi) + ValG(ℓ

′, ν ′)
)

≤ wt(δi) + ti wt(ℓi) + ValG(ℓi+1, νi+1) .

Otherwise, ℓi ∈ LMax then, as ValG is a fixed point of F and by using (3.1), we have:

ValG(ℓi, νi) = sup

(ℓi,νi)
t,δ−→(ℓ′,ν′)

(
wt(δ) + twt(ℓi) + ValG(ℓ

′, ν ′)
)

≤ wt(δi) + ti wt(ℓi) + ValG(ℓi+1, νi+1) .

(2) Let π = ℓ0
δ0−→ ℓ1 · · · ℓk

δk−→ ℓ0 be a cyclic path conforming to τ such that δk contains a
reset. By grouping all infimum/supremum together in the previous definition, we can see
that ValG(π) can be rewritten as:

inf(
fi : (t0,...,ti−1)7→ti

)
0≤i≤k
ℓi∈LMin

sup(
fi : (t0,...,ti−1)7→ti

)
0≤i≤k
ℓi∈LMax

wtΣ(ρ)

where ρ is the finite play (ℓ0, 0)
t0=f0,δ0−−−−−→ (ℓ1, ν1)

t1=f1(t0),δ1−−−−−−−→ · · · tk=fk(t0,...,tk−1),δk−−−−−−−−−−−−→ (ℓ0, 0).
Notice that the mapping fi, chosen by the player owning location ℓi, describes the
delay before taking the transition δi as a function of the previously chosen delays. In
particular, for all ε > 0, there exists

(
fi : (t0, . . . , ti−1) 7→ ti

)
0≤i≤k
ℓi∈LMin

such that for all(
fi : (t0, . . . , ti−1) 7→ ti

)
0≤i≤k
ℓi∈LMax

:

wtΣ(ρ) ≤ ValG(π) + ε

with ρ the finite play described above. Since π is conforming to τ , a particular choice of
delays

(
fi : (t0, . . . , ti−1) 7→ ti

)
0≤i≤k
ℓi∈LMax

is given by τ itself. In this case, the latter finite

play ρ is conforming to τ . By the previous item, we know that wtΣ(ρ) ≥ 0, therefore:

ValG(π) ≥ −ε .

Since this holds for all ε > 0, we deduce that ValG(π) ≥ 0 as expected.

As a side note, it is tempting to strengthen Lemma 3.5.(2) so as to ensure that all
plays following a cyclic path ending by a reset conforming to τ have a non-negative weight.
Unfortunately, this does not hold, as shown in the following example.

Example 3.6. We consider the closure of the WTG depicted in Figure 3. Let π = (q0, {0})
δ1−→

(q1, {0})
δ2−→ (q0, {0}). It is a cyclic path such that plays following it have a weight in [−1, 1].

To evaluate the value of π in G, Min and Max need to choose delays t1, t2 ∈ [0, 1] when
firing δ1 and δ2. We obtain a set of finite plays ρ parametrised by t1 and t2 of weight
wtΣ(ρ) = −t1 + t2. We deduce that ValG(π) = inft1 supt2(t2 − t1) = 0 (when Min and Max
choose t1 = t2 = 1). In particular, from the configuration ((q0, {0}), 0), the cyclic path π
is not interesting for Min since he only can guarantee the weight 0. Thus, he must play
transition δ4 after a delay of 1 unit of time to lead to a value of −1. To play optimally, Max
must avoid the transition δ3, i.e. all optimal strategies of Max play in the previous cyclic
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Figure 3: On the left, a WTG such that its closure on the right contains a cyclic path of
value 0, but some cyclic paths of negative weight. Moreover, Max uses the cyclic
path to play optimally.

path π that has a non-negative value but such that certain plays following it have a negative
weight.

Finally, we note that Lemma 3.5 does not allow us to conclude on the decidability of the
value problem since we use the unknown value ValG to define the optimal strategy.

4. Definition of the unfolding

To compute ValG , we now define the partial unfolding of the WTG G by allowing only one
occurrence of each cyclic path (from G) ending by a reset. In particular, when a transition
with a reset is taken for the first time, we go into a new copy of the WTG, from which, if
this transition happens to be chosen one more time, we stop the play by jumping into a new
target location. The final weight of this target location is determined by the value of the
cyclic path (ending with a reset) that would have just been closed. If the cyclic path has a
negative value, then we go in a leaf t<0 of final weight −∞ since this is a desirable cycle for
Min. Otherwise, we go in a leaf t≥0 of final weight big enough to be an undesirable behaviour
for Min, i.e. |L|(Wtr +M Wloc) +Wfin (for technical reasons that will become clear later, we
can not simply put a final weight +∞).

A single transition with a reset can be part of two distinct cyclic paths, one of negative
value and the other of non-negative value, as demonstrated in Example 4.1. Thus, knowing
the last transition of the cycle is not enough to compute the value of the cyclic path. Instead,
we need to record the whole cyclic path: copying the game (as done in the non-negative
setting [BLMR06]) is not enough. Our unfolding needs to remember the path followed so
far: their locations are thus finite paths of G.

Example 4.1. In Figure 4, we have depicted a WTG (left) and a portion of its closure
(right), where δ′2 is contained in a cyclic path of negative value:

(q0, {0})
δ′3−→ (q2, {0})

δ′′4−→ (q0, {1})
δ′′1−→ (q1, {0})

δ′2−→ (q0, {0})
and another cyclic path of non-negative (zero) value:

(q0, {0})
δ′1−→ (q1, {0})

δ′2−→ (q0, {0}) .

In order to obtain a finite acyclic unfolding, we also need to stop cyclic paths without
resets. To do so, we will rely on a property of reset-acyclic WTGs. For such WTGs, it can
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Figure 4: A WTG (left) and a portion of its closure (right) where δ′2 belongs to a cyclic path
of non-negative value and another cyclic path of negative value.

be shown the existence of an ε-optimal strategy for Min with a particular shape [BGH+22]
defined as follows:

Definition 4.2 . A switching strategy σ is described by two memoryless strategies σ1,
and σ2, as well as a switching threshold κ′. The strategy σ then consists in playing strategy
σ1 until either we reach a target location or the finite play has a length of at least κ′, in
which case we switch to strategy σ2.

Intuitively, σ1 aims at reaching a cyclic play with negative weight, while σ2 is an attractor
to the target. As a consequence, we can estimate the maximal number of steps needed
by σ2 to reach the target. Combining this with the switching threshold κ′, we can deduce a
threshold κ that upper bounds the number of steps under the switching strategy σ to reach
the target. Moreover, we can explicitly give the pseudo-polynomial bound κ since it is given
by the previous work of [BGH+22]. From [BGH+22, Lemma 3.9], we know that

κ′ = O(|L| × (Wloc + |σ1| ×Wtr|L|) + |σ1|)
where |σ1| is the size of this strategy, i.e. the number of cutpoints in ValG (by [BGH+22,
Theorem 5.9]). Moreover, by [BGH+22, Theorem 5.13], we have a bound over the number of
cutpoints in ValG , i.e. |σ1| = O(W 4

tr|L|9). Thus, we deduce that the switching threshold κ′ is
approximated by

κ′ = O
(
|L| ×

[
Wloc +W 4

tr|L|9 ×Wtr|L|
]
+W 4

tr|L|9
)
= O

(
|L|11(Wloc +W 5

tr)
)
.

Then, we fix κ′′ to be the number of turns taken by σ2 to reach the target location, which is
polynomial in the number of locations of the region automaton underlying the game, thus
polynomial in the number of locations of the game (since there is only one-clock). Overall,
this gives a definition for κ as:

κ = κ′ + κ′′ = O
(
|L|12(Wloc +W 5

tr)
)

that is polynomial in |Q| (as |L| is polynomial in |Q|) and in W . Thus, we obtain the
following result.

Lemma 4.3 [BGH+22]. Let G be a reset-acyclic WTG. Min has an ε-optimal switching
strategy σ such that all plays conforming to σ reach the target within κ steps. Moreover, κ is
polynomial in |Q| and W .

Now, between two transitions with a reset, we obtain a reset-acyclic WTG. As a
consequence, since Min can play almost optimally using a switching strategy, we can bound



Vol. 21:1 ONE-CLOCK WEIGHTED TIMED GAMES WITH ARBITRARY WEIGHTS 8:17

,

t<0 t≥0

t+∞

δ1
x := 0

δ2
x := 0

δ1
x := 0

δ2
x := 0

δ1
x := 0

δ2
x := 0

δ2
x := 0 δ1

x := 0

δ1
x := 0

δ2
x := 0

Figure 5: Scheme of the unfolding of a closure of a WTG.

the number of steps between two transitions with a reset by κ. This property allows us to
avoid incorporating cycles in the unfolding: we cut the unfolding when the play becomes
longer than κ since the last seen transition with a reset. In this case, we will jump into a new
target location, t+∞, whose final weight is equal to +∞ since it is an undesirable behaviour
for Min.

The scheme of the unfolding is depicted in Figure 5 when the closure of a WTG contains
two transitions with a reset, δ1 and δ2, each belonging to several cycles of different values
(negative and non-negative). Inside each grey component, only transitions with no reset
are unfolded for at most κ steps by only keeping, in the current location, the path followed
so far. Transitions with a reset induce a change of components: these are in between the
components. The second time they are visited, the value of the cycle it closes is computed,
and we jump in t<0 or t≥0 depending on the sign of the value.

Definition 4.4. The unfolding of G from the initial location ℓi is the (a priori infinite)
WTG U = ⟨L′

Min, L
′
Max, L

′
t, L

′
u,∆

′,wt′,wt′t⟩ with L′
Min ⊆ FPathsMin, L′

Max ⊆ FPathsMax,
L′
t ⊆ Lt ∪ {t≥0, t<0, t+∞} such that

• L′ = L′
Min ⊎ L′

Max ⊎ L′
t and ∆′ are the smallest sets such that ℓi ∈ L′ and for all π ∈

L′
Min ⊎ L′

Max and δ ∈ ∆, if Next(π, δ) = (π′, δ′) then π′ ∈ L′ and δ′ ∈ ∆′ (where Next is
defined in Algorithm 1);

• L′
u = {π ∈ L′ | last(π) ∈ Lu};

• for all π /∈ L′
t, wt′(π) = wt(last(π));

• for all π ∈ L′
t, for all ν,

wt′t(π, ν) = wtt(π, ν) if π ∈ Lt wt′t(t≥0, ν) = |L|(Wtr +M Wloc) +Wfin

wt′t(t<0, ν) = −∞ wt′t(t+∞, ν) = +∞ .

As expected, the definition of Next guarantees that a “new” target location is reached
when the length between two resets is too long or when a transition with a reset appears
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Algorithm 1 Function Next that maps pairs (π, δ) ∈ FPathsG×∆ to pairs (π′, δ′) composed
of a finite path π′ of G (or t≥0, or t<0, or t+∞) and a new transition δ′ of the unfolding U .

1: function Next(π, δ = (ℓ1, I, R,w, ℓ2)): ▷ last(π) = ℓ1
2: if ℓ2 ∈ Lt then π′ := ℓ2
3: else if R = {x} then
4: if |π|δ = 0 then π′ := π

δ−→ ℓ2

5: else{ π := π1
δ−→ π2

6: if ValG(π2
δ−→ ℓ2) ≥ 0 then π′ := t≥0 else π′ := t<0}

7: else{ π := π1 · π2 where π2 contains no reset and |π2| is maximal
8: if |π2| = κ then π′ := t+∞ else π′ := π

δ−→ ℓ2 }
9: δ′ := (π, I,R,w, π′) ▷ ∆proj(δ′) := δ

10: return (π′, δ′)

two times. Moreover, the length of the path in a location that is not a target, given by
the application of Next, strictly increases. This allows us to show that U is a finite and
acyclic WTG.

Lemma 4.5. The WTG U is acyclic and has a finite set of locations of cardinality at most
exponential in |Q| and W .

Proof. We start by proving that U is an acyclic WTG. The function Next never removes a
transition from a path π ∈ L′

Min ∪ L′
Max that is given as input. In particular, the function

Next produces a transition from π to π′ that is an extension of π (i.e. |π′| > |π|) or a target
location. Thus, all paths in U are acyclic, i.e. U is acyclic.

Now, we prove that U is a finite WTG by proving that for all locations π ∈ L′
Min ∪L′

Max,
the length of the path is upper-bounded by (|∆R|+ 1)κ, where we let ∆R be the subset of
transitions with a reset. Locations of U are built by successive applications of Next. We
show by induction (on the number of such applications) that every location π ∈ L′

Min ∪ L′
Max

can be decomposed as follows: π = π′
0

δ0−→ π′
1

δ1−→ · · · δk−→ π′
k where transitions δi belong to ∆R

and are pairwise distinct, and where π′
i belong to FPathsG and have length at most κ. As a

direct consequence of this property, we have k ≤ |∆R|, and we easily deduce the expected
bound on |π|, and thus the desired bound on the number of locations of U by the bound
on κ of Lemma 4.3.

We now proceed to the induction on the number of applications of Next. As a base case,
we have π = ℓi, and the property trivially holds. Assume now that the property holds for π,
with a decomposition π = π′

0
δ0−→ π′

1
δ1−→ · · · δk−→ π′

k. We fix some δ = (ℓ1, I, R,w, ℓ2) ∈ ∆ with
last(π) = ℓ1, and we consider Next(π, δ) = (π′, δ′) with π′ ∈ L′

Min ∪ L′
Max. We distinguish

cases according to the definition of Next. Observe that π′ ∈ L′
Min ∪ L′

Max excludes the case
when Next sets π′ in lines 2, 6, or 8 (when |π′

k| = κ). The following cases may occur:

• if Next sets π′ in line 4, then we have δ ∈ ∆R, |π|δ = 0, and π′ = π
δ−→ ℓ2. Hence, a

correct decomposition of π′ is obtained by adding δ and an empty path π′
k+1 to the ones

of π.
• if Next sets π′ in line 8, while π′ ̸= t+∞ (by hypothesis), then |π′

k| < κ. A correct
decomposition of π′ is then obtained from the one of π by replacing π′

k with π′
k

δ−→ ℓ2.
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5. How Max can control negative "cycles" in the unfolding

In this section, we show another good property of U , mimicking the one of Lemma 3.5 that
Max has an optimal memoryless strategy in G avoiding cyclic plays with a negative weight.
In the unfolding U , there are no cyclic plays, but we will be able to obtain a similar result:
Max can play optimally with a memoryless strategy while making sure that in-between two
occurrences of the same transition with a reset (which would result in a cyclic play in the
original game G), the play has a non-negative weight. More formally, we want to obtain the
following lemma, that we show in the rest of the section:

Lemma 5.1. In the WTG U , Max has a memoryless optimal strategy τ such that if a finite

play ρ = ρ1
t1,δ′1−−−→ ρ2

t2,δ′2−−−→ (t≥0, 0) is conforming to τ with ∆proj(δ′1) = ∆proj(δ′2) ∈ ∆R

(i.e. the same transition with a reset in the original WTG G), then wtΣ(ρ2
t2,δ′2−−−→ (t≥0, 0)) ≥ 0.

Remark 5.2. The fact that U is acyclic is crucial in this result: we can not guarantee that
the value of the path ending in t≥0 is non-negative if we would have defined U with grey
components (in Figure 5) containing cyclic paths without a reset. Indeed, the values of cyclic
paths are not preserved by concatenation. For instance, in the WTG G depicted on the left
of Figure 4, we can see that ValG(q0

δ1−→ q1
δ2−→ q0) = 0 (Min and Max must delay 1 in each

location), and ValG(q0
δ3−→ q2

δ4−→ q0) = 0. However, when we concatenate these two cyclic
paths, we obtain the cycle q0

δ3−→ q2
δ4−→ q0

δ1−→ q1
δ2−→ q0) of value −1.

The proof of Lemma 5.1 essentially consists in applying the result of Lemma 3.5 in U to
define a memoryless optimal strategy with the desired property. However, Lemma 3.5 holds
only in the closure of WTGs (Example 3.1 gives a counter-example when the WTG is not a
closure), i.e. a priori, the result holds only on the closure U of U . Nevertheless, we notice
that the guards of all transitions of U come from G and the regions of U are thus the ones
of G. Therefore, apart from target locations, only locations (π, I) in U with π ending in a
location of the form (ℓ, I) are reachable. Thus U and U are the same WTG, and the result
of Lemma 3.5 transfers to U as well.

The second argument of the proof is checking that U preserves the value of paths, i.e. the
value in U of a finite path πU , ValνU (πU ), is equal to the value in G of its projection given by
∆proj. In particular, we define a new projection function Πproj as an extension over finite
paths of ∆proj such that for all finite paths in U with at least one transition, πU = π1

δ′−→ π′
U

with π1 ∈ L′ \ L′
t, we let Πproj(πU ) be equal to:last(π1)
∆proj(δ′)−−−−−→ ℓ2 if π′

U ∈ L′ and ∆proj(δ′) = (last(π1), I, R,w, ℓ2)

last(π1)
∆proj(δ′)−−−−−→ Πproj(π′

U ) otherwise .

We note that, Πproj(πU) is always a finite path in G with the same length of πU and it
satisfies the following properties:

Lemma 5.3. Let πU ∈ FPathsU be a path with at least one transition, then
(1) for all valuations ν, ValνU (πU ) = ValνG(Πproj(πU ));
(2) if last(πU ) /∈ L′

t, then Πproj(πU ) is a suffix of last(πU ).

Proof. (1) We prove this property when the first location of πU belongs to Min. The case
where it belongs to Max is analogous when we replace the infimum by a supremum. We
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reason by induction on the length of πU . First, we suppose that πU contains exactly one
transition, i.e. πU = π1

δ′−→ π2 and :

ValνU (πU ) = inf
t

(
twt′(π1) + wt′(δ′) + Valν

′
U (π2)

)
where ν ′ = ν + t if δ′ does not contain a reset, or ν ′ = 0 otherwise. Since the value of
an empty path is null, we have Valν

′
U (π2) = 0 = Valν

′

G (ℓ2) where ℓ2 is given by ∆proj(δ′).
Moreover, as U preserves the weight of transitions and locations, we obtain that

ValνU (πU ) = inf
t

(
twt(last(π1)) + wt(∆proj(δ′)) + Valν

′

G (ℓ2)
)
.

By definition of Πproj, we remark that Πproj(πU ) = last(π1)
∆proj(δ′)−−−−−→ ℓ2. Thus, since U

preserves transitions with a reset, we deduce that ValνU (πU ) = ValνG(Πproj(πU )).

Now, we suppose that πU = π1
δ′−→ π′

U with π′
U a path in U . Since U preserves the

weight of transitions and locations, we have:

ValνU (πU ) = inf
t

(
twt′(π1) + wt′(δ′) + Valν

′
U (π′

U )
)

= inf
t

(
twt(last(π1)) + wt(∆proj(δ′)) + Valν

′
U (π′

U )
)

where ν ′ = ν + t if δ′ does not contain a reset, or ν ′ = 0 otherwise. Now, the induction
hypothesis applied to π′

U implies that

ValνU (πU ) = inf
t

(
twt(last(π1)) + wt(∆proj(δ′)) + Valν

′

G (Πproj(π′
U ))

)
Finally, we obtain that ValνU (πU ) = ValνG(Πproj(πU )), since U preserves transitions with a

reset and Πproj(πU ) = last(π1)
∆proj(δ′)−−−−−→ Πproj(π′

U ).
(2) We reason by induction on the length of πU . First, we suppose that πU contains only one

transition, i.e. πU = π1
δ′−→ π2 with π2 ∈ L′

Min ∪ L′
Max, and Πproj(πU ) = last(π1)

∆proj(δ′)−−−−−→
ℓ2 where ℓ2 is given by ∆proj(δ′). By definition of Next, since π2 /∈ L′

t, we note that

π2 = π1
∆proj(δ′)−−−−−→ ℓ2. Since last(π1) is a suffix of π1, it follows that Πproj(πU ) is a suffix

of last(πU ) = π2.
Otherwise, we suppose that πU = π1

δ′−→ π′
U with last(π′

U) /∈ L′
t, and Πproj(πU) =

last(π1)
∆proj(δ′)−−−−−→ Πproj(π′

U). By induction hypothesis, Πproj(π′
U) is a suffix of last(π′

U),
i.e. there exists a finite path π of G such that last(π′

U ) = π ·Πproj(π′
U ). Now, we remark

that π = π1, since each application of Next (that does not reach a target location) adds
exactly one transition in the path of the next location: δ′ is a transition between π1 and

π2 where π2 = π1
∆proj(δ′)−−−−−→ ℓ2 is the first location of π′

U . Finally, we obtain a suffix of
last(πU ) since last(π1) is a suffix of π1.

Finally, we have the tools to finish the proof of Lemma 5.1. As explained before, we
apply the result of Lemma 3.5 in U (since the closure of U describes the same WTG
as U) to obtain a memoryless optimal strategy τ for Max. It remains to show that if

ρ = ρ1
t,δ′1−−→ ρ2

t2,δ′2−−−→ (t≥0, 0) is conforming to τ with ∆proj(δ′1) = ∆proj(δ′2) containing a

reset, then wtΣ(ρ2
t2,δ′2−−−→ (t≥0, 0)) ≥ 0. Let πU be the path of U followed by ρ2

t2,δ′2−−−→ (t≥0, 0).
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We start by claiming that

P(ρ2
t2,δ′2−−−→ (t≥0, 0)) ≥ ValU (πU ) + wtt(t≥0, 0) (5.1)

where this is the place where the fact that wtt(t≥0, 0) is not equal to +∞ is crucial.
Equation (5.1) and Lemma 5.3.(1) (with ν = 0) allow us to conclude as follows. First,

wtΣ(ρ2
t2,δ′2−−−→ (t≥0, 0)) = P(ρ2

t2,δ′2−−−→ (t≥0, 0))− wtt(t≥0, 0) ≥ ValU (πU ) ≥ ValG(π)

where π = Πproj(πU ). Then, since πU = π′
U

δ′2−→ t≥0 where ρ2 follows π′
U , we deduce that π′

is a suffix of π′
U where π = π′ δ−→ ℓ (by Lemma 5.3.(2) applied to π′

U ). In particular, the
definition of Next on π′ and δ (as t≥0 is reached) guarantees that ValG(π) ≥ 0.

To conclude the proof, we need to show (5.1). We reason by induction on suffixes ρ′ of

ρ2
t2,δ′2−−−→ (t≥0, 0) showing that

P(ρ′) ≥ Valν
′

U (π′
U ) + wtt(t≥0, 0)

where π′
U is the path followed by ρ′, and ν ′ is the first valuation of ρ′. For the suffix

ρ′ = (t≥0, 0), then
P(ρ′) = wtt(t≥0, 0) = Val0U (t≥0) + wtt(t≥0, 0) .

Otherwise, we suppose that ρ′ = (π, ν′)
t,δ′−−→ ρ′′. In particular, we fix ν ′′ = ν ′ + t the first

valuation of ρ′′ (ν ′′ ̸= 0 since ρ2 does not contain a transition with a reset) and π′
U = π

δ′−→ π′′
U

with ρ′′ follows π′′
U . Moreover, we deduce that

P(ρ′) = twt′(π) + wt′(δ′) + P(ρ′′)

≥ twt′(π) + wt′(δ′) + Valν
′+t

U (π′′
U ) + wtt(t≥0, 0) (by induction hypothesis) .

To conclude the induction case, we distinguish two cases.
• If π ∈ L′

Min, then

P(ρ′) ≥ inf

t s.t. (π,ν′)
t,δ′−−→(π′,ν′+t)

(
twt′(π) + wt′(δ′) + Valν

′+t
U (π′′

U ) + wtt(t≥0, 0)
)

= inf

t s.t. (π,ν′)
t,δ′−−→(π′,ν′+t)

(
twt′(π) + wt′(δ′) + Valν

′+t
U (π′′

U )
)
+ wtt(t≥0, 0)

= Valν
′

U (π′
U ) + wtt(t≥0, 0) .

• If π ∈ L′
Max, since τ chooses δ′, we can deduce that

P(ρ′) ≥ sup

t s.t. (π,ν′)
t,δ′−−→(π′,ν′+t)

(
twt′(π) + wt′(δ′) + Valν

′+t
U (π′′

U ) + wtt(t≥0, 0)
)

= sup

t s.t. (π,ν′)
t,δ′−−→(π′,ν′+t)

(
twt′(π) + wt′(δ′) + Valν

′+t
U (π′′

U )
)
+ wtt(t≥0, 0)

= Valν
′

U (π′
U ) + wtt(t≥0, 0) .

Since it is obtained after transition δ′1 that resets the clock, the first valuation of ρ2
t2,δ′2−−−→

(t≥0, 0) is 0. Thus, by induction, we obtain (5.1) as expected.
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FPlaysG FPlays∗U

R≥0 ×∆ R≥0 ×∆′

Φ

τG

proj

τU

Id×∆proj

Id× Next

Figure 6: Scheme showing the links between the different objects defined for the proof of
Theorem 6.1 where FPlays∗U is the set of finite plays of U avoiding target locations
t≥0 and t<0.

6. Value of the unfolding

The most difficult part of the proof of Theorem 2.10 is to show that the unfolding preserves
the value from G. Remember that we have fixed an initial location ℓi = (qi, Ii) to build U .

Theorem 6.1. For all ν ∈ Ii, ValG(ℓi, ν) = ValU (ℓi, ν).

We prove Theorem 6.1 in this section, splitting the proof into two inequalities.

First inequality. We prove first that ValG(ℓi, ν) ≤ ValU (ℓi, ν), which can be rewritten as:

ValG(ℓi, ν) ≤ sup
τU

ValτUU (ℓi, ν) .

We must thus show that Max can guarantee to always do at least as good in U as in G. We thus
fix an optimal strategy τG in G obtained by Lemma 3.5: in particular, ValG(ℓi, ν) = Val

τG
G (ℓi, ν).

We show the existence of a strategy τU in U such that Val
τG
G (ℓi, ν) ≤ ValτUU (ℓi, ν), i.e. for all

plays ρ conforming to τU , there exists a play conforming to τG with a weight at most the
weight of ρ. As it is depicted in Figure 6, the strategy τU is defined via a projection of plays
of U in G: we use the mapping Next to send back transitions of ∆ to ∆′.

More formally, the projection operator proj projects finite plays of U starting in ℓi (since
these are the only ones we need to take care of) to finite plays of G. For this reason, from
now on, FPlaysU and FPlaysG denote the subsets of plays that start in location ℓi. Moreover,
we limit ourselves to projecting plays of U that do not reach the targets t<0 and t≥0, since
otherwise there is no canonical projection in G. We thus let FPlays∗U be all such finite plays
of FPlaysU that do not end in t<0 or t≥0. The projection function proj : FPlays∗U → FPlaysG
is defined inductively on finite plays ρ ∈ FPlays∗U by letting proj(ρ) be

(ℓi, ν) if ρ = (ℓi, ν) ∈ L′;

proj(ρ′)
t,∆proj(δ′)−−−−−−→ (last(π), ν) if ρ = ρ′

t,δ′−−→ (π, ν);

proj(ρ′)
t,∆proj(δ′)−−−−−−→ (ℓ′, ν) if ρ = ρ′

t,δ′−−→ (t+∞, ν) and ∆proj(δ′) = (ℓ, I, R,w, ℓ′).

It fulfils the following properties:

Lemma 6.2. For all plays ρ ∈ FPlays∗U ,
(1) if last(ρ) = (π, ν) with π ̸= t+∞, then last(proj(ρ)) = (last(π), ν);
(2) wtΣ(ρ) = wtΣ(proj(ρ));
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(3) if last(ρ) = (π, ν) with π /∈ Lt, then proj(ρ) follows π.

Proof. (1) Since π ̸= t+∞, this is direct from a case analysis on the definition of proj.
(2) We reason by induction on the length of ρ ∈ FPlays∗U . First, we suppose that ρ = (ℓi, ν),

then we have proj(ρ) = ρ and wtΣ(ρ) = 0 = wtΣ(proj(ρ)). Now, we suppose that

ρ = ρ′
t,δ′−−→ (π, ν), with ρ′ ∈ FPlays∗U ending in location π′ such that π′ /∈ L′

t. Then,

wtΣ(ρ) = wtΣ(ρ
′) + twt′(π′) + wt′(δ′)

= wtΣ(ρ
′) + twt(last(π′)) + wt(∆proj(δ′))

since U preserves the weights of G, i.e. wt′(π′) = wt(last(π′)), and wt′(δ′) = wt(∆proj(δ′)).
Moreover, the induction hypothesis applied to ρ′ implies that

wtΣ(ρ) = wtΣ(proj(ρ
′)) + twt(last(π′)) + wt(∆proj(δ′))

= wtΣ(proj(ρ
′)) + twt(last(proj(ρ′))) + wt(∆proj(δ′))

since last(π′) = last(proj(ρ′)) by the first item (as π′ ̸= t+∞). Finally, by the definition
of proj(ρ), we conclude that wtΣ(ρ) = wtΣ(proj(ρ)).

(3) We reason by induction on the length of ρ ∈ FPlays∗U that does not reach a target location.

If ρ = (ℓi, ν), the property is trivial. Now, we suppose that ρ = ρ′
t,δ′−−→ (π, ν), with

ρ′ ∈ FPlays∗U ending in a configuration (π′, ν ′) such that π′ /∈ L′
t. In particular, we have

proj(ρ) = proj(ρ′)
t,δ−→ (last(π), ν) with δ = ∆proj(δ′), and, by the induction hypothesis,

proj(ρ′) follows π′. Moreover, we have Next(π′, δ) = (π, δ′) such that π must be obtained
from π′ on lines 4 or 8 of Algorithm 1, i.e. π = π′ δ−→ ℓ2 where ℓ2 is given by δ. Thus, we
deduce that proj(ρ) follows π.

Now, for all plays ρ ∈ FPlays∗U such that last(ρ) = (π, ν) and π ∈ L′
Max (for plays not

starting in ℓi, the decision over ρ is irrelevant), we define a strategy τU for Max in U by

τU (ρ) = (t, δ′) if τG(proj(ρ)) = (t, δ) and Next(π, δ) = (π′, δ′)

We note that this is a valid decision for Max: we apply the same delay (since delays chosen
in τG and τU are the identical) from the same configuration (as last(proj(ρ)) = (last(π), ν),
by Lemma 6.2.(1)), through the same guard (since guards of δ and δ′ are identical). Thus,
whether or not the location π is urgent (i.e. last(π) is urgent), the decision (t, δ′) gives rise
to an edge in JUK. Moreover, since the definition of τU relies on the projection, it is of no
surprise that:

Lemma 6.3. Let ρ ∈ FPlays∗U be a play conforming to τU . Then, proj(ρ) is conforming to τG.

Proof. We reason by induction on the length of ρ. If ρ = (ℓi, ν), then proj(ρ) = (ℓi, ν), and the

property is trivial. Otherwise, we suppose that ρ = ρ′
t,δ′−−→ (π, ν) and proj(ρ) = proj(ρ′)

t,δ−→
(last(π), ν) where δ = ∆proj(δ′). By the induction hypothesis, proj(ρ′) is conforming to τG .
Letting last(proj(ρ′)) = (ℓ′, ν ′), we conclude by distinguishing two cases. First, if ℓ′ ∈ LMin,
we directly conclude that proj(ρ) is conforming to τG too. Otherwise, we suppose that
ℓ′ ∈ LMax. Since ρ is conforming to τU and ρ′ also belongs to Max (by Lemma 6.2.(1)), we
have τU (ρ

′) = (t, δ′). In particular, by definition of τU , τG(proj(ρ
′)) = (t,∆proj(δ′)) = (t, δ).

Thus, ρG is conforming to τG .
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Finally, we prove Val
τG
G (ℓi, ν) ≤ ValτUU (ℓi, ν) by showing that for all plays ρU from (ℓi, ν)

conforming to τU , there exists a play ρG from (ℓi, ν) conforming to τG such that P(ρG) ≤ P(ρU ).
If ρU does not reach a target location of U or reaches target t+∞, then P(ρU) = +∞, and
for all plays ρG conforming to τG , we have P(ρG) ≤ +∞ = P(ρU ). Now, we suppose that ρU
reaches a target location different from t+∞.
• If the target location reached by ρU is not in {t≥0, t<0}, then ρU ∈ FPlays∗U , and we can

use the projector operator to let ρG = proj(ρU). It is conforming to τG (by Lemma 6.3).
Moreover, by letting last(ρU ) = (π, ν) (with π ≠ t+∞ by hypothesis), we have wt′t(π, ν) =
wtt(last(π), ν) since last(ρG) = (last(π), ν), by Lemma 6.2.(1). We conclude that P(ρG) =
P(ρU ), since proj preserves the weight (by Lemma 6.2.(2)).

• If the target location reached by ρU is t≥0, then we decompose ρU as ρU = ρ1U
t,δ′−−→ (t≥0, ν)

with ρ1U ∈ FPlays∗U and (π′, ν ′) = last(ρ1U). Since the value in G is supposed to be finite
(we removed configurations of value +∞ or −∞), Min can always guarantee to reach the
target, i.e. there exists an (attractor) memoryless strategy σG that guarantees to reach Lt.

Now, let ρG = ρ1Gρ
2
G be such that ρ1G = proj(ρ1U)

t,δ−→ (ℓ, ν) with δ = ∆proj(δ′) and ρ2G be
the play from (ℓ, ν) conforming to τG and σG . To conclude this case, we prove that ρG is
conforming to τG and P(ρG) ≤ P(ρU ).

First, since proj(ρ1U ) is conforming to τG (by Lemma 6.3), then ρ1G is conforming to τG if
and only if its last move is. If π′ ∈ L′

Min, then proj(ρ1U ) belongs to Min (by Lemma 6.2.(1))
and ρ1G is conforming to τG . Otherwise, we suppose that π′ ∈ L′

Max, then τU (ρ
1
U ) = (t, δ′)

and Next(π′, δ) = (t<0, δ
′). Thus, since proj(ρ1U ) belongs to Max (by Lemma 6.2.(1)) and

by the construction of τU , we deduce that τG(proj(ρ
1
U )) = (t, δ), i.e. ρ1G is conforming to τG .

Finally, we conclude that ρG is conforming to τG by the choice of ρ2G .
Now, we prove that P(ρG) ≤ P(ρU ). First, we remark that

P(ρG) = wtΣ(ρ
1
G) + P(ρ2G) = wtΣ(proj(ρ

1
U )) + twt(last(π′)) + wt(δ) + P(ρ2G) .

In particular, since wt(last(π′)) = wt′(π′) (by definition of U) and also by using Lemma
6.2.(2), we obtain:

P(ρG) = wtΣ(ρ
1
U ) + twt′(π′) + wt′(δ′) + P(ρ2G) = wtΣ(ρU ) + P(ρ2G) .

Moreover, the length of ρ2G is bounded by |L| (since it is conforming to an attractor, and
since regions are already encoded in G) and each of its edges has a weight bounded in
absolute values by Wtr +M Wloc. By adding its final weight, we obtain:

P(ρG) ≤ wtΣ(ρU ) + |L|(Wtr +M Wloc) +Wfin .

Now, we remark that ρU reaches t≥0, and its weight is thus:

P(ρU ) = wtΣ(ρU ) + |L|(Wtr +M Wloc) +Wfin .

Therefore, P(ρG) ≤ P(ρU ).
• Finally, we prove that the case where the target location reached by ρU is t<0 is not

possible. As before we decompose ρU as ρU = ρ1U
t,δ′−−→ (t≥0, ν) with ρ1U ∈ FPlays∗U and

(π′, ν ′) = last(ρ1U). We consider ρ1G = proj(ρ1U)
t,δ−→ (ℓ, ν) with δ = ∆proj(δ′) that is

conforming to τG (by the same reasoning than the previous case) and we prove that ρ1G
finishes with a play that follows the cyclic path with negative value that contradicts
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Lemma 3.5.(2). By definition of U , we have Next(π′, δ) = (t<0, δ
′) with |π′|δ > 0, so by

letting π′ = π1
δ−→ π2 with |π2|δ = 0, we have ValG(π2

δ−→ ℓ2) < 0 where ℓ2 is given by δ.

Moreover, since proj(ρ1U ) follows π (by Lemma 6.2.(3)), ρ1G follows π
δ−→ ℓ2 that contains a

cyclic path π2
δ−→ ℓ2 with a negative value.

To conclude the proof, we have shown that for all plays ρU from (ℓi, ν) conforming to τU , we
can build a play ρG from (ℓi, ν) conforming to τG such that P(ρG) ≤ P(ρU ). In particular,

Val
τG
G (ℓi, ν) = inf

τG∈StratMin,G
P(Play((ℓi, ν), σG , τG))

≤ inf
τU∈StratMin,U

P(Play((ℓi, ν), σU , τU ))

≤ ValτUU (ℓi, ν) .

Second inequality. We then prove the reciprocal inequality ValG(ℓi, ν) ≥ ValU (ℓi, ν) that
can be rewritten as:

ValG(ℓi, ν) ≥ sup
τU

ValτUU (ℓi, ν) .

It thus amounts to showing that Max can guarantee to always do at least as good in G
as in U . We thus fix the optimal strategy τU in U given by Lemma 5.1, and show that
ValG(ℓi, ν) ≥ ValτUU (ℓi, ν).

To do so, we show that there exists a strategy τG in G such that for a particular play ρ
conforming to τG , there exists a play conforming to τU with a weight at most the weight
of ρ. As depicted in Figure 6, the strategy τG is defined via a function Φ that maps plays
of G into plays of U . Intuitively, this function removes all cyclic plays ending with a reset
from plays in G. Formally, it is defined by induction on the length of the plays by letting
Φ(ℓi, ν) = (ℓi, ν), and for all plays ρ ∈ FPlaysG , letting ρ′ = ρ

t,δ−→ (ℓ, ν),
(1) if Φ(ρ) ends in t+∞, we fix Φ(ρ′) = Φ(ρ);

(2) else, if δ contains a reset and Φ(ρ) = ρ1
t′,δ′−−→ ρ2 with ∆proj(δ′) = δ, letting π the first

location of ρ2, we fix Φ(ρ′) = ρ1
t′,δ′−−→ (π, 0);

(3) otherwise, letting Next(π, δ) = (π′, δ′) with π the last location of Φ(ρ), we fix Φ(ρ′) =

Φ(ρ)
t,δ′−−→ (π′, ν).

This function satisfies the following properties:

Lemma 6.4. For all plays ρ ∈ FPlaysG, if last(Φ(ρ)) = (π, ν) with π ̸= t+∞, then we have
π /∈ {t<0, t≥0} and

last(ρ) =

{
(last(π), ν) if π /∈ Lt ;

(π, ν) otherwise .

Proof. We show the property by induction on the length of ρ. If ρ = (ℓi, ν), then Φ(ρ) = ρ

and the property holds. Otherwise, we let ρ′ = ρ
t,δ−→ (ℓ, ν), and we suppose that the property

holds for ρ (since it does not end in L′
t) and we follow the definition of Φ.

(1) If Φ(ρ) ends in t+∞, we have Φ(ρ′) = Φ(ρ) and this case is thus not possible (since Φ(ρ′)
is supposed to not end in t+∞).
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(2) Else, if δ contains a reset and Φ(ρ) = ρ1
t′,δ′−−→ ρ2 with ∆proj(δ′) = δ = (ℓ, I, R,w, ℓ′) and

last(ρ1) = (π1, ν), we have Φ(ρ′) = ρ1
t′,δ′−−→ (π′, 0), by letting π′ the first location of ρ2.

Moreover, we have Next(π1, δ) = (π′, δ′). Now, by definition of Next, if ℓ′ ∈ Lt, then
π′ = ℓ′ ∈ Lt. Thus, we conclude that last(ρ′) = (ℓ′, 0) = (last(Φ(ρ′)), 0) as expected.
Otherwise, ℓ′ /∈ Lt and we have last(Φ(ρ)) = (π, 0). We note that π /∈ {t<0, t≥0} since ρ1
does not contain a transition δ′1 such that ∆proj(δ′1) = δ (otherwise, in Φ(ρ), we would
have already fired twice the transition δ with a reset, before trying to fire it a third time).
Thus π = π′ δ−→ ℓ′, and we conclude.

(3) Otherwise, Φ(ρ′) = Φ(ρ)
t,δ′−−→ (π′, ν) if Next(π, δ) = (π′, δ′) with π the last location of

Φ(ρ). Once again, we are in a case where π′ = π
δ−→ ℓ′, by letting δ = (ℓ, I, R,w, ℓ′).

Thus, we conclude as before.

Now, we define τG such that its behaviour is the same as the one given by τU after the
application of Φ on the finite play, i.e. after the removal of all cyclic paths between the same
transition with a reset. Formally, for all plays ρ ∈ FPlaysG , we let τG(ρ) be defined as any
valid move (t, δ) if Φ(ρ) ends in t+∞, and otherwise,

τG(ρ) = (t,∆proj(δ′)) if τU (Φ(ρ)) = (t, δ′)

This is a valid decision for Max. First, by Lemma 6.4, last(ρ) = (last(π), ν) when last(Φ(ρ)) =
(π, ν). Moreover, delays chosen in τG and τU are the same, and the guards of δ′ and ∆proj(δ′)
are identical. Thus, whether or not the location π is urgent, the decision (t,∆proj(δ′)) gives
rise to an edge in JGK. Since the definition of τG relies on the operation Φ, it is again not
surprising that:

Lemma 6.5. Let ρ ∈ FPlaysG be a play conforming to τG. Then Φ(ρ) is conforming to τU .

Proof. We reason by induction on the length of ρ. If ρ = (ℓi, ν), then Φ(ρ) = (ℓi, ν) and the
property is trivial. Otherwise, we suppose that ρ′ = ρ

t,δ−→ (ℓ, ν). By the induction hypothesis,
Φ(ρ) conforms to τU .
(1) If Φ(ρ) ends in t+∞, we have Φ(ρ′) = Φ(ρ) that is conforming to τU .

(2) If δ contains a reset and Φ(ρ) = ρ1
t′,δ′−−→ ρ2 with ∆proj(δ′) = δ, letting π be the first

location of ρ2, we have Φ(ρ′) = ρ1
t′,δ′−−→ (π, 0). This is a prefix of Φ(ρ) that is conforming

to τU . Thus, Φ(ρ′) is conforming to τU too.

(3) Otherwise, Φ(ρ′) = Φ(ρ)
t,δ′−−→ (π′, ν) if Next(π, δ) = (π′, δ′) with π the last location

of Φ(ρ). If Φ(ρ) ends in a location of Min, since it is conforming to τU , so does Φ(ρ′).
Otherwise, τG(ρ) = (t, δ) which implies that τU(Φ(ρ)) = (t, δ′′) with ∆proj(δ′′) = δ,
meaning that Next(π, δ) = (π′, δ′′), i.e. δ′′ = δ′: in this case too, Φ(ρ′) is conforming
to τU .

Finally, we prove that ValG(ℓi, ν) ≥ ValτUU (ℓi, ν). Notice that we do not aim at comparing
ValτUU (ℓi, ν) with Val

τG
G (ℓi, ν) but instead directly with ValG(ℓi, ν). This is helpful here since

we do not need to start with any play ρ conforming to τG . Instead, we pick a special play,
choosing well the strategy followed by Min. Indeed, we suppose that Min follows an ε-optimal
(switching) strategy σ in G, as given in [BGH+22]. As we explained before in Definition 4.4, in
WTGs without resets, this ensures that in all plays ρG conforming to σ, the target is reached
fast enough (with a number of transitions bounded by κ). We can easily enrich the result
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of [BGH+22] to take into account resets. Indeed, as performed in [BGH+22, Theorem 6.6]
to show that all one-clock WTGs have an (a priori non-computable) value function that is
piecewise affine with a finite number of cutpoints, we can replace each transition with a reset
by a new transition jumping in a fresh target location of value given by the value function we
aim at computing. From a strategy perspective, this means that in each component of our
unfolding (in-between two transitions with a reset), Min follows a switching strategy. Notice
that such strategies are a priori not knowing to be computable (since we cannot perform the
transformation described above, using the value function), but we use only its existence in
this proof.

We thus consider an ε-optimal strategy σ for Min in G such that in all plays ρG conforming
to σ, in-between two transitions with a reset and after the last such transition, the number
of transitions is bounded by κ. We now fix the special play ρ from (ℓi, ν) conforming to σ
and τG . It reaches a target since σ is ε-optimal and ValG(ℓi, ν) ̸= +∞. We show that

∃ρU ∈ FPlaysU conforming to τU P(ρU ) ≤ P(ρ) (⋆)

As a consequence, we obtain:

ValτUU (ℓi, ν) = inf
σU∈StratMin,U

P(Play((ℓi, ν), σU , τU )) ≤ P(ρU ) ≤ P(ρ) ≤ ValG(ℓi, ν) + ε .

Since this holds for all ε > 0, we have ValτUU (ℓi, ν) ≤ ValG(ℓi, ν) as expected.
To show (⋆), we proceed by induction on the prefixes ρ′ of ρ, proving that (⋆) holds

or that Φ(ρ′) does not end in t+∞ and wtΣ(Φ(ρ
′)) ≤ wtΣ(ρ

′). Indeed, at the end of the
induction, we therefore obtain (⋆) or that Φ(ρ) does not end in t+∞ and wtΣ(Φ(ρ)) ≤ wtΣ(ρ).
In the case where (⋆) does not hold, we fix ρU = Φ(ρ) and last(ρU) = (π, ν). In particular,
we have π ∈ Lt, and last(ρ) = (π, ν): by Lemma 6.4, if π /∈ Lt, then last(ρ) = (last(π), ν),
with last(π) /∈ Lt that contradicts the fact that ρ reaches the target. Therefore,

P(ρU ) = P(Φ(ρ)) = wtΣ(Φ(ρ)) + wt′t(π, ν) ≤ wtΣ(ρ) + wtt(π, ν) = P(ρ) .

Since ρU is conforming to τU (by Lemma 6.5), we obtain (⋆) here too.
Finally, we proceed to the proof by induction. First, we suppose that ρ′ = (ℓi, ν)

and wtΣ(Φ(ρ
′)) = 0 = wtΣ(ρ

′). Otherwise, we suppose that ρ′ = ρ′′
t,δ−→ (ℓ, ν). By

induction on ρ′′, if (⋆) does not (already) hold, we know that Φ(ρ′′) does not end in t+∞
and wtΣ(Φ(ρ

′′)) ≤ wtΣ(ρ
′′). We follow the three cases of the definition of Φ(ρ′).

(1) We cannot have Φ(ρ′′) ending in t+∞ by hypothesis.

(2) Suppose now that δ contains a reset and Φ(ρ′′) = ρ1
t′,δ′−−→ ρ2 with ∆proj(δ′) = δ. Letting

π the first location of ρ2, we have Φ(ρ′) = ρ1
t′,δ′−−→ (π, 0). Thus

wtΣ(Φ(ρ
′)) = wtΣ(Φ(ρ

′′))− wtΣ(ρ2) ≤ wtΣ(ρ
′′)− wtΣ(ρ2) (6.1)

Let (π′, ν ′) = last(ρ2), and ρU = Φ(ρ′′)
t,δ′′−−→ (π′′, 0), with Next(π′, δ) = (π′′, δ′′). Notice

that ρU is conforming to τU , since Φ(ρ′′) does and if π′ belongs to Max, this follows
directly from the definition of τG from τU (since τG(ρ

′′
G) = (t, δ), and Φ(ρ′′) /∈ t+∞).

Moreover, it contains twice a transition with a reset coming from the same transition δ
of G, therefore π′′ ∈ {t<0, t≥0}. If π′′ = t<0, P(ρU) = −∞ and (⋆) holds. Otherwise, if

π′′ = t≥0, by Lemma 5.1 applied on ρU , wtΣ(ρ2
t,δ′′−−→ (t≥0, 0)) ≥ 0, i.e. wtΣ((π′, ν ′)

t,δ′′−−→
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(t≥0, 0)) ≥ −wtΣ(ρ2). Combined with (6.1), we obtain that

wtΣ(Φ(ρ
′)) ≤ wtΣ(ρ

′′) + wtΣ((π
′, ν ′)

t,δ′′−−→ (t≥0, 0))

= wtΣ(ρ
′′) + twt′(π′) + wt′(δ′′)

= wtΣ(ρ
′′) + twt(ℓ′) + wt(δ) = wtΣ(ρ

′)

where we let ℓ′ be the last location of ρ′′, which is also the last location of π′.
(3) Otherwise, Φ(ρ′) = Φ(ρ′′)

t,δ′−−→ (π′, ν) if Next(π, δ) = (π′, δ′) with π the last location of
Φ(ρ′′). In this case,

wtΣ(Φ(ρ
′)) = wtΣ(Φ(ρ

′′)) + twt′(π) + wt′(δ′)

≤ wtΣ(ρ
′′) + twt(ℓ′) + wt(δ) = wtΣ(ρ

′)

where we let ℓ′ e the last location of ρ′′.
This ends the proof by induction.

7. Main decidability result

By using the unfolding, we are now able to conclude the proof of Theorem 2.10, i.e. to
compute the value function of G in exponential time with respect to |Q| and W .

Remember (by Lemma 2.6) that we only need to explain how to compute ν 7→
ValG((qi, Ii), ν) over Ii. By Theorem 6.1, this is equivalent to computing ν 7→ ValU ((qi, Ii), ν)
over Ii. We now explain why this is doable.

First, the definition of U is effective: we can compute it entirely, making use of Lemma 4.5
showing that it is a finite WTG. The only non-trivial part is the test of the sign of ValG(π2

δ−→
ℓ2) in line 4 of Algorithm 1 to determine in which target location we jump. Since π2

δ−→ ℓ2 is
a finite path, we can apply Theorem 2.8 to compute the value of the corresponding game,
which is exactly the value ValG(π2

δ−→ ℓ2). The complexity of computing the value of a path
is polynomial in the length of this path (that is exponential in |Q| and W , by Lemma 4.5)
and polynomial in |Q| and W (notice that weights of G are the same as the ones in G): this
is thus of complexity exponential in |Q| and W . Since U has an exponential number of
locations with respect to |Q| and W , the total time required to compute U is also exponential
with respect to |Q| and W .

Lemma 4.5 ensures that U is acyclic, so we can apply Theorem 2.8 to compute the value
mapping ν 7→ ValU((qi, Ii), ν) as a piecewise affine and continuous function. It requires a
complexity polynomial in the number of locations of U , and in W (since weights of U all
come from G). Knowing the previous bound on the number of locations of U , this complexity
translates into an exponential time complexity with respect to |Q| and W , as announced.

8. The value function of (one-clock) WTGs is the greatest fixpoint of F

We finally prove Theorem 2.4, i.e. that the value function of all (one-clock) WTGs is the
greatest fixpoint of the operator F . A natural way to prove this theorem would be to use the
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Figure 7: On the left, a WTG in which F is not Scott-continuous, for instance when we
consider the non-increasing sequence of continuous functions on (0, 1) depicted on
the right for all locations.

fixpoint theory and, more precisely, Kleene’s theorem characterising the greatest fixpoint1 as
the limit of a sequence of iterates of F before showing that the limit is equal to the value
of G. To be applicable, this theorem requires F to be Scott-continuous over a complete
partial order (CPO) [Win93, Chapter 8], i.e. monotonous and such that for all non-increasing
sequence (Xi)i∈N of elements of the CPO, infiF(Xi) = F(infiX

i). Unfortunately, although
the operator F can be shown to be monotonous (see Lemma 8.4.1), it is not necessarily
Scott-continuous as demonstrated by the following example.

Example 8.1. We consider the WTG depicted on the left of Figure 7. We prove that F is
not Scott-continuous by exhibiting a non-increasing sequence (Xi)i of functions (that are
continuous over regions) such that infiXi > F(infiXi). The sequence is depicted in the
right of Figure 7 and can be defined, for all configurations (q, ν) and all i ∈ N, by:

Xi(q, ν) =

{
1
2i

if 0 < ν ≤ 2i−1
2i

(2i − 1)ν + (2− 2i) if 2i−1
2i

< ν < 1

We consider the location q0 of Max. For all i ∈ N and all valuations ν, we have:

F(Xi)(q0, ν) = sup
t
(twt(q0) + wt(δ) +Xi(q1, ν + t)) = sup

t
Xi(q1, ν + t) = 1

and thus infiF(Xi)(q0, ν) = 1. Moreover, since infiXi is constant function whose value is 0
in the interval (0, 1), we deduce that F(infiXi)(q0, ν) = 0 for all configurations (q0, ν). Thus,
we deduce that F(infiXi)(q0, ν) < infiF(Xi)(q0, ν).

We thus design a more pedestrian proof only using non-increasing sequences (Vi) defined
by an iteration of the operator F (as in [Tar55]) that uniformly converge over each region,
i.e. the restriction of the sequence to each region uniformly converges. In particular, we adapt
and correct the sketch given in [Bou16] for concurrent hybrid games with only non-negative
weights to the context of (one-clock) WTGs with negative weights. As in [Bou16], our proof
is split into two parts:

1A careful reader will remark that Kleene’s theorem characterises the least fixpoint for increasing sequences
of elements in a complete partial order (CPO). Intuitively, we use this version with a reverse order (the CPO
admits upper-bounds instead of lower-bounds). Formally, we can fit the hypothesis of Kleene’s theorem by
considering the operator −F .



8:30 B. Monmege, J. Parreaux, and P.-A. Reynier Vol. 21:1

(1) In Section 8.2, we prove that the sequence Vi of iterates of F (used in the value iteration-
based algorithm of [BCFL04]) converges toward the greatest fixpoint of F . In [Bou16],
it is proved that all non-increasing sequences of functions that uniformly converge over
each region are a fixpoint of the operator F . The key argument of [Bou16] is to prove
the uniform convergence of the sequence Vi by using Dini’s theorem. We show that this
is legal by showing that functions Vi are all k-Lipschitz-continuous for the same constant
k (which requires us to restrict to one-clock WTGs).

(2) In Section 8.3, we prove that the sequence Vi of iterates of F converges to the value
function. The key argument in [Bou16] is to remark that the mapping obtained after
i applications of F is a value function when we consider only plays of length i. We
formalise this intuition by inductively defining a strategy of Min that will increase the
length i of the plays such that its value is upper bounded by Vi. To do it, in Section 8.1,
we start by proving that a fixpoint of a restriction of F under a given strategy of Min is
the value of this strategy.
We now fix a (one-clock) WTG G. We have supposed that the final weight functions

are continuous over each region. Without loss of generality, we may also suppose that final
weights wtt(q, ν) are different from +∞, for all configurations (q, ν) with q ∈ Qt. To do so,
it suffices to forbid the jump into a region I where the final weight function is constant equal
to +∞, by modifying the guard on the incoming transitions.

8.1. Restriction of F according to a strategy of Min. Before to start the proof of
Theorem 2.4, we establish a partial result when we have fixed the strategy of Min. In
particular, we give a link between the value Valσ of a strategy σ of Min and the restriction
Fσ of F according to this strategy, by replacing the infimum for locations of Min with the
choice given by σ. However, since we can not (and we do not want to) suppose that σ is
memoryless, we need to extend the functions that Fσ use. Formally, Fσ is a new operator
over functions X : FPlays → R such that Fσ(X)(ρ) is equal to

wtt(q, ν) if q ∈ Qt

wt(δ) + twt(q) +X(ρ
t,δ−→ (q′, ν ′)) if q ∈ QMin and σ(ρ) = (t, δ)

sup
(q,ν)

t,δ−→(q′,ν′)

(
wt(δ) + twt(q) +X(ρ

t,δ−→ (q′, ν ′))
)

if q ∈ QMax

where last(ρ) = (q, ν).
Since the value function Valσ has only been defined for configurations, we need to extend

it over all finite plays. To do that, we define the weight of a play given by two strategies (σ
and τ) from a given finite play ρ by the weight of the unique play ρ′ conforming to σ and τ
from the last configuration of ρ (when σ and τ are initialised by ρ), i.e.

P(Play(ρ, σ, τ)) = wt(ρ′) .

Even if the weight of ρ is not taken into account in the weight of Play(ρ, σ, τ), we observe
that Play(last(ρ), σ, τ) does not describe the same accumulated weight as Play(ρ, σ, τ) (since
σ and τ may use some memory). We thus let, for all finite plays ρ,

Valσ(ρ) = sup
τ

P(Play(ρ, σ, τ)) .
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Lemma 8.2. Valσ is a fixpoint of Fσ.

Proof. Let ρ be a finite play and (q, ν) its last configuration. If q ∈ Qt, then for all strategies
τ of Max, P(Play(ρ, σ, τ)) = wtt(q, ν). Thus, we obtain that

Valσ(ρ) = sup
τ

P(Play(ρ, σ, τ)) = wtt(q, ν) = Fσ(Valσ)(ρ)

where the second equality follows by applying the supremum over strategies of Max.
Now, we suppose that q ∈ QMin, and let σ(ρ) = (t, δ). Thus, for all strategies τ of Max,

we obtain that

P(Play(ρ, σ, τ)) = wt(δ) + twt(q) + P(Play(ρ
t,δ−→ (q′, ν ′), σ, τ)) .

In particular, by applying the supremum over strategies of Max, we obtain that

Valσ(ρ) = sup
τ

(
wt(δ) + twt(q) + P(Play(ρ

t,δ−→ (q′, ν ′), σ, τ))
)
.

We note that the choice (t, δ) of σ depends only on ρ that is independent of the chosen
strategy of Max. Thus, we deduce that

Valσ(ρ) = wt(δ) + twt(q) + sup
τ

P(Play(ρ
t,δ−→ (q′, ν ′), σ, τ))

= wt(δ) + twt(q) + Valσ(ρ
t,δ−→ (q′, ν ′)) = Fσ(Valσ)(ρ) .

Finally, we suppose that q ∈ QMax and we reason by double inequalities. We begin by
showing that Fσ(Valσ)(ρ) ≤ Valσ(ρ). Let ε > 0, by the definition of Fσ(Valσ)(ρ), we obtain
the existence of an edge (q, ν)

t,δ−→ (q′, ν ′) such that

Fσ(Valσ)(ρ) ≤ wt(δ) + twt(q) + Valσ(ρ
t,δ−→ (q′, ν ′)) +

ε

2
.

Similarly, by the definition of Valσ, there exists a strategy τ∗ for Max such that

Valσ(ρ
t,δ−→ (q′, ν ′)) ≤ P(Play(ρ

t,δ−→ (q′, ν ′), σ, τ∗) +
ε

2
.

In particular, by combining these two inequalities, we obtain:

Fσ(Valσ)(ρ) ≤ wt(δ) + twt(q) + P(Play(ρ
t,δ−→ (q′, ν ′), σ, τ∗) + ε .

We consider a new strategy τ for Max defined such that τ(ρ) = (t, δ) and τ(ρ′) = τ∗(ρ′), for
all finite plays ρ′ ̸= ρ. In particular, since τ and τ∗ make the same choice for all plays that
extend ρ

t,δ−→ (q′, ν ′), we obtain that P(Play(ρ
t,δ−→ (q′, ν ′), σ, τ∗) = P(Play(ρ

t,δ−→ (q′, ν ′), σ, τ).
Thus, we deduce that

Fσ(Valσ)(ρ) ≤ P(Play(ρ, σ, τ)) + ε ≤ sup
τ ′

(
P(Play(ρ, σ, τ ′))

)
+ ε = Valσ(ρ) + ε .

Since this inequality holds for all ε > 0, it follows that Fσ(Valσ)(ρ) ≤ Valσ(ρ).
Conversely, we prove that Valσ(ρ) ≤ Fσ(Valσ)(ρ). Let ε > 0, and as for the previous

inequality, there exists a strategy τ∗ of Max such that

Valσ(ρ)− ε ≤ P(Play(ρ, σ, τ∗)) .
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In particular, by letting (t, δ) = τ∗(ρ), we deduce that

Valσ(ρ)− ε ≤ wt(δ) + twt(q) + P(Play(ρ
t,δ−→ (q′, ν ′), σ, τ∗))

≤ wt(δ) + twt(q) + Valσ(ρ
t,δ−→ (q′, ν ′))

≤ sup

(q,ν)
t,δ−→(q′,ν′)

(
wt(δ) + twt(q) + Valσ(ρ

t,δ−→ (q′, ν ′))
)
= Fσ(Valσ)(ρ) .

Finally, since this inequality holds for all ε > 0, we obtain that Valσ(ρ) ≤ Fσ(Valσ)(ρ).

8.2. Iterates of F uniformly converge to the greatest fixpoint of F . We now prove
the first result needed in the proof of Theorem 2.4. In particular, we consider the sequence
(Vi)i of functions Q× R≥0 → R defined, for all i ∈ N and for all configurations (q, ν) by

Vi(q, ν) =


+∞ if i = 0 and q /∈ Qt

wtt(q, ν) if i = 0 and q ∈ Qt

F(Vi−1)(q, ν) otherwise.

Proposition 8.3. infi Vi is the greatest fixpoint of F .

This section is devoted to the proof of this proposition. In particular, our proof relies on
the following technical results2 providing sufficient condition on the limit of the sequence
(Vi)i to be a fixpoint of F .

Lemma 8.4. (1) F is monotonous3 over Q×R≥0 → R, where the partial order over Q×R≥0

is the pointwise order over Q and the usual order over R≥0.
(2) For all X : Q× R≥0 → R and a ≥ 0, F(X + a) ≤ F(X) + a.
(3) For all non-increasing sequences (Xi)i of functions Xi : Q × R≥0 → R that uniformly

converge over each region4, infiF(Xi) = F(infiXi).

Proof. (1) Let X,X ′ : Q × R≥0 → R be two functions such that X ≥ X ′ (i.e. X(q, ν) ≥
X ′(q, ν) for all configurations (q, ν)), and let (q, ν) be a configuration. If q ∈ Qt, then
F(X)(q, ν) = wtt(q, ν) = F(X ′)(q, ν). Otherwise, since X(q′, ν ′) ≥ X ′(q′, ν ′), for all
edges (q, ν)

t,δ−→ (q′, ν ′), we have:

wt(δ) + twt(q) +X(q′, ν ′) ≥ wt(δ) + twt(q) +X ′(q′, ν ′)

Finally, we apply the infimum (resp. supremum) over all edges in this inequality if
q ∈ QMin (resp. q ∈ QMax).

(2) Let (q, ν) be a configuration.
• If q ∈ Qt, then, since a ≥ 0, we have:

F(X + a)(q, ν) = wtt(q, ν) = F(X)(q, ν) ≤ F(X)(q, ν) + a .

2These results hold for all WTGs and not only one-clock WTG.
3A function f : X → Y over partial orders X and Y is monotonous if for all x ≤ x′ in X, we have

f(x) ≤ f(x′) in Y .
4A sequence of functions (fi)i from partial orders X to R uniformly converge over A ⊂ X towards a

function f if for all ε > 0, there exists N ∈ N such that for all i ≥ N and x ∈ A, |fi(x)− f(x)| ≤ ε.
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• If q ∈ QMin, then, since a does not depend on edges, we have:

F(X + a)(q, ν) = inf
(q,ν)

t,δ−→(q′,ν′)

(
wt(δ) + twt(q) +X(q′, ν ′) + a

)
= inf

(q,ν)
t,δ−→(q′,ν′)

(
wt(δ) + twt(q) +X(q′, ν ′)

)
+ a

= F(X)(q, ν) + a .

• If q ∈ QMax, then, for the same reason, we have F(X + a)(q, ν) = F(X)(q, ν) + a.
(3) Since F is monotonous (by item (1)), we remark that for all j ∈ N, we have F(Xj) ≥

F(infiXi). In particular, as this inequality holds for all j ∈ N, we obtain that

inf
i
F(Xi) ≥ F(inf

i
Xi) .

Conversely, let ε > 0 and I be a region. Since (Xi)i uniformly converges over I to infiXi

(since the sequence (Xi) is non-increasing), there exists jI ∈ N such that XjI ≤ infiXi+ε
over I. Now, since there are only a finite number of regions, we fix j = maxI jI . Thus,
since the sequence (Xi)i is non-increasing, for all regions I, Xj ≤ infiXi + ε. Since F is
monotonous and by item (2),

F(Xj) ≤ F
(
inf
i
Xi + ε

)
≤ F

(
inf
i
Xi

)
+ ε .

In particular, we deduce that infiF(Xi) ≤ F
(
infiXi

)
+ ε, for all ε > 0.

As a corollary of this result, we prove that infi Vi is a fixpoint of F by proving that
it is a non-increasing sequence that uniformly converges. In particular, we observe that
this sequence of functions is non-increasing since F is monotonous (by Lemma 8.4.(1)) and
V0 ≥ F(V0) (since V0(q, ν) = +∞, or V0(q, ν) = V1(q, ν) = wtt(q, ν)). In particular, it
(simply) converges to infi Vi. To prove that (Vi)i uniformly converges to infi Vi, we will use
Dini’s theorem: a sequence of continuous functions that (simply) converges to a continuous
function, uniformly converges. The main difficulty is to prove that infi Vi is continuous over
regions. To do it, we note that if a sequence of k-Lipschitz-continuous functions (simply)
converges, then its limit is a continuous function. In particular, we want to show that there
exists k ∈ R≥0 such that, for all i ∈ N, Vi is k-Lipschitz-continuous.

Definition 8.5. A function f : R≥0 → R is continuous (respectively, k-Lipschitz-continuous,
for k ∈ R≥0) on regions if for all regions I, the restriction of f over each region is a
continuous (respectively, k-Lipschitz-continuous) function. A function f : R≥0 → R is k-
Lipschitz-continuous on regions, for k ∈ R≥0, if for all regions I and all valuations ν, ν ′ ∈ I,
|f(ν)− f(ν ′)| ≤ Λ|ν − ν ′|.

A function X : Q × R≥0 → R is continuous (respectively, k-Lipschitz-continuous) on
regions, if for all locations q ∈ Q, the restriction of X to q is continuous (respectively,
k-Lipschitz-continuous).

We let Λ be the maximum absolute value of all weights of locations and of derivatives
that appear in the piecewise-affine functions (the slopes of the affine pieces) of wtt. Then,
V0 is trivially Λ-Lipschitz-continuous on regions. Indeed, being a Λ-Lipschitz-continuous
function on regions when already being a continuous and piecewise affine function with
finitely many pieces is equivalent to having its derivatives bounded by Λ in absolute value.
In [Bus19, Lemma 10.10], it is shown in all WTGs, for all i ∈ N, Vi is Λi-Lipschitz-continuous
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on regions for a constant Λi that depends on i. We now refine the proof, in our one-clock
setting, to show that the same constant Λ can be chosen for all i.

Lemma 8.6. For all i ∈ N, Vi is Λ-Lipschitz-continuous on regions.

Proof. We rely on the knowledge that for all i ∈ N, Vi is continuous and piecewise affine on
each regions, with finitely many pieces, i.e. each Vi has a finite number of cutpoints5.

We reason by induction on i ∈ N showing that the derivative of Vi is bounded by Λ in
absolute values. The base case i = 0 is trivially satisfied as seen above. Let i ∈ N be such
that Vi is continuous on regions and piecewise affine with finitely many pieces that have a
derivative bounded by Λ. Let q ∈ Q \Qt (otherwise, we conclude as for i = 0). By massaging
the definition of F , we have that

Vi+1(q, ν) =

minδ inf
(q,ν)

t,δ−→(q′,ν′)

(
wt(δ) + twt(q) + Vi(q

′, ν ′)
)

if q ∈ QMin

maxδ sup
(q,ν)

t,δ−→(q′,ν′)

(
wt(δ) + twt(q) + Vi(q

′, ν ′)
)

if q ∈ QMax

For a fixed valuation ν, and once chosen the transition δ in the minimum or maximum, there
are finitely many delays t to consider in the infimum or supremum: since Vi is piecewise
affine, they are either delay 0 or all delays t such that ν + t are cutpoints νc of Vi(q

′, ·). In
particular, since there is only a finite number of such cutpoints, the function F(Vi)(q, ·) can
be written as a finite nesting of min and max operations over affine terms, each corresponding
to a choice of delay and a transition to take. There are several cases to define those terms,
depending on the chosen transition δ and cutpoint νc. If the transition δ resets x:
• if a delay 0 is chosen, then the affine term is Vi(q

′, 0) + wt(δ) that has derivative 0;
• otherwise, the affine term that it generates is of the form:

(νc − ν)wt(q) + wt(δ) + Vi(q
′, 0)

whose derivative is bounded by Wloc in absolute value, and thus by Λ.
If the transition δ does not reset x:
• if a delay 0 is chosen, then the affine term is wt(δ) + Vi(q

′, ν), whose derivative is the same
as in Vi(q

′, ·) and thus bounded by Λ in absolute value;
• otherwise, the affine term that it generates is of the form:

(νc − ν)wt(q) + wt(δ) + Vi(q
′, νc) .

whose derivative is bounded by Wloc in absolute value, and thus by Λ.

Now, we have tools to prove Proposition 8.3. First, we prove that infi Vi is a fixed
point of F , i.e. infi Vi = F(infi Vi). By Lemma 8.6, we know that for all i ∈ N, Vi is
Λ-Lipschitz-continuous over regions. Thus, we deduce that (Vi)i converges to a continuous
function over regions, i.e. infi Vi(q) is continuous over regions, for all locations q. Now, by
Dini’s theorem, we deduce that (Vi)i uniformly converges over regions to infi Vi. Finally, we
apply Lemma 8.4.(3) to conclude that infi Vi = infiF(Vi) = F(infi Vi), and thus that infi Vi

is a fixpoint of F .
Finally, we prove that infi Vi is the greatest fixpoint V of F . As V is the greatest

fixpoint, we have infi Vi ≤ V . Conversely, we prove by induction on i ∈ N that V ≤ Vi.
If i = 0 and q /∈ Qt, then V0(q, ν) = +∞ and V (q, ν) ≤ V0(q, ν); otherwise, q ∈ Qt and
V0(q, ν) = wtt(q, ν), while V (q, ν) = wtt(q, ν) (since V is a fixpoint of F). If i ∈ N is such

5We recall that a cutpoint is the value of the clock in-between two affine pieces of the function.
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that V ≤ Vi, as F is monotonous, we have F(V ) ≤ F(Vi). Thus, since V is a fixpoint of F ,
we deduce that V = F(V ) ≤ F(Vi) = Vi+1 that concludes the proof of Proposition 8.3.

8.3. The greatest fixpoint of F is equal to the value function. To conclude the proof
of Theorem 2.4, its remains to prove that infi Vi = Val. To do it, we adapt the proof given
in [Bou16] to our context (turn-based games with negative and positive weights).

Proposition 8.7. infi Vi = Val

The main idea of this proof is the link between Vi and the value obtained when we
consider only plays with at most i steps. We thus let Wi be the configurations from where
Min can guarantee to reach a target location within i steps: this is a very classical sequence
of configurations that is traditionally called attractor. Intuitively, for a configuration not
in Wi, Vi is equal to +∞ since Max can avoid the target in the i first steps. Formally, we
define the sequence of (Wi)i by induction on i ∈ N: (q, ν) ∈ W0 if q ∈ Qt, and for all i ∈ N,
(q, ν) ∈ Wi+1 if (q, ν) ∈ Wi, or

(1) q ∈ QMin, and there exists an edge (q, ν)
t,δ−→ (q′, ν ′) such that (q′, ν ′) ∈ Wi;

(2) q ∈ QMax, and for all edges (q, ν)
t,δ−→ (q′, ν ′), we have (q′, ν ′) ∈ Wi.

The following lemma recalls the link between Vi and Wi:

Lemma 8.8. Let i ∈ N and (q, ν) be a configuration. Then, (q, ν) ∈ Wi if and only if
Vi(q, ν) < +∞.

Proof. We prove the equivalence by induction on i ∈ N. If i = 0, since the game has been
modified so that final weight functions are finite, we conclude by definitions of W0 and V0.
Now, we fix i ∈ N such that for all configurations (q′, ν ′), we have (q′, ν ′) ∈ Wi if and only if
Vi(q

′, ν ′) < +∞. Let (q, ν) be a configuration. First, we suppose that q ∈ Lt. In this case,
(q, ν) ∈ W i+1 and Vi+1(q, ν) = wtt(q, ν) < +∞ (by hypothesis).

Now, we suppose that q ∈ QMin and we have:

Vi+1(q, ν) = F(Vi)(q, ν) = inf
(q,ν)

t,δ−→(q′,ν′)

(
wt(δ) + twt(q) + Vi(q

′, ν ′)
)

In particular, Vi+1(q, ν) < +∞ if and only if there exists an edge (q, ν)
t,δ−→ (q′, ν ′) such

that Vi(q
′, ν ′) < +∞. We deduce that Vi+1(q, ν) < +∞ if and only if there exists an edge

(q, ν)
t,δ−→ (q′, ν ′) such that (q′, ν ′) ∈ Wi (by applying the inductive hypothesis on (q′, ν ′)).

We conclude that Vi+1(q, ν) < +∞ if and only if (q, ν) ∈ W i+1, by item (1) of the definition
of Wi+1.

Finally, we suppose that q ∈ QMax and we have:

Vi+1(q, ν) = F(Vi)(q, ν) = sup

(q,ν)
t,δ−→(q′,ν′)

(
wt(δ) + twt(q) + Vi(q

′, ν ′)
)

In particular, by inductive hypothesis, Vi+1(q, ν) < +∞ if and only if for all edges (q, ν)
t,δ−→

(q′, ν ′), we have (q′, ν ′) ∈ Wi. Thus, by item (2) of the definition of Wi+1, we obtain that
Vi+1(q, ν) < +∞ if and only if (q, ν) ∈ Wi+1.

To prove that the value iteration converges to the value function, we relate configurations
in Wi with some particular strategies of Min. Given a configuration (q, ν), we fix Strati(q, ν)
to be the set of strategies of Min such that all plays from (q, ν) conforming to it reach the
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target in at most i steps. More precisely, we require that for all plays starting from (q, ν) and
conforming to a strategy of Strati(q, ν), the jth configuration of the play belongs to Wi−j :
in particular, the first configuration, (q, ν) must be in Wi, and the last one in W0 (i.e. with a
location being a target).

For all ε > 0, we inductively define a sequence of strategies (σε
i )i whose i-th strategy will

be shown to belong to Strati(q, ν) if (q, ν) ∈ Wi, and ε-optimal according to Vi. In particular,
we prove that an almost-optimal strategy can be defined by choosing almost-optimal edges
along the play. Intuitively, the i-th strategy chooses the first move as the best edge according
to Vi, and then follows the (i− 1)-th strategy (applying in the suffix of the play except the
first choice).

Formally, we let σε
0 be any fixed strategy of Min. For i ∈ N, relying on σ

ε/2
i , we

inductively define σε
i+1 according to the length of all finite plays ending in a location of Min.

If the play contains only one configuration, we fix σε
i+1(q, ν) be any decision (t, δ) such that

(q, ν)
t,δ−→ (q′, ν ′) and wt(δ) + twt(q) + Vi(q

′, ν ′) ≤ Vi+1(q, ν) + ε/2 (that exists by definition
of Vi+1(q, ν) as an infimum). Otherwise, the play can be decomposed as (q, ν)

t,δ−→ ρ with
(q′, ν ′) the first configuration of ρ, and we let:

σε
i+1((q, ν)

t,δ−→ ρ) = σ
ε/2
i (ρ) .

Lemma 8.9. For all i ∈ N, ε > 0 and (q, ν) ∈ Wi,
σε
i ∈ Strati(q, ν) and Vi(q, ν) + ε ≥ Valσ

ε
i (q, ν) .

Proof. We reason by induction on i ∈ N. If i = 0, since (q, ν) ∈ W0, we have q ∈ Qt and thus
any strategy (and thus the fixed strategy σε

0) is in Strat0(q, ν), and V0(q, ν) = wtt(q, ν) =
Valσ

ε
0(q, ν).
Now, consider i ∈ N such that for all configurations (q, ν) ∈ Wi, σ

ε/2
i ∈ Strati(q, ν),

and Vi(q, ν) + ε/2 ≥ Valσ
ε/2
i (q, ν). We show that σε

i+1 satisfies the properties for a given
configuration (q, ν) ∈ Wi+1. If q ∈ Qt, we conclude as in the case i = 0 (since q ∈ W0).
Otherwise, we show σε

i+1 ∈ Strati+1(q, ν) by contradiction. We thus suppose that there
exists a finite play ρ′ of length i+ 1 conforming to σε

i+1 that does not reach Qt. It can be

decomposed as (q, ν)
t,δ−→ ρ where σε

i+1(q, ν) = (t, δ) and ρ is conforming to σ
ε/2
i . We show

that (q′, ν ′) ∈ Wi where (q′, ν ′) is the first configuration of ρ.
• If q ∈ QMax, then we conclude that (q′, ν ′) ∈ Wi by item (2) of definition of Wi+1: all

edges from (q, ν) reach a configuration in Wi.

• If q ∈ QMin, then, by item (1) of definition of Wi+1, there exists an edge (q, ν)
t′,δ′−−→ (q′′, ν ′′)

such that (q′′, ν ′′) ∈ Wi, i.e. Vi(q
′′, ν ′′) < +∞ (by Lemma 8.8). The choice of σε

i+1(q, ν) is
taken along all possible edges from (q, ν), at most ε away of the infimum. Thus, it chooses
an edge (q, ν)

t,δ−→ (q′, ν ′) such that Vi(q
′, ν ′) < +∞, i.e. (q′, ν ′) ∈ Wi (by Lemma 8.8).

By induction hypothesis applied to (q′, ν ′) ∈ Wi, σ
ε/2
i ∈ Strati(q

′, ν ′), and thus ρ reaches Qt

within i steps which contradicts the hypothesis.
We then prove that Vi+1(q, ν) + ε ≥ Valσ

ε
i+1(q, ν). By definition of σε

i+1 with σ
ε/2
i , we

remark that, for all finite plays (q, ν)
t,δ−→ ρ of length at least one, we have σε

i+1((q, ν)
t,δ−→

ρ) = σ
ε/2
i (ρ). In particular, the weight of all plays from (q, ν)

t,δ−→ ρ and conforming to σε
i+1

is equal to the weight of the play from ρ and conforming to σ
ε/2
i under the same strategy of
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Max, i.e. for all strategies of Max, τ , we have:

wt(Play((q, ν)
t,δ−→ (q′, ν ′), σε

i+1, τ)) = wt(Play((q′, ν ′), σ
ε/2
i , τ)) .

Thus, by applying the supremum over strategies of Max, we deduce that

Valσ
ε
i+1((q, ν)

t,δ−→ (q′, ν ′)) = Valσ
ε/2
i (q′, ν ′) (8.1)

• If q ∈ QMax, then we have:

Vi+1(q, ν) = F(Vi)(q, ν) = sup

(q,ν)
t,δ−→(q′,ν′)

(
wt(δ) + twt(q) + Vi(q

′, ν ′)
)

Since (q, ν) ∈ Wi+1, then we have (q′, ν ′) ∈ Wi (by item (2)). Moreover, by induction
hypothesis applying on Vi(q

′, ν ′), we deduce that Vi(q
′, ν ′) + ε/2 ≥ Valσ

ε/2
i (q′, ν ′). Thus,

for all (t, δ), we have:

Vi+1(q, ν) ≥ wt(δ) + twt(q) + Vi(q
′, ν ′)

≥ wt(δ) + twt(q) + Valσ
ε/2
i (q′, ν ′)− ε/2

≥ wt(δ) + twt(q) + Valσ
ε
i+1((q, ν)

t,δ−→ (q′, ν ′))− ε/2 (by (8.1))

Finally, since this inequality holds for all edges from (q, ν), we deduce that

Vi+1(q, ν) ≥ sup

(q,ν)
t,δ−→(q′,ν′)

(
wt(δ) + twt(q) + Valσ

ε
i+1((q, ν)

t,δ−→ (q′, ν ′))
)
− ε/2

≥ Valσ
ε
i+1(q, ν)− ε (by Lemma 8.2).

• If q ∈ QMin, then, by definition of σε
i+1, and letting σε

i+1(q, ν) = (t, δ):

Vi+1(q, ν) ≥ wt(δ) + twt(q) + Vi(q
′, ν ′)− ε/2

Now, since (q′, ν ′) ∈ Wi (as explain before to show that σε
i+1 ∈ Strati+1(q, ν)), by induction

hypothesis, Vi(q
′, ν ′) + ε/2 ≥ Valσ

ε/2
i (q′, ν ′). Thus, we deduce that

Vi+1(q, ν) ≥ wt(δ) + twt(q) + Valσ
ε/2
i (q′, ν ′)− ε

≥ wt(δ) + twt(q) + Valσ
ε
i+1((q, ν)

t,δ−→ (q′, ν ′))− ε (by (8.1))

≥ Valσ
ε
i+1(q, ν)− ε (by Lemma 8.2).

As a corollary, we obtain:

Lemma 8.10. For all i ∈ N, and (q, ν) ∈ Wi, Vi(q, ν) = infσ∈Strati(q,ν) Val
σ(q, ν).

Proof. We reason by induction on i ∈ N. If i = 0, since q ∈ Qt for all strategies σ ∈
Strat0(q, ν), V0(q, ν) = wtt(q, ν) = Valσ(q, ν).

For i ∈ N such that the property holds, let (q, ν) ∈ Wi+1. If q ∈ Qt, we have (q, ν) ∈ W0

and we conclude as in the case i = 0. Otherwise, Lemma 8.9 directly implies that

Vi+1(q, ν) + ε ≥ Valσ
ε
i+1(q, ν) ≥ inf

σ∈Strati+1(q,ν)
Valσ(q, ν)

and Vi+1(q, ν) ≥ infσ∈Strati+1(q,ν) Val
σ(q, ν) since the inequality holds for all ε > 0.

Conversely, we show that Vi+1(q, ν) ≤ infσ∈Strati+1(q,ν) Val
σ(q, ν) by proving that for all

σ ∈ Strati+1(q, ν), we have Vi+1(q, ν) ≤ Valσ(q, ν). Let σ ∈ Strati+1(q, ν).
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• If q ∈ QMin, then we let (t, δ) = σ(q, ν) with (q, ν)
t,δ−→ (q′, ν ′), so that (q′, ν ′) ∈ Wi.

By induction hypothesis, we have Vi(q
′, ν ′) = infσ′∈Strati(q′,ν′) Val

σ(q′, ν ′). Consider the

strategy σ′ obtained from σ by adding as a first move the edge (q, ν)
t,δ−→ (q′, ν ′). Formally,

it is defined by:

σq′,ν′(ρ) =

{
σ
(
(q, ν)

t,δ−→ ρ
)

if ρ starts in (q′, ν ′);
σ(ρ) otherwise.

Given a play ρ′ conforming to σ′ starting from (q′, ν ′), we remark that (q, ν)
t,δ−→ ρ′ is

conforming to σ. In particular, we obtain that

Play((q, ν), σ′, τ) = Play((q, ν)
t,δ−→ (q′, ν ′), σ, τ) (8.2)

Thus, from (8.2), we deduce that σ′ ∈ Strati(q
′, ν ′). Thus, Vi(q

′, ν ′) ≤ Valσ
′
(q′, ν ′) and we

obtain that

Vi+1(q, ν) = F(Vi)(q, ν)

≤ wt(δ) + twt(q) + Vi(q
′, ν ′)

≤ wt(δ) + twt(q) + Valσ
′
(q′, ν ′) .

Moreover, by (8.2), we also obtain that, for all strategies τ of Max,

P(Play((q, ν), σ′, τ)) = P(Play((q, ν)
t,δ−→ (q′, ν ′), σ, τ)) .

In particular, we deduce that Valσ
′
(q′, ν ′) = Valσ((q, ν)

t,δ−→ (q′, ν ′)), and we can rewrite
the previous inequality as:

Vi+1(q, ν) ≤ wt(δ) + twt(q) + Valσ((q, ν)
t,δ−→ (q′, ν ′))

≤ Valσ(q, ν) (by Lemma 8.2).

• If q ∈ QMax, then, by Lemma 8.2, we have:

Valσ(q, ν) = sup

(q,ν)
t,δ−→(q′,ν′)

(
wt(δ) + twt(q) + Valσ((q, ν)

t,δ−→ (q′, ν ′))
)

Letting (q, ν)
t,δ−→ (q′, ν ′) be an edge from (q, ν), since σ ∈ Strati+1(q, ν), we have

(q′, ν ′) ∈ Wi, and thus by induction hypothesis, Vi(q
′, ν ′) ≤ infσ′∈Strati(q′,ν′) Val

σ(q′, ν ′). By
considering the same strategy σ′ as the one defined in the case of Min, we obtain that

Vi(q
′, ν ′) ≤ Valσ

′
(q′, ν ′) = Valσ((q, ν)

t,δ−→ (q′, ν ′))

Thus, we deduce that

Valσ(q, ν) ≥ wt(δ) + twt(q) + Vi(q
′, ν ′)

Since this holds for all edges (q, ν)
t,δ−→ (q′, ν ′), we deduce that

Valσ(q, ν) ≥ sup

(q,ν)
t,δ−→(q′,ν′)

(
wt(δ) + twt(q) + Vi(q

′, ν ′)
)
= Vi+1(q, ν) .
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Finally, we have tools to prove Proposition 8.7. In particular, we fix W be the set of
configurations from where Min can ensure to reach Qt (without restriction on the number of
steps), that is the limit of (Wi)i: W =

⋃
iWi. By classical results [FBBD+23, Theorem 103]

on the attractor computation in timed games, we know that there exists a finite N ∈ N such
that W =

⋃N
i=0Wi. Now, by letting V = infi Vi, we can finally prove that V = Val.

We reason by double inequalities and we start by proving that V ≥ Val = infσ Val
σ. If

(q, ν) /∈ W , we have for all i ∈ N, Vi(q, ν) = +∞ (by Lemma 8.8), and thus V (q, ν) = +∞.
Otherwise, (q, ν) ∈ WN . Let ε > 0. Since (Vi)i uniformly converges to its limit, there exists
k ≥ N such that Vk(q, ν) ≤ V (q, ν) + ε. By using Lemma 8.10, infσ∈Stratk(q,ν) Val

σ(q, ν) ≤
V (q, ν) + ε. By considering the infimum over all strategies, and since this holds for all ε, we
get Val = infσ Val

σ ≤ V .
Conversely, we prove that V ≤ Val = infσ Val

σ. By contradiction, we suppose that
there exists a strategy σ of Min and an initial configuration (q, ν) such that V (q, ν) >
Valσ(q, ν). Since then Valσ(q, ν) < +∞, all plays conforming to σ reach a target location. We
(inductively) build a play ρ from (q, ν) conforming to σ such that at each step we guarantee
that last(ρ) = (q′, ν ′) satisfies q′ /∈ Qt, and V (q′, ν ′) > Valσ(ρ). In particular, this implies
that ρ is an infinite play that never reaches a target, and we get a contradiction.

Now, to finish the proof, we provide the construction of a such ρ. First, we suppose that
ρ = (q, ν). To initiate the inductive construction of ρ, since V (q, ν) > Valσ(q, ν), we deduce
that q /∈ Qt (otherwise V (q, ν) = wtt(q, ν) = Valσ(q, ν) by Lemma 8.2).

Then, we suppose that ρ is a play from (q, ν) conforming to σ such that V (q′, ν ′) > Valσ(ρ)
where last(ρ) = (q′, ν ′) and q′ /∈ Qt. We define a new step for ρ as follows.

• If q′ ∈ QMin, then we extend ρ by ρ′ = ρ
t,δ−→ (q′′, ν ′′), by letting σ(ρ) = (t, δ). Since ρ is

conforming to σ, then ρ′ is also conforming to σ. By induction hypothesis and Lemma 8.2,

V (q′, ν ′) > Valσ(ρ) = wt(δ) + twt(q′) + Valσ(ρ′)

Since V is a fixpoint of F by Proposition 8.3, with V (q′, ν ′) being thus equal to an infimum
over all possible edges, we obtain

V (q′′, ν ′′) ≥ V (q′, ν ′)− wt(δ)− twt(q′) > Valσ(ρ′)

• If q′ ∈ QMax, then we prove that there exists an edge (q′, ν ′)
t,δ−→ (q′′, ν ′′) such that

V (q′′, ν ′′) > Valσ(ρ
t,δ−→ (q′′, ν ′′)), and we define the new step of ρ with this edge (the

resulting play is conforming to σ). To do that, we reason by contradiction, and we
suppose that for all edges (q′, ν ′)

t,δ−→ (q′′, ν ′′), we have V (q′′, ν ′′) ≤ Valσ(ρ
t,δ−→ (q′′, ν ′′)). In

particular, we obtain a contradiction since:

V (q′, ν ′) > Valσ(ρ) (by induction hypothesis)

= sup

(q′,ν′)
t,δ−→(q′′,ν′′)

(
wt(δ) + twt(q′) + Valσ(ρ

t,δ−→ (q′′, ν ′′))
)

(by Lemma 8.2)

≥ sup

(q′,ν′)
t,δ−→(q′′,ν′′)

(
wt(δ) + twt(q′) + V (q′′, ν ′′)

)
(by monotonicity of F)

> V (q′, ν ′) (since V is a fixpoint of F by Proposition 8.3).

This concludes the proof that limi Vi = Val, and thus of Theorem 2.4.
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9. Conclusion

We solve one-clock WTGs with arbitrary weights, an open problem for several years. We
strongly rely on the determinacy of the game, taking the point of view of Max, instead of
the one of Min as was done in previous work with only non-negative weights. We also use
technical ingredients such as the closure of a game, switching strategies for Min, and acyclic
unfoldings.

Regarding the complexity, our algorithm runs in exponential time (with weights en-
coded in unary), which does not match the known PSPACE lower bound with weights
in unary [FIJS20]. Observe that this lower bound only uses non-negative weights. This
complexity gap deserves further study.

To compute the value function with a PSPACE algorithm, a promising idea from a
reviewer of this article consists in using the first-order theory over the reals with a fixed
number of quantifier alternations where the satisfiability of a formula can be checked in
PSPACE [BPR06, remark 13.10]. The idea is to encode the greatest fixpoint of F (that is
the value of the game, by Theorem 2.4) in this logic. Indeed, since the value function of a
one-clock WTG is piecewise affine with a pseudo-polynomial number of cutpoints (according
to [BGH+22]), we can write such a formula by using a variable for each cutpoint and slope,
and then expressing with inequalities and equalities that, for each cutpoint or line segment,
the current valuation is at least as good as what can be obtained by either waiting until a
later cutpoint, or jumping through a transition.

Our work also opens three research directions. First, as we unfold the game into a finite
tree, it would be interesting to develop a symbolic approach that shares computation between
subtrees in order to obtain a more efficient algorithm. Second, playing stochastically in
WTGs with shortest path objectives has been recently studied in [MPR21]. One could study
an extension of one-clock WTGs with stochastic transitions. In this context, Min aims at
minimizing the expectation of the accumulated weight. Third, the analysis of cycles that we
have done in the setting of one-clock WTGs can be an inspiration to identify new decidable
classes of WTGs with arbitrarily many clocks.
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Appendix A. Continuity of the value function on closure of regions

Lemma 2.7. For all WTGs G and (q, I) ∈ Q × RegG, the mapping ν 7→ ValG((q, I), ν) is
continuous over I.

The main ingredient of our proof is, given a strategy σ of Min in G, a location ℓ = (q, I) of
G, and valuations ν, ν ′ ∈ I (and not only ν, ν ′ ∈ I as in the proof of [BGH+22, Theorem 3.2]),
to show how to build a strategy σ′ in G and a length-preserving function g that maps plays
of G starting in (ℓ, ν ′) and conforming to σ′ to plays of G starting in (ℓ, ν) conforming to
σ with similar behaviour and weight. More precisely, we define σ′ and g by induction on
the length k of the finite play that is given as an argument and relies on the following set of
induction hypotheses:

Induction hypothesis: There exist a strategy σ′, only defined on plays of length
at most k − 1 starting in (ℓ, ν ′), and a function g mapping plays of length k starting in
(ℓ, ν ′) conforming to σ′ to plays of length k starting in (ℓ, ν) conforming to σ such that

for all plays ρ′ = (ℓ0 = ℓ, ν ′0 = ν ′)
t′0,δ

′
0−−−→ · · ·

t′k−1,δ
′
k−1−−−−−−→ (ℓk, ν

′
k) conforming to σ′, letting

(ℓ0, ν0 = ν)
t0,δ0−−−→ · · · tk−1,δk−1−−−−−−→ (ℓk, νk) the play g(ρ′), we have:

(1) |νk − ν ′k| ≤ |ν − ν ′|;
(2) wtΣ(ρ

′) ≤ wtΣ(g(ρ
′)) +Wloc(|ν − ν ′| − |νk − ν ′k|).

We note that no property is required on the strategy σ′ for finite plays that do not start
in (ℓ, ν ′). Moreover, by the invariants of G, we have that for every i ∈ {0, . . . , k}, νi and ν ′i
belong to the interval Ii such that ℓi = (qi, Ii).

Let us explain how this result would imply the desired result before going through the
induction itself, i.e. why ν 7→ ValG((q, I), ν) is continuous over I. We remark first that the
result directly implies that if the value of the game is finite for some valuation ν in I, then it
is finite for all other valuation ν ′ in I. Indeed, a finite value of the game in (ℓ, ν) implies that
there exists a strategy σ such that every play starting in (ℓ, ν) and conforming to it reaches
a target location in a final valuation such that the final weight function applying in this last
configuration is finite. Moreover, denoting σ′ the strategy obtained from σ thanks to the
above result, any play ρ′ starting in (ℓ, ν ′) and conforming to σ′ reaches a target location
(since g(ρ′) does as a play conforming to σ). Moreover, its final weight function is finite as
the final valuation of ρ′, and g(ρ′) sit in the same region and, by hypothesis, a final weight
function is either always finite or always infinite within a region.

Now, assuming the value of the game is finite over I and we show that the value is
continuous over I. To do it, we show that, for all ν ∈ I, for all ε > 0, there exists δ > 0 such
that for all ν ′ ∈ I with |ν − ν ′| ≤ δ, we have |ValG(ℓ, ν)− ValG(ℓ, ν

′)| ≤ ε. To this end, we
can show that:

|ValG(ℓ, ν)− ValG(ℓ, ν
′)| ≤ (Wloc +K)|ν − ν ′| (A.1)

where K is the greatest absolute value of the slopes appearing in the piecewise affine functions
within wtt. Indeed, assume that this inequality holds, and consider ν ∈ I and a positive real
number ε. Then, we let δ = ε

Wloc+K , and we consider a valuation ν ′ such that |ν − ν ′| ≤ δ.
In this case, (A.1) becomes:

|ValG(ℓ, ν)− ValG(ℓ, ν
′)| ≤ (Wloc +K)|ν − ν ′| ≤ (Wloc +K)

ε

Wloc +K
≤ ε .

Thus, proving (A.1) is sufficient to establish continuity.
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Figure 8: The definition of t′ when (a) ν ′k ≤ νk; (b) νk < ν ′k < νk + t; (c) νk < νk + t < ν′k.

On the other hand, (A.1) is equivalent to:

ValG(ℓ, ν) ≤ ValG(ℓ, ν
′)+(Wloc+K)|ν−ν ′| and ValG(ℓ, ν

′) ≤ ValG(ℓ, ν)+(Wloc+K)|ν−ν ′| .

As those two last equations are symmetric with respect to ν and ν ′, we only have to show
either of them. We thus focus on the latter, which, by using the upper value, can be
reformulated as: for all strategies σ of Min, there exists a strategy σ′ such that

Valσ
′

G (ℓ, ν ′) ≤ ValσG(ℓ, ν) + (Wloc +K)|ν − ν ′| .

We note that this last equation is equivalent to saying that there exists a function g mapping
plays ρ′ from (ℓ, ν ′) conforming to σ′ to plays from (ℓ, ν) conforming to σ such that, for all
such ρ′ the final valuations of ρ′ and g(ρ′) differ by at most |ν − ν ′| and

wtΣ(ρ
′) ≤ wtΣ(g(ρ

′)) +Wloc|ν − ν ′|

which is exactly what we claimed induction achieves since −|νk − ν ′k| ≤ 0. Thus, to conclude
this proof, let us now define σ′ and g, by induction on the length k of ρ′.

Base case k = 0: In this case, σ′ does not have to be defined since there are no plays
of length −1. Moreover, in that case, ρ′ = (ℓ, ν ′) and g(ρ′) = (ℓ, ν), in which case both
properties are trivial.

Inductive case: Let us suppose now that the construction is done for a given k ≥ 0 and
perform it for k+1. We start with the construction of σ′. To that extent, we consider a play

ρ′ = (ℓ0 = ℓ, ν ′0 = ν ′)
t′0,δ

′
0−−−→ · · ·

t′k−1,δ
′
k−1−−−−−−→ (ℓk, ν

′
k) conforming to σ′ (provided by induction

hypothesis) such that ℓk ∈ LMin . Let (t, δ) be the choice of delay and transition made by σ
on g(ρ′), i.e. σ(g(ρ′)) = (t, δ). Then, we define σ′(ρ′) = (t′, δ) where t′ = max(0, νk + t− ν ′k).
The delay t′ respects the guard of transition δ, as can be seen from Figure 8. Indeed, either
νk + t = ν ′k + t′ (cases (a) and (b) in Figure 8) or νk ≤ νk + t ≤ ν ′k (case (c) in Figure 8
where t′ = 0), in which case ν ′k is in the same closure of region as νk + t since νk and ν ′k
are in the same closure of region by induction hypothesis: we conclude by noticing that the
guard of δ is closed.

Let us now build the mapping g. Let ρ′ = (ℓ0 = ℓ, ν ′0 = ν ′)
t′0,δ

′
0−−−→ · · ·

t′k,δ
′
k−−−→ (ℓk+1, ν

′
k+1)

be a play conforming to σ′ and let ρ̃′ = (ℓ0, ν
′
0)

t′0,δ
′
0−−−→ · · ·

t′k−1,δ
′
k−1−−−−−−→ (ℓk, ν

′
k) its prefix

of length k. Using the construction of g over plays of length k by induction, the play
g(ρ̃′) = (ℓ0, ν0 = ν)

t0,δ0−−−→ · · · tk−1,δk−1−−−−−−→ (ℓk, νk) satisfies properties (1) and (2). Then:

• if ℓk ∈ LMin and σ(g(ρ̃′)) = (t, δ), then g(ρ′) = g(ρ̃′)
t,δ−→ (ℓk+1, νk+1) is obtained by

applying those choices on g(ρ̃′). By the construction of σ′, we moreover have δ′k = δ;
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• if ℓk ∈ LMax, the last valuation νk+1 of g(ρ′) is rather obtained by choosing action (t, δ′k)
verifying t = max(0, ν ′k + t′k − νk). We note that transition δ′k is allowed since both νk + t
and ν ′k + t′k are in the same closure of region (for similar reasons as above).

Moreover, by induction hypothesis ρ̃′ and g(ρ̃′) have the same length.
Now, to prove (1), we notice that we always have either

νk + t = ν ′k + t′k or νk ≤ νk + t ≤ ν ′k = ν ′k + t′k or ν ′k ≤ ν ′k + t ≤ νk = νk + t .

In all of these possibilities, we have |(νk + t)− (ν ′k + t′k)| ≤ |νk − ν ′k|.
We finally check property (2). Either ℓk belongs to Min or to Max, using the induction

hypothesis, we have:

wtΣ(ρ
′) = wtΣ(ρ̃

′) + wt(δ′k) + t′k wt(ℓk)

≤ wtΣ(g(ρ̃
′)) +Wloc(|ν − ν ′| − |νk − ν ′k|) + wt(δ′k) + t′k wt(ℓk)

= wtΣ(g(ρ
′)) + (t′k − t)wt(ℓk) +Wloc(|ν − ν ′| − |νk − ν ′k|) .

To conclude, let us claim that

|t′k − t| ≤ |νk − ν ′k| − |ν ′k+1 − νk+1| (A.2)

Thus, since |wt(ℓk)| ≤ Wloc, we conclude that

wtΣ(ρ
′) ≤ wtΣ(g(ρ

′)) +Wloc(|ν − ν ′| − |νk+1 − ν ′k+1|)
which concludes the induction.

To conclude the proof, we prove (A.2). First, we suppose that δ′k does not contain a reset.
In particular, we have t′k = ν ′k+1−ν ′k and t = νk+1−νk, thus |t′k−t| = |ν ′k+1−ν ′k−(νk+1−νk)|.
Then, two cases are possible: either t′k = max(0, νk + t− ν ′k) or t = max(0, ν ′k + t′k − νk). So
we have three different possibilities:
• if t′k + ν ′k = t+ νk, then ν ′k+1 = νk+1, thus

|t′k − t| = |νk − ν ′k| = |νk − ν ′k| − |ν ′k+1 − νk+1| ;
• if t = 0, then νk = νk+1 ≥ ν ′k+1 ≥ ν ′k, thus

|t′k − t| = ν ′k+1 − ν ′k = (νk − ν ′k)− (νk+1 − ν ′k+1) = |νk − ν ′k| − |ν ′k+1 − νk+1| ;
• if t′k = 0, then ν ′k = ν ′k+1 ≥ νk+1 ≥ νk, thus

|t′k − t| = νk+1 − νk = (ν ′k − νk)− (ν ′k+1 − νk+1) = |νk − ν ′k| − |ν ′k+1 − νk+1| .
Otherwise, δ′k contains a reset, then ν ′k+1 = νk+1 = 0. If t′k = νk + t − ν ′k, we have that
|t′k − t| = |νk − ν ′k|. Otherwise, t′k = 0 and t ≤ ν ′k − νk. In all cases, we have proved (A.2).
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